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Operational  level  : 
how they will move
along that route in 
response to 
interactions with other 
people 

[Abhishek Atre · Jun 29, 2015 (https://www.youtube.com/watch?v=95wrgAvV474)]

[Hoogendoorn and Bovy, Transportation 
Research Part B:  38, 169 (2004)]

Introduction

The three levels of pedestrian dynamics

➢ 1: Departure time choice, and activity pattern choice (strategic level)

➢ 2: Activity scheduling, activity area choice, and route-choice to reach activity areas (tactical 

level);

➢ 3: Walking behavior (operational level)



Crossing a static crowd 

[Nicolas et al. Scientific Reports 9, 105 (2019)]



Experimental data

𝑚0 = 2.5 pedestrian/m²

𝑣𝑦 = 0.6 m/s     𝑅 = 0.32m

velocity plot

𝒙

𝒚

density plot

𝒙

𝒚

➢ Motion is lateral➢ Rather symmetric density plot : 
o Lower density in front an 

behind the cylinder
o Higher density on the wing

Adapted from [Nicolas et al. 
Scientific Reports 9, 105 (2019)]



Question : Can we interpret these data with “dynamical” 
models ?

First try : Granular model

𝑚0 = 2.5 •/m²

𝑣𝑦 = 0.6 m/s

𝑅 = 0.32m
Gaussian noise + Inelastic collisions 
(restitution coef: 𝑒 = 0.5) 

[Details of the calculations : Seguin et al. EPL (2009)]



Density and velocity fields for the granular model
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Second  try : “social force  model



Third try :  “anticipated-time-to-first 
collision model” inspired from 
Karamouzas et al. (2017)  



Density and velocity fields for the “Time to Collision” model
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• Simple dynamical models (granular, “social force”) fail drastically to
reproduce the qualitative features of the experiments

• Even the more modern version of these models (“time to collision”)
will struggle to do so.

• On the other hand, the experimental observations are rather
intuitive: pedestrians anticipate that it will cost them less effort to
step aside and then resume their positions, even if it entails enduring
high densities for some time, than to endlessly run away from an
intruder that will not deviate from its course.

This requires a change of paradigm :

o anticipation➔ competitive optimization➔ Game theory

o Large crowd➔Many Body Problem➔Mean Field

Mean-Field Games
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I – Game Theory 101

[Game theory, Maschler, Solan and Zamir (2013)]

Game theory
• methodology of using mathematical tools to model and analyse situations 

of interactive decision making. 
• These are situations involving several decision makers (called players) with 

different goals, in which the decision of each affects the outcome for all the 
decision makers. 

Canonical / strategic form of a game

Eg : rock-paper-scissor



NB1 : what we call a “strategy” may be a bit more complicated than this

Eg : Tic-Tac-Toe

Example, of a tic-tac-toe game where the first player (X) wins the game 
in seven steps [fromhttps://en.wikipedia.org/wiki/Tic-tac-toe]

Illustration of one strategy for player I 

NB1 : here outcome = win → 1, or loose → -1, but more generally we 
expect some utility of a given outcome.

Players : 𝑖 = 1, … , 𝑁
𝑆𝑖 = {strategy of S}       𝑆 = 𝑆1, … , 𝑆𝑁

−𝑖 = {𝑗 ≠ 𝑖} utility



Dominates strategies & Nash equilibrium

Dominates strategy

A strategy 𝑠𝑖 of a player 𝑖 is strictly dominated by another strategy 𝑡𝑖 of the same 
player if

⇒ useful to simplify a game by eliminating dominated strategies

Nash equilibrium

A strategy vecor 𝑠∗ = 𝑠1
∗, … , 𝑠𝑁

∗ is a Nash equilibrium 

⇒ nobody can expect a gain by changing strategy alone



Nash Theorem

Mixed strategy

A mixed strategy is simply a probability distribution over the set of pure strategies 𝑆𝑖

Nash Theorem (1950)

Every games in strategic form  (with a finite number of players, each 
of them having a finite number of strategies) has (at least) one Nash 
equilibrium in mixed strategies



