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ABSTRACT

This thesis will focus on the topic of pedestrian dynamics. It will start
presenting the experiment that inspired this research, performed in France
and Argentina, that consisted in the analysis of the crowd’s response to the
passage of a cylindrical intruder in a controlled environment. The way this
experiment contradicted expectations motivated the research of a theoretical
explanation of what was observed. The research group I belong to tried to use
Mean-Field Games (MFG) to explain the experiment. The second part of this
thesis will therefore present the basis of MFG and its main features, with the
description of the mathematical foundations and the physical interpretation
of the results. Finally, the third part of this thesis reports the results we
obtained in our attempt to model the experiment with Mean-Field Games.
We will first explain the approach we chose to follow and then we will report
the analytical solution and comment of the results. Given the simplicity of
the model we used we are pretty happy with the results we obtained. There
is still plenty to improve, but this is another story that will hopefully be told
in the future.
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Figure 1: Snapshot of one of the performed experiments. The left figure
shows the detection of participants using colored hats in Orsay, France. The
right figure shows the numerical representation of the data. Images from [1]

1 The experiment

We all have experience with crowded environments. Although we did not
always realize it, many of these spaces are designed on purpose to make us
follow certain trajectories. Public spaces designers, in fact, have been using
simulations to predict the flow of pedestrians for a long time. These predic-
tions are then used to place wisely obstacles and doors, decide the length
of corridors etc. in order to enhance safety. The underlying algorithms,
however, are built to simulate human behavior using techniques of granular
matter [17], [30], or fluid dynamics [28]. These approaches ultimately give
reasonable results, but only for macroscopic quantities such as escape time,
or to have a visual impression of the phenomenon. However, there are cases
in which such models fail.

In 2019 the work of Nicolas et al. [1] reported a simple but very ped-
agogical example in which the usual pedestrian dynamics softwares would
fail to predict the correct behavior of the crowd. Two experiments, per-
formed in 2017 in Orsay (France) and Bariloche (Argentina) and involving
between 35 and 40 participants of various ages, consisted in the analysis of
the crowd’s response to the presence of a single moving cylindrical obsta-
cle. The crowd stood in a delimited square area and, with different pedes-
trian densities, the obstacle was made pass through. Figure 1 shows how
the experiments were actually performed. One participant wore a cylin-
der, of diameter 74cm in France and 68 cm in Argentina, and walked his
way through the crowd. Moreover, the people in the crowd were asked to

3



Figure 3: The density of pedestrians is displayed for three different average
densities and in the two experimental set-ups: when people face the intruder
they react more quickly than when they are oriented randomly, making space
for the intruder and then closing behind him. Images from [1].

arrange in two configurations: in one case they were asked to face the in-
truder, in the other to stay in randomly oriented positions. If one attempts
to simulate this situation considering pedestrians as granular matter, this
would certainly fail. In fact, Seguin et al. showed in [2] what would happen
if a cylinder was made pass through an area filled with granular particles.

Figure 2: In [2], a cylinder passing
through granular matter was simu-
lated.

Figure 2 shows the main features of
the simulation, that are the increase
of the density in front of the cylinder
and the appearance of an empty area
behind it. These results are in clear
disagreement with what was found
by Nicolas and colleagues. In fact, as
figure 3 shows, especially in the case
in which pedestrians were asked to
face the intruder, the experimental
situation is quite different from what
figure 2 might suggest. The density
of pedestrians is indeed lower both in
front and behind the cylinder, with
a higher density at its sides, sug-
gesting that people move laterally to
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Figure 4: The figure shows the velocity field of pedestrians facing the intruder
in case of sparse (left column, ρ̄ ∼ 1.5 ped/m2) and dense (right column,
ρ̄ ∼ 6 ped/m2) environments. Images from [1].

avoid the incoming obstacle. This is confirmed when we observe in figure 4
the plots of the velocity field of the crowd. Right before the arrival of the
intruder, people move laterally, giving up comfort by reaching a higher den-
sity area, but also avoiding impact. Then, after the obstacle has passed, the
push of the crowd forces pedestrians to regain their position closing behind
the cylinder. What is observed here is the ability of humans to predict the
arrival of an obstacle. We do this because of individually acquired knowledge
(we see the obstacle approaching) and also using environmental awareness
(we feel others’ motion and we are confirmed in our visual anticipation). The
goal is then to find a theoretical description that can take into account both
these aspects and translate them into simulations.

