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The design of coherent and efficient policies to address infectious diseases and their consequences requires
modeling not only epidemics dynamics but also individual behaviors, as the latter has a strong influence on the
former. In our work, we provide a theoretical model for this problem, taking into account the social structure
of a population. This model is based on a mean-field-game version of a SIR compartmental model, in which
individuals are grouped by their age class and interact together in different settings. This social heterogeneity
allows us to reproduce realistic situations while remaining usable in practice. In our game theoretical approach,
individuals can choose to limit their contacts by making a trade-off between the risks incurred by infection
and the cost of being confined. The aggregation of all these individual choices and optimizations forms a Nash
equilibrium through a system of coupled equations that we derive and solve numerically. The global cost born by
the population within this scenario is then compared to its societal optimum counterpart (i.e., the cost associated
with the optimal set of strategies from the point of view of the society as a whole), and we investigate how the gap
between these two costs can be partially bridged within a constrained Nash equilibrium for which a governmental
institution would, under specific conditions, impose “partial lockdowns” such as the ones that were imposed
during the COVID-19 pandemic. Finally, we consider the consequences of the finiteness of the population size
Ntot , or of a time T at which an external event (e.g., a vaccine) would end the epidemic, and show that the
variation of these parameters could lead to first-order phase transitions in the choice of optimal strategies. In this
paper, all the strategies considered to mitigate epidemics correspond to nonpharmaceutical interventions, and we
provide here a theoretical framework within which guidelines for public policies depending on the characteristics
of an epidemic and on the cost of restrictions on the society could be assessed.
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I. INTRODUCTION

As our history with COVID-19 has made rather explicit,
modeling as precisely as possible the dynamics of epidemics
is crucial if one wishes to design public policies able to
mitigate effectively their negative impact. One major diffi-
culty encountered toward this goal is that, most often, the
parameters one would naturally choose to build such models
have significant, and sometimes very fast, variations. This is
illustrated, for instance, by the graph plotted in Fig. 1, which
shows the time dependence of Reff, the average number of
people to which the virus is transmitted by a sick individual,
for the COVID-19 pandemic in France.

The figure reveals that there are huge variations of Reff

over time. Some of them can easily be associated with known
events (lockdown, new variant, etc.) but some other remain
unexplained. Indeed, Reff is impacted by many phenomena,
such as natural immunity, vaccination, but also by behavioral
changes that have important consequences on the spreading of
the disease. While data such as immunity or vaccination rate
are taken into account in even the most basic models, this is
not the case for the evolution of social interactions.

*Contact author: louis.bremaud@hotmail.fr

However, these modifications of social behavior, either
under governmental influence or because people change their
individual habits, significantly affect epidemics dynamics.
These individual or collective strategies against the virus
sometimes prevented a health disaster [1] by significantly
decreasing the total number of infected people and the time
at which the peak occurs [1,2]. As a counterpart, they had
significant worldwide negative impact, for the economy [3],
or in terms of health (as medical acts had to be postponed),
time, money, social interactions, psychological pressure [4]
(domestic violence, depression), etc., which in turn could
increase the stress on the sanitary system [2]. In such a con-
text, any policy or any individual decision must consider the
trade-off between the cost of reducing social interaction and
the cost of the epidemic; see, for instance, Refs. [5–7], where
realistic impacts and constraints on the quarantine and iso-
lation strategies have been considered, and Refs. [8,9] where
the individual behavioral response to isolation policy has been
investigated. This individual response is of course greatly
influenced by cultural habits together with social, economic,
religious needs of the population.

In models currently used to describe the propagation of
epidemics, social interactions are often described by constant
parameters, or at best by time-dependent parameters which are
extrinsic, in the sense that their time evolution is not predicted
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FIG. 1. Evolution of Reff in France during the COVID-19 pandemic between June 2020 and June 2023. Reff corresponds to the effective
reproduction number of the virus, that is, the average number of people to which the virus is transmitted by a sick individual. If Reff > 1, then
the epidemic grows, and it decreases if Reff < 1. We see that there are very significant variations of Reff which range from 0.6 to 2. We marked
on the figure some peaks and valleys that have clearly identified origins (data from “Santé Publique France,” by Guillaume Rozier [10].)

by the model itself, but ideally obtained from epidemic data
[1,11]. However, given the amplitude and timescale of these
variations, and in spite of the large amounts of data used,
exploiting these data involves a lot of guesswork and lead to
predictions [12,13] which could be inaccurate, especially on
long timescales.

To overcome these difficulties, one needs to introduce
models for which the extrinsic parameters have no time de-
pendence (at least on the timescale of the epidemic), and
which can therefore be fitted in a reliable way on field data.
However, all time-dependent parameters, and in particular the
ones modeling social interactions, should be intrinsic, in the
sense that their dynamics should be predicted by the model.
This naturally calls for a game theoretical approach (for a
review, see Ref. [14]). Here we will follow an approach known
as mean-field-game theory.

Introduced by Lasry and Lions almost two decades ago
[15–17] and independently by Huang, Malhamé and Caines
[18], mean-field games (MFG) focus on the derivation of
a Nash equilibrium within a population containing a large
number of individuals. Readers may refer to Refs. [19–21]
for a complete mathematical description, and to Refs. [22,23]
for an introduction aimed at physicists. Applications of MFG
include finance [24], economics [25], crowd modeling [26],
and opinion dynamics [27], among many others.

The introduction of MFG models to describe epidemics
dynamics has been first used a decade ago by Reluga et al.
[28] about social distancing. Mean-field games have been then
used to describe vaccination rates, which appears to be an
extrinsic parameter with a dynamics mainly influenced by
individuals choices. Pioneers on this matter are Laguzet et al.
[29] (see also Refs. [29–31]). Recently, a similar approach has
been proposed by Elie et al. in Ref. [32] to study the impact of
individual decisions regarding distancing and isolation, that is,
to study human impact on the dynamics of the epidemic (see
Refs. [33,34] for a mathematical perspective). An extensive

review of recent progresses in this new field can be found in
Ref. [35].

The significant advances made in Ref. [32] establish how
the mean-field-game concepts can be implemented to describe
the dynamics of social distancing in a simple epidemic model.
The goal of this paper is to go one step further toward the im-
plementation of MFG in realistic situation by demonstrating
that enough degree of complexity can be introduced within a
MFG framework to address questions of practical importance
for public institutions, in the context of what is refereed to,
in the literature, as the nonpharmaceutical interventions (NPI)
strategies.

To achieve this goal, this paper is divided in two rather
distinct parts. In the first part, Secs. II and III, we introduce
at a rather general level the class of models we are interested
in, describe the corresponding mathematical framework, and
derive the associated dynamical equations. More specifically,
Sec. II introduces the SIR model with a social structure on
which we base our discussion and Sec. III implements the
corresponding MFG paradigm, that is, presents the individ-
ual optimization scheme and its consequences at the society
scale and formulates the corresponding Nash equilibrium. The
central results of this part are Eqs. (2.11) and (2.12) and
Eqs. (3.14)–(3.16), and its main content is summarized in
the header of Sec. IV, so that readers less interested in the
mathematical formalism can go directly to this section.

We then turn, in Secs. IV and V, to the second part of
the paper, where we illustrate on a particular example the
kind of problematic that can be addressed, and the kind of
questions that can be asked, within our formalism. We stress
that our goal here is not to analyze a specific epidemics in
a specific geographic location, as, on the one hand, the id-
iosyncrasies of any specific real case would obscure our main
message, and since, on the other hand, the specification of the
parameters of our model based on real data is clearly beyond
the scope of this work. Rather, we will consider a particular
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implementation/set of parameters which can be considered as
rather typical (we will argue why). In Sec. IV we will discuss,
on that example, how the Nash equilibrium differ from, on the
one hand, a “business as usual” approach where the agents
do not modify their behavior during the epidemics, and, on
the other hand, a “societal optima” where each individual is
assumed to follow a completely altruistic behavior, focusing
in particular on how these different scenario may affect in a
rather different way the different age classes. We shall also
address in that section the effectiveness of possible lock-
downs, and the risk they represent. In Sec. V, we then broaden
the discussion and consider the various strategies that public
institutions can put in place to mitigate an epidemics through
nonpharmaceutical interventions and show in particular the
existence of a first-order phase transition as some parameters,
such as the duration of the epidemics or the risk due to an in-
fection, are varied. Finally, concluding remarks are assembled
in Sec. VI. Some mathematical and numerical details, as well
as a more general exploration of the parameter space of our
model, are gathered in the Appendix.

II. SOCIAL-STRUCTURE MODELING
OF THE EPIDEMICS DYNAMICS

In this section, we introduce and analyze in detail the
dynamics of the SIR model with social structure which forms
the basis of this work. We start by reviewing briefly the plain-
vanilla SIR model.

A. SIR model

Since the early 20th Century, many models have been
proposed to model epidemic dynamics, one of the simplest
being the susceptible-infected-recovered (SIR) compartment
model [36] and its variations [37]. Recently, this model has
been refined to take into account the structure of social con-
tacts [38,39], as well as spatial or geographic aspects of the
dynamics [40,41].

The SIR model is defined as follows. Individuals can be
in three possible states x = s, i, or r, with s = “susceptible,”
i = “infected,” and r = “recovered.” Starting from some initial
configuration at t = 0, one then assumes that the evolution
of the system is Markovian. Between times t and t + dt ,
individuals can switch from one state to another with a certain
probability, which depends on their contact rate with the rest
of the population and of the status of people they meet. In a
population composed of Ntot individuals, the probability for an
individual k to have contact with another individual l during
the interval [t, t + dt[ is 1

Ntot
χ (t )dt , with χ (t ) a (possibly

time-dependent) given parameter corresponding to the total
contact rate of the individual k. We make the assumption that
all individuals can be met by k with equal probability (in other
words, the population considered from the point of view of k
is homogeneous). If individual l is infected and k susceptible,
then there is a probability ρ that the disease be transmitted
from l to k upon contact. Last, infected individuals have a
probability ξdt to recover from their illness during the interval
[t, t + dt[, after which they are immune to the disease.

Noting S(t ), I (t ), and R(t ), respectively, the relative pro-
portion of susceptible, infected, and recovered individuals

at time t [thus S(t ) + I (t ) + R(t ) = 1], the evolution of the
epidemic is governed by the system of equations [36]

Ṡ = −ρχ (t )S(t )I (t ),

İ = ρχ (t )S(t )I (t ) − ξ I (t ), (2.1)

Ṙ = ξ I (t ).

This system of equations is almost a century old [36]; we
derive it for completeness in Appendix A to prepare for the
slightly more involved situation that we are going to consider
in this paper. Let us highlight here the two main underlying
hypotheses of the derivation of Eq. (2.1): (i) the total contact
rate of individual k, χ (t ), is independent on the individual
k; and (ii) Ntot is large enough to consider the states of two
randomly chosen individuals k and l as independent. We shall
keep both these hypotheses to derive dynamical equations for
our model introduced in Sec. II B; while hypothesis (ii) is
rather harmless in practice where Ntot is large, hypothesis (i) is
an important assumption which can be discussed in practice.

Figure 2 summarizes the process that drives an individual
from state s to i to r. The system of equations (2.1) only
involves average quantities S, I , and R, which are determined
as solutions of the system. Furthermore, it is characterized by
two extrinsic parameters, the recovery rate ξ and the product
of the contact rate χ (t ) by the probability ρ of transmitting
the disease, which must be obtained from observation data
[13]. For virus epidemics like COVID-19, with a very fast
dynamics, this is a challenging task. Major efforts have been
invested by the epidemiologist community to extract these pa-
rameters, or their counterpart in more complex models, from
the actual data observed on the field. While ξ is mainly fixed
by biological considerations, and considered constant in time
in the present model, the contact rate χ (t ), however, depends
a lot on the agent’s behavior, that is, how social they are (or
are allowed to be); that behavior may vary strongly with time,
and in a way that may depend on the dynamics of the epidemic
itself. A consequence of this retroaction is that it is essentially
impossible to fit the time dependence of χ (t ) on past data. In
models used to advise public policies, this time dependence
is thus either simply ignored, or involves a lot of guesswork
[12], leading to predictions that can be trusted only for a rather
short amount of time [13] (see, nevertheless, Refs. [1,42]).

What we discussed above is the simplest version of the SIR
model. A number of variations can be found in the literature,
that aim to gain in precision. The most common ones are the
SIRD model (D for deceased [43]), SIRV (V for vaccination
[44]), MSIR (M for maternally derived immunity [37]), SIRC
(C for carrier but asymptomatic [45]), or SEIR models (E for
exposed class [46]), to name a few—see Ref. [37] for a more
detailed literature on the subject of compartmental models.
However, there are two essential limitations of these models:
they assume that the population is entirely uniform, and they
take parameters such as the contact rates as extrinsic.

Let us expand slightly on these two issues. The first limita-
tion is that these models assume a homogeneous population:
all individuals are expected to act in the same way, have the
same contact rate with all other individuals (in a given com-
partment), and behave similarly with respect to the epidemic.
Of course, this is not true, and social heterogeneity has an
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FIG. 2. Illustration of the Markov process for the classic SIR model with the transition rates to move from one state to another between
time t and t + dt . An individual susceptible at t has a probability ρχ (t )I (t )dt to become infected. If this individual is already infected at t ,
then she will have a constant probability ξdt to recover from the disease.

important impact on epidemics modeling. As an example,
epidemics inside schools have a different and faster dynamics
than can be expected from the SIR model, because children
have a lot of contacts with each other and they live together
during a long part of the day. To address this issue, SIR models
with a structure of social contacts were proposed in Refs. [38]
and [39] to get a more detailed description of the society at
a mesoscopic scale. We will address that limitation by intro-
ducing a refined model in Sec. II B. The second limitation of
SIR models, already discussed in the introduction, is that the
contact rates are extrinsic parameters, fixed at the beginning
of the dynamical process. A more realistic approach is to
consider that people change their behavior as the epidemic
unfolds, so that contact rates should be updated according
to the dynamics of the epidemic. We shall circumvent this
issue by taking a MFG approach to our model with a social
structure in Sec. III, where contact rates will become intrinsic
parameters, co-evolving with the epidemic.

B. SIR model with social structure

1. Social structure and contact rates

We now introduce a SIR model with a social structure, in
the spirit of Ref. [38]. In this model, rather than taking society
as monolithic, we consider a refined description of social
contacts. Namely, we introduce three age classes: young, adult
and retired, and we assume that individuals have contacts with
one another in four different settings: schools, households,
community and workplaces; of course a larger number of
age classes and settings could easily be implemented. The

structure of the population is illustrated in Fig. 3. We assume
the total size of the population, Ntot, to be large.

