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Abstract

In this work, we adapt mean field games formalism to crowd modelling. We implement
the case of a crowd crossed by a hard cylinder that has been studied experimentally in
[1] in order to see if we can reproduce several phenomena specific to crowd dynamics that
are not modelled by agent-based or fluid dynamics. To that end, we start from a partly
nonlinear code previously used by Thibault Bonnemain in [2] and compare its efficiency
with a totally nonlinear code applied to the same system of equation. We also check the
conservation of relevant quantities, and we extend the whole to 2-D. Special attention
is given to boundary conditions and conservation of the mean field game equivalents of
mass and energy. The comparison between experiments and simulation shows a good
qualitative correspondence between computational and experimental result, denoting the
importance of long term anticipation in crowds.

Dans ce rapport, nous adaptons le formalisme de la théorie des jeux en champs moyen
à la modélisation d’une foule. Nous implémentons le cas d’un cylindre rigide qui a été
étudié expérimentalement par Alexandre Nicolas et al[1] afin de tenter de reproduire
plus phénomènes spécifiques à la dynamique des foules et qui ne sont pas décrits par
les modèles de dynamique des fluids et basés sur des agents. Pour cela, nous partons
d’un code partiellement non-linéaire précédemment utilisé par Thibault Bonnemain dans
[2] et nous comparons son efficacité avec un code entièrement non-linéaire appliqué au
même système. Nous vérifions aussi la conservation de certaines quantités importantes
et nous étendons le tout à la 2-D. Une attention particulière est accordées aux conditions
aux limites et à la conservation des équivalents en champs moyens de la masse et de
l’énergie. La comparaison entre l’expérience et la simulation montre une correspondance
qualitative entre les résultats expérimentaux et simulés et met en évidence l’importance
de l’anticipation à long terme dans les foules.
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1 Introduction

In recent years, there has been more and more communication between very different fields,
often yielding new directions for studying preexisting problems. Especially, physicists have
started to be interested in subjects they have neglected until now, and by doing so they try to
solve them or to get an insight of their solutions by using a physicist mindset. Crowd dynamics
is one these subjects. Indeed, for a long time crowds were modeled by fluid dynamics or
simple agent-based models, yielding some good results while exhibiting significant weaknesses.
Most of recent works studied the low density limit and tried to include the micro scale to
the models under different forms. For instance D.Helbing & al [3] conceptualized the idea of
social pressure under the form of a social force, by analogy with physical forces, and while
it provides interesting results, the lack of anticipation will be shown to be repulsive later on.
On the other hand, Van den Berg & al [3]tried to include anticipation into the model but
only managed to do so on very short time-scale - the pedestrians basically avoid collision for
the next few seconds by choosing their speed while assuming the speed of others will remain
constant - which is not enough in some cases. Moreover, we have to note that we see the
same kind of behaviors, irrelevant from density (at least in the low density case).Lastly, the
general idea of the community was that if we were to go to the high density limit, the problem
would reduce to a purely mechanical problem well described by granular dynamics[4]. This
was shown experimentally false by Alexandre Nicolas & co [1]. This experiment consisted in a
hard cylinder crossing a dense crowd of static people, as shown on fig 1, yielding the density
field on fig 2 in the frame of the cylinder.
Fig 2 exhibits a highly non-trivial behavior. Indeed, we see a depletion of density in front and
behind the cylinder while we have excess density on the side. This means that pedestrians may
accept a temporary high density if it allows them to be more at ease later on, and this shows
existence of a long-term anticipation that was not described by previous models. Moreover,
comparison between fig 3-4 shows that the velocity fields for pedestrians definitively don’t
behave as for granular media, even at high density. This calls for a new model including
both physical forces and long term anticipation. A credible tool to treat this problem has
been devised by mathematicians. They used the concept of mean fields we have in Physics to
construct a theoretical framework allowing studies of problems where a great number of agents
tries to optimize a function while taking into account the strategies of other agents. This is
called mean field games. Now, if we think about crowds, it seems quite evident that members
of these crowds do not behave in a strictly mechanical way: people will try to optimize their
comfort while in the crowd, and they do so while trying to predict what will happen in a
certain distance around them. A balance between current comfort or discomfort and future
gain is then established. If they see a bottleneck, they will try to find alternative solution in
advance, and if they find a cylinder going their way, they will try to avoid it preferably before
it gets close. The velocity field obtained in fig 4 can be intuitively understood by taking into
account that people know that if they just move back in front of the cylinder, it will still come
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Figure 1: Experimental setup in [1] Figure 2: Density field in the
frame of the cylinder in [1]

Figure 3: Experimental veloc-
ity field obtained by Alexandre
Nicolas & al[1]