2 Mean-Field Games

Mean-Field Games (MFG) constitutes a relatively new field of research. Its
foundations are in the works of J.-M. Lasry and P.-L. Lions [25], [26], [27]
and of M. Huang, R. P. Malhamé and P. E. Caines [21]. During the years,
many works have been focused on looking for existence and uniqueness of
solutions [11], [19] and the comparison between discrete games in the limit
of large number of players and their mean-field analogous [9], [14], [15]. At
the same time, however, improvements were made towards the elaboration
of numerical schemes [4], [7], [20], to solve MFG problems. Applications of
MFG are found in various areas, such as finance [12], [16], economics [3], [5],
social problems like pedestrian dynamics and segregation [6], [24], and also
engineering [22], [23]. This list of results suggest how this topic has attracted
the attention of many researches, as it did with mine when I chose what to
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focus my internship on. My work on the topic is based on the approach that
D. Ullmo et al. explained clearly in [31] a couple of years ago. In this paper
Ullmo and colleagues carefully explain how MFG can be linked to Quantum
Mechanics (QM), in particular to the study of the Non-Linear Schrödinger
Equation (NLSE), a very well established topic in Physics. The connection
between the two fields, MFG and QM, is already quite interesting in itself,
but what really struck me was that this approach does indeed work quite
well, also considering that the nature of the phenomena explained is quite
different!

2.1 The main equations

Mean-Field Games are optimally driven diffusive processes of a large number
of agents. More explicitly, we consider a differential game that is played by
a large number of agents N and that evolves in time. At each time t, we can
associate to each agent its state variable X⃗i(t) ∈ Rd. Then, throughout the
game, that starts at t = 0 and ends at t = T , every player has the possibility
to change the control parameter a⃗i(t) ∈ Rd, that corresponds to the choice
of a strategy. We then suppose that the evolution of a player’s state variable
is subjected to some noise and can therefore be described using using the
Langevin equation

˙⃗
Xi = a⃗i(t) + σiξ⃗i(t), (1)

where ξ⃗i(t) is a d-dimensional vector of uncorrelated Gaussian white noises.
In order to take the best decision about the strategy, agents select the drift
term a⃗i by minimizing (maximizing) a certain cost (gain) functional, defined,
for example in this case, as

ci [⃗a](X⃗, t) = E
{∫ T

t

[µ
2
(⃗ai(τ))

2 − Vi(X⃗(τ), τ)
]
dτ + cT i(X⃗(T ))

}
, (2)

where X⃗(t) = (X⃗1(t), . . . , X⃗N(t)) and a⃗ = (⃗a1, . . . , a⃗N). There are various
terms in equation (2) that need to be explained. First of all, cT represents a

terminal cost that each player knows from the beginning. Then, V (X⃗, τ) is a
potential that acts on each player collectively and that describes how agents
interact with each other and with the environment. Finally, the presence
of the square of the control parameter a⃗ means that we are dealing with
quadratic games, which have been widely described in [31]. This is not the
only possible choice.

At this point some simplifications are in order. First of all, we assume
that each player is identical, meaning that ∀i, Vi = V, cT i = cT and σi = σ.
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Finally, the fundamental assumption that we make is that both the potential
and the final cost depend on the players’ positions only through the empirical
density

m̃(x⃗, t) =
1

N

N∑
i=1

δ(x⃗− X⃗i(t)).