In our model, following Ref. [38], interactions between
individuals depend on two factors: the setting γ ∈ {school,
workplace, community, household} in which they meet, and
their age class α ∈ {young, adult, retired}. We denote by N tot

α

the total number of individuals in class α. We first consider
the simple case of a single setting where interactions only
depend on age class, which will be labeled by the Greek
letters α or β; extension to the case of multiple settings is then
straightforward.

For two given age classes α and β we define Wαβdt as
the probability for a pair of individuals a ∈ α, b ∈ β drawn at
random to be in contact during a time interval dt . This means
that among all possible N tot

α N tot
β pairs, only WαβN tot

α N tot
β dt

encounters occur during dt . This is illustrated by the graph
of Fig. 4; it is similar to Erdös-Renyi graphs, where each
potential edge is realized with some probability. In the present
case, all potential edges between vertices from one class to the
other are realized with some probability that depends on the
two classes they connect. A given individual a ∈ α encounters
on average a number WαβN tot

β dt of individuals of class β

during dt .
A natural assumption, in the spirit of compartmental mod-

els, is that behavior of individuals toward different age classes
is differentiated, but that a given age class is considered ho-
mogeneous from the point of view of an individual. That
is, an individual a ∈ α can decide whether she chooses to
encounter members of class β or not, but does not decide
which individuals she may encounter in that class. In other
words, any individual a ∈ α willing to meet someone from

FIG. 3. Graphical illustration of the social structure we implemented. A reference individual (a, b, and c for each age class) will have
(symmetric) contacts in each setting, with different type of individuals (more adults at workplaces, more children at school, etc.). The precise
structure of interactions is detailed in the following section.
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FIG. 4. Graphical illustration of the interactions in our model.
Two age classes α and β are represented, here with N tot

α = 3 in-
dividuals of age class α and N tot

β = 4 of class β. Each vertex is
either “active” (in red) if the corresponding individual is willing
to have contact with the other class, or “inactive” (in blue). The
N tot

α N tot
β possible contacts are represented in dashed black lines, and

effective contacts between pairs of active individuals are red solid
lines. Here we have wαβN tot

α = 1 active individual of age class α and
wβαN tot

β = 2 active individuals of age class β, which gives wαβ = 1
3

and wβα = 1
2 . The probability for a randomly chosen pair to be in

contact is Wαβ = wαβwβα = 1
6 . The average number of contacts with

β for an individual a ∈ α is WαβN tot
β = 2

3 . Similarly, the average
number of contacts with α for an individual b ∈ β is WβαN tot

α = 1
2 .

The total number of contacts between the two classes, corresponding
to the number of red links in the graph, is given by N tot

β N tot
α Wβα = 2.

class β will possibly meet all individuals from class β who
themselves are willing to meet individuals from class α. At
each time, an individual a ∈ α can decide whether she is
open or close to interactions with class β. Let us denote by
wαβ ∈ [0, 1] the fraction of individuals a ∈ α open to meet
people from class β. The willingness wαβ thus indicates the
probability of an individual a taken at random in α to be
open to contacts with class β. There are wαβN tot

α individu-
als a ∈ α willing to meet people with class β, and wβαN tot

β

individuals b ∈ β willing to meet people from class α. A
contact becomes effective (i.e., occurs with probability dt in
the interval [t, t + dt[) only if both individuals are willing,
and therefore among all N tot

α N tot
β possible links between α

and β, only wαβN tot
α × wβαN tot

β dt are realized during dt . As
mentioned above, the number of pairs effectively realized can
also be expressed as WαβN tot

α N tot
β dt , hence Wαβ = wαβwβα

(and Wαβ is a symmetric array, as it should be).
In “normal times,” that is in the absence of epidemic

threats, the contact willingness of an individual of class α with
class β is a constant w

(0)
αβ . During an epidemics, however, the

agent will adapt her behavior to mitigate the risk of infection,
and we assume the contact willingness to take the form

wαβ (t ) = nα (t )w(0)
αβ , (2.2)

that is, her initial willingness is modulated by a time-
dependent coefficient nα (t ) which measures the effort made
by agents in the class α to limit their contacts with others. For
simplicity we suppose that this effort is independent of β, but
a β dependence can easily be implemented to this model and
only slightly changes the equations. We additionally assume
that nα (t ) ∈ [nα,min, 1], with nα,min the maximum effort that
can be expected from an agent in class α; the upper bound

TABLE I. Biological parameters and parameters defining the
structure of the society. The number of parameters implied by this list
is significant, since in particular the array Wγ (0)

αβ has 3×3×4 = 36
entries. However, the methodology to get these parameters in any
specific implementation is relatively well established (see, e.g., dis-
cussion in Appendix B).

Parameter Definition

ρ Probability of transmission per contact
μ Proportion of asymptomatic individuals in

the population
ξ Recovery rate
N tot

α Number of individuals of age class α

Wγ (0)
αβ = w

γ (0)
αβ w

γ (0)
βα Willingness of contacts between two age

classes α and β (symmetric in α ↔ β)

1 corresponds to the natural assumption that the epidemic
situation can only reduce the initial willingness.

2. Asymptomatic individuals

Interactions between individuals may vary with time, but
also differ between different age classes and in different
settings. As a result, the dynamics of the epidemic will be
different in each subcategory. This turns out to be particularly
relevant for susceptible agents, and we will go back to this
in more details in the next subsection. But the issue could be
raised also for infected individuals whose behavior may range
from a completely egoistic one, in which they stop limiting
their contacts since they are not worried any more about being
infected, to being completely altruistic and isolate themselves
from the rest of population. To make things more concrete,
we assume this latter option, but also assume that a fraction μ

of the population is asymptomatic (they do not know if they
are infected or not) and hence behave as susceptible, while the
other fraction 1 − μ is symptomatic and stay home to protect
others. This additional status (symptomatic or asymptomatic)
is random in the population and is fixed at the beginning
of the epidemic. Therefore, the epidemic is only spread by
individuals who are both asymptomatic and infected. They
represent a fraction μI (t ) of the population. We summarize
our model in Fig. 5.

The parameters defining our SIR model with social struc-
ture can thus be divided in two groups. On the one hand,
we have three “biological” parameters: the probability ρ of
transmission of the virus per effective contact between a
susceptible and an infected individual, the fraction μ of the
infected population which is asymptomatic, and the recovery
rate ξ . On the other hand, the social structure is defined by the
number of individuals N tot

α in the age classe α and by the coef-
ficients Wγ (0)

αβ ≡ w
γ (0)
αβ w

γ (0)
βα determining the structure of our

society, i.e., the contact rates in the absence of the epidemics.
Table I summarizes this information.

For a given epidemic in a given geographic location,
determining the parameters of Table I follows a priori a well-
defined, though not necessarily straightforward, path, both for
the “biologic parameters” (ρ,μ, ξ ) typically encountered in
traditional SIR-like models [47], but also for the ones associ-
ated with the social structure [39]. Much less straightforward
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FIG. 5. Graphical illustration of the particular SIR model we use. An individual infected at time t has a probability μ to be asymptomatic
and 1 − μ to be symptomatic. The force of infection λα is derived in Sec. II B 3 and drives the probability of infection λαdt . Then, all individuals
have a constant recovery rate ξ to recover from the disease.

is the determination of the time dependence of the “effort
parameters” nα (t ) introduced in Eq. (2.2). For the rest of
Sec. II B, we assume these nα (t ) known, and we will discuss
how their dynamics can be analyzed in Sec. III.

3. Time evolution equations

We now derive the time evolution equations of the epi-
demic quantities for this model. The fraction of susceptible
(respectively, infected, recovered) individuals in class α is
Sα (respectively, Iα, Rα), with Sα + Iα + Rα = 1. To establish
the mean-field equations, we single out a reference individual
a ∈ α who is susceptible at time t and has status xa(t ) = s, i or
r at subsequent times. We furthermore here lift the hypothesis
that all individuals of a given age class behave in exactly
the same way, and we assume that the reference individual
has her own time-dependent strategy na(t ) and willingness
waβ (t ) = na(t )w(0)

αβ , with, however, the understanding that nα

is the average over susceptible individuals of na, which we
express as

nα = 1

SαNtot

∑
a

naδxa,s. (2.3)

Let b ∈ β be an individual of class β, whose willing-
ness to meet class α is wbα (t ) = nb(t )w(0)

βα . For a to be
contaminated by b during [t, t + dt[, b must be infected
and asymptomatic, and a and b must meet; contamination
then occurs with probability ρ. Distinguishing within the i =
“infected” status between ia = “asymptomatic infected” and
is = “symptomatic infected”, the probability that a become
infected by b during [t, t + dt[ is therefore

Pab(t )dt = ρna(t )nb(t )W (0)
αβ δxb(t ),ia dt, (2.4)

where we used the fact that w
(0)
αβw

(0)
βα = W (0)

αβ (see Table I).
Taking the sum over all b ∈ β and all age classes β we get the
total probability that an individual a susceptible at time t is
infected between t and t + dt

Pa(t )dt := P[xa(t + dt ) = i | xa(t ) = s] =
∑

β

∑
b∈β

Pab(t )dt,

(2.5)

with P[e] the probability of the event e.
We then follow the same reasoning as in the SIR case

[see Eq. (A3)]. Averaging over all individuals a ∈ α and over
realizations of the Markov process, and summing over age

classes β, we obtain

dSα (t )

dt
= − 1

N tot
α

N tot
α∑

a=1

δxa(t ),sPa(t ) (2.6)

= −ρ
∑

β

W (0)
αβ

⎛⎝ 1

N tot
α

N tot
α∑

a=1

na(t )δxa (t ),s

⎞⎠
×

⎛⎝ N tot
β∑

b=1

nb(t )μδxb(t ),i

⎞⎠ (2.7)

= −ρ
∑

β

W (0)
αβ

(Sαnα )
(
μN tot

β Iβnβ

)
. (2.8)

To get this last expression, Eq. (2.3) was used, together with
the assumption that asymptomatic infected individuals re-
sponsible for contamination behave on average in the same
way as susceptible individuals, so that we have also for all age
classes

nβ (t ) = 1

μIβN tot
β

∑
b∈β

nb(t )δxb(t ),ia . (2.9)

Equation (2.8) can then be written as

dSα

dt
= −λα (t )Sα (t ), (2.10)

where, performing the straightforward generalization to in-
clude different settings γ ,

λα (t ) ≡ μρ

ncl∑
β=1

N tot
β

nset∑
γ=1

nγ
α (t )nγ

β (t )Wγ (0)
αβ Iβ (t ), (2.11)

with ncl and nset, respectively, the number of classes and set-
tings in the social structure. Equation (2.10) is the analog of
the SIR Eq. (A5) but in the case of a population with social
structure. The two other equations analogous to the system
(2.1) are derived in the same way. The system of coupled
differential equations for the SIR model with social structure
finally reads

Ṡα = −λα (t )Sα (t ),

İα = λα (t )Sα (t ) − ξ Iα (t ), (2.12)

Ṙα = ξ Iα (t ).
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These equations are the main equations of our SIR model with
a social structure. Once the “interaction strategies” nγ

α (.) are
fixed for each age class α and each setting γ , one can solve
Eq. (2.12) and obtain the dynamic of the relative proportion
of susceptible, infected and recovered in each class. However,
for rational agents interaction strategies should depend on the
evolution of the epidemic. To address this interplay, we need
the machinery of mean-field games, which we now introduce.

III. MEAN-FIELD-GAME APPROACH:
INDIVIDUAL OPTIMIZATION

To address the dynamics of the willingness w
γ

αβ (t ) requires
a game theoretical approach, which implies a control param-
eter that the agents can choose a will, and a cost function
that they try to optimize. In our model, the control parameter
defining the “strategy” of a given agent a is quite naturally the
function nγ

a (t ), which reflects her desire to have contact with
someone in each setting γ .

Turning now to the cost function, consider a fixed individ-
ual a ∈ α. If a has no symptoms at time t , then she estimates
the cost she will incur because of the the epidemic as the sum
of two terms: one due to the cost of infection if it happens, and
one associated with the cost of efforts to avoid the infection.
If a becomes infected at some time τ > t , then the total cost
paid between t and the end of the optimization process at T is

Ca
(
nγ

a (·), {nγ

β (.)
}
, t, τ

)
≡ Iα (I (τ ))1τ<T +

∫ min(τ,T )

t
fα

(
nγ

a (t ′)
)
dt ′. (3.1)

This cost is an explicit function of τ the time of infec-
tion, and of the strategies nγ

a (·) of a in each setting and at
each time between t and min(τ, T ). It also depends implic-
itly, through the (average) proportion of infected at time τ ,
I (τ ) ≡ 1

Ntot

∑
α N tot

α Iα (τ ), on all the strategies {nγ

β (.)} for all
age classes β (including α) and settings γ in the same time
interval. The first term in Eq. (3.1) is the total cost of infection
Iα (I (τ )) paid by the agent once she is infected. This cost can
include financial cost, as the loss of income incurred by not
working, the costs of medical treatment or hospitalization, but
also moral and psychological costs associated with the pain
of going through the illness, permanent health damage, or
death. We assume that this cost of infection depends on the
age class and on the (average) proportion I (τ ) of infected,
reflecting the pressure on the sanitary system. In the second
term, fα (nγ

a (s)) measures the cost (both psychological and
financial) associated with the limitation of social contacts
(incurred, for instance, by the inability of doing business);
this cost can be different according to the age class of the
individual, and depends on the behavior of the individual only.
At each time s between t and τ (the time of infection) or
T (if the agent is never infected) the agent will pay a cost
fα (nγ

a (s))ds; for s > τ we have fα = 0, as the individual is
either infected (in which case the social cost is included in the
term Iα) or recovered (as there is no possible new infection in
our model).

We now derive the optimization made by the agents, fol-
lowing in the spirit the work of Turinici et al. in Ref. [32].

A. Calculation of the expected cost Ca

We assume here μ � 1. As shown in Appendix C, con-
sidering a finite μ makes notations slightly heavier without
changing qualitatively the dynamics of the epidemics. There-
fore in the rest of the paper we shall restrict ourselves to the
regime μ � 1.

In that case, almost all infected individuals are symp-
tomatic, and thus individuals with no symptoms can estimate
their future cost neglecting the probability that they might be
infected. Note however that contamination still occurs via the
few infected asymptomatic individuals.