Figure 4: Velocity field in 2d
dense granular layer obtained
by Kolb & al[4]

to them: going on the side is then a balance between the discomfort they will have because
of high density, and the future comfort they expect after that. It seems henceforth quite
sensible to try and model this crowd by using mean-field games. Hence, in a first part we will
introduce mean-field game formalism and justify a choice of interaction between agents. With
a consideration on efficiency, and because we expect the 2d code to be very time-consuming,
we will then compare two 1d algorithms in order to choose the one we will implement in 2d.
We then go into the heart of the subject and dwell into 2D simulation of our mean-field game
system, and we will conclude by comparing our 2D computational results with experiments,
showing a good qualitative agreement between them. On the whole, this work comes as a
follow-up of the thesis by Thibault Bonnemain. I did this whole internship in confinement
with the very regular supervision of Denis Ullmo from LPTMS-Saclay, Cécile Appert-Rolland
from IJClab ,and Thibault Bonnemain who kindly accepted to help.
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2 Mean-Field Games

2.1 Some elements of game theory

Before defining mean-field game, we need to introduce some elements of game theory that are
needed to get at least a feel of what we will be working with. Mathematicians and sociologists
have developed game theory as an attempt to formalize the concept of strategies in games and
apply it to other situations. So by "game", we actually denote any situation where any number
of players (or agents) can choose from any number of strategies while trying to maximize its
utility function. This utility function can represent anything, from money to comfort. A
strategy is a set of actions the agent may realize depending on what he knows about the other
players. This simple definition already suggests four hypothesis we have to fix to restrict the
scope of the games we will consider.

• Cooperation: There is no external force enforcing cooperation between agents, but they
may naturally like to stick together, or to get away from one another. This may take the
form of an interaction.

• Rationality: Agents are purely rational and egoistical. They only want to optimize their
utility function.

• Adaptation: Agents may adapt their strategies as the game progresses and they gain
information.

• Information: Agents know everything that happened until current time, and they can
predict what will happen next, up to a noise that may play a significant role.

This set of hypothesis serves as a basis to discuss general solutions of a game. Solutions in
game theory differ from solutions in physics, as it denotes the strategies leading to a given
final state but not the final state itself. This leads to the introduction of what is called a
"solution concept" defining what is a solution in its game theory sense. The most commonly
used solution concept is the Nash equilibrium. It is defined as a strategy vector (one strategy
for each player) from which none of the players can stray away without losing something.
Hence, in the following we will assume that there always exists a Nash equilibrium and that
we go naturally to that equilibrium. This is equivalent to the pure rationality hypothesis we
have made just before.

2.2 Hamilton-Jacobi-Bellman equation (HJB)

Because of our previous hypothesis, we know we are not deterministic and that we have
uncertainties arising from the set of strategies. This can be modelled by an usual Langevin
dynamics
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d ~Xt = ~atdt+ σd ~Wt (1)

where ~a is the control parameter, σ a constant and ~W a Gaussian white noise of variance 1.
We choose the following cost function to be minimized

c[~a]( ~X, t) = E
[∫ T

t

(µ
2
~a2
τ − V ( ~Xτ , τ)

)
dτ + cT ( ~XT )

]
(2)

with T the final time, V an exterior potential or environmental gain, µ a constant and cT a
terminal cost at which we want to process to find itself at the end. The square dependency in
~a restricts the study to quadratic games. We chose this for two main reasons: to simplify the
study while maintaining enough complexity to keep it interesting, and because of the possible
transformation toward nonlinear Schrödinger equation that will become apparent later on. On
the other hand, by environmental cost we mean that we suppose there can be some sort of
exterior force applied onto the agents, not enforcing cooperation but making space more or
less attractive for them. We then introduce the value function

u( ~Xt, t) = inf
~a
c[~a]( ~X, t) (3)

and, using dynamic programming with Bellman’s optimality [5] principle, Ito’s lemma [6] and
after optimization, we get the Hamilton-Jacobi-Bellman equation{

∂tu+ σ2

2
∆u− 1

2µ
||~∇u||2 = V

u( ~X, T ) = cT ( ~X)
(4)

This equation constitutes a noisy alternative to Euler-Lagrange equation and describes the
dynamics of an optimization with quadratic running cost for one agent. If we were to take
an analogy with physics, the usual physical action would be an utility functional we want to
optimize, the Lagrangian would be a running cost and the usual ~q is a control parameter. We
will make use of this later on.
Now, in mean-field games we are interested in what happens for a great number of interacting
agents. As a first step we introduce the notion of differential games, which is just a general-
ization of HJB equation to a multi-agents case. The state of the player i is given by ~X i

t and
its strategy is adjusted in real time. The cost function each agent then tries to optimize now
becomes a cost functional

c[~a1, ...,~aN ]( ~X1, ..., ~XN , t) = E
[∫ T

t

(
µi

2
(~aiτ )

