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Mean Field Games

A mean field game paradigm : model of population dynamics
, [Guéant, Lasry, Lions (2011)]
e Nagentsi=1,2,---,N (N>1)

e state of agent i —» real vector X' (here just physical space)
|
m(x,t) = N 21: o(x — X}) density of agents

e agent’s dynamic | | |
dXi = a;dt + odw,

dw! = white noise
drift aj = control parameter

e agent tries to optimize (by the proper choice of a!) the cost function

/t Cr 2 (al)? — V(K1) + er(X)
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Mean Field Game = coupling between a (collective) stochastic motion and
an (individual) optimization problem through a mean field V|m|(x,t)

e Langevin dynamic dX! = aldt +odw?! leads to a (forward) diffusion equa-
tion for the density m(x,1)

0.2

m + Vu(am) — TAxm =0 (Kolmogorov) .

m(x,t=0) = mg(x)

e Optimization problem, through linear programming, leads to a (backward)
Hamilton-Jacobi-Bellman equation for the value function u(x,t)

2

1
Oyu + — (Vyu)? + %Axu = Vm](z, 1)

21 (HJB) .

u(x,t=T) = cp(x)

e Kolmogorov coupled to HJB through the drift a(z,t) = —0,u(x,t)

e HJB coupled to Kolmogorov through the mean field V|[m|(z,t)
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Recent, applications oriented, mean field game models

Models for vaccination policies [Laetitia Laguzet, Ph.D.
thesis, 2015]

Price formation process in the presence of high
frequency participant [Lachapelle, Lasry, Lehalle, Lions
(2015)]

Load shaping via grid wide coordination of heating-

cooling electric loads [Kizilkale and Malhamé, (2015))



The weak noise limit

Mean Field Games equation is the o - 0 limit

4

\

0.2

Oym + Vx(am) — —Axym =0 (FP)

1

2
2

Oy — — (V) + T A = V[m](z, t)

24

2

(HJB)




The weak noise limit

Mean Field Games equation is the o - 0 limit

4 0_2

drm + Vx(am) — ?éxm =0 (FP)

e i (Vo) + T = Vlml(z, 1) (HIB)

oym + Vx(am) =0 (Transport)
= 1
O — (Vxu)® = V[m](z,t)  (Hamilton Jacobi)
7!

The 0= 0 limit of MFG equations leads to a system of
coupled classical equations, which are more “intuitive”.
However this limit is often singular, and a small noise is
mandatory to regularize the theory

:> o Genuine interest in the small 6% limit of the theory
o 062 — 0 limit formally similar to the quantum h=>0 limit




Outline

A. WKB approximation for the Fokker Planck equation [Physica A.
, 310 (2019)”]

1. Maslov approach for the Fokker Planck equation
2. Application to the seminar problem
B. Thomas Fermi approximation and integrability
1. Scaling solutions in the long optimization time limit
2. Schrodinger representation and hydrodynamic formalism
3. Hodograph transform and integrability




A. The time dependent WKB approximation for
the Fokker-Planck equation

Fokker-Planck equation :
2

dem(x,t) +  V(a(x,t)m(x,t)) — %Am(x,t) —0

(FP) xo” = Lim = 0
with L= [\10; - +A"10,(a-) — 2 (A 10,)?
= A\-pseudo differential operator

(A = 02 assumed large)

Classical symbol : L(z,t;p, E) = E + pa(z,t) — p*/2

{f —0plL =1 E=—0,L = —pda

t=0,L=a(t.x)—p p=—0.L=—pda
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“Semiclassical” initial state : N () exp [ASp(2)]

e.g. Gaussian :  mg(zg) = N exp —%(ﬂfo — 50)2}

So(xy) = —)u,(wo — %) Ny L

2 2mo?
— associate a Lagrangian manifold (just a curve in 1d)

Lo = {(w0,po(0)=8250)} T po(wo) = —A(mo — o)