Consider a fixed individual a ∈ α, who incurs the cost
Eq. (3.1) as a function of the time of infection τ and of
her strategy (for all setups γ and all times t) nγ

α (t ). From
the perspective of agent a at time t , and since the epidemic
propagation is a stochastic process, the time of infection τ is
a random variable that changes from one realization of the
epidemic to the other. We denote

P̃a(τ )dτ = P[xa(τ + dτ ) = i & xa(τ ) = s] (3.2)

as the probability that the individual a is infected during the
time interval [τ, τ + dτ [. Note this probability is a functional
of nγ

a (t ′), t ′ ∈ [t, τ ], and of the strategies {nγ

β (t ′)}, t ′ ∈ [t, τ ]
since these latter will determine the Iβ (τ ), and thus the prob-
ability that an individual met at time τ is or not infected. P̃a is
also a function of t since the agent has acquired information
about whether or not she has been infected in the interval
[0, t]. The cost in Eq. (3.1) is thus also a stochastic variable,
and at each time t , a rational agent should choose her future
strategies in each setting nγ

a (t ′), t ′ > t , as the ones that mini-
mize the average value of Ca over random realizations,

Ca
(
nγ

a (·), {nγ

β (.)
}
, t

) ≡
∫ ∞

t
dτ P̃a(τ ) Ca

(
nγ

a (·), {nγ

β (.)
}
, t, τ

)
,

(3.3)

where formally we understand τ > T as an absence of in-
fection (so that we can normalize

∫ ∞
t P̃a(τ )dτ = 1, and

Ca(nγ
a (·), {nγ

β (.)}, t, τ > T ) = ∫ T
t fα (nγ

a (t ′))dt ′).
We now need to evaluate the probability P̃a(τ ) for an agent

a who is assumed to follow a specific strategy nγ
a (·). Let

φa(τ ) be the corresponding cumulative probability, that is,
the probability for a to be infected before time τ (the prob-
ability that a is susceptible at some arbitrary time t is is thus
P[xa(t ) = sα] = 1 − φa(t )). The probability that the infection
time for a is between τ and τ + dτ is

φ′
a(τ )dτ = P̃a(τ )dτ = P[xa(τ + dτ ) = iα|xa(τ ) = sα]

× P[xa(τ ) = sα], (3.4)

where the first term of the right-hand side is obtained from
Eqs. (2.5) and (2.9), giving

P[xa(τ + dτ ) = iα | xa(τ ) = sα] = λa(τ )dτ, (3.5)

with

λa(t ) ≡ μρ

ncl∑
β=1

N tot
β

nset∑
γ=1

nγ
a (t )nγ

β (t )Wγ (0)
αβ Iβ (t ) (3.6)

as the force of infection seen by individual a. This individual
force of infection differs from the collective one Eq. (2.11)
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only by the replacement of the collective behavior nγ
α by

the individual strategy nγ
a (for all settings γ ). Equation (3.4)

thus leads to φ′
a(τ ) = λa(τ )(1 − φa(τ )), which together with

φa(t ) = 0 gives

φa(τ ) = 1 − exp

(
−

∫ τ

t
λa(s)ds

)
. (3.7)

The average cost (3.3) then reads

Ca
(
nγ

a (·), {nγ

β (.)
}
, t

) =
∫ T

t
dτ P̃a(τ )Iα (I (τ ))

+
∫ ∞

t
dτ P̃a(τ )

∫ min(τ,T )

t
ds fα

(
nγ

a (s)
)

=
∫ T

t
dt ′ P̃a(t ′)Iα (I (t ′))

+
∫ T

t
dt ′ fα

(
nγ

a (t ′)
) ∫ ∞

t ′
dτ P̃a(τ ).

(3.8)

We then use the fact that φ′
a(τ ) = P̃a(τ ) = λa(τ )(1 − φa(τ ))

to get

Ca
(
nγ

a (·), {nγ

β (.)
}
, t

)
=

∫ T

t

[
λa(s) Iα (I (s)) + fα

(
nγ

a (s)
)]

(1 − φa(s))ds. (3.9)

In the following, we will often use Ca(nγ
a , t ) for simplicity, but

the cost still depends implicitly on all the nγ

β (·).

B. Hamilton-Jacobi-Bellman equations

The expected cost at time t for agent a is a function of her
own strategy na and of the epidemic functions S(.), I (.), R(.).
The next step is to solve the optimization problem, that is, find
the optimal strategy n∗

a for a given epidemic S(.), I (.), R(.).
Following a standard approach in this context [20], we intro-
duce the value function

Ua(t ) =
{

min
nγ

a (·)
Ca

(
nγ

a (·), t
)
, a susceptible at t,

0, a infected at t .
(3.10)

This corresponds to the minimal cost that an agent has to pay
between t and the end of the game (averaged over random
realizations of the game, and assuming that all other players
follow some given strategies nγ

β ). Note that in Eq. (3.1) we
assumed that the total cost of infection is paid right after
infection, so that individuals do not incur any additional cost
at later times. The Markov process of the game is described
by the following equations, illustrated in Fig. 5:

P̃a(xa(t + dt ) = iα|xa(t ) = sα ) = λa(t )dt,

P̃a(xa(t + dt ) = sα|xa(t ) = sα ) = 1 − λa(t )dt, (3.11)

P̃a(xa(t + dt ) = rα|xa(t ) = iα ) = ξ dt .

We use a standard Bellman argument to find the evolution of
Ua: the lowest possible cost at time t is given by adding two
quantities: the lowest possible cost at time t + dt , and the cost
incurred in the interval [t, t + dt[ associated with the optimal

strategy at t . Assuming a status xa(t ) = sα at time t , this can
be expressed as

Ua(t ) = min
nγ

a (t )
Exa (t+dt )[Ua(t + dt ) + ca(t )], (3.12)

with ca(t ) the cost paid in the interval [t, t + dt[. At time t +
dt , the agent either is still susceptible, or becomes infected. If
xa(t + dt ) = sα , then the only cost at t is ca(t ) = fα (nγ

a (t ))dt ,
whereas if xa(t + dt ) = iα then a has to bear the costs due to
infection, and thus ca(t ) = Iα (I (t )). Following Eq. (3.10), if a
is susceptible at t + dt , then the quantity Ua(t + dt ) involves
the average cost Ca(nγ

a (·), t + dt ), which is an average over
all random realizations of the epidemic at times t ′ > t + dt ; if
a is infected at t + dt , then Ua(t + dt ) = 0. The expectation
value in Eq. (3.12) is therefore taken over random realizations
of the status xa(t + dt ).

Writing explicitly the expectation in Eq. (3.12) and using
the probabilities given by Eq. (3.11) we get

Ua(t ) = min
nγ

a (t )

[
Iα (I (t ))λa(t )dt + (1 − λa(t )dt )

(
Ua(t + dt )

+ fα
(
nγ

a (t )
)
dt

)]
. (3.13)

At first order in dt , this gives the Hamilton-Jacobi-Bellman
(HJB) equation of our mean-field game

−dUa(t )

dt
= min

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

,

(3.14)

and the optimal strategy nγ ∗
α (t ) at time t is given by

nγ ∗
a (t ) = argmin

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

,

(3.15)

where the optimization is now performed for a given, fixed,
time. By taking a particular form for fα , one can compute
nγ ∗

a (t ) by setting to zero the derivative of the right-hand side
with respect to n. Thus, for a given epidemic, we can obtain
the optimal individual behavior backward in time by solving
HJB Eq. (3.14). More details will be given in Sec. IV D.

C. Nash equilibrium

The outcome of Secs. II B and III B can now be summa-
rized as follows. Assuming the global (or average) strategies
nγ

α (·) known, the time evolution of the epidemics variables
Sα (t ), Iα (t ), Rα (t ) are derived from Eqs. (2.11) and (2.12).
From the knowledge of these epidemic variables, an individ-
uals a of age class α can perform an individual optimization
leading to the optimal strategy nγ ∗

a (t ) given by Eq. (3.15).
A (symmetric) Nash equilibrium corresponds to the situa-

tion in which this individual optimization actually coincides
with the global strategy of class α, which leads to the self-
consistent equation

nγ ∗
a (·) = nγ

α (·) (3.16)

for all age classes α and all settings γ . Under this self-
consistent condition an agent can indeed assume that the other
individuals will follow the strategies nγ

α (·) as this will indeed
correspond for them to an individual optimum, as it does for
her. “Solving” our mean-field game will therefore amount to
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solve the (forward) rate equations Eqs. (2.11) and (2.12) to-
gether with the (backward) HJB equation Eq. (3.14) and with
the self-consistent (Nash equilibrium) condition Eq. (3.16).

IV. EPIDEMICS DYNAMICS

In Secs. II and III we described the formalism of our MFG
theory of SIR-models with social structure; in the present sec-
tion we implement the corresponding equations, discuss the
resulting epidemics dynamics and analyze the different types
of optimal strategies. We shall choose a particular setting to
best illustrate what kind of problems can be addressed and
what kind of questions can be asked within this framework.
Once again, we stress that we do not aim at describing a
specific epidemic breakout in a given geographic area with
parameters extracted from real data: this would clearly be
beyond the reach of this work. Our choice in the present
section is to consider a rather “typical” configuration and
discuss the kind of information that could be extracted from
our model, and how it could be used by public institutions;
a more thorough exploration of the model’s parameter space
will be performed in Appendix G. We start by giving a brief
summary of our MFG formalism in Sec. IV A. In Sec. IV B we
introduce the specific form of the cost function and the choice
of parameters that we will discuss, and in Sec. IV C we in-
troduce different scenarios, corresponding to different choices
or constraints on the contact willingness, and summarize the
results obtained from solving the equations. These different
scenarios are defined in more detail in the subsequent sub-
sections: unconstrained Nash equilibrium in Sec. IV D, Nash
equilibrium with constraints (e.g., partial lockdown imposed
by a centralized authority) in Sec. IV E, societal optimum
(where a global planner controls perfectly the behavior of
each agent to minimize the total costs borne by the society)
in Sec. IV F. Finally, in Sec. IV G 1 we compare the different
scenarios.

A. Summary of Secs. II and III

Before we dive into a detailed analysis of the kind of
behavior that may emerge within our MFG model, let us
summarize briefly the content of the two previous sec-
tions. We have first introduced in Sec. II B a SIR model
with social structure in which we distinguish three age
classes α ∈ {young, adult, retired} and different settings γ ∈
{schools, household, communities, workplace}. In addition to
the time-dependent variables nγ

α (t ) ∈ [nγ

min, 1] corresponding
to the effort made by individuals in the setting γ to avoid
infection, the model is characterized by three “biological pa-
rameters” (the probability ρ of transmission of the disease
per contact, the proportion μ of asymptotic individuals in
the infected population, and the recover rate ξ ), and a set of
“social-structure parameters” (the number of individuals N tot

α

in each age class, and the array Wγ (0)
αβ specifying the contact

rate of the agents in the absence of epidemics); cf Table I.
One remark is in order here. The N tot

α and (the inverse
of) Wγ (0)

αβ are extensive quantities: as Ntot → ∞, so does the

N tot
α , and the Wγ (0)

αβ have to go to zero to maintain a finite
rate of infection for a given individual. While the formal
developments of Secs. II and III were better performed using

theses variables, we shall from now on use related intensive
parameters, which are well-defined in the limit Ntot → ∞
and easier to relate to observable data. We thus introduce
Nα = N tot

α /Ntot, the proportion of agents in age class α, and
the array

Mγ (0)
αβ := Wγ (0)

αβ N tot
β , (4.1)

which corresponds to the average number of contacts with β

for an individual a ∈ α. The requirement that Wγ (0)
αβ is a sym-

metric matrix implies the constraint NαMγ (0)
αβ = NβMγ (0)

βα ,
for all age class pairs (α, β ) and all settings γ .

In terms of these parameters, the dynamics of the epidemic
variables given by Eqs. (2.11) and (2.12) takes the form

Ṡα = −λα (t )Sα (t ),

İα = λα (t )Sα (t ) − ξ Iα (t ), (4.2)

Ṙα = ξ Iα (t ).

λα (t ) ≡ μρ

ncl∑
β=1

nset∑
γ=1

nγ
α (t )nγ

β (t )Mγ (0)
αβ Iβ (t ). (4.3)

Within our mean-field-game approach, the dynamics of
the variables nγ

α (·) is determined by an optimization of the
intertemporal cost Eq. (3.1) which is characterized, for each
age class α, by two functions. The first one Iα (I ) measures the
damage caused by infection, and has a dependence in the total
proportion of infected individual I = ∑

α NαIα to include the
consequence of the saturation of the sanitary systems once
the epidemics goes beyond a certain level. The second one
fα (nγ

a ) measure the instantaneous cost for an individual a of
class α due to the limitation of her contact, and depends one
the “effort” nγ

a made in each setting γ . Using Bellman linear
programming, the optimal effort is given by Eq. (3.15),

nγ ∗
a (t ) = argmin

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

,

(4.4)

where the individual force of infection λa Eq. (3.6) is the
analog of the global one λα Eq. (4.3) with the substitution
nγ

α ↔ nγ
a , and in which appears the value function Ua(t ),

Eq. (3.10) determined by the HJB equation (3.14),

−dUa(t )

dt
= min

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

.

(4.5)

Finally, homogeneity of the population among each class
leads to the additional requirement that one reaches a Nash
equilibrium, i.e., that the optimal strategy of an individual a
of class α corresponds to the global choice made on average
by the class α lead to the self-consistent condition Eq. (3.16),

nγ ∗
a (·) = nγ

α (·). (4.6)

Equations (4.2)–(4.6) form the system of equations that need
to solve to find the Nash equilibrium of our MFG problem.

B. Cost function and choice of the parameters

We turn now to the specific choice of parameters we will
use in most of the following to illustrate the properties and
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TABLE II. “Social-structure” and “biological” parameters used in our simulations. The matrix entries Mγ (0)
αβ correspond to the average

frequency of contacts (per week) between an individual of age class α and someone of age class β in the setting γ . Nα = N tot
α /Ntot is the

proportion of the population in each age class. Iα (0) are the initial proportion of infected for each age class [we always assume Rα (0) = 0].
ξ is the recovery rate (per week), ρ the transmission rate per contact, and μ corresponds to the proportion of asymptomatic individuals in
the population. Finally, α = 1, 2, 3 for age class of young, adults, and retired individuals, respectively. The way these parameters have been
chosen is discussed in detail in Appendix B.

WS WW WC WH⎛⎝100 0 0
0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 75 0
0 0 0

⎞⎠ ⎛⎝12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

⎞⎠ ⎛⎝ 15 25 10
12.5 32.5 5
10 10 30

⎞⎠
Nα := N tot

α /Ntot Iα (0) (ξ, ρ, μ)

(0.25, 0.5, 0.25) (0.01, 0.01, 0.01) (1.2, 0.1, 0.2)

operational properties of our MFG model. In practice we
need essentially to make a choice, on the one hand, for the
“social-structure” and “biological” parameters of Table I (or
their rescaled version introduced in Sec. IV A), and, on the
other hand, for the functions Iα (I ) and the fα (nγ

a ) of the cost
(3.1), and the associated “cost-function” parameters.