2 − V i( ~X1
τ , ...,

~XN
τ , τ)

)
dτ + ciT ( ~X1

T , ...,
~XN
T )

]
(5)
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and by defining the usual value function, we get the HJB equation for a N-players game{
∂tu

i +
σ2
i

2

∑N
j=1 ∆xju

i −
∑

i 6=j
1
µj

(~∇xju
j).(~∇xju

i)− 1
2µi
||~∇xju

i||2 = V

uiT (
~

X1
T , ...,

~XN
T = ciT (X1

T , ..., X
N
T )

(6)

This set of equations henceforth describes the behavior of N-players adjusting their strategies
in time and whose state vectors has some uncertainties described by a Langevin dynamics

d ~X i
t = ~aitdt+ σid ~W

i
t (7)

These players are purely rational and nothing forces them to cooperate so they will try to
maximize their own cost functional without regards for others. We now have taken into account
the four assumptions we started with in our part on game theory, and we are left with a set
of equations that becomes intractable as soon as N becomes big. We finally have to introduce
the mean field part of the theory for the whole to become usable.

2.3 Mean field games

The deterministic mean-field games formalism we are going to use has been introduced by
P-L.Lions and J-M.Lasry [7]-[8]. It is obtained by taking the N −→∞ limit. In that formalism,
the potential V i is supposed to depend on the other players behavior only through the empirical
density

m̃(x, t) =
1

N

N∑
j=1

δ(x−X i
t) (8)

hence yielding V i = V [m](X i
t) and ciT = cT [m](X i

T ). Finally we average this empirical density
over all the realisation of the noise and get the mean field m(x, t) =< m̃(x, t) >. Defining the
corresponding value function as we did previously, we can reduce the multi-agents system to
a one body system verifying HJB equation, with decoupled agents{

∂tu+ σ2

2
∆u− 1

2µ
||~∇u||2 = V [m]

u(x, T ) = cT [m](x)
(9)

To ensure consistency we need another equation for m. This is obtained by using the fact
that agents follow a Langevin dynamics. Hence, for a large enough number of agents we get a
Fokker-Planck equation arising, and the final system reads
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
∂tu+ σ2

2
∆u− 1

2µ
||~∇u||2 = V [m]

u(~x, T ) = cT [m](~x)

∂tm− 1
µ
~∇.[m~∇u]− σ2

2
∆m = 0

m(~x, t = 0) = m0(~x)

(10)

With that, we have our full description of quadratic mean-field games in its deterministic
formulation. It is important to note that this is not a classical forward system equation: while
HJB equation is backward in time, meaning we know the final state and deduce the trajectory
from that, Fokker-Planck equation is forward in time, as we know the initial time and see how
it evolves. This coupling makes treatment of this system highly non trivial, even though we
can find some alternative representation as discussed in the next subsection.

2.4 Nonlinear Schrödinger formulation (NLS)

Indeed, one can obtain a backward NLS equation by applying Cole-Hopf transformation on
HJB equation[9]. Similarly, by doing an hermitization of FP equation{

φ = e
− u
µσ2

Γ = me
u
µσ2

(11)

one then obtain a system of forward-backward NLS equation{
µσ2∂tφ = −µσ4

2
∆φ− V [m]φ

µσ2∂tΓ = µσ4

2
∆Γ + V [m]Γ

(12)

with initial and terminal conditions{
φ(x, t = T ) = f(x)

Γ(x, t = 0) = mi(x)
φ(x,t=0)

(13)

One must note several peculiarities of this system. First, the forward-backward structure is
retained. Second, contrary to the usual NLS equation, we have no imaginary part in the
equations. This means in particular that φ and Γ are not a kind of probability complex
amplitude: they are non-periodic, positive functions. One must also take into account the
fact that φ and Γ are not conserved while their product has to be conserved, as HJB and FP
equations conserve mass. Nonetheless, we will use this formulation for two reasons: first, it
allows for a simpler implementation in the simulation code. One can just code one solver and
apply it to φ̃ the time reversed φ, and Γ. Second, there is a whole bunch of tools constructed
by physicists for usual NLS equation over the years that can easily be adjusted to this system.
Lastly, one can write an action for this formulation
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S[Γ, φ] =

∫ T

0

dt

∫
R
dx

[
µσ2

2
(Γ∂tφ− φ∂tΓ)− µσ4

2
~∇φ.~∇Γ + U [m]

]
(14)

where U [m] is the functional anti-derivative of V [m]. This, along with time translation invari-
ance, implies by way of Noether theorem that there exists a conserved quantity that we will
call energy

