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We present an extension of the chaos-assisted tunneling mechanism to spatially periodic lattice systems.
We demonstrate that driving such lattice systems in an intermediate regime of modulation maps them onto
tight-binding Hamiltonians with chaos-induced long-range hoppings tn ∝ 1=n between sites at a distance
n. We provide a numerical demonstration of the robustness of the results and derive an analytical prediction
for the hopping term law. Such systems can thus be used to enlarge the scope of quantum simulations to
experimentally realize long-range models of condensed matter.
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Introduction.—In recent years, there has been consid-
erable interest in the quantum simulation of more and more
complex problems of solid state physics [1–3]. In this
context, lattice-based quantum simulation has become a
key technique to mimic the periodicity of a crystal
structure. In such systems, the dynamics is governed by
two different types of processes: hopping between sites
mediated by a tunneling effect and interaction between
particles. While several ways exist to implement long-range
interactions [4–7], long-range hoppings have been up to
now very challenging to simulate [8,9]. These long-range
hoppings, however, have aroused great theoretical interest
in condensed matter, as they are associated with important
problems such as glassy physics [10], many-body locali-
zation [11], and quantum multifractality [12]. In this Letter,
we show that such long-range tunneling can be engineered
in driven lattices in a moderate regime of modulation.
Temporal driving techniques are widely used in quantum

simulation [13], as fast driving can lead to new topological
effects [14–18] and strong driving can mimic disorder
[19–24]. In the intermediate regime we focus on, cold
atoms in driven lattices have a classical dynamics that is
neither fully chaotic (a case first explored in [25]) nor
regular (corresponding to the fast driving case). As for most
real-life systems, the phase space representation of their
dynamics shows the coexistence of chaotic and regular
zones. Our main result is based on the richness of the
quantum tunneling, known to be “chaos-assisted” in such
systems [26–38]. This phenomenon is well understood
between two regular islands, where it translates into large
resonances of the tunneling rate between the two islands
when varying a system parameter. Chaos-assisted tunneling
has been observed in different experimental contexts with

electromagnetic waves [30,39–44] or cold atoms [45–48]
(see also [49–52] for other related experiments).
In this Letter, we address the generalization of chaos-

assisted tunneling (CAT) tomixed lattices of regular islands
embedded in a chaotic sea obtained in a moderate regime
of temporal driving. We show that, remarkably, such a
dynamical quantum system can be mapped onto an
effective tight-binding Hamiltonian with long-range hop-
pings ∝ 1=n, with n the distance between sites. Beyond the
intrinsic interest of a new observable quantum chaos effect,
our results open new engineering possibilities for lattice-
based quantum simulations as they are highly generic,
accessible for state-of-the-art experiments, and species
independent (in a cold atom context).
Model.—We consider an experimental situation similar

to [48], i.e., a condensate of cold atoms in an optical lattice
whose intensity is time-modulated periodically [25,36,
45–47,53]. As in [48], we assume a low density such
that interactions are negligible. Using dimensionless var-
iables [54], the dynamics is given by the single particle
Hamiltonian

Hðx; tÞ ¼ p2

2
− γð1þ ε cos tÞ cos x: ð1Þ

γ is the dimensionless depth of the optical lattice and ε
the modulation amplitude, with dimensionless time period
T ¼ 2π and spatial period λ ¼ 2π. The effective Planck
constant ℏeff ¼ −i½x; p� ¼ 2EL=hν can be tuned experi-
mentally (ν is the modulation frequency and EL ¼
h2=2md2 a lattice characteristic energy, with d the lattice
spacing and m the atomic mass). Beyond this model, our
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results are valid for almost any modulation waveform
(e.g., phase modulation or kicked potentials).
Semiclassical picture.—The classical dynamics of this

time-periodic system is best viewed through a stroboscopic
phase space, using values of ðx; pÞ at each modulation
period t ¼ jT, j integer. For ε ¼ 0, the system is integrable.
When ε increases, chaos develops, forming a chaotic sea
that surrounds regular islands of orbits centered on the
stable points (x ¼ 2nπ, p ¼ 0, n an integer) of the potential
wells (see Fig. 1). At ε ¼ 0, with no chaotic sea, tunneling
essentially occurs between adjacent wells, and the system
can be described for deep optical lattices by an effective
tight-binding Hamiltonian with nearest-neighbor hopping.
Our main objective is to describe in a similar way the
modulated system, a dynamical, spatially periodic lattice
of N regular islands indexed by n ∈ ⟦0; N − 1⟧, sur-
rounded by a chaotic sea.
In a stroboscopic point of view, the quantum dynamics is