Then, we take the limit for a large number of players N → +∞. In this case,
if we define m(x⃗, t) = E[m̃(x⃗, t)], we can then substitute m(x⃗, t) to m̃(x⃗, t).
This means that we are not interested anymore in the description of every
single trajectory, but in overall distribution of players in the space. The cost
term can be now written as

c[⃗a](x⃗, t) = E
{∫ T

t

[µ
2
(⃗a(τ))2 − V [m](x⃗, τ)

]
dτ + cT [m](x⃗, T )

}
. (3)

Finally, the only type of potential we will consider is of the form

V [m](x⃗, t) = gm(x⃗, t) + U0(x⃗, t), (4)

where g is a coupling term. A negative value of g makes the density term in
the integral of equation (3) positive, and, if it must be minimized, this means
that naturally the systems will adjust to a low density, resulting in repulsive
interactions. Conversely, g > 0 means attractive interactions. Finally, we
introduce the value function, obtained by minimizing the cost function

u(x⃗, t) = inf
a⃗
c[⃗a](x⃗, t). (5)

At this point we are able to introduce the first of the two fundamental equa-
tions that describe the dynamics of a game. In order to do so however, we
must think about the optimization of, for example, the path to reach point
C from point A passing through point B. Because agents can optimize their
strategy at any time, it is possible to show that optimizing the whole path
gives the same result as joining together the paths obtained by optimizing
separately the way from A to B and from B to C. This idea lies behind the
dynamic programming principle [8], that allows us to write

u(x⃗, t) = inf
a⃗
E
{∫ t+dt

t

[µ
2
(⃗a(τ))2 − V [m](x⃗, τ)

]
dτ

}
+ u(x⃗+ dx⃗, t+ dt), (6)

that is called Bellman equation. Now we observe that

u(x⃗+ dx⃗, t+ dt) ≃ u(x⃗, t) +
d

dt
u(x⃗, t)dt,
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and the time derivative of the value function can be computed with Ito chain
rule [18], obtaining

u(x⃗+ dx⃗, t+ dt) ≃ u(x⃗, t) +

[
∇⃗u · a⃗+ ∂tu+

σ2

2
∆u

]
dt. (7)

Then, we can take the inf over a⃗ for both sides of the equation and obtain

u(x⃗+ dx⃗, t+ dt) ≃ u(x⃗, t) + ∂tudt+
σ2

2
∆udt+

(
inf
a⃗
∇⃗u · a⃗

)
dt, (8)

that we can substitute inside equation (6), giving

0 = inf
a⃗

[µ
2
(⃗a(t))2 + ∇⃗u · a⃗(t)

]
+ ∂tu+

σ2

2
∆u− V [m](x⃗, t). (9)

The optimal control can be easily evaluated by taking the d-dimensional
derivative with respect to a⃗ of the expression in squared brackets and, putting
it equal to zero, the solution is obtained and is equal to

a⃗∗ = −∇⃗u
µ
, (10)

which can be plugged back into equation (9) to obtain the Hamilton-Jacobi-
Bellman equation (HJB).{

∂tu+
σ2

2
∆u− (∇⃗u)2

2µ
= V [m]

u(x⃗, t = T ) = cT (x⃗)
(11)

This is a backward differential equation, that is built starting from its solution
at time t = T

Now, given that each agent’s position is supposed to evolve following a
Langevin equation, the density of players satisfies

∂tm =
σ2

2
∆m− ∇⃗ · (ma⃗∗),

that is the Fokker-Planck equation. By substituting the value of the optimal
control obtained in (10) we obtain{

∂tm− σ2

2
∆m+ 1

µ
∇⃗ · (m∇⃗u) = 0

m(x⃗, t = 0) = m0(x⃗)
(12)

Equations (11) and (12) constitute a backward-forward system. Starting
from an initial density value, HJB equation informs FPE on incoming events.
In fact, after HJB chooses the best possible value function, the FPE finds
the next best density. It is in this process of interaction between the two
equation that lies the predictive ability of MFG. We will see this in more
details in the following.