E =

∫
R
dx

[
µσ4

2
~∇φ.~∇Γ + U [m]

]
(15)

by analogy with physics. Actually, its nature will depend on the studied problem, but this
conservation, along with mass conservation, provides for a good way to check our results. For
clarity sake we will refer to the first term of the energy as the kinetic energy of the game, as
it is related to the gradients of pφ and Γ, hence to the speed of the agents, and we will call
the second term the potential energy. Lastly, for the sake of future interpretation, we need
to note the existence of another alternative representation, the hydrodynamic representation,
that yields the following system:{

∂tm+ ~∇.(m~v) = 0

∂t~v + ~∇
[

σ4

2
√
m

∆
√
m+ ||~v||2

2
+ V [m]

µ

]
= 0

(16)

with v the "velocity" of the system

~v =
φ~∇Γ− Γ~∇φ

2m
(17)

Although this velocity is more abstract than the usual one, it still describes the flow of mass
in our distribution. If compared to an experimental speed, it should roughly be equivalent to
an usual time-averaged and ensemble averaged velocity. This means that if it is 0, the crowd
is still. We will now conclude this theoretical introduction by choosing the potential to be

V [m](x, t) = gm+ U0(x, t) (18)

with g a negative constant and U0 an exterior potential depending only on space and time.
This corresponds to the simplest game where agents locally interact and don’t like to stick
together. It is to some extent quite representative of what happens in crowds, at least in a
qualitative way. This choice leads to the definition of one typical length, the healing length of
the system

ν =
µσ4

|g|
(19)

that represents the typical length on which m is affected by a perturbation. On the other
hand, the exterior potential will be used to models exterior forces applied to the crowd, for
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instance the cylinder crossing the crowd will be modelled by a circular infinite potential wall
moving at a given velocity in the simulation space.

3 Comparison between two algorithms

Before dwelling into the 2D code, it was important to check the stability, the relevance and
the efficiency of the 1D algorithm, and hopefully to find a faster algorithm. Indeed, the initial
algorithm used by Thibault to code the first of the two programs we studied, involved successive
solving of the linear problem by means of Crank-Nicholson algorithm for NLS equations. This
algorithm is unconditionally stable for normal NLS equations, but because of our forward-
backward structure, we had to use "brakes" in order to achieve convergence. Each iteration
time-consumption was satisfyingly small, but the big number of iterations made it so it was
doubtful this was the most efficient we could find. Hence, during the thesis presentation
of Thibault Bonnemain, a totally nonlinear algorithm that exhibited systematic convergence
without the need for brakes was suggested [10]. In the end, the first objective of this whole work
was to check the efficiency of this algorithm. For this whole part, we will denote by "Gueant
algorithm" the totally nonlinear algorithm, while we will denote by "Thibault algorithm" the
linear algorithm[11]. Lastly, in both case the actual matrix inversion is computed using Thomas
algorithm, a sub-routine of Gauss inversion that is especially efficient for tri-diagonal matrices
as the ones we will have in the 1D case. Note this last algorithm needs the matrix be diagonal
dominant to be stable.

3.1 Thibault Algorithm

This algorithm had already been implemented by Thibault Bonnemain in the timespan of his
thesis when I started my work. Its main idea is that starting from system (12), we follow these
steps:

• Implicit discretization of the system

• Solve the linear system on φ with V [m] constant

• Solve the linear system on Γ with V [m] constant

• Compute the new value of m

• Redo until convergence of m

By taking V [m] constant during the solving process we actually solve a system of linear equa-
tions using Thomas algorithm, and we converge iteratively toward the nonlinear solution of
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the complete system. The good point is that because the actual solving is done on a linear
system, it is quite fast. The bad part is that to achieve convergence, we take

mnew = αmcurrent + (1− α)mold

where mnew will be used to compute the new V [m], mold is what we used to compute V [m] at
the previous iteration, whilemcurrent is the raw productmcurrent = φn+1Γn+1. We will not enter
into the specifics of this algorithm, as it is not the focus of this work, but we need to remember
that Crank-Nicholson algorithm for usual NLS equation is conservative, and we expect the
scheme to keep this property when applied to our transformed mean-field game equations.