described by the evolution operator UF over one period.
Each eigenstate jϕli of UF is associated with a quasienergy
εl, so that UFjϕli ¼ expð−iεlT=ℏeffÞjϕli. Equivalently, the
Hamiltonian Hstrob ≡ iðℏeff=TÞ logUF gives the same stro-
boscopic dynamics as UF and has the same eigenstates jϕli
with energies εl.
In the semiclassical regime where ℏeff < A, with A the

area of a regular island, the quantum dynamics is strongly
influenced by the structures of the classical phase space.
Quantum eigenstates can be separated into two types
[27,55]: regular (localized on top of regular orbits) or
chaotic (spread over the chaotic sea) (see Fig. 2).
The tunnel coupling between regular states is well

understood for N ¼ 2 regular islands surrounded by a
chaotic sea (original CAT effect [26,27]). With no chaotic
sea, tunneling involves only a doublet of symmetric and
antisymmetric states. In the presence of a chaotic sea,
CAT is a 3-level mechanism with one of the regular states
interacting resonantly with a chaotic state. This coupling

leads to an energy shift and thus to a strong variation of the
energy splitting giving the tunneling frequency. These CAT
resonances, observed in a quantum system only recently
[48], occur quite erratically when varying a system param-
eter [26,28]. The CAT process involves a purely quantum
transport (tunneling to the chaotic sea) and a classically
allowed transport (diffusion in the chaotic sea). Thus in
mixed lattices, long-range tunneling can be expected since
the chaotic sea connects all the regular islands across the
lattice (see Fig. 1).
Effective Hamiltonian.—The existence of regular islands

in the center of each cell motivates the introduction of a set
of regular states fjnregig (whose exact construction [30] is
not crucial for our discussion) localized on these islands
and forming a lattice. For simplicity, we work in the regime
ℏeff ≲A with only one regular state per island. In contrast
to regular lattices, where tunneling couples only neighbor-
ing sites, there exists an indirect coupling between distant
islands of the modulated lattice mediated by the delocalized
chaotic states. As in the original CAT scenario, we can
expect the overlap with the chaotic sea to remain small at
any time. This motivates us to capture the physics of
tunneling in our system through an effective Hamiltonian
Heff acting only in the regular subspace but generating the
same dynamics asHstrob in this subspace [59–61]. Thus, the

(a)

(b)

(c)

FIG. 1. Three representations of CAT in a driven lattice. (a) In
situ description: a wave function tunnels between potential wells.
(b) Phase space description: the wave function escapes from a
stable island (blue) by regular tunneling, spreads in the chaotic
sea (red), and tunnels in another island. (c) Tight-binding
description: the system contains N sites with coupling between
the ith and jth sites proportional to 1=ji − jj. FIG. 2. In a mixed lattice as in Fig. 1, a CAT resonance between

a regular Bloch wave jβregi and a chaotic one jβchi leads to a
discontinuity in the energy band of the associated tight-binding
model (solid black line). The main panel shows the avoided
crossing characterized by jWj (the strength of the coupling
between jβregi and jβchi), α (the slope of the energy of jβchi),
β0 (the point of equal mixing), and Δβ (the crossing width). Near
β ¼ β0, the eigenstates jβ�i become a mixture of jβregi and jβchi.
The color code gives the intensity of the mixing (projection on
jβregi). Husimi representations [56–58] of jβ�i are on top of the
classical dynamics phase portrait. Inset: black solid line is the
effective regular band and red dashed line a nearest-neighbor
approximation with parameters extracted from the effective regular
band at β ¼ 0 and β ¼ π=λ (ℏeff ¼ 0.4; γ ¼ 0.20; ϵ ¼ 0.15).
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effective quantum propagator ðE −HeffÞ−1 (Green’s func-
tion at energy E) should be equal to the exact one projected
onto the regular subspace PregðE −HstrobÞ−1Preg. The main
consequence of this relation is that the effective spectrum of
Heff should be included in that of Hstrob (see below). Thus,
in the effective picture, coupling with chaotic states simply
translates into a shift of the energy of each regular Bloch
state jβregi ¼ ð1= ffiffiffiffi

N
p ÞPn expðiβλnÞjnregi (with β an inte-

ger multiple of 2π=λN). The resulting dressed regular band
εeffregðβÞ then gives access to the effective tunneling coupling
teffn ≡ hðmþ nÞregjHeff jmregi through the Fourier transform
in quasimomentum:

teffn ¼ 1

N

X

β

εeffregðβÞ expðiβλnÞ: ð2Þ

The simplest way to determine the effective spectrum is
to choose the N most relevant energies in the full exact
spectrum. The natural choice is to select energies of
eigenstates with the largest projection on the regular
subspace. In mixed lattices, this gives systematic disconti-
nuities in the effective band due to accidental degeneracies
between a regular jβregi and a chaotic state jβchi. Close to
such avoided crossings, the branch giving the effective
regular energy changes, giving a sharp discontinuity of
εeffregðβÞ (see Fig. 2). These discontinuities cause, from the
Fourier transform in Eq. (2), a long-range decay of the
effective coupling term teffn ∼ 1=n (see Fig. 5).
The two main features of these resonances come from