8



2.2 Changes of variables

Now that we have built all the tools of MFG, we are left with a set of coupled
equations which is not trivial to solve. A very wise approach has been devised
in [31], where a Cole-Hopf transformation is performed and the problem is
cast in a more familiar setting for many physicists. In fact, let us considers
the transformation

u(x⃗, t) = −µσ2 log Φ(x⃗, t), (13)

and substitute into equation (11). We then get to the equation

µσ2∂tΦ = −µσ
4

2
∆Φ− V [m]Φ, (14)

a standard heat equation, with terminal condition

Φ(x⃗, t = T ) = e
− cT (x⃗)

µσ2 . (15)

Now we can also define

Γ(x⃗, t) =
m(x⃗, t)

Φ(x⃗, t)
, (16)

that, when substituting into equation (12), gives

µσ2∂tΓ =
µσ4

2
∆Γ + V [m]Γ. (17)

Equations (14) and (17) only differ by a change in sign while containing all
the information of the original MFG equations. The one we just performed is
not the only change of variable that can be done to transform mean-field game
equations into something already seen in other fields of Physics. As explained
in [29], we can also perform a Madelung like change of variables defining
K(x⃗, t) such that Φ(x⃗, t) =

√
m(x⃗, t)eK(x⃗,t) and Γ(x⃗, t) =

√
m(x⃗, t)e−K(x⃗,t),

that substituting in equations (14) and (17) gives{
∂tm+ ∇⃗ · (mv⃗) = 0,

∂tv⃗ + ∇⃗
[

σ4

2
√
m
∆
√
m+ v2

2
+ V [m]

µ

]
= 0,

(18)

where v⃗ is the velocity of agents and is defined as

v⃗ =
σ2

2m

(
Γ∇⃗Φ− Φ∇⃗Γ

)
= −∇⃗u

µ
− σ2 ∇⃗m

2m
. (19)

This is called hydrodynamic representation. In particular, the first equation
of system (18) is a continuity equation. We conclude this general introduction
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about MFG by mentioning the important results reported by P. Cardialaguet
et al. in [13]. In this work, in fact, the limit of large ending time T → +∞ is
considered. Under the hypothesis that there is no explicit time dependence
in the cost function (2), it was proved that an ergodic solution exists and it
is valid for 0 << t << T . This solution is of the form (me(x⃗), ue(x⃗) + λet)
where me(x⃗) and ue(x⃗) satisfy the equations{

−λe + σ2

2
∆ue − (∇⃗ue)2

2µ
= V [me]

σ2

2
∆me + 1

µ
∇⃗ · (me∇⃗ue) = 0

(20)

In the Schrödinger representation the ergodic solutions are

Φe = e
− ue

µσ4 , Γe =
me

Φe
, (21)

and it easy to prove that they both follow the equation

λeψ
e = −µσ

4

2
∆ψe − V [m]ψe. (22)

Most importantly, the knowledge of the ergodic solution gives access to the
solution also of the time dependent problem, because it is possible to show
that

Φ(x⃗, t) = exp

{
λe
µσ2

t

}
ψe(x⃗), Γ(x⃗, t) = exp

{
− λe
µσ2

t

}
ψe(x⃗) (23)

solve equations (14) and (17) respectively.