For the former set of parameters, there is a fairly large
scientific literature devoted to their evaluation from field data
in specific, real-world situations. However, as noted above,
our goal is not to model a particular instance of epidemic
dynamics, but rather to illustrate the kinds of questions that
can be addressed and the kinds of behaviors that can typically
be obtained within our formalism. We have therefore chosen
parameter values that we consider “generic,” relying on a
number of studies [1,38,47–50] that analyze real epidemiolog-
ical datasets. This approach makes it possible to evaluate the
performance of the model under conditions that closely reflect
practical scenarios, and allows us to expect that our model
will produce comparable results in realistic applications. The
exact way the “social-structure” and “biological” parameters
were chosen is detailed in Appendix B, and their values is
summarized in Table II.

Turning now to the cost (3.1), we take, for the cost of
infection,

Iα (I (t )) = rI,α exp

[
qsat

I (t ) − Isat

Isat

]
. (4.7)

This function includes the effect of a possible saturation of
health services, and we assume an exponential increase of
the strain on human and material resources as the saturation
threshold Isat is approached, with a slope qsat corresponding to
the impact of saturation on the cost. As I � Isat, or qsat → 0,
Iα approaches an (age-class-dependent) constant rI,α which
implements the possibility that retired individual might be
put significantly more at risk by the infection that younger
ones. In practice we shall write these constants as rI,α = rIκα ,
and keep the age-class-dependent part κα fixed for all our
simulations, while in some instance exploring the changes due
to the variations of rI.

Turning now to fα (nγ
a ), the cost of modifying social con-

tacts, we choose to follow the same form as Turinici et al.
in Ref. [32], namely,

fα
(
nγ

a (t )
) =

∑
γ

(
nγ

a (t )−mγ − 1
)
, (4.8)

where mγ models the degree of “attachment” to the setting
γ : for example it is usually easier to reduce contacts at work
than inside families. Moreover, f is decreasing with a positive
second derivative, meaning that the more one decreases once
social contacts, the higher the price to pay.

The set of values chosen in this section for the parameters
characterizing the functions Iα (I ) and fα (nγ

a ) is summarized
in Table III. Finally, the parameter T denotes the time at which
agents end their optimization process. This corresponds, for
instance, to the time where herd immunity is reached, or it can
depend on other circumstances such as the expected produc-
tion of a vaccine, the seasonality of the virus, among others.
In Sec. IV C, our simulations are performed on a duration of
T = 40 weeks to focus on scenarios where collective immu-
nity is reached and to avoid short end-time effects. Scenarios
for which, due to short end-time, collective immunity is not
reached at the end of the optimization period will be studied
more specifically in Sec. V B. Since the main wave of the
epidemic appears in the first 10 weeks, we often present the
results on a duration of 15 weeks.

C. Epidemics dynamics

Solving the MFG equations of Sec. IV A for the set of
parameters defined in Tables II and III yields the dynam-
ics of S, I , and R. Technical detail about the numerical

TABLE III. “Cost-function” parameters associated with the
function Eq. (3.1) chosen for our simulations. The cost of infection
Iα Eq. (4.7) is characterized, on the one hand, by its value under
“normal circumstances” rI,α = rIκα , where we distinguish a common
coefficient rI that will take different values depending on the simu-
lation, and an age-dependent part κα , which we will keep fixed at
the value given in this table. On the other hand, Isat characterizes the
fraction of infected individuals at which the sanitary system starts to
malfunction, and qsat the speed at which this malfunction sets in. The
cost of reducing once social contact is then parameterized by n

γ

min,
the minimum contact willingness in each setting γ , and mγ , which
weights the cost of contact reduction in each setting. Id, Il are the
thresholds for the best lockdown and s its intensity level.

(Isat, qsat ) κα mγ n
γ

min (Id, Il, s)

(0.1, 0.1) (1,10,100) (2,2,1,3)
(

1
3 , 1

5 , 1
5 , 1

2

)
(0.12, 4.10−4, 0.35)
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implementation is given in Appendix D. The corresponding
curves are displayed at the second line of Fig. 6.

The characteristic features of the Nash equilibrium are
better revealed if one compares the corresponding epidemic
dynamics with other scenarios. We shall consider the follow-
ing options, which will be discussed in greater detail in the
following subsections. We shall refer to the Nash equilibrium
presented in Sec. IV D as the unconstrained Nash equilibrium.
By contrast, the second scenario (see Sec. IV E) is a “con-
strained” Nash equilibrium, where individuals have to deal
with global constraints imposed by an authority, for instance,
a temporary lockdown which limits the agent’s strategy free-
dom, which translates into bounds on na. This second scenario
divides into two subscenarios, depending on whether these
constraints are naive or optimally chosen. A third scenario,
discussed in Sec. IV F, is that of a the societal optimum, which
is the idealistic case where everybody strives to optimize the
global cost and chooses their strategy na accordingly. We
call the “null” scenario business as usual: the agents do not
adapt their behavior to the epidemics, so that no modification
of the contact parameter is done, namely, na is fixed to 1.
In each of these cases, the epidemic dynamics is driven by
Eqs. (4.2)–(4.6), but with different {nγ

α (.)}, and thus different
forces of infection {λα}.

Solving the MFG equations in these different contexts
leads to different dynamics for S, I , and R. The dynamics for
each of the above scenarios is summarized in Fig. 6; the pre-
cise description of the scenarios is the object of the following
subsections. As Fig. 6 shows, there are notable similarities be-
tween the different “optimized” scenarios (Nash, constrained
Nash and societal optimum) and the business as usual one. For
instance, the number of susceptible individuals at the end of
the epidemic is S∞ 
 0.4 in all cases but for the business as
usual scenario, where it is significantly below (first row). This
is due to the fact that in all circumstances one needs to reach
herd immunity to escape from the disease, and the fact that
S∞ is much below this required value is a clear indication of
the business as usual suboptimal character. In the same way,
for all optimized scenarios there is a significant difference
between the height of the infection wave for the different age
class, as retired individuals and adults are more impacted by
the disease than the youths, and therefore protect themselves.
In the business as usual scenario the difference is much less
significant, and only due to the relative proportion of contacts
in each age class. However, the constrained Nash equilibrium
with “naive” constraints differs from all the others because
of the existence of two epidemic waves, which can be under-
stood as originating from an excessive limitation of contacts
that prevents the society from reaching herd immunity. Other
differences, which are mainly quantitative, also exist between
these different scenarios, and will be discussed in more details
in Sec. IV G. We now turn to the detailed description of each
scenario.

D. (Unconstrained) Nash equilibrium

Let us first consider the (unconstrained) Nash equilibrium.
We have seen that it is described by two sets of differential
equations. The first one is the rate equation of the epidemic,
Eq. (4.2) (also known as the Kolmogorov equation in this

context), which is forward in time, that is, starting from initial
conditions Sα (0), Iα (0), Rα (0), populations at later time t in
age class α are obtained by solving Eq. (4.2) with λα (t ) given
by Eq. (4.3). The second set of equations corresponds to the
Hamilton-Jacobi-Bellman equation (4.5), with one reference
individual a for each age class α. As only the terminal condi-
tion on U is fixed, namely, Ua(T ) = 0, Eq. (4.5) is backward
in time. At equilibrium, all individuals will follow their own
optimal strategy; but as all agents in a given age class are
equivalent, this optimal strategy should be the same for all
agents a of age class α. Thus we have the additional self-
consistency condition Eq. (4.6), which imposes that if all
other agents follow the strategy solution of the self-consistent
system Eqs. (4.2), (4.5), and (4.6), deviating from that strategy
implies a higher cost. The solution of the MFG equation thus
corresponds to a Nash equilibrium.

The two equations (4.2) and (4.5), together with the
self-consistency condition (4.6), form a system of equa-
tions coupling all epidemic rates S(.), I (.), R(.) and all
age-class strategies nγ

α via the individual optimal strategies
nγ ∗

a . Indeed, the epidemic rates in Eq. (4.2) depend on λα (t )
given in Eq. (4.3), which depend on the global strategies nγ

β .
In turn, the optimal strategy nγ ∗

a for a reference individual a
is a solution of HJB equation (4.5). With the precise form of
the costs Iα (I (s)) and fα (nγ

a (t )) chosen in Sec. IV B, it can be
computed explicitly and reads

nγ ∗
a (t )=

⎛⎝μρ

mγ

[Iα (I (t )) − Ua(t )]
ncl∑

β=1

nγ

β (t )Mγ (0)
αβ Iβ (t )

⎞⎠− 1
mγ +1

,

(4.9)

which depends on the global strategies nγ

β (.) explicitly, and
implicitly through the epidemic rate I (.). One obtains in this
way an initial-terminal value problem, which can be solved
numerically in different ways; we present some of them
briefly in Appendix D 1.

The solutions of the MFG system (4.2)–(4.6) are displayed
in the second row of Fig. 6 for the set of epidemics quantities
Sα (.), Iα (.), Rα (.), and in Fig. 7 for the set of optimal strategies
nγ

α (.). For our choice of parameters, young individuals do
not modify at all their behavior, when retired people reach
maximal effort for significant amount of time in both commu-
nity and household settings, and adults do some efforts, but
without ever reaching the maximum one.

E. Nash equilibrium under constraints

In the Nash equilibrium considered above, each agent opti-
mises for herself, and the resulting Nash equilibrium can lead
to a global cost for the society,

Cglob({nβ}) ≡
∑

α

NαCα (na = nα, {nβ}), (4.10)

which is suboptimal. In Eq. (4.10), {nβ} is the set of strategies
followed by each age class, na = nα means that any given
individual a of class α follows the strategy nα assigned to
age class α, and the cost for each age class is weighted by
the proportion Nα of individuals in that class. A question
that naturally arises from a public policy point of view is to
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FIG. 6. Time evolution of the epidemic quantities with rI = 1 and parameters of Tables II and III. From top to bottom: Business as usual
(no efforts), (unconstrained) Nash equilibrium, Nash equilibrium under optimal constraints, Nash equilibrium with naive constraints, societal
optimum. Left: Time evolution of the proportion of susceptible S (cyan), infected I (red), and recovered R (yellow) in the population. Right:
Time evolution of the proportion of infected in each age class Iα , retired people are in blue, adults in orange, and youth in green.
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FIG. 7. Time evolution of the contact willingness nγ
α (t ) with rI = 1 at the Nash equilibrium. We plot nγ

α (t ) for each type of individual
according to their age class (retired people in blue, adults in orange and youth in green) in community (upper left), households (upper right),
schools (lower left, for the young) and workplaces (lower right, for the adults). The dotted gray horizontal lines correspond to the minimum
contact willingness allowed (maximum effort).

know whether one could improve the global wellbeing of the
population by driving the position of the Nash equilibrium
through constraints on the population. This is, in some sense,
what has been attempted in many countries during COVID-19
pandemic. The restrictions taken then, however, involved a lot
of guesswork, both about the precise decisions to take, and
about their potential effects on society (individuals behavioral
response, impact on economic, health, etc.).

Here we present a possible quantitative approach to study
such restriction policies, which aim at reducing the soci-
etal cost by constraining the behavior of individuals. Again,
we remain here at the level of a “proof of concept,” as
practical implementations of our formalism would require
determining realistic forms of the cost functions and of
the constraints, which is clearly beyond the scope of our
work.

With the free (i.e., unconstrained) Nash equilibrium, in-
dividuals choose their contact willingness nγ

α (t ) in the range
[nγ

α,min, 1], where the maximum 1 correspond to the situation
without epidemic. We now add a constraint similar to a partial
lockdown, by setting this maximum to nγ

α,l < 1 when some
epidemic level is reached. In that way, everyone is required
to make a minimal amount of efforts to preserve the sanitary
system and reduce the societal cost (4.10). This “lockdown”
is implemented when the proportion of infected I (t ) reaches
a certain threshold Id, and, as the proportion of infected
decreases we assume the lockdown is lifted when I (t ) goes
below a value Il < Id (which is assumed lower than Id to
avoid unrealistic oscillations around Id). The lockdown has
thus a hysteresis form, and is implemented in the following
way (with L a Boolean variable which is 1 if the lockdown is
active and 0 otherwise):

if I (t ) < Il : nγ
α (t ) ∈ [

n
γ

α,min, 1
]

& L �→ 0 no constraints,

if I (t ) > Id : nγ
α (t ) ∈ [

n
γ

α,min, nγ

α,l

]
& L �→ 1 active constraints,

if Il < I (t ) < Id and L = 0 : nγ
α (t ) ∈ [

n
γ

α,min, 1
]

no constraints,

if Il < I (t ) < Id and L = 1 : nγ
α (t ) ∈ [

n
γ

α,min, nγ

α,l

]
active constraints. (4.11)

In Eq. (4.11), we choose nγ

α,l = s n
γ

α,min + (1 − s), with s ∈
[0, 1] a variable measuring the intensity of the lockdown:
s = 0 corresponds to the free situation without any constraint,
while s = 1 corresponds to a strict lockdown with no free-
dom, as nγ

α (t ) is fixed to n
γ

α,min. Therefore, the lockdown is
described by a set of three variables (s,Id,Il): the intensity
s, the first threshold Id, and the second threshold Il. The
numerical implementation of this set of equations is briefly
discussed in Appendix D 2.

In Fig. 6 (third row) we show the evolution of the epidemic
quantities for the choice of parameters (s = 0.35,Id =

0.12,Il = 4.10−4). As shown in Appendix E this choice cor-
responds to an optimal value in the sense that these parameters
minimise the global cost Eq. (4.10) among all possible con-
straints in the parameter space (s,Id,Il). In Fig. 8 we display
the corresponding strategies chosen by individuals under these
constraints. The constraints are enforced after 2 or 3 weeks
into the epidemic, and are raised after almost 14 weeks (over
40 for the total epidemic time) when the proportion of infected
is low and there is no risk of any epidemic rebound. The values
of the constraints appear as straight lines followed by youth
individuals, whose behavior is not dictated by their own
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FIG. 8. Time evolution of the contact willingness nγ
α (t ) with rI = 1 for the Nash equilibrium under optimal constraints (s = 0.35,

Id = 0.12, Il = 4.10−4). We plot nγ
α (t ) for each type of individual according to their age class (retired people in blue, adults in orange and

youth in green) in community (upper left), households (upper right), schools (lower left, for the young) and workplaces (lower right, for the
adults). The dotted gray horizontal lines correspond to the minimum contact willingness allowed.

“egoistic” optimisation but by the fact they are forced to
respect the lockdown as soon as it is imposed. Retired people,
however, choose most of the time to limit their contact even
more than required by the constraints; adults most of the time
just follow the lockdown, but sometimes limit their contacts
further.