the mixed nature of the system (see Fig. 2): (i) They are
sharp because the local slope α of the crossing state is large,
the chaotic states being delocalized, and thus sensitive to
boundary conditions. (ii) Their heights 2jWj are larger than
the regular band width (nearest-neighbor hopping ampli-
tudes in the regular case ε ¼ 0).
Numerical simulations.—To test the accuracy of this

effective tight-binding picture, we compare the exact
stroboscopic dynamics with the one given by the effective
Hamiltonian, considering a wave packet initially localized
on a single regular island of the modulated lattice (see [62]
for details). As concerns the exact dynamics, the initial
condition was chosen to be a localized (Wannier) state
of the undriven lattice (ε ¼ 0) in the regular island
n0 ¼ ðN − 1Þ=2, N being odd. We also used the localized
states jnregi to estimate the projection of the wave function
on the chaotic layer through Pch ≡ 1 − Preg. The effective
dynamics was studied by propagation of a state initially
located at the site n0 with the effective Hamiltonian. In both
simulations, we used a local observable p̂n which probes
the probability at each site, defined as p̂n ≡ jnihnj in the

effective system, p̂n ≡ R ðnþ1Þλ
nλ jxihxjdx in the exact one

(this choice ensures that
P

n p̂n ¼ 1 in both cases), and a

global observable dΔn2 ¼ P

nðn − n0Þ2p̂n to estimate the
spreading of the wave function.

We simulated different system sizes up toN ¼ 1079with
periodic boundary conditions and found a very good
agreement between the two approaches (see Figs. 3 and 4
and [62] for additional results). In the modulated case, there
is a fast and long-range spreading of the wave function
[Fig. 3(a)], in particular long tails of the spatial distribution
[Fig. 4(a)] that is responsible for the tremendous growth of
the standard deviation [Fig. 4(c)]. The standard deviation
saturates with a strong finite size effect, an additional
signature of the long-range tunneling. In contrast, the
regular ε ¼ 0 case gives a slow, short-range ballistic
spreading of the wave function with no finite-size effect
[Figs. 3(b) and 4(c)].
Analytical derivation of the hopping law.—In addition

to the expected long-range decay ∝ 1=n of the effective
coupling term, numerical simulations show fluctuations
around this algebraic law (see Fig. 5). We can explain them
with a simple model. For each of the Nres resonances in the
effective band, we apply a two-level model with only three
parameters (see Fig. 2): the slope α ¼ dεch=dβ of the
energy of a chaotic state with β, the coupling intensity
W between chaotic and regular states, and the position β0 of
the crossing in the spectrum. Using the linearity of Eq. (2)
and assuming sharp resonances (Δβ ≪ 2π=λ), the asymp-
totic behavior of teffn is (see [62])

teffn ≈
i
πn

X

resonances

sgnðαÞjWjeinβ0λ: ð3Þ

This model is in very good agreement with numerical data
(see Fig. 5 and [62]) and shows that the relevant timescale

(a)

(b)

FIG. 3. Dynamics of a wave packet initially located on a single
regular island or site n0. Color plot of the time evolution of the
spatial probability distribution, with γ ¼ 0.2, ℏeff ¼ 0.4, and
ε ¼ 0.15 for the modulated lattice (a) or for the unmodulated
lattice, i.e., ε ¼ 0 (regular case) (b). The exact dynamics (left) is
compared to the corresponding effective description (right). Note
that the system is symmetric through n − n0 → n0 − n.
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of the tunneling dynamics is ℏeff=jWj. The phase term
einβ0λ, which depends on the position of the resonances in
the effective band, gives the observed fluctuations of
hopping amplitudes around the algebraic law.
Since the W’s of the Nres resonances are associated

with tunnel coupling to chaotic states, random matrix
theory suggests that they can be described as independent

Gaussian variables with a fixed variance w2. In the same
spirit, as soon as n is large enough, the phases nβ0λ
mod ½2π� can be considered random. Using the known
results about sums of complex numbers with Gaussian
amplitudes and random phases [63], Eq. (3) leads to a
simple statistical model for the couplings, with jteffn j≡
W=n with W a Gaussian random variable of variance
Nresw2. We stress that this implies the distribution of njteffn j
is universal. Figure 5(b) shows the validity of this approach.
Discussion.—The theoretical results presented above

rely on the effective Hamiltonian picture. It is thus
important to assess its validity in our context. The exact
tunneling dynamics between two sites can be written
hðnþmÞregjUFjmregi ¼ ð1=NÞPβ e

iβλnhβregjUFjβregi. In
the effective approach, hβregjUFjβregi is expð−iεeffregðβÞ
t=ℏeffÞ, which does not take into account the Rabi oscil-
lations of each regular Bloch wave jβregi with the chaotic
sea jβchi, whose amplitude is given in a two-level approxi-
mation by W=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ Δ2
p

and whose period is πℏeff=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ Δ2
p