3 MFG model of the experiment

So far we have described in details the foundation of MFG and their math-
ematical structure. The way we want to apply them to the experiment of
Nicolas et colleagues is by considering the parameter a⃗(t) as the velocity of
pedestrians. We think this approach is reasonable because the only thing a
person has to decide at each instant when walking through a crowd is their ve-
locity. Module and direction of the velocity will indeed determine the motion.
Pedestrians optimize their velocity according to the density around them and
the obstacles they encounter. Moreover, since crowded environments change
quickly and a pedestrian has to adapt to many small perturbation, it also
seems appropriate to describe the motion of a single person in the crowd with
the Langevin equation (1). This is why we thought MFG could apply well
to this situation.
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3.1 Passing to the moving frame

The problem we are trying to model is the evolution of the density of pedes-
trians in a confined environment, namely a square of side L, through which
a cylinder is made pass from bottom to top with constant velocity s⃗ = (0, s).
We argue then that the right set of equations to describe this problem is
given by MFG equations in the NLS representation that we recall

µσ2∂tΦ = −µσ
4

2
∆Φ− V [m]Φ,

µσ2∂tΓ =
µσ4

2
∆Γ + V [m]Γ,

where in this case V [m] = gm(x⃗, t) + U(x⃗, t) with U(x⃗, t) representing the
moving cylinder as an external potential equal to +∞ inside a 2 dimensional
disk of radius R and equal to 0 outside. This external potential introduces
an explicit time dependence in the cost function (2), preventing the existence
of an ergodic state. To correct this problem we pass from the point of view
of the laboratory to the point of view of the cylinder. In order to do so we
define of the following quantities

ũ(x⃗− s⃗t, t) = u(x⃗, t), m̃(x⃗− s⃗t, t) = m(x⃗, t),

Φ̃(x⃗− s⃗t, t) = Φ(x⃗, t), Γ̃(x⃗− s⃗t, t) = Γ(x⃗, t).

In this framework the potential does not depend on time anymore and it
becomes Ṽ [m̃] = gm̃+ Ũ(x⃗), with

Ũ(x⃗) =

{
+∞ x < R

0 otherwise
. (24)

For all other quantities the time dependence now appears also in the position
variable. In this case we observe that

∂tf(x⃗, t) =
d

dt
f(x⃗, t) =

d

dt
f̃(x⃗− s⃗t, t) = ∂tf̃ − s⃗ · ∇⃗f̃ . (25)

We can then substitute expression (25) into equations (14) and (17) and
obtain the moving frame equations

µσ2∂tΦ̃− µσ2s⃗ · ∇⃗Φ̃ = −µσ
4

2
∆Φ̃− V [m]Φ̃, (26)

µσ2∂tΓ̃− µσ2s⃗ · ∇⃗Γ̃ =
µσ4

2
∆Γ̃ + V [m]Γ̃. (27)
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We want to find the ergodic state of the moving frame equations. Recall-
ing now the relationship between the ergodic state solution and the time
dependent one expressed in (23), we observe that

∂tΦ̃ =
λe
µσ2

Φ̃ =
λe
µσ2

e
λe
µσ2 tΦ̃e, ∂tΓ̃ = − λe

µσ2
Γ̃ = − λe

µσ2
e
− λe

µσ2 tΓ̃e.

These expressions can finally be substituted inside equations (26) and (27)
to get rid of any explicit time dependence. Simplifying all the exponentials
we finally obtain

µσ4

2
∆Φ̃e − µσ2s⃗ · ∇⃗Φ̃e + Ṽ [m̃e]Φ̃e = −λeΦ̃e, (28)

µσ4

2
∆Γ̃e + µσ2s⃗ · ∇⃗Γ̃e + Ṽ [m̃e]Γ̃e = −λeΓ̃e. (29)

These equations contain no time dependent quantities anymore. The last
problem to solve before starting devising a numerical scheme to solve the
equations is to find the right boundary conditions in order to fix the solu-
tions.