As we shall discuss in Sec. IV G this optimal lockdown,
despite the fact that it depends on only three parameters, can
improve on the free Nash equilibrium, in the sense that the
societal cost Eq. (4.10) is lower. However, public policies ex-
ecutives have to be careful about their choice as it can generate
situations which are clearly worse than the free Nash equilib-
rium. We illustrate this situation in Figs. 6 (fourth row) and 9
with parameters (s = 0.8,Id = 0.06,Il = 0.01): in that case

one imposes a very strong but short lockdown. Since we con-
sider here a long end-time configuration with T = 40 weeks,
for which collective immunity is required to end the epidemic,
this leads to epidemic rebounds and increases significantly
the epidemic cost. Indeed, all drastic efforts that are made
while the epidemic is low, and before collective immunity is
obtained, are essentially useless, and just add to the global
cost endured by the population. In what follows we shall thus
distinguish Nash under optimal constraints (NOC) and Nash
under “naive” (uncarefully chosen) constraints (NNC).

F. Societal optimum

In the previous two scenarios, each agent performs
a personal, possibly constrained, but essentially egoistic,

FIG. 9. Time evolution of the contact willingness nγ
α (t ) with rI = 1 for the Nash equilibrium under naive constraints (s = 0.8,

Id = 0.06, Il = 0.01). We plot nγ
α (t ) for each type of individual according to their age class (retired people in blue, adults in orange and

youth in green) in community (upper left), households (upper right), schools (lower left, for the young), and workplaces (lower right, for the
adults). The dotted gray horizontal lines correspond to the minimum contact willingness allowed.
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FIG. 10. Time evolution of the contact willingness nγ
α (t ) with rI = 1 for the societal optimum. We plot nγ

α (t ) for each type of individual
according to their age class (retired people in blue, adults in orange and youth in green) in community (upper left), households (upper right),
schools (lower left, for the young), and workplaces (lower right, for the adults). The dotted gray horizontal lines correspond to the minimum
contact willingness allowed.

optimization. To set the scale of what is the cost associated
with these egoistic approaches, it may be useful to compare
them with the “societal optimum” that could be imposed by a
“benevolent global planner,” i.e., a well-meaning government
with full empowerment. Considering the global cost, seen at
the society level, as the addition of all individual costs, this
amounts to finding the minima of the cost Eq. (4.10). There is
already a rich literature on topics related to societal optimiza-
tion (see, for example, Refs. [6,7,32,51–57]) on various types
of models, as this problem is reduced to a single global op-
timization. The difference between this minimization and the
Nash equilibrium discussed above is referred to as “the cost of
anarchy”: while there is no cooperation between individuals in
the Nash equilibrium, the societal optimum case corresponds
to “the best” (from a societal cost point of view) that one can
obtain for Cglob among all possible strategies.

The numerical construction of this societal optimum is
briefly discussed in Appendix D 3. In Fig. 6 (fifth row) we
show the epidemic quantities associated with the societal op-
timum. However, the total number of infected individuals is
not the lowest possible, as infection within the youths does
not carry the same cost as within the retired agents. The total
amount of infected at the end of the epidemic is still relatively
high, because in our framework, one has to reach collective
immunity to definitely escape from the disease. Also, the
epidemic peak is still at a rather high level, as it is efficient to
allow an epidemic spread while keeping the epidemic under
control to reach quickly herd immunity. However, the precise
distribution of infected proportion in each age class is differ-
ent from the free Nash equilibrium.

In Fig. 10 we show the corresponding optimal contact
willingnesses. They do not correspond to individual optimum;
rather, there is a cooperation between individuals in different
age classes to get an epidemic which will make lower damage
with a reasonable amount of efforts. In the community set-
ting and in households, we observe that all individuals make
significant efforts during the epidemic peak to avoid a global

infection peak that would saturate the sanitary system: they
do it in particular in those two settings to avoid a too strong
diffusion to retired people. However, efforts are done with less
intensity in schools and workplaces. Once the epidemic peak
is reached, we see that the epidemic continues to spread, in
particular in young and adults classes, so that collective im-
munity can be reached and in this way protect retired people.
Thus, the efforts in schools and workplaces are here to smooth
sufficiently the epidemic, avoid any rebound, and get a relative
collective immunity as fast as possible, making it possible to
lift the efforts in communities and households.

G. Comparison between the different scenarios

1. Comparison of global costs

To compare quantitatively the scenarios presented above,
we normalize the costs with respect to the total cost of the
societal optimum, which we set equal to 100.

In Fig. 11 we show, for the choice of parameters given in
Tables II and III, the global costs obtained with the different
kinds of scenarios considered above. As expected, the societal
optimum (SO) is the best strategy at society level, followed
quite closely by the NOC, which itself is better than the free
Nash equilibrium (N). As the imposition of societal-optimal
scenarios implies a lack of freedom for the individual, as well
as a coordination cost which may be significant and which is
not included in Eq. (4.10), we argue that the constrained Nash
equilibrium presumably forms in practice a good compromise
between effectiveness and practicability. One should bear in
mind, however, that with a naive choice for the constraints,
such as for the NNC strategy of Fig. 11, one could easily
obtain a result worse than for the free Nash equilibrium.

The color bars in Fig. 11 illustrate the relative importance
of each age class in the total cost paid by the society. This
shows that, to reach a global optimum, the key point is to
reduce as much as possible the cost for retired people whose
contribution is large. This contribution is actually larger than
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FIG. 11. Comparison of costs for the different scenarios studied:
SO (societal optimum), NOC (Nash under optimal constraints), N
(free Nash equilibrium), NNC (Nash under naive constraints), BU
(business as usual). The costs are represented on a base of 100 for
SO; the color bars represent the total cost of each age class. Thus,
the level of each bar comes from the cost per individual multiplied
by the proportion Nα of his age class.

that of adults, despite the latter representing twice as many
people as retired individuals in our population choice. Note
that, from the point of view of adults or young people, the
free Nash equilibrium is the best strategy, as they do not have
to make efforts for others. We can also notice that making a
wrong choice for the constraints will not lead to the same “ex-
tra cost” for everyone. Indeed, for the NNC scenario, the cost
for retired people is still relatively low because the epidemic
is maintained at a low level, but the cost of social restrictions
becomes very high for adults and young individuals. This has
to be contrasted with the business as usual scenario where the
extra cost is borne almost exclusively by retired people.

2. Comparison of contact willingness for the two best scenarios

In Fig. 12, we show the comparison between the contact
willingness obtained with the societal optimum (dashed line)

and the Nash equilibrium under optimal constraints (solid
line). We see that for the Nash equilibrium under constraints
we get constraints which start at almost the same time as the
ones of the societal optimum (after typically 2 weeks); but
since it is a Nash equilibrium, these constraints are raised
after a long time, around 14 weeks, so that even without
individual efforts from adults and youth the epidemic is kept
under control. At a global level, these constraints are not too
strong compared to the ones of the societal optimum, but since
they are less localized, both spatially (in the good settings)
and temporally (during the epidemic peak with a progressive
release afterwards), they are less effective to protect retired
people who suffer from a higher epidemic with a larger total
number of infected people at the end of the epidemic.

These two scenarios, the societal optimum and the Nash
equilibrium under constraints, suggest interesting guidelines
for public health executives to mitigate an epidemic through
collective immunity. First, quite naturally, sufficiently strong
constraints should be imposed at the epidemic peak to avoid
saturation of the sanitary system; and the constraints need
to protect people at risk, which implies to limit contact
both among these people as well as between the rest of the
society and these individuals. However, in a perhaps less in-
tuitive way, constraints on people who are not at risk should
be relatively light. Indeed, the epidemic needs to spread on
the population, in a controlled way, to reach as fast as possible
the collective immunity. After the epidemic peak, one can lift
progressively the constraints, until the collective immunity is
reached. At this point, the epidemic will be back at a low
level and will stay low while the constraints can be com-
pletely lifted. The precise characteristics of the constraints,
such as their intensity or their timing, will depend on the
characteristics of the population and of the disease under
consideration. However, scenarios that induce epidemic re-
bound, like the Nash scenario with naive constraints described
above, are quite ineffective in such a context, because the
time span between the peaks does not help reaching collective

FIG. 12. Comparison of contact willingness for the societal optimum (dashed line) and the Nash equilibrium under optimal constraints
(solid line). We plot nγ

α (t ) for each type of individual according to their age class (retired people in blue, adults in orange and youth in green)
in community (upper left), households (upper right), schools (lower left, for the young) and workplaces (lower right, for the adults). The dotted
gray horizontal lines correspond to the minimum contact willingness allowed.
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immunity and is very costly in terms of constraints on the
society.

V. OPTIMAL STRATEGIES FOR DEALING
WITH AN EPIDEMIC FROM THE HEALTH

AUTHORITY POINT OF VIEW

Up to this point, we have only considered dynamics with
a very long end-time T , and a large number of agents Ntot, so
that the only option to terminate the epidemic is to reach herd
immunity. However there are many circumstances (expected
production of a vaccine, seasonality of the virus which is
expected to disappear in the summer, etc.) where the finiteness
of T plays a role, and others (isolated geographic configura-
tion such as islands, strict control of borders, etc.) where the
finiteness of Ntot does. This opens the way to other possible
strategies, from the point of view of the centralized health
authority, to control the epidemics. We review them in this
section.

A. Threefold way of controlling an epidemic

Based on these considerations, we can identify three possi-
ble ways to deal with an epidemic: reach collective immunity
(typically for T, N large), contain the epidemic (for T small),
or eradicate the epidemic (for Ntot small). We characterize
these three ways as follows.

1. Strategy No. 1: Reach collective immunity

This is the strategy that was implicitly used in the previ-
ous sections since we assumed both T and Ntot very large.
More formally, we consider that collective immunity has been
reached at time t if the proportion of infected individuals is
a decreasing function of time for t ′ > t even in the absence
of efforts after t . For the basic SIR model Eq. (2.1) with
constant χ , let Reff (t ) = S(t )R0 be the effective reproduction
number at time t , that is, the average number of secondary
infected caused by a single infected agent, with R0 = ρχ/ξ

the initial value of Reff when S = 1. For this model we have
İ (t ) = ξ I (Reff (t ) − 1). In this case, collective immunity is
reached as soon as Reff (t ) < 1 since S is decreasing. In a
similar way, for our compartmental model we introduce

Rα (t ) = μρ

ξ

∑
β,γ

nγ
α (t )nγ

β (t )Mγ

αβSβ (t ), (5.1)

the average number of secondary infected caused by a single
infected agent of age class α. We stress that Rα < 1 does not
imply İα < 0, since the number of infected in the age class
α involves the Rβ of all classes, and some of them may be
greater than 1. However, if all the Rα are less than one, then
the average proportion of infected individuals, I ≡ ∑

α NαIα
can be easily shown to be a decreasing function. Indeed, from
Eq. (2.12), we have İ = ∑

α NαSαλα − ξ I , and∑
α

NαSαλα = μρ
∑
β,γ ,α

NαSαnγ
α (t )nγ

β (t )Mγ

αβ Iβ

= ξ
∑

β

NβIβRβ, (5.2)

where we used the sum rule MαβNα = MβαNβ enforced by
the symmetric nature of contacts. We therefore have

İ = ξ
∑

α

NαIα (Rα − 1). (5.3)

In the absence of effort, the rates Rα (t ) become R(0)
α (t ) =

μρ

ξ

∑
β,γ M

γ

αβSβ (t ), and Eq. (5.3) becomes

İ (0) = ξ
∑

α

NαIα
(
R(0)

α − 1
)
, (5.4)

where the superscript denotes the absence of effort. Since the
R(0)

α are obviously decreasing functions of time, the constraint
that R(0)

α (t ) < 1 for all age classes α is a sufficient, but not
necessary, condition to have reached herd immunity. This
constraint is, however, too strong, and is actually not met in
our simulations, even when herd immunity is achieved. We
thus find more effective to replace it by a heuristic condition
obtained by assuming the Iβ to be not very different from the
average I (as can be seen for example in Fig. 6 towards the end
of the epidemics). Using Eq. (5.4), we get İ (0) 
 ξ I (R(0) − 1),
with

R(0) ≡
∑

α

NαR(0)
α . (5.5)

R(0) is also a decreasing function of time, and the heuristic
criterion R(0)(t ) < 1 indicates that herd immunity has been
reached at t . This empirical condition does not guarantee
mathematically the absence of an epidemic rebound once
R(0)(t ) < 1 (heterogeneous Iα could allow İ (0) > 0). Never-
theless, we will check below numerically that for the cases
we considered it does actually correspond to herd immunity
[58]. This strategy, where S needs to be low at the end of
the epidemics, is often used for moderate epidemics and for
epidemics where no other strategy is available.

2. Strategy No. 2: Contain the epidemic

If an external event (e.g., vaccine) is expected to end the
epidemic within a relatively short time, then another possi-
bility to deal with an epidemic is to contain it during the
period of optimization T , keeping the epidemic at a low level,
and end at T with a number of susceptible far above the
collective immunity threshold. In practice, we are in this phase
if R(0)(T ) > 1. This is the strategy adopted by most countries
during the COVID-19 pandemic: hold on and contain the
epidemic until a vaccine is available.

3. Strategy No. 3: Eradicate the epidemic

A final possibility is to act on the epidemic sufficiently
early and sufficiently intensely, that one will be able to
eradicate it before it spreads to the general population. To
implement such an idea, we need to assume a finite size
Ntot of the population, and state that below a certain rate of
infected, of order 1/Ntot , the epidemic vanishes or is at least
under control so that there is no propagation anymore. Of
course in practice, one would need to know precisely who is
infected and insulate them from the rest of the population (by
keeping them in quarantine at hospital, for instance), which
would induce an extra cost of coordination which is not taken
into account here. Discussing this strategy requires to add
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FIG. 13. (a) Comparison of the evolution of the global cost Cglob(n, T ) for the three template strategies nim (blue line), nera (red lines), ncont

(green line) which are well defined for any value of t (from 0 to ∞). For the global cost associated to the eradication strategy nera (in red) we
take, respectively, Ithr = 1.10−5 (respectively, Ithr = 1.10−3) for the solid line (respectively, dotted line). Regarding the strategy nim, T = ∞
is approximated here by T = 100. Finally, in orange, we plot the true societal optimum cost at T (with Ithr = 1.10−5, solid line parameters).
(b) Evolution of the global cost of the societal optimum (orange solid line) close to the transition time Tc (see text). Dotted blue (respectively,
green) line: evolution of the global cost with a continuous change of the strategy n for the herd immunity scenario (respectively, containment
scenario). Details of the computation are explained in the main text.

one parameter, Ithr, which corresponds to the threshold at
witch we consider that the epidemic vanishes, with a value
for Ithr of order 1/Ntot . This approach is in practice possible
only during the early stages of the epidemic, otherwise it will
induce a considerable cost. This strategy has been used many
times in China and some insular countries during COVID-19
pandemic, with strong restrictions at the early stages of the
epidemic to avoid a massive spreading.