3.2 Guéant Algorithm

The second algorithm follows a very different recipe. As described by Olivier Guéant[10], it
follows the following steps:

• Implicit discretization of the system

• Solve the nonlinear equation on φ with Γ constant

• Solve the nonlinear equation on Γ with φ constant

• Redo until m converges

Because of the fact that we solve the complete nonlinear equation at each solving step,
the computation time of each iteration is longer than previously and we need a more complex
solver (in our case we used Newton method), but the scheme ensures systematic convergence
of m by means of the monotony of the sequences of φ and Γ without the need for "brakes".
Moreover, because it is totally nonlinear, there is no explicit computation of m. To go into the
specifics, from Eq. (12) we get{

∂tφ
n+ 1

2 + σ2

2
∆φn+ 1

2 = − 1
σ2 (φn+ 1

2 )2Γn

∂tΓ
n+1 − σ2

2
∆Γn+1 = + 1

σ2 (Γn+1)2φn+ 1
2

(20)

For simplicity sake we take a simple discretization, knowing that for the numerical results
we adopted the more precise discretization Thibault Bonnemain used. Hence, for the time
derivative we take

∂tφ =
φi+1,j − φi,j

∆t

and for the 1st order space derivative we take ∂xφ =
φi,j+1−φi,j

∆x
which yields
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∂2
xxφ =

φi,j+1 − 2φi,j + φi,j−1

∆x2

The equation on φ being a backward equation, the terms in i are implicit while the terms in
i + 1 are known. Conversely, in order to keep the implicit structure for the equation on Γ we
keep the same time derivative but adopt the following space discretization.

∂2
xxΓ =

Γi+1,j+1 − 2Γi+1,j + Γi+1,j−1

∆x2

These choices of discretization yield the following system of non-linear equations on φ and Γ: φ
n+1

2
i+1,j−φ

n+1
2

i,j

∆t
+ σ2

2

φ
n+1

2
i,j+1−2φ

n+1
2

i,j +φ
n+1

2
i,j−1

(∆x)2
= − 1

σ2 g(φ
n+ 1

2
i,j )2Γni,j

Γn+1
i+1,j−Γn+1

i,j

∆t
− σ2

2

Γn+1
i+1,j+1−2Γn+1

i+1,j+Γn+1
i+1,j−1

(∆x)2
= 1

σ2 g(Γn+1
i+1,j)

2φ
n+ 1

2
i+1,j

(21)

As showed in [10], with this scheme and by initializing Γ at 0, for a potential V [m] unchanging
in sign, the sequence on n of Γ is monotonously increasing and bounded by a sup while the
sequence of φ is monotonously decreasing and bounded by an inf. This is what ensures global
convergence of the scheme. We then note that the two equations are of the exact same form
by taking ∆t −→ −∆t. Hence, in the code, we will need only one solver for both. We took
the forward equation for simplicity sake. In the following, we will only consider the latter and
suppose there is no particular problem with the backward equation.
Now, we want to solve this equation with Newton Method. We denote by α the index on the
Newton iteration for a given time step, and by n the global iteration on the whole system. Ac-
tually, we know Γn+1

i,• before we start solving for Γn+1
i+1,•. As a consequence, the loop on α applies

only to i + 1.

First, introducing σ̃2 = (σ2∆t)/(2(∆x)2) and g̃ = (g∆t)/σ2, Eq. (21) reads

E(Γn+1
i,• ,Γ

n+1
i+1,•) = 0 , (22)

where E = (Ej) is the spatial vector with entries

Ej(X•, Y•) ≡ (Yj −Xj)− σ̃2[Yj+1 − 2Yj + Yj−1]− g̃φn+ 1
2

i+1,j(Yj)
2 . (23)

Solving Eq. (22) with Newton then amounts to introduce a series of spatial vectors Γn+1,α
i+1,• with

Γn+1,0
i+1,• = Γni+1,• and limα→∞ Γn+1,α

i+1,• = Γn+1
i+1,•. Writing

Γn+1,α+1
i+1,• = Γn+1,α

i+1,• + δΓ• (24)
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the recursion between α and α + 1 is given by

E(Γn+1
i,• ,Γ

n+1,α
i+1,• ) +

δE

δY•
(Γn+1,α

i+1,• ) · δΓ• = 0

which reads

Ej(Γ
n+1,α
i+1,• ,Γ

n+1
i,• ) =

[
−1 + 2g̃Γn+1,α

i+1,j Φ
n+ 1

2
i+1,j

]
δΓj + σ̃2[δΓj+1 − 2δΓj + δΓj−1]

= Mjj′δΓj′
(25)

where the matrix Mjj′ given by

Mjj′ =
[
−1 + 2g̃Γn+1,α

i+1,j Φ
n+ 1

2
i+1,j

]
δj,j′ + σ̃2(δj,j′+1 − 2δj,j′ + δj,j′−1) . (26)

This at least has the correct structure since if E(Γn+1,α
i+1,• ,Γ

n+1
i,• ) = 0, the δΓ = 0. We obtain a

linear equation on δΓ (resp δφ) that we solve by matrix inversion using Thomas Algorithm (a
subclass of Gaussian inversion). One can look at the appendix to see a brief extension of this
development to the more complex discretization we used in the numerical computation. Finally,
the code itself, coded in C++ object oriented with the Eigen library for linear algebra[12], is
not to be discussed in this report.