II - Introduction to Mean Field Game
[Lasry & Lions (2006),  Huang et al (2006)

control white noise

❖ Agent characterized by a state variable 𝑿
(for pedestrians → spatial position)

❖ Dynamics : Langevin                  d𝑿𝒕 = 𝒗𝒕 𝑑𝑡 + 𝜎 𝑑𝜉𝑡

Optimal control

❖ Cost function

running cost
terminal cost



Solving the optimization problem when 𝝈 = 𝟎 (noiseless case)

❖ Dynamics : ሶ𝑿𝒕 = 𝒗𝒕

❖ Cost function

Lagrangian 𝐿(𝑿, ሶ𝑿)

❖ Classical dynamics → Lagrange equation 

“Optimal control” 𝒗∗(∙) ≡   velocity solution of the classical equations of motion 



Solving the optimization problem when  𝝈 ≠ 𝟎: Linear programming and 

Bellman Equation

Optimization (t₀→ T) = Optimization (t₀ → t’) + Optimization (t’ → T)
+ Optimization at t’



Optimization (t₀→ T) = Optimization (t₀ → t’) + Optimization (t’ → T)
+ Optimization at t’

t’ = t₀ + dt ➔ differential equation 

Solving the optimization problem when  𝝈 ≠ 𝟎: Linear programming and 

Bellman Equation



More formally :

• Introduce de value function  

• Apply Bellman 

• Optimal control :  𝒗𝑡
∗(𝒙) = −∇𝑢(𝒙, 𝑡)/𝑚

• Boundary condition : 𝑢 ∙, 𝑇 ≡ 𝐶𝑇(∙) (backward )

Hamilton-Jacobi-
Bellman equation

• As 𝜎 → 0 :   HJB → Hamilton-Jacobi equation (solution ≡ Cassical action 𝑆)        



❖ 𝑁 agents  𝑖 = 1,2, … , 𝑁

❖ Dynamics : Langevin                  d𝑿𝒕
𝒊 = 𝒗𝒕

𝒊𝑑𝑡 + 𝜎 𝑑𝜉𝑡
𝑖

Mean Field Games

❖ Cost function

❖ Agents : state variable 𝑿𝒕
𝒊

control variable  𝒗𝑡
𝑖

❖ Interaction between agents 

[density of agents]



❖ Apply Bellman for each agent 𝑖

➔ N coupled differential equations  =   Many Body Game Theory 

❖ Mean-field approximation :

stochastic deterministic



Mean Field Game [Lasry & Lions (2006), Huang et al (2006) ]= coupling between a 
(collective) stochastic motion and an (individual) optimization problem through a 
mean field 

❖ Langevin dynamics : d𝑿𝒕 = 𝒗𝒕 𝑑𝑡 + 𝜎 𝑑𝜉𝑡 leads to a (forward) diffusion 
equation for the mean density 𝜌(𝒙, 𝑡)

❖ Optimization problem,  through linear programming, leads to a (backward) 
Hamilton-Jacobi-Bellman equation for the value function u(𝒙, 𝑡)

❖ Kolmogorov coupled to HJB through the drift velocity 𝒗 𝒙, 𝑡 = − ∇𝑢(𝒙, 𝑡)/𝑚

❖ HJB coupled to Kolmogorov through the mean field ෨𝑉[𝜌] 𝒙, 𝑡



III – The fish-school (toy) model

Position of the problem: 

School of fish in a (1d) river :   

• Start in the morning with an initial distribution𝜌𝑜(𝒙).       

• During the day → to gather food, while staying close 
together to protect themselves from predators (and 
the latter concern take priority on the former). 

෨𝑉 𝜌 ∙ 𝒙 = 𝑉𝑜 𝒙 + 𝑔𝜌𝑜(𝒙) 𝑔 ≫ 0

• At the end of the day: find shelter in  the best 
possible place  → 𝐶𝑇(𝒙).



Transformation to NLS

❖ Cole-Hopf transform:

❖ “Hermitization” of Kolmogorov:



Non-Linear Schrödinger 

MFG equations,  specifying to  ෨𝑉 𝜌 ∙ 𝒙 = 𝑉𝑜 𝒙 + 𝑔𝜌𝑜(𝒙)

Formal change   Ψ, Ψ∗, 𝑖ℏ → (Φ, Ψ, 𝑚𝜎2) maps NLS to MFG !!!