B. Template strategies

The above scenarios can be classified according to whether
İ (0)(t ) < 0, ∀t > T (herd immunity), and if this is not the
case, whether I (T ) > Ithr (containment) or I (T ) < Ithr (eradi-
cation). Thus, any set of strategies n(.) ≡ {nγ

β (.)} (i.e., defined
for each age class, in each setting, and all times t) belongs
to one and only one of these classes. We can, however, do a
little bit more than this formal classification, and introduce
for each of these scenarios what we will call a “template
strategy,” that is, a set of strategies n(.) which provides a good
approximation to the optimal one within a given scenario.
These “templates” can be defined as follows:

(1) Reach collective immunity nim: Our template for the
herd immunity scenario is defined as the optimal strategy
defined in Sec. IV F taken in the limit T → ∞ (with Ithr ≡ 0),
namely,

nim(.) = argmin
n(.)

[Cglob(n(.), T −→ ∞)]. (5.6)

Indeed, we can expect that when the best approach is to use
herd immunity, there is little end-time effect and the optimal
strategy for a finite T will be quite close to the one cor-
responding to T → ∞. As seen in Fig. 13, the global cost
associated with nim rises quite significantly at the beginning
of the epidemic, as a significant number of agents assume
the cost of infection, but once herd immunity is reached this
cost flattens out since infection decreases while no effort is re-
quired anymore. It can be noted furthermore that nim does not

depend much on rI, as it minimizes the cost due to social con-
tacts (which is independent from rI), while reaching collective
immunity. This leads in first approximation to a constant
number of agents who have been infected at the end time
T , as the collective immunity threshold is unchanged for any
value of rI. Therefore, the associated final cost of this strategy
nim grows with a form Cglob(nim) 
 Ftot(nim) + (S0 − S∞)rI,
where Ftot is the total amount of efforts made by agents for
a strategy n(.), which is (almost) independent of rI, and the
second term grows linearly with rI.

(2) Contain epidemic ncont: We define the reproduction
factor R as the R(0) which was introduced in Eq. (5.5), with
here arbitrary value for n(t ) instead of 1. One can easily claim
that a sufficient condition to strictly contain the epidemic in
a homogeneous infected population is to keep R(t ) = 1. With
that condition, one will enforce I (t ) to stay as the same level
or below the initial condition I (0) with a priori the lowest
possible cost from the social point of view [to keep R(t ) < 1
will be more expensive]. We can therefore define the template
strategy of the containment scenario as the one coming from
the optimization

ncont(t ) = argmin
n(.)

[Ftot (n(.)) such that R(t ) = 1] ∀t, (5.7)

where we furthermore assume that for all age classes Sα (t ) 

Sα (0) 
 1, so that ncont is actually time-independent. Since the
social cost only involves current time t , the problem reduces
to a simple, local in time, optimization problem, where n(t )
becomes a constant n which must respect R = 1 and minimize
f (n). The result of this optimization, obtained numerically
through a gradient descent under constraints, is illustrated in
Fig. 13. Note that this (constant) strategy ncont is independent
of rI, and the associated global cost Cglob(ncont) 
 T f (ncont) is
essentially independent of rI and grows linearly with T .

(3) Eradicate epidemic nera: For this case, it can be
shown (see Appendix F) that, for the parameters we consider,
the optimal eradication strategy is always obtained by an
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application of the maximal effort until the time tthr corre-
sponding to the eradication of the epidemics, I (tthr ) ≡ Ithr.
This strategy, will be taken as our template eradication strat-
egy. The associated final cost is therefore expected to be
of the form Cglob(nera) 
 T fmax if T < tthr, the cost grows
linearly with T , and Cglob(nera) 
 fmaxtthr if T > tthr, where
fmax denotes the social cost (rate) associated with a maximum
amount of efforts and tthr mainly depends on Ithr.

C. Phase transition

For these three scenarios, we show on Fig. 13(a) the evolu-
tion of the global cost with the optimization time T , for rI = 1
and the parameters of Tables II and III. As expected, all costs
increase with T , but in different ways. In blue, the collective
immunity cost grows rapidly at the beginning of the epidemic,
so that collective immunity is reached as soon as possible
without saturating the sanitary system, after which the cost
levels up. For the containment strategy ncont (green), we see
that the corresponding cost increases almost perfectly linearly,
as the amount of effort due to contact reduction is constant.
As S(0) = 0.99 < 1, there is in this scenario a small spread
of the infection at the beginning of the epidemic (and thus a
small additional infection cost), before it vanishes completely.
Finally, the cost of the eradication strategy (red curve) starts
with a strong linear increase (the slope of the curve here
is clearly higher than the one of the containment strategy
since the maximal effort is applied), and then saturates at a
level which depends on the threshold Ithr. Figure 13(a) also
shows the societal optimum cost (orange curve), which always
closely follows one of the templates. At low T , it is a bit below
the cost of the containment strategy ncont, taking advantages
of end-time effects (as illustrated in Fig. 14) to slightly reduce
the cost. For large T , it follows, again from below, the collec-
tive immunity template. For the societal optimum cost, there
is a transition around 20 weeks for our choice of parameters,
from a “containment” cost to a “collective immunity” cost.
For Ithr = 10−3 (dotted line in Fig. 13), the transition would
go from “containement” to “eradication”.

This transition between different scenarios’ costs strongly
suggests that the associated strategies will follow the same
pattern, with a transition form the neighborhood of ncont to the
neighborhood of nim. To assess this, we compare in Fig. 14
the optimal strategy found from the societal optimum scenario
with the template strategies. We observe that the small gap
between template costs and societal optimum cost which was
observed on Fig. 13(a) corresponds to a small difference be-
tween the corresponding strategies. For strategy 1 (rows 1 and
2) we observe a finite-T effect: an additional amount of efforts
around 10 to 25 weeks appears to be profitable to limit the
number of infected, even though the epidemic is almost over.
The structure of the two strategies is nevertheless very similar.
Regarding the “containment” strategy (rows 3 and 4), in each
setting the contact willingness of each age class of agents is
the same (thereby, only one constant dotted line per setting
is plotted). The societal optimum is very close to the strat-
egy ncont, but two effects make it deviate from the idealistic
strategy ncont. First, as S(0) is not strictly equal to one (here
0.99), there is some moderate spreading of the epidemics,
which induces a small increase of effort from retired people,

as well as a small increase of infection cost. Second, there is
a clear end-time effect, meaning here that individuals who are
not at risk reduce their efforts just before T since epidemic
will not have time to propagate massively until T (one can
think of a vaccination campaign where individuals will start
increasing their contacts before the campaign is completed).
Note however that as T gets close, since the epidemic begins
to grow, retired individuals protect themselves and actually
further limit their contacts. Last, for the eradication strategy,
the societal optimum is the same as our template strategy nera

(see Appendix F for more details).
Figures 13(a) and 14 indicate that our template strategies

provide an accurate approximation of the societal optimum at
small and large T . One question we may ask now is whether
the transition we see at Tc 
 20 from one scenario to another
can be understood as a true phase transition, or is rather of a
crossover type. To address this question, in Fig. 13(b) we com-
pare the societal optimum near Tc, i.e., the absolute minimum
of the global societal cost, with the result of a gradient descent
obtained in the following way: starting from above Tc (blue)
or below (green), we change T by small steps δT , and use as a
starting point for the gradient descent at T + δT the result of
the calculation at T . What we observe is that doing this proce-
dure, our algorithm finds, for a significant range of T values
around Tc a local minimum which follows the herd-immunity
template below Tc (dotted blue) or the containment template
above Tc (dotted green). This local minimum corresponds
either to the true minimum when the blue or green curves
match the orange one, and to a metastable state when they do
not. Note that both local minima eventually fall to the global
minimum (in orange) when they are sufficiently far from Tc,
ending in a hysteresis cycle.

There is therefore a discontinuous change of the optimal
strategy at Tc, which is the signature of a first-order phase
transition. In this analogy with thermodynamics, the cost Cglob

represents the free energy, and T some macroscopic parameter
such as temperature. The Ehrenfest classification, which de-
fines a first-order phase transition as a discontinuity of the first
derivative of Cglob with respect to T at Tc, is clearly observed
in Fig. 13(b). We expect this phase transition to exist for a
large range of parameters of our model, and we have verified
its existence numerically on a number of cases. In particular,
we have checked that the transition between “containment”
phase and “eradication” phase is also first-order.

We therefore end up with three distinct phases for the
societal optimum, which exhibit first-order phase transitions
between them, and which are well-approximated by template
strategies defined above. Since these template strategies pro-
vide good approximations of the societal optimum one, we use
them in Fig. 15 to show the “phase diagram” of the optimal
scenarios as a function of the optimization time T and the
infection cost rI. Of course, the optimal strategy will depend
on all the parameters that we have introduced until now, but
some of them (matrix of contacts M, capacity of the sanitary
system qsat, proportion of agents in each age class Nα) may be
assumed to be quite similar for different epidemics affecting
the same population, while T and rI depend a lot on the
virus under consideration and have a major impact on the best
strategy. The three different scenarios appear to be optimal
in distinct well-defined areas of the phase diagram. When T
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FIG. 14. Contacts willingness for the three template strategies defined in Sec. V (dotted lines) and the (finite-T ) societal optimum for the
corresponding parameters (solid lines). Rows 1 and 2: collective immunity (T → ∞, computed in practice with T = 100 and rI = 1, dotted
line) and societal optimum (computed with T = 30, rI = 1, Ithr = 0, solid line). Rows 3 and 4: contained strategy (dotted) and societal optimum
(solid) for T = 10, rI = 1. Rows 5 and 6: eradication strategy (dotted) and societal optimum (solid) for T = 30, rI = 1, Ithr = 1.10−5—the two
strategies match perfectly. Subpanels and legends are the same as in Fig. 7.
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FIG. 15. Phase diagram showing the best type of strategy to
follow among “reach collective immunity” (blue), “contain” (green),
and “eradicate” (red) with the parameters of Tables II and III and
Ithr = 1.10−7 for the eradication strategy (it is more realistic, as it
means Ntot 
 107). Change Ithr or the initial conditions will naturally
change the transition lines (between immunity and eradication areas).

is small (below 20 weeks), the containment strategy is opti-
mal whatever rI. Then, there is a transient regime, where the
optimal strategy can be any of the three scenarios, collective
immunity, containment, or eradication according to rI. Finally,
after T 
 80 weeks, containing the epidemic is no longer an
option, as the linear increase of the cost becomes prohibitive,
and the best choice is either to reach collective immunity or to
eradicate the epidemic. Since we use template strategies, the
first-order phase transitions are represented by linear lines on
the graph.

VI. CONCLUSION

In the present work we developed, following Ref. [38],
an epidemic model based on the well-known SIR compart-
mental model supplemented by a social structure. This social
structure relies on the idea that contacts are heterogeneous in
society, both because individuals socialize in different con-
texts, and because they react in various ways to the disease
(different perception of risk). Therefore, one can divide soci-
ety into classes of agents which differ by their behavior, by the
risk that the disease represents for them, and by the settings in
which socialisation takes place. Here we used an age differ-
entiation, but other kinds of classification (e.g., based on the
immune status or on the presence of comorbidity) could easily
be implemented within the same formalism. In the same way,
one can easily add more compartments and more classes or
settings to the model, without changing the global framework.
The description of social structures obtained in this way is
clearly less refined than one that would take into account the
heterogeneity of social behaviors at an individual level, but
it probably represents a good balance between precision and
ease of application when trying to understand the dynamics of
an epidemic and take appropriate, targeted action against it.

To this compartmental epidemic model with social struc-
ture, we have, following the approach of Turinici et al. [32],
added a mean-field-game description of the dynamics: Agents
may change their individual behavior depending whether they
feel at risk of infection or not. After deriving the mean-
field-game equations, we computed numerically the Nash

equilibrium, where each individual seeks to optimize his or
her own interests. In this paradigm, individuals make a per-
fectly rational optimization, and are assumed to be able to
performed the corresponding calculations which is something
that we cannot expect from people in practice. The assumption
here is thus rather than some central authority will solve
the system (4.2)–(4.5) and provide to individuals their “best
individual behavior” nγ

α which will be followed by agents if
they sufficiently trust the institution.

As discussed in Sec. IV B, the choice of parameters we
used for our simulations does not aim to describe a specific
real-world configuration, but nevertheless corresponds to a
rather generic situation, and the qualitative behavior we ob-
tained is most likely rather typical of what would be observed
in a realistic case. For this set of parameters, the Nash equilib-
rium obtained within the mean-field-game framework reduces
significantly the costs associated with the epidemic when
compared to the “business as usual” approach where social
contacts are kept unchanged. However, there is usually still a
gap between the MFG cost and the one that would correspond
to the societal optimal policy, which represents the minimal
global cost that can be borne by the society. To approach this
optimal policy, we introduce the notion of “constrained Nash
equilibrium,” in which we assume that under some conditions,
the central authority can impose some constraints, analog to
the partial lockdowns that we have seen during the COVID-19
epidemic, under simple rules which are known to the agents.
In our work, we used a simple restrictive policy with three
parameters (s,Id,Il) and we optimized this policy (i.e., we
find the optimal set [s∗,I∗

d, I∗
d ]) to get the lowest possible

societal cost, and in this way close as much as possible the gap
between the free Nash equilibrium and the societal optimum
(see Figs. 8 and 11).

In our discussion of the Nash equilibrium and of the “con-
strained Nash” approach to the societal optimum, we have
implicitly limited ourself to a regime of very long optimiza-
tion time T , and of large population Ntot , for which the societal
optimum policy necessary implies in some way to reach herd
immunity. In Sec. V, we go back in more details to the analysis
of the societal optimum, in particular lifting these constraints
on T and Ntot . Depending (mainly) on the values of T , Ntot ,
and rI, we can identify three phases that we label as “reach
collective immunity” (the one implicitly assumed in the pre-
vious sections), “contain the epidemic” or “eradicate it” (see
Fig. 15 showing which scenario is optimal depending on the
parameters T and rI). The transition between any two of these
phases can by understood as a first-order phase transition, in
the sense that the associated strategies present discontinuities
and are different from one phase to another. An important
consequence of this discontinuity is that it is primordial for
an authority to clearly identify the appropriate scenario, as a
wrong choice could lead to significant additional costs.