3.3 Result comparison

In this subsection, we are interested in the comparison between the two algorithms and their
convergence in the case of a simple example. we take T = 1, σ = 0.8, L = 1, dx = 1

50
, dt = 1

250
,

with Neumann domain boundary conditions and the following initial and terminal conditions:
φ(x, t = T ) = x2(1− x)2

Γ(x, t = 0) =
mi(x)

φ(x, t = 0)

(27)

We furthermore assume a potential of the form V = gm where g = −2 and m is the player
density. Fig 5-7 corresponds to Guéant algorithm and fig 8-10 to Thibault algorithm.
In both case, the black curve is the converged solution, and we get the same one in each case.
On the other hand, the ways we converge to the solution are very different in these two cases.
We see that Guéant algorithm follow the theorems established in [10] and have a very smooth
but slow convergence, while Thibault algorithm pays the lack of theorem by a messy though
fast convergence. Indeed, where we need 42 iterations for Guéant algorithm to converge, we
only need 21 with Thibault algorithm (by optimizing the choice of α the "brakes"). To conclude
on the 1D case, we compared the results obtained by Guéant algorithm with those we had by
Thibault algorithm, and the two perfectly concurs. On the other hand, with Guéant algorithm,
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Figure 5: m at t = T for
Guéant algorithm

Figure 6: Γ at t = T for
Guéant algorithm

Figure 7: φ at t = 0 for
Guéant algorithm

Figure 8: m at t = T for
Thibault algorithm

Figure 9: Γ at t = T for
Thibault algorithm

Figure 10: φ at t = 0 for
Thibault algorithm

although we indeed don’t need to implement brakes, both the time taken for the global loop
to converge and the time taken by each iteration are too long for this algorithm to be usable
in 2D. Hence we decided to stick to Thibault algorithm and to keep Guéant algorithm in case
Thibault algorithm eventually fails. Lastly, we have to note that in case of a discretization
too refined the matrices are no longer diagonally dominants, yielding instabilities when using
Thomas inversion algorithm. This however was not an issue as we managed to keep it under
control in the 1D case.

3.4 Boundary conditions and conserved observable

Before going into 2D, we will discuss a little bit about the effect of the initial and final conditions
on the numerical computation. Indeed, in our first section we noted the theoretical existence
of (at least) two conserved quantities we called mass and energy. However, we note some
peculiarities on figure 15. The computation was done with a size L = 5, T = 5, dx = 1

10
,

dt = 1
200

and Dirichlet domain boundaries. We used the usual V [m] = gm and σ = 0.45. The
initial and final condition are as follows
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{
mi(x) = −αx2 + β
uT (x) = 0

(28)

with β = 3
1.6

and α = 16
3
β3. This corresponds to a quite narrow parabolic initial distribution

and a situation where agents don’t favor any space position at the end of the game. Moreover,
the Dirichlet domain boundary condition is{

φ(−L, t) = φ(L, t) = 0
Γ(−L, t) = Γ(L, t) = 0

(29)

which translate into {
m(−L, t) = m(L, t) = 0
u(−L, t) = u(L, t) = +∞ (30)

From a "physical" point of view, the condition on u is equivalent to an infinite potential wall at
the boundaries, ensuring no mass is lost. In these conditions we see on fig 14 that although the
normalized mass is conserved up to 0.22% of its initial value, the energy (cf fig 15) shows a steep
decrease before its stabilisation. On the other hand, we see on fig 16 that the kinetic energy
goes to zero with time and that the potential energy stabilizes itself at around V = −0.07
which seems quite logical. Indeed, we expect the system to go to a stationary state [13] for
which the distribution is constant and the speeds are null while the interaction between agents
has no reason to disappear (because of conservative finite domain boundary condition). As
seen on fig 17, this initial loss is due to discretization effect when the initial or final condition
enforces fast dynamics, and does not necessarily appear clearly on the curves of m, φ, and Γ.

4 Into the 2D world

Now, we need to start applying this whole machinery to our crowd problem. To do so, we first
implement Thibault algorithm in 2d and check qualitatively the results by analogy with the
1d case. We then implement the crossing cylinder and finally we discuss the results we got and
compare them with experiments. The mean field equations in 2d reads{

∂tφ
n + σ2

2
(∂2
xxφ

n + ∂2
yyφ

n) = − g
σ2m

n−1φn

∂tΓ
n − σ2

2
(∂2
xxΓ

n + ∂2
yyΓ

n) = + g
σ2m

n−1Γn
(31)