A P

The WKB evolution is
Lo Ly based on the classical
evolution of the
Lagrangian manifold

[Maslov & Fedoriuk (1981)]

Y



Semiclassical action

S(t,z) = / pdzr + Edt
£:(0,20)—(t,2)]CM

Semiclassical evolution

N
\/837033(757 $0)

ms.c.(tax) —

exp [)\S(t,m) ; /t:(ama)dfr] ,

Difference with usual WKB :

1 1

) 1 [t
e [ non-hermitic = term exp [—5 / (&Ca)dﬂr]
to



Semiclassical action

S(t,z) = / pdzr + Edt
£:(0,20)—(t,2)]CM

Semiclassical evolution

ms.c.(tax) —

\/8500:1:(15, Tg)

Difference with usual WKB :

1 1

) 1/t
e [ non-hermitic = term exp [—5 f (8xa)d”r]
to



lllustration with the drift field of the “seminar problem”

) . ) Figure 1 Regions of the (¢,x)
o B i ’ ’ AT space, where 7" = 2 is the time
) g ’ e when the seminar effectively be-
WL o e B ] / gins, and their associated opti-
O v v ' mal drift a(t,z). In regions (0)
1.0f - , 1 - and (2)the drift stays constant

- oY . and is denoted respectively a(®
osf A . and a® (here 5 and 2). In re-

gion (1),the drift is linear in z.

0.0

X
(a9 for < —al9(T —¢)
_ —t ) (7 _ —a@ (T —
a(t,x) = T—0 for —a"(T —t) <zx < —a* (T —1t)
a®  for —a (T —t) <2x<0



Constant drift : a = const.

ot (2 — To — at)?
St x) = (1 + ,ut) ( 2t

Opo(t,w0) = 1 +tp Oya =0

4 )

(t 2) /1 1 it (x — Tg — at)?
mt.xr) = XP | — ;
MG %71’02 VI+tu = 1+ ut 2to?

. J

_ 1 (2 — Zp — at)?
H—> 00 Gt,, — ‘ , o ‘
— (#, %, To) \ 27to? exp[ 2to?

* Exact result, even for finite pn
* Neumann or Dirichlet boundary
conditions can be implemented




Linear drift : a=-x/(T-t)

u(Eo(t — T) — Tir)?

S(t,x) =

2T —t)(T —t + pTt)

0w /0m = (T —t+ D)1, [ (Guat =1ogl(T — /T

.
_ | p T2 p(aT — (T — t)o)°

m(t, ) = 4/ o2 \/(utT —T-t)T -1 l%% = T)(T —t + uTt)

L J

~

JL—> 00 _ o T _T(CU o %50)2
— G2 %0) = \/2m2t(T P ( 2024(T — 1)

Exact result again, even for finite pu
Neumann or Dirichlet boundary
conditions can be implemented



Coupling the two solutions [with Dirichlet m(t,0) = 0 at origin]

m(tx)]

K=1,67

K —

Tdrift

Tdiffusion

2

o 2

X T

ax(t,To)

Figure 4 Spatial distributfon of the agents at fixed time, dashed
lines show the numerical solution while solid lines show the ap-
proximation. From left to right, K = 0.19 and t = 1.1, K = 0.24
and t = 1.3, K = 033 and t = 1.5, K = 0.56 and t = 1.7,
K =167 and t = 1.9. In this case T = 2, a9 = 0.4, a® = 0.9,

o=20.2,zp=12and = 106.