Among these three scenarios, “reach collective immunity”
is the one for which the time dependence of the agent strate-
gies {nγ

α (.)} are the more complex, and an authority will
probably not be able to impose such exact strategy for all
individuals. For this scenario, an approach through a mean-
field-game paradigm under constraints as the one presented
in this work is probably more relevant to approach the so-
cietal optimum cost, which would slightly shift the phases
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boundaries in Fig. 15. However, the “containment strategy”
appears to be easier to design for an authority, as it consists in
adjusting in real time the constraints, depending on whether
the epidemic is growing or not, to follow R(t ) 
 1. Never-
theless, to find the best set of constraints to hold R(t ) 
 1
still involves some complexity, as one should still adapt the
strategy to the response of individuals. Advantage of this
scenario is that this can be performed “on the fly,” and does
not really imply any anticipation. Finally, in the “eradication
strategy,” authority has to impose the maximum admissible
constraints, which is conceptually rather simple. We stress,
however, that, contrarily to the “herd immunity” strategy, the
societal optimum obtained with strategy “contain” and “erad-
icate” are very far from any Nash equilibrium, even under
“reasonable” constraints. The restrictions imposed with the
two latters scenarios lead to epidemics which stay at low
levels. In this context, the best individual strategy is to do
essentially no effort, as there is almost no risk of infection.
The social optimum strategy in this case is thus extremely
far from the Nash equilibrium. This emphasizes a profound
difference in nature between “herd immunity,” where indi-
vidual optimization is closed to the societal optimum, and
the two others where the gap is much more important. This
would need to be considered by institutions when they will
built collective strategies, as it is presumably very difficult
to convince a population to follow on its own will a strategy
which is far from a Nash equilibrium, and the required degree
of coercion would significantly vary between the two cases.

The aim of this paper is to contribute to the construction of
a theoretical framework on which authorities can rely to build
appropriate policies against future epidemics. In particular,
it showed that a relatively simple epidemic model including
a differentiated behavior of rational agents can describe a
number of different scenarios and is versatile to describe the
outcome of various political choices. Our work emphasized
both the challenge of this task and the extensive research
which remains to be done. Indeed, our model still involves
a number of parameters. While some of them (as the matrix
M) are known or could be relatively easily extracted from
field data, some others (as rI or the shape of f ) are harder
to apprehend, although they are crucial if one wants to use
such type of models in an appropriate way. The model can be
furthermore made more accurate with the addition of some
extra cost such as the one associated with coordination in
the case of restrictive policies. The question of evaluating
quantities such as the risk induced by a possible epidemic is of
course not specific to our model, and is is actually one major
task of epidemiologists. Here however we hope to provide a
more formal framework from which possible course of action
can be decided from that information.

From a theoretical perspective, further research could also
be performed to improve the framework. First, one may want
to integrate the spatio-temporal character of the dynamics
taking into account heterogeneity of populations and regions
around the world. Second, one could include, in the impact of
constraints on individuals behavior, the feedback of the latter
with respect to the imposed constraints. This is referred as
Stackelberg games [59], which involve a set of agents (small
players) and a principal player corresponding to authorities.
This sort of games should reveal the importance of getting the

agreement of the population or not, depending of the choice
of constraints. Third, we did not incorporate explicitly in our
model the possible presence of a vaccine. Vaccination cam-
paign also involve individuals behaviors and could be studied
from a mean-field game point of view [29]. It can be added
to the model but will rather concern another part of the epi-
demic, once vaccine is available, to optimize the vaccination
campaign. A final active research domain is to infer accurately
epidemic quantities with limited data sets, which it is almost
always the case at the beginning of epidemics where limited
number of tests are available.

Even without these improvements, the theoretical frame-
work presented here should already be sufficiently flexible and
realistic to be helpful in practice, as one could replace f or the
generalized infection cost Iα by the precise forms that would
be obtained by field data, and then pursue the same analysis.
We hope that authorities and institutions in charge of design
policies against epidemics could use our work to improve
accuracy of epidemics prediction as well as the efficiency of
nonpharmaceutical interventions.
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APPENDIX A: DERIVATION OF THE SIR EQUATIONS

To prepare for the somewhat more involved discussion
of Sec. II B, and to make the underlying hypotheses more
explicit, we provide here a brief formal derivation of the SIR
equations (2.1).

Let xk (t ) ∈ {s, i, r} be the state of individual k at time t .
The relative proportions of susceptible, infected, and recov-
ered in a population of size Ntot can be written as

S(t ) = 1

Ntot

Ntot∑
k=1

δxk (t ),s,

I (t ) = 1

Ntot

Ntot∑
k=1

δxk (t ),i, (A1)

R(t ) = 1

Ntot

Ntot∑
k=1

δxk (t ),r,

with δa,b as the Kronecker symbol.
Furthermore, an important property of the SIR model asso-

ciated with the homogeneity of the population (all agents are
connected with every other agent with a uniform probability)
is that, in the Ntot → ∞ limit, the system is ergodic, in the
sense that averages over realizations of the Markov process
and averages over individuals should correspond, i.e.,

(∀k) lim
Ntot→∞

〈 fk〉 = lim
Ntot→∞

1

Ntot

Ntot∑
k′=1

fk′ (A2)

(where 〈 fk〉 is the average over Markov realisations of the
quantity f associated with a given individual k, and where
the right-hand side is taken for an arbitrary (but single) real-
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isation of this Markov process). Note that for this ergodicity
to apply, not only Ntot should be large, but also the number
of agents within each class and in particular the number of
infected NtotI , so that at the very beginning of the epidemic
nonergodic behavior may exist if I0 < 1/Ntot . In the Ntot → ∞
limit that we consider here, however, we may and will write
(〈S〉, 〈I〉, 〈R〉) = (S, I, R).

Let us consider an individual k which is susceptible at time
t (i.e., δxk (t ),s = 1). To become infected at time t + dt , this
individual must meet an infected individual l in the time inter-
val [t, t + dt[, and this encounter must lead to a transmission
of the disease. Thus the proportion of individuals which are
susceptible at time t and infected at time t + dt is given, for a
given realisation of the Markov process, by

S(t + dt ) − S(t ) = − 1

Ntot

Ntot∑
k=1

Ntot∑
l=1

Ckl (t ) δxk (t ),sδxl (t ),i, (A3)

with Ckl (t ) the stochastic variable which take value 1 if k and
l met during the interval [t, t + dt[ with a possible infection
for k (if k is susceptible and l is infected), and 0 otherwise.
This stochastic variable has an average value (over random
realizations of the Markov process) which is the product of
the probability of contact during dt , 1

Ntot
χ (t )dt , by the trans-

mission rate ρ since both events are independent. Note that
since the population is assumed homogeneous, the probability
of contact as well as the transmission rate are constant across
the population (although the stochastic variables Ckl are not).

We then take the average over realizations assuming the
independence of the three stochastic variables δxk (t ),s, δxl (t ),i,
and Ckl , which amounts to assume that the events “individual
k is susceptible at t ,” “individual l is infected at t ,” and “the
pair of individuals (l, k) meet,” are independent because Ntot

is large and the population is homogeneous. We get

d〈S(t )〉
dt

= − 1

N2
tot

Ntot∑
k=1

Ntot∑
l=1

ρχ (t )
〈
δxk (t ),s

〉〈
δxl (t ),i

〉
= −ρχ (t )〈S(t )〉〈I (t )〉. (A4)

Using the identification between ensemble and population
average, Eq. (A4) reduces to

dS(t )

dt
= −ρχ (t )S(t )I (t ). (A5)

The other SIR equations in Eq. (2.1) are obtained in the same
way.

APPENDIX B: PARAMETERS OF THE MODEL

The values of the “social-structure” and “biological”
parameters in Table II do not represent any particular
real-life case, but are chosen to be representative of realistic
situations, and therefore in the range typically found in
the literature [1,38,47–50]. We take ξ = 1.2 week−1,
not too far from the values ξ = 7/6.5 = 1.1 week−1

from Ref. [1], ξ = 7/6.6 = 1.05 week−1 from Ref. [50] and
ξ = 7/4 = 1.75 week−1 from Ref. [47]. The contagiousness
ρ is assumed to be 0.1, similar to the value mentioned
in Ref. [47] for the COVID-19, where it is slightly lower
(about 0.08). Regarding μ, we choose μ = 0.2, of the
same order of magnitude as in Ref. [50]. Similarly, for the
proportion of individuals in the population, the distribution

(25%, 50%, 25%) is closed to the one in Ref. [50], where it
is 22% if you gather the proportion of children and teenagers,
57% for adults, and 21% for seniors. The contact matrices
Mγ

αβ are inspired by Ref. [38] for their shape: Almost all
contacts in schools are between children, an similarly inside
workplaces for adults. In the community, all individuals have
the same probability of meeting other individuals, while in
households the structure is a bit more complex, with a strong
child-adult link and senior-senior contacts. The absolute
value of contacts is then normalized so that the average total
number of contacts is close to the values presented in Ref.
[47]. Finally, to ensure the consistency of our choices, we
check that all these collected quantities give a reproductive
number R̃0 = 2.9 with the method described in Refs.
[38,60] for calculating R̃0 at the beginning of epidemics
in heterogeneous populations. This value is consistent with
the literature for viruses such as COVID-19 [13]. The choice
of initial conditions (Iα (t = 0)) is taken uniform among age
classes, and since we do not consider stochastic effects at the
beginning of epidemics, we take a value of 1% which has
little effect on the simulation as long as it is small enough.

APPENDIX C: ARBITRARY ASYMPTOMATICITY

In this Appendix, we generalize the discussion of Sec. III A
to arbitrary values of the asymptomaticity parameter μ ∈
[0, 1]. In that case the equations change only slightly. As be-
fore, only asymptomatic infected individuals participate to the
propagation of the disease. Asymptomatic individuals ignore
their status, and if infected feel no harm; as a consequence,
they will not change their behavior upon contamination at
time τ (thus the integral in Eq. (3.1) will extend up to T ),
nor bear the health costs [thus the second term in Eq. (3.1)
will be zero for them]. The cost for asymptomatic individuals
thus reads

Ca
(
nγ

a (·), {nγ

β (.)
}
, t, τ

) ≡
∫ T

t
fα

(
nγ

a (t ′)
)
dt ′. (C1)

Since the agent ignores whether she is asymptomatic or not,
the average cost she anticipates is with probability (1 − μ)
the estimated cost (3.9) and with probability μ the cost (C1)
(which is independent of τ ); therefore,

Cμ
a

(
nγ

a (·), t
) = (1 − μ)

∫ T

t

(
fα

(
nγ

a (t ′)
) + λa(t ′) Iα (I (t ′))

)
× (1 − φa(t ′))dt ′ + μ

∫ T

t
fα

(
nγ

a (t ′)
)
dt ′

=
∫ T

t

[
(1 − μ)λa(t ′)Iα (I (t ′))(1 − φa(t ′))

+ fα
(
nγ

a (t ′)
)
(1 − (1 − μ)φa(t ′))

]
dt ′. (C2)

The term (1 − μ)φa(t ′) can be interpreted as the probability
for an individual of age class α to be infected and symptomatic
before t ′, since the two events “have been infected before t ′”
and “be symptomatic” are independent. In the limit of μ � 1,
we recover the cost derived before in Eq. (3.9); note that to
allow an epidemic growth in this limit we assume that μρ and
thus λa are of the same order in μ as ξ (the recovery rate), that
is, of order 0 in μ.
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FIG. 16. Global scheme used for the inductive sequence.

APPENDIX D: NUMERICAL IMPLEMENTATION

1. Numerical resolution of the Nash equilibrium

We describe here two numerical methods we have imple-
mented to reach the Nash equilibrium: an inductive sequence
method and a gradient descent. Again, we omit the superscript
γ to lighten the notations.

a. First method: Inductive sequence

The first method is the most natural one. The idea is the
following. We start with an initial global strategy n(0)

α (.) (the
brackets (.) indicate that this initial strategy is given at all
times), and we compute the associated epidemic quantities
(S(0)(.), I (0)(.), R(0)(.)) with Eq. (4.2) for these given initial
conditions. Then, using Eq. (4.9), we compute the best in-
dividual response to this epidemics dynamics, n∗

a
(0). Since

the latter should be followed by all individuals, we obtain a
new global strategy n(1)

α = n∗
a

(0). We repeat the process until
we reach the Nash equilibrium condition n(k)

α 
 n∗
a

(k) for a
sufficiently large k.

To summarize, the global scheme of this method is the
following, performed simultaneously for all age classes α:
Each step is quite straightforward numerically since we only
deal with classical partial differential equations. Figure 16
corresponds to an inductive sequence n(k+1)

α = F (n(k)
α ) where

the functional F is defined as F (n(k)
α ) = n∗(k)

α . However, this
inductive sequence will not always converge to a fixed point
of F , which is why we consider a second approach below.

In practice, we discretized the interval [0, T ] with T = 40
weeks using ∼150 time steps; typically the number of itera-
tions to reach the fixed points is ∼10.

b. Second method: Gradient descent

To deal with cases where the inductive sequence does not
converge, we use a gradient descent on the variable na(.) of the
cost Ca [see Eq. (3.9)] to reach the Nash equilibrium. We use
the following scheme for each age class α with representative
individual a

n(k+1)
a (t ) = n(k)

a (t ) − h · ∇1Ca
(
n(k)

a (.),
{
n(k)

β (.)
}
, t

)∣∣
n(k)

a (.)=n(k)
α (.),

(D1)

where ∇1 means that the gradient is taken on n(k)
a (.). The dot

in Eq. (D1) indicates a scalar product, h and ∇1 are vectors
indexed by γ . This scheme gives ∇1Ca(n(k)

a (.), {n(k)
β (.)}, t ) =

0 when we reach the equilibrium. That is, we are at a local
minimum of the cost Ca with respect to the first variable na(.).
We can then check numerically that we are indeed at the true
Nash equilibrium, that is, at a global minimum for the variable

na(.) (for each age class α), by checking that F (nNash) = nNash

for a given Nash candidate nNash.
To make the numerical computation of the gradient ∇1Ca

less heavy and more efficient, we first perform a few analytical
steps. To avoid heavy notations, the cost at t = 0 will be
denoted as Ca(na, nβ ). We have

Ca(na, nβ ) ≡ Ca
(
nγ

a (·), {nγ

β (.)
}
, 0

)
=

∫ T

0

(
fα

(
nγ

a (s)
) + λa(s) Iα (I (s))

)
(1 − φa(s))ds.

(D2)

To compute the gradient of the cost with respect to the first
variable, we introduce the functional derivative of Ca with
respect to its first variable na, in the direction h (with h a
function, usually a Dirac delta). By definition,

DhCa(na, nβ ) ≡ lim
ε−→0

1

ε
(Ca(na + εh, nβ ) − Ca(na, nβ )).