3.2 Choosing boundary condition

In order to solve equations (28) and (29), it is important to understand what
boundary conditions to impose in order to fix a solution. In the experiment
of the moving cylinder, far from it people were not moving, meaning that, far
from the obstacle, the velocity of the pedestrians was null in the laboratory
frame. This means that, when passing to the moving frame, agents at the
boundary should move with velocity −s⃗. From the hydrodynamic represen-
tation (18) of MFG, one knows that the definition of velocity in terms of Φ
and Γ is

v⃗ =
σ2

2m

(
Γ∇⃗Φ− Φ∇⃗Γ

)
= −∇⃗u

µ
− σ2 ∇⃗m

2m
. (30)

This definition is valid also if we consider the ergodic state of the moving
frame

v⃗ =
σ2

2m̃e

(
Γ̃e∇⃗Φ̃e − Φ̃e∇⃗Γ̃e

)
= −∇⃗ũe

µ
− σ2 ∇⃗m̃e

2m̃e
. (31)

Now, we know that at the boundary the density should be constant therefore
we can drop the gradient of m̃e in the last expression; this means that we
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can just force the equality

∇⃗ũe

µ
= s⃗, (32)

in order to have the right velocity far from the obstacle. Now, recalling that
ũe = −µσ2 log Φ̃e, we can substitute in equation (32) and obtain

σ2 ∇⃗Φ̃e

Φ̃e
= −s⃗,

from which we obtain the equations

∂Φ̃e

∂x
= 0,

∂Φ̃e

∂y
= − s

σ2
Φ̃e,

that can be solved yielding the ergodic asymptotic solution

Φ̃e(x, y) = Ce−
s
σ2 y. (33)

In order to fix C, we observe that far from the cylinder the density should be
the average one, that we callm0. Therefore, recalling that Φ̃

eΓ̃e = m̃e, we can
take C =

√
m0 and thus have that Γ̃e(x, y) =

√
m0e

s
σ2 y. An interesting thing

we notice is that a new parameter has emerged, one that relates the diffusion
coefficient and the velocity of the cylinder. We will call this parameter f =
s
σ2 . This boundary solutions contain all the information necessary to find the
solution to the entire equations, since the only conditions Φ and Γ have to
satisfy at the boundary are those related to the velocity and the value of the
average density.

Having found the expression of the asymptotic solution not only gives us
the boundary conditions to solve the equations; in fact, it also allows us to
fix λe, giving us the correct ergodic state. Since λe is a constant quantity it
can be computed using the asymptotic solution and we are sure it will also
be valid for the general solution. To fix the parameter λe, we can indeed
substitute the asymptotic form (33) into (28), which has to be valid far from
the cylinder. This leads to

µσ4

2

s2

σ4
Φ̃e + µσ2 s

2

σ2
Φ̃e + gm0Φ̃

e = −λeΦ̃e, (34)

giving

λe = −gm0 −
3

2
µs2 . (35)
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3.3 Numerical solution

Now that we have solved the problem of boundary conditions, our goal is
to find a numerical scheme to solve the equations. Let us consider equation
(28).

µσ4

2
∆Φ̃e − µσ2s⃗ · ∇⃗Φ̃e + Ṽ [m̃]Φ̃e = −λeΦ̃e.

We will use the cylindrical potential (24), implemented numerically as Ṽ0V (x⃗)

V (x⃗) =

{
1 x < R

0 otherwise
. (36)

Then, we first consider g = 0, therefore the equation we have to solve nu-
merically are

µσ4

2
∆Φ− µσ2s∂yΦ + V0V (x⃗)Φ = −λΦ, (37)

where we dropped the tilde and the denotation of ergodic state, and already
used the fact that the velocity of the cylinder is vertical. Now we are ready
to implement the numerical scheme. We want to solve the equation on a box
of side L, therefore, first of all, we define a meshgrid in Python of N × N
points corresponding to the (x, y) coordinates in Euclidean space. Then we
define the matrixces Φ ∈ RN,N and Γ ∈ RN,N that we have to evaluate. We
will then use the meshgrid matrix of coordinates to plot the values of the
two matrices Φ and Γ. In order to do this, we first write the discrete form of
equation (37)

µσ4

2dx2
(Φi−1,j+Φi+1,j+Φi,j−1+Φi,j+1−4Φi,j)−µσ2s

Φi,j+1 − Φi,j−1

2dy
+V0Vi,jΦi,j = −λΦi,j,

where we choose dx = dy. Then make the term Φi,j explicit and obtain

Φk+1
i,j =

µσ4

2
(Φk

i−1,j + Φk
i+1,j + Φk

i,j−1 + Φk
i,j+1)−

µσ2

2
sdx(Φk

i,j+1 − Φk
i,j−1)

2µσ4 − λdx2 − V0Vi,jdx2
.

