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A mean field game paradigm :  model of population dynamics
[Guéant, Lasry, Lions (2011)]
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Mean Field Game = coupling between a (collective) stochastic motion and 
an (individual) optimization problem through a mean field 
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Recent,  applications oriented,  mean field game models

▪ Models for vaccination policies [Laetitia Laguzet, Ph.D. 

thesis, 2015]

▪ Price formation process in the presence of high 

frequency participant [Lachapelle, Lasry, Lehalle, Lions 

(2015)]

▪ Load shaping via grid wide coordination of heating-

cooling electric loads [Kizilkale and Malhamé, (2015))



Mean Field Games equation is the σ𝟐 → 0 limit

The weak noise limit 



Mean Field Games equation is the σ𝟐 → 0 limit

The weak noise limit 

• The σ2= 0 limit of MFG equations leads to a system of 
coupled classical equations, which are more “intuitive”.

• However this limit is often singular, and a small noise is 
mandatory to regularize the theory  

o Genuine interest in the small σ2 limit of the theory
o σ2 → 0 limit formally similar to the quantum ħ→0 limit



Outline

A. WKB approximation for the Fokker Planck equation [Physica A. 
532, 310 (2019)”]

1. Maslov approach for the Fokker Planck equation

2. Application to the seminar problem

B. Thomas Fermi approximation and integrability

1. Scaling solutions in the long optimization time limit

2. Schrödinger representation and hydrodynamic formalism

3. Hodograph transform and integrability



A. The time dependent  WKB approximation for 
the Fokker-Planck equation 

Fokker-Planck equation : 

Classical symbol : 



A. The time dependent  WKB approximation for 
the Fokker-Planck equation 

Fokker-Planck equation : 

Classical symbol : 



A. The time dependent  WKB approximation for 
the Fokker-Planck equation 

Fokker-Planck equation : 

Classical symbol : 



“Semiclassical” initial state :

p₀

x₀

tt=0

x

p

The WKB evolution is 
based on the classical 
evolution of the 
Lagrangian manifold

[Maslov & Fedoriuk (1981)]



Semiclassical action

Semiclassical evolution

Difference with usual WKB :
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Illustration with the drift field of the “seminar problem”

T



Constant drift : a = const.

• Exact result, even for finite μ
• Neumann or Dirichlet boundary 

conditions can be implemented   



Linear drift :  a=-x/(T-t)

• Exact result again, even for finite μ
• Neumann or Dirichlet boundary 

conditions can be implemented   



Coupling the two solutions [with Dirichlet m(t,0) = 0 at origin] 

K= 0,19 

K= 0,24 
K= 0,33 

K= 0,56 

K= 1,67 

m(t,x)] 

x



B. Thomas Fermi approximation and integrability 



B. Thomas Fermi approximation and integrability 



Th : [Cardaliaguet, Lasry, Lions,Porretta (2013)]

▪ No explicit time dependence:  𝑉[𝑚](𝒙, 𝑡)

▪ Long time limit for the optimization :  𝑇 → ∞

▪ … + other conditions …. 

The « ergodic » state 



E.g. finite box (d=1), 𝑼𝒐 𝒙 ≡ 𝟎

m(x)
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x

m(x)

Question : what about infinite boxes ?



“infinite” box (d=1), 𝑼𝒐 𝒙 ≡ 𝟎



“infinite” box (d=1), 𝑼𝒐 𝒙 ≡ 𝟎

m(x)

x

2z(t)



How do we understand this ?

1rst stage : transformation  into Non Linear Schrödinger
[Swiecicki, Gobron, Ullmo prl (2016), Phys Rep. (2019)]



2cd stage : hydrodynamic variables
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3rd stage : hodograph transform and potential representation

ξ

η



Boundary conditions (eg at t=0)



Multipolar expansion

𝝃

𝜼

𝒕 = 𝑻

𝒕 = 𝟎



Multipolar expansion
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Long optimization time limit T → ∞
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What about the charge 𝑸𝟎?



Multipolar coefficients 𝑸𝒏

• The Mean Field Game equations with 𝑈0 𝑥 ≡ 0 are 

integrable with the “charges” 𝑄𝑛 as constant of motions

• 𝑄𝑛 𝑛 ≥ 0➔ “usual” integral of motion in the language 

of Non-Linear Schrödinger Equation                                   

(eg 𝑄1→momentum, 𝑄2→ energy)

• 𝑄𝑛 𝑛 < 0➔ “new” integral of motion 

(eg : 𝑄−2→ initial time)



Conclusion

o Limit σ2 → 0 of Mean Field Games equations share a lot of  
formal similarity with the quantum ħ→0 limit

o For the Fokker Planck equation, a WKB approach “à la Maslov” 
can be constructed with minor modifications, an work 
beautifully well.

o In the “large repulsive interaction” limit where 𝑈0(𝑥) can be 
neglected, the system of coupled Mean Field Games equations 
become integrable.

o The (semiclassical) Thomas Fermi regime can then be 
addressed using a potential representation in which the 
“charges” of the multipolar expansion are the integral of 
motion.

o In the large optimization time T limit, and for 0 ≪ 𝑡 ≪ 𝑇
regime, keeping only the monopolar term leads to the scaling 
behavior observed numerically.