(D3)

Using the definition of the gradient, this functional derivative
can be reexpressed as

DhCa(na, nβ ) =
∫ T

0
h(t ) · ∇1Ca(na, nβ, t ))dt . (D4)

which explicitly written gives h(t ) · ∇1Ca = ∑
γ hγ (t ) δCa

δnγ
a (t )

with δCa

δnγ
a (t ) the functional derivative of the total cost Ca with

respect to nγ
a (t ). Since 1 − φa(s) = exp(− ∫ s

0 λa(u)du), the
cost (D2) depends on na through the terms fα (na) and λa via
(3.6); with λa is linear in na. Using Eq. (D3) we have at first
order λa(na + εh) = λa(na) + εh · dλa

dna
(t ) with dλa

dna
(t ) a vector

indexed by γ , of components

dλa

dnγ
a

(t ) ≡ μρ

ncl∑
β=1

nγ

β (t )Mγ (0)
αβ Iβ (t ). (D5)

We then use the integral form (D2) to expand Eq. (D3) to
lowest order in ε. One of the terms involves a double integral;
to put DhCa(na, nβ ) under the form (D4), we invert inte-
grants and change variables, namely

∫ T
0 [ f (t )

∫ t
0 g(s)ds]dt =∫ T

0 [g(t )
∫ T

t f (s)ds]dt . Once the expression is of the form (D4)
we can read off the value of the gradient ∇1Ca(na, nβ ):

∇1Ca(na, nβ, t ) =
[

dfα
dna

(na(t ))+dλa

dna
(t )Iα (I (t ))

]
(1 − φa(t ))

− dλa

dna
(t )

∫ T

t
( fα (na(s)) + λa(s)Iα (I (s)))

× (1 − φa(s))ds, (D6)
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with dfα
dna

the derivative of fα with respect to the variable nγ
a (t )

(with a vector notation). The straights d used here indicates
usual derivatives, as f and λ are functions (and not functional)
of nγ

a (t ). The gradient (D6) is then computed numerically to
follow the scheme (D1).

2. Numerical resolution of the constrained Nash equilibrium

For the constrained Nash equilibrium, the strategies nk
a(t )

in Eq. (D1) additionally must fulfill constraints such as
Eq. (4.11). Since these constraints are active or not depending
on the value of I (t ), at each step k one must check that the
strategies respect the constraints defined by the values of the
epidemic rate at step k. Each step of the gradient descent
therefore comprises two parts. In the first part, we perform
the same gradient descent as the one described for the Nash
equilibrium Appendix D 1 b, but now we check that the new
strategies {nk+1

a (.)} respect the constraints defined by the I (.)
from step k; if they do not, we enforce them by correcting
accordingly the {nk+1

a (.)}. In the second part, we compute
the new epidemic rates and find the corresponding new con-
straints.

An issue appears when we approach the Nash equilibrium.
The variation of the constraints and of the strategy {nk+1

a (.)}
can form some cycles which impede convergence. To bypass
this difficulty, we choose to freeze the constraints at some
step k and continue the gradient descent process as in the
method Appendix D 1 b; after some steps, we recompute the
constraints and we continue the process until the convergence.

3. Numerical resolution of the societal optimum

We can reach the optimal strategy through different ways.
Here we choose to make a gradient descent on the cost Cglob,
but one can also use the Pontryagin maximum principle [51].
We optimize the behavior of individuals to minimize the total
cost paid by the population

Cglob
({

nγ

β (.)
}) =

∑
α

NαCα ({nβ (.)}), (D7)

where the cost depends on all the functional {nγ

β } in an equal
footing. For simplicity, we will denote this global strategy
over all classes and setting n. To do this minimization, we
will follow the same scheme as described in Eq. (D1). We
thus have to compute ∇Cglob(n, t ), which only involves all the
collective strategies n and the time t at which the gradient is
evaluated. For each age class α, we calculate the gradient

DhCα (n) ≡
∫ T

0
h(t ) · ∇Cα (n, t )dt, (D8)

to identify ∇Cα (n, t ) as in Appendix D 1 b, with ∇ is now on
the global strategy n and having components along γ and β

(as does h). New terms appear because quantities such as the
proportion of infected individuals I (.) now depend on all nβ .
Below, we outline the key steps involved in the calculation.
The first step is deriving the functional derivative of the gradi-
ent DhCα (n, t ). Starting from the expression of Cα in Eq. (3.9),

we get

DhCα (nβ, t )

= Dh

[∫ T

t
( fα (nα (s)) + λα (s) Iα (I (s)))(1 − φα (s))ds

]
.

(D9)

Thus, we need to compute each functional derivative of the
terms appearing in Eq. (D9), which gives

Dhλα (t ) = lim
ε−→0

1

ε

[ ∑
γ

∑
β

ρMγ

αβ

(
nγ

α (t ) + εhγ
α (t )

)(
nγ

β (t )

+ εhγ

β (t )
)
(Iβ (t ) + εDhIβ (t ))

]
, (D10)

Dhφα (t ) = (1 − φα (t ))
∫ t

0
Dhλα (s)ds, (D11)

DhIβ (t ) =
∫ t

0

δIβ (t )

δn(s)
· h(s)ds, (D12)

Dh fα (nα (t )) = dn fα (nα (t )) · h(t ), (D13)

DhIα (I (t )) = καrIqsat

Isat
DhI (t ) exp

[
qsat

I (t ) − Isat

Isat

]
, (D14)

where the dots in Eqs. (D10), (D12), and (D13) indicate that
h and n are indexed by β and γ and indices are summed over.
In Eq. (D12), δIβ (t )/δn(s) indicates the functional derivative
of Iβ (t ) with respect to the collective behavior n(s). This
“time delayed” derivative is the crucial term of the gradient
for the societal optimum, one can perform a linearization of
Eqs. (2.12) to propagate linearly the elementary deformation
of Iβ from time s to time t to avoid several numerical com-
putation of the whole epidemic. As in Appendix D 1 above,
we use these expressions to compute explicitly Eq. (D9) and
put it under the form Eq. (D8), which gives the expression of
∇Cα (n, t ). We can then perform the gradient descent scheme
Eq. (D1) numerically and efficiently without several compu-
tations of the whole epidemic at each time t .

APPENDIX E: COMPARISON OF GLOBAL COST FOR THE
NASH EQUILIBRIUM UNDER DIFFERENT CONSTRAINTS

In this Appendix, we study how the global cost for the
Nash equilibrium under constraints changes with the three
parameters of the constraint; results are displayed in Fig. 17.
The parameters used in Fig. 8 correspond to the minimum
found here.

At s = 0 we recover the free Nash equilibrium, with the
same global cost, around Cglob = 120. When the intensity
s is increased, society carries a lower cost than in the free
Nash equilibrium, because all individuals are forced to make
some efforts. But at a certain intensity, a minimum is reached;
the location of this minimum is mainly influenced by rI,
and corresponds here to the region around s = 0.3–0.4. In
this interval, we find the optimal lockdown configuration that
we presented above with s = 0.35,Id = 0.12,Il = 4.10−4.
Among the three parameters (s,Id,Il ) characterizing the par-
tial lockdown, the one which has the most impact on the global
cost is s, as there are no significant variations between the
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FIG. 17. Comparison of global cost for different parameters
of the constraints. The x axis corresponds to the intensity of
the lockdown s, which could vary from 0 (no constraints) to 1
(maximal constraints). The different curves correspond to different
choices for the two threshold parameters Id and Il. We choose
Id = (0.12, 0.08, 0.04), a too low Id will clearly deteriorate the
situation as it will impose a duration of the constraints which
is too long to reach collective immunity. A higher Id is, how-
ever, not effective, as typically the maximum effort with the free
Nash equilibrium is around 0.15 for our choice of parameters, and
thus the threshold would never be reached. For Il we took Il =
(1.10−2, 4.10−4, 1.10−5). Il will have a major impact on the duration
�t of constraints, with a log relation of the form �t 
 −log(Il ).
Increasing Il will decrease the extent of lockdowns and conversely.
A too high Il will lead to epidemic rebounds (the constraints is
lifted too early), and a too low Il will impose useless extra so-
cial cost to the population. Blue curve (Id, Il ) = (0.08, 4.10−4),
red (0.12, 4.10−4), green (0.04, 4.10−4), magenta (0.08, 1.10−2), and
cyan (0.08, 1.10−5). Dotted gray horizontal lines from top to bottom
correspond, respectively, to business as usual cost, free Nash equilib-
rium, and societal optimum.

different curves of Fig. 17. For s > 0.5, the constraints be-
come too strong with respect to the epidemic threat for all
choices of thresholds, but especially for low Id and Il, be-
cause this imposes long constraints which become very costly
as s increases. When s approaches 1 we even reach a point
above the business as usual scenario (which had Cglob = 266),
as we enter a regime characterized by a succession of lock-
downs followed by epidemic rebounds which are suppressed
by the next lockdown before herd immunity can be reached.

APPENDIX F: ERADICATION STRATEGY

In this Appendix, we show that the optimal eradication
strategy is to hold the maximum amount of efforts in the
interval [0, tthr] until the eradication of the epidemic when
I (tthr ) = Ithr, and then completely release the efforts. This
strategy is sometimes referred in the literature as a bang-bang
strategy [35]. To show that this strategy is optimal, we have
to show that any small reduction of efforts δn made during δt
in the interval [0, tthr] will increase tthr so that the total cost
paid by individuals will be higher. Without loss of generality,
we consider that time 0 corresponds to the time at which we

start the efforts. We refer to this slightly different strategy as
the deviating strategy, and the associated epidemic is denoted
Ĩ . However, tthr will increase by a time δτ , as the time at
which epidemic vanish will be greater. We are left with a
competition between two costs: dn f (nmin)δtδn which is the
(negative) cost caused by the reduction of efforts (this is a gain
from the individual point of view), and δτ f (nmin) which is the
extra (positive) cost that individuals will pay to eradicate the
epidemic. To compare these costs, we need to evaluate δτ in
terms of δt and δn.

At tthr, one has I (tthr ) = 0. For the deviating strategy, one
has Ĩ (tthr + δτ ) = 0, where Ĩ (t ) ≡ I (t ) + δI (t ), with δI (t ) the
small difference amount of infected between the two strate-
gies. We get

(I + δI )(tthr + δτ ) = I (tthr ),

İ (tthr )δτ + δI (tthr ) = 0, (F1)

δτ = −δI (tthr )

İ (tthr )
,

which allows us to evaluate δτ . Indeed, at time tthr we
have İ (tthr ) 
 −ξ Ithr, as the number of new infected is com-
pletely negligible at this point. A priori, since there is a
little spread of the epidemic in the population we will have
δI (tthr ) > δI (0) exp(−ξ tthr ), and close to this value if I (0) is
small enough. Therefore, we get δτ > δI (0)

ξ Ithr
exp(−ξ tthr ). At

this stage, we need to give an order of magnitude for tthr. We
use that I (tthr ) 
 I (0)exp(−ξ tthr ) = Ithr and thus δτ > δI (0)

ξ I (0) .
One can then easily show that δI (0) ∝ δnδt where the pro-
portionality coefficient can by written in a formal way as
∂λ
∂n (nmin)S(0) where we omit age class notations (generaliza-
tion is straightforward). Finally, we get the extra cost δC paid
by individuals,

δC = dn f (nmin)δtδn + δτ f (nmin)

> δtδn

[
dn f (nmin) + f (nmin)

∂λ

∂n
(nmin)S(0)

]
> 0. (F2)

For any positive δt, δn, one can check that [dn f (nmin) +
f (nmin) ∂λ

∂n (nmin)S(0)] > 0, where ∂λ
∂n ∝ I (0) with I (0) � Ithr.

The extra cost paid by individuals for the deviating strategy is
always positive, it is therefore worse than the initial one. The
initial strategy presented at the beginning of this Appendix is
the optimal one in this sense. One can also argue that this
local minimum is the true minimum among all eradicating
strategies, as the above reasoning will be a priori true for
higher values of n, considering the shape of f .

APPENDIX G: EXPLORATION
OF THE PARAMETER SPACE

We present below the Nash equilibrium results (first for
epidemic quantities in Fig. 18 and then for contact willing-
ness in Fig 19) where we change at each time one of the
parameters presented in Tables II and III. We see in Fig. 18
that the general behaviors observed with the original set of
parameters (unicity of the peak, reach collective immunity)
are quite robust to many different changes. As expected, con-
tacts between classes allow an epidemic spreading even in
classes where no one is infected at t = 0 (first row). Then,
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FIG. 18. Comparison of Nash equilibrium epidemics for the set of parameters of Tables II and III with one (arbitrary but realistic) parameter
change for each row (solid lines correspond to baseline parameters). Color legend is the same as in Fig. 6. First row: initial conditions change
with (S0(0), S1(0), S2(0)) = (0.99, 0.99, 0.99) for solid line, dashed (0.95, 1, 1) and dotted (0.9, 0.95, 0.99). In each case, Iα (0) = 1 − Sα (0)
and Rα (0) = 0. Second row: three different rI with rI = 1 (solid), rI = 3 (dashed), and rI = 5 (dotted). Third row: three different proportions
in the population, (N0,N1,N2) = (0.25, 0.5, 0.25) for solid line, (0.6, 0.2, 0.2) for dashed lines, and (0.2, 0.2, 0.6) for dotted lines. Fourth
row: three different matrices M1(solid), M2(dashed), and M3(dotted) defined in Table IV.
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FIG. 19. Comparison of Nash equilibrium contact willingness for the different set of parameters used in Fig. 18 and the same legend for
solid, dashed, and dotted lines. We keep the legend of Fig. 7 regarding colors.
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TABLE IV. Table of matrices M1, M2, and M3 (given with the form Mγ ) used for the fourth row of Fig. 18. The first one corresponds
to the one we took in our previous simulations (Tables II and III), while the two others are chosen to explore two behaviors: Matrix M2

corresponds to a society with important heterogeneous contacts, especially in households; while matrix M3 is a society which is more
homogeneous with a lot of contacts in community. Matrix elements are contact rates (per week) in our model.

MS
1 MW

1 MC
1 MH

1⎛⎝100 0 0
0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 75 0
0 0 0

⎞⎠ ⎛⎝12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

⎞⎠ ⎛⎝ 15 25 10
12.5 32.5 5
10 10 30

⎞⎠
MS

2 MW
2 MC

2 MH
2⎛⎝100 0 0

0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 75 0
0 0 0

⎞⎠ ⎛⎝12.5 15 5
7.5 25 5
5 10 12.5

⎞⎠ ⎛⎝12.5 15 20
7.5 30 17.5
20 35 12.5

⎞⎠
MS

3 MW
3 MC

3 MH
3⎛⎝75 0 0

0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 50 0
0 0 0

⎞⎠ ⎛⎝25 50 25
25 50 25
25 50 25

⎞⎠ ⎛⎝12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

⎞⎠
in second row regarding different rI, we see that epidemic
peak occurs at a lower level as rI increases, since individuals
do more efforts to protect themselves. In third row, we see
that the different proportion of age classes in the population
will have a huge impact on the epidemic. Indeed, it will
affect both the matrix of effective contacts (which are higher
between young people) and the risk due to infection (which

is lower for young). Hence, the observed behavior results in
a high and quick epidemic for a young population, while it is
significantly lower and slower for an old population. Finally,
in the fourth row, the precise matrix of contacts M affects
the epidemic in each class, but in a relatively moderate way
regarding the global evolution of infected proportion in the
population.
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