This is the recursive rule that updates Φi,j until convergence. Starting from
an initial guess of the solution, but with boundary conditions given by solu-
tion (33), the algorithm updates all the points of the Φ matrix simultaneously,
just shifting rows or columns to sum neighboring points. At each step, the
relative distance with the matrix at the previous iteration is computed and
the algorithm halts as soon as a threshold is reached. This method is called
Jacobi method and in practice it takes the initial guess for the solution and it
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connects it smoothly to the boundary conditions while solving the equation.
The same can be done for Γ, just changing sign of s. Now that we have found
both Φ and Γ, we can also solve the case for g ̸= 0. We do this by starting
with an initial density matrix with all entries equal to m0. Then, we use the
Jacobi method to compute Φ and Γ but this time also including the density
term. Finally, we just use that m = ΦΓ, update the density and compute
again Φ and Γ. We repeat this operation until convergence of m.

3.4 Results

Let us start by defining some key quantities. First of all, in the two dimen-
sional setting we framed our problem in, it is possible to define the kinetic
energy and the interaction energy as, respectively,

Ekin =
µσ4

2ν2
, Eint = gρ̄.

In the definition of the kinetic energy we introduced ν, that is the healing
length. This, as explained in [10], corresponds to the distance after which a
perturbed density of pedestrian recovers its bulk value. This emerges from
the balance between interaction and diffusion. Therefore, equating the two
energies just defined we obtain

ν =

√
µσ4

2|g|m0

. (38)

Then, it is also possible to define the healing time τ = |µσ2/gρ̄|, which is
the time required for the solution to recover from a perturbation. These
two quantities can then be used to obtain another important length of the
problem: the healing speed, defined as

ξ =
ν

τ
=

√
|g|m0

2µ
, (39)

that quantify the speed of recovery of the density of pedestrians to its bulk
value. We can use the healing speed and the healing length to describe
all possible scenarios we can deal with in this setting, given that ξ and ν
are both defined in terms of g and that once we fix both the size of the
room and the size of the obstacle we can tune the other parameters µ and σ
independently. Figure 5 shows the 4 main regimes we can find our solution
in. Figure 5a shows the case ξ > s, ν > R, in which the crowd adjusts
easily to the passage of the obstacle, thanks to a healing speed larger than
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(a) ξ > s, ν > R (b) ξ > s, ν < R

(c) ξ < s, ν > R (d) ξ < s, ν < R

Figure 5: The relations between healing length, healing speed and the veloc-
ity and size of the obstacle identify four different regimes.
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(a) ξ > s, ν > R (b) ξ > s, ν < R

(c) ξ < s, ν > R (d) ξ < s, ν < R

Figure 6: The relations between healing length, healing speed and the veloc-
ity and size of the obstacle identify four different regimes, velocity plots.