Tool #1 : Heisenberg representation & Ehrenfest relations

Quantum mechanics

Intermezzo: few different ways to use the connection with NLS



Quadratic Mean Field Games (ℏeff ≡ 𝑚 𝜎2)

•   Operators:  

•   Average:  

If

𝜌 = ΦΓ

•   Hamiltonian:  



Exact relations

• Force operators:            ෠𝐹 𝜌𝑡 = − ∇ ෨𝑉 𝜌𝑡 ( ෠𝑋)

• Local interactions:            ෨𝑉 𝜌𝑡 𝒙 = 𝑉𝒐 𝒙 + 𝑓 𝜌𝑡 𝒙

→ ෠𝐹[𝜌𝑡] = ෠𝐹𝑜 − 𝑔 (∇𝜌𝑡) 𝑓′(𝜌𝑡) ( ෠𝐹𝑜 = −∇𝑉𝒐
෡𝑿 )



Tool #2 : action and variational approach

Action



Tool #3 : solitons and integrability

➔ Infinite number of conserved quantities [Bonnemain et al. 2021]

For d=1 and V[m](x) = g m + U₀ (x) ➔ NLS, and thus MFG, integrable

➔ Scaling solutions (Thomas-Fermi regime)
[Bonnemain et al. 2020]



Limiting case 𝑼𝟎 𝒙 ≡ 𝟎 (NB: 𝑔 > 0)

“Strong coordination” regime



Resulting Generic scenario [for strong positive coordination]



Propagation phase in the long time limit : 
role of the unstable fix points

Final condition

Initial condition stable 
manifold

unstable 
manifold



Comparison with numerical simulation (with variational ansatz for 
the herd formation) 



Conclusion for this toy model 

▪ Formal, but deep, relation between a class of mean field games and the 

Non-Linear Schrödinger equation dear to the heart of physicists

▪ Classical tools developed in that context (Ehrenfest relations, solitons, 

variational methods, etc ..) can be used to analyze mean field games

▪ Here: application to a simple population dynamics model

→ rather thorough understanding of this model                        

(including more structured initial conditions, collapse of  the soliton,..)



IV – Back to pedestrian dynamics



Assume initial 𝜌𝑖𝑛 𝒙, 𝑡
(eg = const)

Solve for Φ(𝒙, 𝑡)
backward   [Φ 𝒙, 𝑇 = 1]

Solve for Γ(𝒙, 𝑡) forward

𝜌𝑖𝑛 = 𝜌𝑜𝑢𝑡 ?
Γ₀ =

𝜌₀

Φ₀
𝜌𝑜𝑢𝑡(x,t) = Φ Γ

no

yes

Numerical implementation

Propagation :

Self consistent equation :



Assume initial 𝜌𝑖𝑛 𝒙, 𝑡
(eg = const)

Solve for Φ(𝒙, 𝑡)
backward   [Φ 𝒙, 𝑇 = 1]

Solve for Γ(𝒙, 𝑡) forward

𝜌𝑖𝑛 = 𝜌𝑜𝑢𝑡 ?
Γ₀ =

𝜌₀

Φ₀
𝜌𝑜𝑢𝑡(x,t) = Φ Γ

no

yes

Numerical implementation



• We are not really interested in the full dynamics (transient regime, etc…)

• Self consistence is expensive.

However : 

Permanent regime (a.k.a ergodic) 

NB (time dependent) 

(observable are time 
independent) 

In the cylinder frame 

cylinder velocity

[cf Cardialaguet et al. (2013)]



And indeed 

Comparison between time dependent and ergodic simulations along 
the transverse (𝒙) and parallel (𝒚) directions [𝝂 = 𝟎. 𝟐𝟐, 𝝃 = 𝟎. 𝟐𝟔]

NB : (Γ 𝜙) [⟺ 𝑇𝑅] + (𝑦 −𝑦) 
= exact symmetry for ergodic case 



Characteristic length and velocity scales 

Cylinder : 
Radius   : 𝑅
Velocity : 𝑣𝑐

Pedestrians : 

Healing length :𝜉 = |𝑚𝜎4/2𝑔𝜌0|

Sound velocity : 𝑐𝑠 = |𝑔𝜌0/2𝑚|

Up to a scaling, solutions of the ergodic MFG equations depend only the 
ratios𝜉/𝑅 and𝑐𝑠/𝑣 .