On a fundamental standpoint, there is nothing really subtle in this implementation: it is
essentially the same as in 1D, but there are some technical subtleties that we will discuss
very briefly. Indeed, in 1D the matrices we had to invert were tri-diagonal - hence the use of
Thomas algorithm - whereas they are now sparse matrices. Moreover, because of the fact that
our modified NLS equations have no imaginary part, these matrices are not self-adjoint. This
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Figure 11: m at t = T/2 Figure 12: φ at t = T/2 Figure 13: Γ at t = T/2

Figure 14: Mass conservation Figure 15: Total energy Figure 16: Kinetic and poten-
tial energy

means that we had to use a LU decomposition sparse solver included in the Eigen library. On a
side note, we no longer had stability issues when increasing the precision of the discretization.
The one thing that was more subtle concerned the way to model the cylinder crossing the
simulation box. Indeed, whereas the discussion on the 1d algorithm was mostly there to clarify
our problem, our 2d code is aiming to model real world situations. Hence it was necessary
to model not only the free behavior of the system but also its reaction to external stimuli.
The case of a crossing cylinder was chosen for comparison with the experimental work from
Alexandre Nicolas & al [1] discussed in the introduction. The cylinder here is considered as
perfectly rigid and is uninfluenced by the crowd that start by being uniformly distributed. Two
ways were initially considered. First was to implement the cylinder as a moving hole in the
simulation box and enforcing 0-Dirichlet domain boundary condition there. Although this had
the merit of ensuring a perfect rigidity for the cylinder, it was both theoretical and technically
more complex than the second way. This second way is actually just to model the cylinder by a
time-dependent potential wall, high enough to ensure almost no penetration of the distribution
into the wall. While this does not ensure perfect rigidity, by taking high enough potential it is
a good enough approximation, and it has the merit of being both numerically and theoretically
simple.
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Figure 17: Energy for different discretization step width

4.1 Coherence with the 1d case

First, to check the credibility of the 2d results, we used similar parameters as the ones used
for the 1d case but extended to two dimension. For instance, fig 18-20 are obtained for a 2d
parabolic initial distribution, a flat final cost and Dirichlet domain boundary conditions. By
doing so, we get something reminding us of fig 11-13. Mass and energy show similar behavior
as in 1d, and all of this suggests there are no deep subtleties when going from the 1d case to
2d.

Figure 18: m at t = T/2 Figure 19: Γ at t = T/2 Figure 20: φ at t = T/2

However, we have to note that because of the time-consumption of the algorithm in 2d, we
couldn’t find the time to choose a discretization precision ensuring perfect mass and energy
conservation, but as this seems to have close to no influence on the bulk of the distribution we
can neglect it in first approximation.

4.2 First application to crowd modeling

In the work by Alexandre Nicolas and al, a cylinder is intruding into a uniformly distributed
crowd and crossing it in a straight line. They study different situations (when people are asked
not to anticipate the arrival of the cylinder, when the cylinder is coming from behind them,
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etc.) but in our case, we will consider the agents always anticipate the cylinder movement
(which is the whole point of mean field game theory). This corresponds in the experiment to
the case where people face the cylinder and they see it arriving. In a first attempt to model
the situation, we arbitrarily took the parameters to be T = 1, L = 1, g = −2, dt = 0.005,
dx = dy = 1

40
, σ = 0.45, a cylinder radius of 0.25 and a potential wall strength of 100. The

cylinder moves so that it starts from (0,−1) at t = 0 and stops at (0, 1) at t = T . In the
meanwhile, it moves at constant velocity and in a straight line.

Figure 21: m at t = T/2 Figure 22: Γ at t = T/2 Figure 23: φ at t = T/2

Even though our mean field model is very simple, we can already see on fig 21-22 encouraging
results. Indeed, the density is decreasing before and after the cylinder. This is what is
described on fig 2 but here, we managed to qualitatively model it for the first time. Similarly,
the "wings" observed in both figures shows these are due to long term anticipation that is
taken into account by our mean field model. It shows that even for dense crowds, granular and
fluids fails to describe accurately the situation because of their lack of anticipation. On the
other hand fig 23 describes how the value function evolves. It is quite interesting to see that
indeed, in front of the cylinder it is near 0 and that the closer people are to the trajectory of
the center of the cylinder, the more they want to avoid it. This suggests that this model also
takes into account the time needed to get out of the cylinder path. It is also logical that the
backward equation is the one describing anticipation. On the other hand, Γ is high in front
the cylinder, a place people are expected to find repulsive. This suggests that if φ describes
the attractiveness of space, Γ describes its repulsiveness, and the final situation is a balance
between the two. Finally, the wing structure of the solution do not appears explicitly on fig
22-23, which suggest that it may be a consequence of the backward-forward structure of the
system, meaning a fully backward or fully forward system may not be able to model it. If it
is the case, it means that it is the adaptive anticipation hypothesis that allows this model to
find these qualitatively satisfying results. If people knew everything from start and perfectly
anticipated from time 0 to the end what would happen, or if they were not to anticipate at all,
these structures would not appear. It is henceforth a consequence of imperfect information.
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5 Conclusion