the speed of the intruder. In figure 5b, on the other hand, a healing length
smaller than the size of the cylinder means that only those in its proximity
are impacted. In this case we can see the darker shadows at the sides of the
obstacle, corresponding to an increase in density: pedestrians make space for
the intruder as soon as they encounter it, with little anticipation. Figures 5c
and 5d show the case in which the ξ < s. We see in this case that people make
space for the incoming intruder much earlier than in the ξ > s case, effectively
showing some degree of anticipation. How far in space the perceived presence
of the obstacle causes the crowd to start moving is determined by the value
of the healing length. These observations are confirmed and amplified when
the velocity field of pedestrian is analyzed as figure 6 shows. In figure 6a
we see how only people in the vicinity of the obstacle are affected by it,
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and they move relatively slowly to adjust to its presence. Moreover, we see
people moving in an almost circular region around the cylinder. This feature
is displayed even better in figure 6b, where the pattern of motion is again of
a radial displacement, but the concerned area is clearly larger. We link this
behavior to the fact hat in both cases ξ > s, giving pedestrians the possibility
to start reacting just when they start feeling the pressure from the incoming
cylinder, without hurrying much. In fact, in figures 6c and 6d we see how
ξ < s implies the emergence of anticipation patterns. The two pictures show
that people start reacting already far away from the obstacle, moving laterally
to make room for its passage. Then, they escape the crowd’s pressure filling
the empty space behind the cylinder. Moving laterally then seems to be the
least expensive move to perform in this context, and intuitively this makes
sense, because, while being the shortest possible displacement to avoid the
cylinder, it also puts the agent under the smallest possible pressure from
surrounding people.

4 Conclusions

From what we have seen so far, we are pretty happy with our results. In
fact, the passage to the moving frame not only allowed us to obtain equations
easier to solve, namely equations (28) and (29), but the results it produced are
qualitatively very promising. Despite the simplicity of the model, the overall
behavior represented by our solution shows both of the experiment’s main
features, namely the ability of pedestrians to anticipate the obstacle and their
reaction to the pressure from others. Since we believed that our approach
could be pushed even further, we also tried to get as close as possible to the
quantitative behavior. We tuned the parameter σ, µ and g in order to obtain
something similar to what was obtained in the experiment. In particular, we
tried to match the density shown in figure 7a and the corresponding velocity
displayed in 7c. We assumed that the cylinder moved at 0.75m/s, half the
average human walking speed. The result is quite good. As we can see in
figure 7b, additionally to the already commented qualitative agreement, we
recover a value of the density of ∼ 4, 6 ped/m2 at the sides of the obstacle,
not exactly the same but close to what is found in the experiment. Then,
figure 7d shows the velocity field we obtained using our simulation. Plotting
the velocity was not an easy task. In fact, due to the finite nature of the
algorithm, some agents are considered as almost under the cylinder. Since
these points will try to escape from it at very high velocity, plotting the
simulated velocity of pedestrian in the vicinity of the intruder would result
in a bunch of long arrows without any physical meaning. In order to avoid
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(a) Experimental density of
pedestrians (ρ̄ = m0).

(b) Simulated density of pedes-
trians.

(c) Experimental velocity field. (d) Simulated velocity field.

Figure 7: Here are displayed both the density and the velocity field of the
pedestrians. Our goal was to obtain a visually similar result to figure 3-b
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this, therefore, a cutoff is introduced. Overall, what we have obtained is
enough to conclude that our model simulates well the main experimental
features.

I am personally rather satisfied with these results, especially since what
we used is the simplest MFG model. This, however, is just the beginning
of it. We are already working on substantial improvements. First of all, we
asked ourselves how a discount factor can be introduced, in order to force
agents to optimize their strategy not for the entire game but just considering
what will happen in a finite future time span. Then, it is obvious that what
we obtained here is a deterministic solution, coming from deterministic equa-
tions. However, the complexity of human behavior can hardly be described as
deterministic. For this reason, our next goal will be to add some randomness
to the equations. For example, we want to consider the case in which the
velocity of the cylinder is not a constant but is a random variable. Finally, we
would like to introduce congestion effects, that, as reported in [24], already
helped describing interesting phenomena like the spontaneous appearance of
preferential patterns of motion. The concept of congestion simply amounts
to the fact that pedestrians collectively slow down in high density areas. We
think that all these improvements of the model will help us reaching a deeper
understanding of Mean-Field Games in general, and we hope will give us sim-
ulations closer to reality and with interesting emerging behaviors. We will
see, however, what the future holds.
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