Comparison between experimental and Mean Field Game simulation 
[𝝂=𝟎.𝟐𝟐, 𝝃=𝟎.𝟐𝟔, 𝑣=0.6,  𝑅=0.32m] 

MFG

Exp

velocity plotdensity plot



Conclusion for the cylinder crossing experiment

➢ The Mean Field Game approach reproduces naturally the important 
qualitative feature of the “crossing cylinder” experiment .

➢ It does significantly better than the “dynamical” approaches which are 
generally used to describe crowd behavior.  This is especially true for the 
version found in most commercial software, but also for their more 
modern/research oriented version.

➢ This was obtained for the simplest of MFG model.  
Natural evolution could include “discount ratio” and “congestion effects”.

➢ MFG appear as a natural tool to model pedestrian crowd 
dynamics when anticipation is a leading driving force



Evolution of the “effective reproduction number” during the Covid-19 pandemic between 
June 2020 and June 2023

𝑅eff = average number 
of infected persons by 
a sick individual. 

⇛ Significant variations
• Some with easily identified causes.
• Some of theses causes are biological in nature
• Some others are due to changes in behavior our focus 

V - Mean Field Game model of Epidemics



Susceptible Infected Recovery
𝛽(𝑡) ⋅ 𝐼(𝑡) 𝛾

A  classical model to describe epidemics, the SIR model 𝛽(𝑡) : transmission rate 
   𝛾    : recovery rate

• 𝛽(𝑡) : extrinsic time dependent functional parameter of the model. 

• Hard to fit with experimental data (the dynamics of 𝛽(𝑡) is coupled to the 
one of the epidemic itself)

• We would like to make this parameter intrinsic  (i.e. an output, rather than 
an input of the model) 
⇛ Mean Field Game description

• State variable = status of the agent ∈ suceptible, infected; recovered
= discrete variable
⇛ slightly different formalism for the Mean Field Game

[Elie et al., Mathematical Modelling of Natural Phenomena 15 (2020)]



Mean Field Game description

State variable : x ∈ {𝑆, 𝐼, 𝑅}

• 𝛽 𝑡 = 𝜌 𝜒(𝑡)
• ҧ𝜒 𝑡 𝑑𝑡 :  pb of encounter in 𝑡, 𝑡 + 𝑑𝑡

⇒ Control variable
• 𝜌: proba of infection / encounter

(𝑆𝛼 , 𝐼𝛼, 𝑅𝛼) : proportions of (Susceptible, Infected, Recover [𝑆𝛼 + 𝐼𝛼 + 𝑅𝛼 = 1] 

Dynamical equation for the epidemics

Control 
variable 

Cost function (Cost paid by individual 𝑘 susceptible at time 𝑡 if infected at time 𝜏)

cost of infection (social) cost of effortStrategy of agent 𝑘

NB : 𝝉 = 𝑭 ഥ𝝌 ∙ ⇒



Bellman equation

Value function

Bellman

HJB

Optimization at 𝑡 only



Mean Field Game equations

Dynamics
(“Kolmogorov”)

Optimization 
(“HJB”)

Self consistence
(Nash equilibrium)



Illustration

Left : epidemics dynamics of the MFG system at Nash equilibrium, 
Right : evolution of 𝜒𝑁(𝑡) (blue solid) compare to the evolution 
of 𝜒𝑆𝑂(𝑡) (red dotted). Figure adapted from [Elie et al (2020)]

➢ Reverse anticipation 

➢ Difference between Nash and Societal Optimum



To conclude : the threefold ways of Mean Field Games

1. “Learned configuration” : eg pedestrians

2. “Pure case” : eg smart cars / domotique

3. “Coordination through national agency”: eg epidemics
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