During this internship, I had to understand how to apply a physicist mindset to a problem
where it initially doesn’t apply. In order to do that, I had to understand the link between
"nonphysical" hypothesis (in the sense where they are not a consequence of a purely physical
law) and the new formalism of mean-field games. Indeed, we wanted to used this formalism to
model specific behaviors in crowd dynamics that was not explained by previous models. Hence,
I was to implement an efficient code to solve a system of forward-backward equations. In this
aspect, I had to confirm the efficiency and credibility of an already existing but not mathe-
matically theorized 1d code by comparing it another one that was rigorously conceptualized.
The first algorithm followed Crank-Nicholson algorithm with successive linear approximations
of the system while the second consisted of a more specific numerical scheme combined with
Newton method solving of the non-linear system. Special attention has been paid to initial,
final conditions, and domain boundary conditions and their influence on mass and energy con-
servation. Curves obtained for m give sensible results while mass and energy are conserved up
to discretization issue.
The code was then extended to 2d with relevant care, and its application to crowd behavior
started. The first results obtained here suggested the model took into account several phenom-
ena observed in experiment on crowd, namely anticipation and avoidance by pedestrian of a
cylinder crossing a crowd, with its consequence the formation of a wing structure on the sides
of the cylinder. It also suggested a specific role of φ and Γ and the fact the adaptive antici-
pation may be at the heart of the problem. More time would have been needed to construct
definitive conclusions on the model, but what I already obtained suggests its relevance.
Indeed, although our results show very interesting qualitative behaviors in accordance with
experiments, there is several points that still need to be elucidated. First, as soon as the
simulation size increases, the time taken by the 2D code becomes very long. This suggests the
use of parallelization to decrease the total time, and it has yet to be implemented.Tuning the
parameters is necessary (essentially the healing length ν, which is equivalent to g) in order to
obtain rigorous quantitative results to be compared with experiments. Lastly, the velocity in
the hydrodynamic representation may be computed and related to real-world speed in order
to compare with fig 3-4.
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A Discretization used for numerical computation

Now just for completeness sake, we quickly extend the previous results to the discretization
we used in our numerical computation.

∂xΓ =
1

2

(
φi+1,j+1 − φi+1,j−1

2∆x
+
φi,j+1 − φi,j−1

2∆x

)
(32)

Which yields

∂xxΓ =
1

2∆x2
[(φi+1,j+1 − 2φi+1,j + φi+1,j−1) + (φi,j+1 − 2φi,j + φi,j−1)] (33)

and keeping the same discretization for time, we get

φ
n+ 1

2
i+1,j − φ

n+ 1
2

i,j

∆t
+

σ2

4∆x2

[(
φ
n+ 1

2
i+1,j+1 − 2φ

n+ 1
2

i+1,j + φ
n+ 1

2
i+1,j−1

)
+
(
φ
n+ 1

2
i,j+1 − 2φ

n+ 1
2

i,j + φ
n+ 1

2
i,j−1

)]
= − g

2σ2

(
(φ

n+ 1
2

i+1,j)
2Γn+1

i+1,j + (φ
n+ 1

2
i,j )2Γn+1

i,j

)
(34)

for φ and the following for Γ

Γn+1
i+1,j − Γn+1

i,j

∆t
− σ2

4∆x2

[(
Γn+1
i+1,j+1 − 2Γn+1

i+1,j + Γn+1
i+1,j−1

)
+
(
Γn+1
i,j+1 − 2Γn+1

i,j + Γn+1
i,j−1

)]
=

g

2σ2

(
φ
n+ 1

2
i+1,j(Γ

n+1
i+1,j)

2 + φ
n+ 1

2
i,j (Γn+1

i,j )2
)

(35)

Introducing the same σ̃ and g̃ than previously, using the same notations we get an equation
with spatial vectors

Ej(X•, Y•) = (Yj−Xj)−
σ̃

2
[(Yj+1−2Yj+Yj−1)+(Xj+1−2Xj+Xj−1)]− g̃

2

(
φ
n+ 1

2
i+1,j(Yj)

2 + φ
n+ 1

2
i,j (Xj)

2
)

(36)
Where the last term is the two-time regularization of the potential. This can be solved by
Newton algorithm in the exact same way as previously, except for a source term that is more
complex.
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Thanks

I would like to thank my supervisors and Thibault Bonnemain for their help during this
intership, and all my friends you regularly played with me to make me forget I was passing my
confinement alone far from both family and friends.
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