(Δ being the energy difference with the chaotic
state involved). The effective picture is thus valid since
(i) the sharpness of resonances guarantees that the total part
of the system that is delocalized in the chaotic sea is small
at any time (the oscillation amplitude being large only close
to the resonances), and (ii) the slowest Rabi oscillation
is from Eq. (3) always faster than the induced
tunneling process (ℏeff=jteffn j ≥ πℏeff=W). This is confirmed
by Fig. 4(b): the projection of the system on the chaotic sea
displays fast and weak oscillations around a very low value.
Experiments.—The regime of parameters we considered

is experimentally relevant (lattice of depth 5EL and ν ≈
40 kHz as it was achieved recently [48]). Two comple-
mentary approaches could provide direct experimental
signatures of long-range tunneling: the in situ imaging
of the cloud shape dynamics and the use of Bloch
oscillations generalized to amplitude modulated lattices
[64,65] that provides a direct spectrometry of the band from
which long-range properties could be inferred [66–68].
Conclusion.—In this Letter, we generalized the original

chaos-assisted tunneling mechanism between two wells
to spatially periodic lattice systems. We demonstrated
that in an intermediate regime of temporal driving, the
system dynamics could be mapped onto a tight-binding
Hamiltonian with long-range hopping. This is a direct
consequence of the existence of sharp tunneling resonances
in the band structure [48]. These properties are a generic
and robust feature of driven lattices whose classical
dynamics is mixed. This effect could thus be observed
in many different experimental situations.
Our study opens new possibilities for quantum simu-

lation. First, the versatility of mixed systems allows one to
engineer more complex Hamiltonians such as a chain of
dimers with long-range hoppings (with two islands per cell,
see [48]), i.e., an extended Su-Schrieffer-Heeger model that

(a) (b)

FIG. 5. (a) Effective hopping amplitude jteffn j vs distance
between sites n for γ ¼ 0.2, ε ¼ 0.15, and ℏeff ¼ 0.4. Red data
were extracted from numerical Fourier series of the effective band
structure. Green data correspond to Eq. (3) with parameters
extracted from the band structure. Black solid line is the typical
value of Eq. (3) (without the phase term). Inset: small-distance
behavior and additional blue data for unmodulated case ε ¼ 0.
(b) Distribution of fluctuations around the 1=n law for five
parameter sets: histogram corresponds to cumulative values for
1500 < n < 10 000, dots are partial datasets of 500 consecutive
values of n, and black curve is analytical prediction (see text).

(a)

(c)

(b)

FIG. 4. Characterization of the dynamics of a wave packet
initially located on a single regular island or site n0 (correspond-
ing to Fig. 3). (a) Spatial probability distribution of the wave
packet after t ¼ 1500 T. (b) Overlap of the wave function with
the chaotic sea vs time (see text). (c) Standard deviation of the
spatial distribution vs time. Symbols are for the exact dynamics
and solid lines for the effective dynamics. Red data correspond to
modulated lattices with different sizes, and blue data correspond
to the unmodulated lattice (regular case).
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features nontrivial topological properties [69]. Second, long-
range hoppings in disordered lattices can generically induce
nonergodic delocalized states with multifractal properties
(like in power-law random banded matrices [12]). Hence by
adding disorder in the system, this framework should
provide a way to experimentally observe quantum multi-
fractality [70], which is very challenging to achieve by other
means [71–74]. Finally, a proper description of many-body
effects in such systems is still missing, but we may expect
that they only appear within the regular islands (where the
density is high) mimicking Hubbard on-site interactions.
This could allow one to access experimentally many-body
localization and spin glass physics, where long-range
tunnelings play an important role [10,75,76].
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Odelin, Sci. Adv. 6, eabc4886 (2020).

[49] K. Vant, G. Ball, H. Ammann, and N. Christensen, Phys.
Rev. E 59, 2846 (1999).

[50] J.-B. Shim, S.-B. Lee, S. W. Kim, S.-Y. Lee, J. Yang, S.
Moon, J.-H. Lee, and K. An, Phys. Rev. Lett. 100, 174102
(2008).

[51] Y.-F. Xiao, X.-F. Jiang, Q.-F. Yang, L. Wang, K. Shi, Y. Li,
and Q. Gong, Laser Photonics Rev. 7, L51 (2013).

[52] Q.-F. Yang, X.-F. Jiang, Y.-L. Cui, L. Shao, and Y.-F. Xiao,
Phys. Rev. A 88, 023810 (2013).

[53] R. Dubertrand, J. Billy, D. Guéry-Odelin, B. Georgeot, and
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