B. Thomas Fermi approximation and integrability

e Mean Field Games equations [a = —Vxu, m = agent density]
2

o
{E?tm + Vx(am) — ?A"m =0 (Fokker-Planck) .

m(z,t=0) = mo(x)

21

{atu 1t (qu)2 + %AXU = V[m|(x,t) (HIB) |

u(x, t=T) = cp(x)
e Repulsive interaction between the agents

Viml|(z) = Uo(z) + gm(z) ; ¢ <0




B. Thomas Fermi approximation and integrability

e Mean Field Games equations [a = —Vxu, m = agent density]

2

o
{E?tm + Vx(am) — ?A"m =0 (Fokker-Planck) .

m(z,t=0) = mo(x)

21

{atu 1t (qu)2 + %AXU = V[m|(x,t) (HIB) |

u(x, t=T) = cp(x)

e Repulsive interaction between the agents

Viml(x) = De) + gm(z) ;g <0

e Strong interaction regime

2
gVem| > VU3 =t <L

g
9]




The « ergodic » state

Th : [Cardaliaguet, Lasry, Lions,Porretta (2013)]

No explicit time dependence: V|[m] (x>§
Long time limit for the optimization: T — oo

... + other conditions ....

3 an ergodic state (me(x), ue(x), A) such that,

for0<t<«<T

(me, ue, A) such that < 2H




E.g. finite box (d=1), U,(x) = 0

Figure 3 Distribution of the agents as a function of time and poistion, in the
long optimization time limit 7" > 1, for negative coordination (¢ < 0) and in
the abscence of "one-body potential” (Uy(x) = 0).



E.g. finite box (d=1), U,(x) = 0

0.25 ' Figure 4 Spa-
I tial distribution
of the agents at
fixed time, in the

0.2

0.15 |

m(x) long optimization
0.1H — : time limit T > 1

_312?: (Up(z) = 0). The

005 gt | various curves cor-

| | | | | | ~ respond to ¢/T =
2 R 0 1 2 s 0.4,0.45,0.5,0.55,0.6

Question : what about infinite boxes ?



“infinite” box (d=1), U,(x) = 0




“infinite” box (d=1), U,(x) = 0

0.14

0.12+- —Ta

—T/2

01F 3T/4 -

m(x) o=

0.06 -

o
WEL<<Z

9|

0.04

0.02 |-

Numercial facts (for typical boundary conditions) :

e m(x,t) looks very much like an inverted parabola

m(x,t) ~

e its width scale as



How do we understand this ?

1rst stage : transformation into Non Linear Schrodinger
[Swiecicki, Gobron, Ullmo prl (2016), Phys Rep. (2019)]

e Introduce two new variables ®(z, 1), I'(x,t) defined by :

u(x,t) = —po?log (®(x,t)) , m(x,t) =T(z,t)®(x,t)

(

2 _ po*
po“0 ' = — AT 4+ Uy (x)I" + g mID

|:> \ 24 m =19

10%8,® = %Axcb + Up(x)® + gm@®
\

h2
iho, U = _EAXW + Up(x)W + g|¥|* W

Non-Linear Schrodinger

(U, T*, ) — (®,T, ipo?)




2cd stage : hydrodynamic variables

e Go back from (®(x,t),['(x,t)) — (m(x,t),v(x, 1)) :

o (VO(x,t) VI(x,t)
v(@t) =5 (fb(az,t) T T )

[ O;m + V(mv) =0

I:> <

4 >
\Ot’z.’—kvIQWAW+E+ITTY+LT( )] =0

e Riemann invariants nomenclature

E(x,t) =v(x,t),  n(z,t) \/|g|m(az )

(Ax = & £in are the Riemann invariants)
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2cd stage : hydrodynamic variables

e Go back from (®(x,t),['(x,t)) — (m(x,t),v(x, 1)) :

o? (VCI)(ac,t) B VP(x,t))

o@D =5\ @) Tl

[ Om + V(mv) =0

4 w2 g
O + V %A 4 2 L U] = 0
| v + [2 < vm + 5 +Mm+ )]

e Riemann invariants nomenclature

I:> <

ol _[lglm(z,1)
=v(z,1) \/ p
)

(AL = £ + in are the Riemann invariants



3rd stage : hodograph transform and potential representation

e The equations governing (m,v), (i.e. (n,£)) are non linear,
but they are first order (ie in some sens linear) in (9., ;)

= invert : (n(z,t),&(x,t)) = (x(n,£),t(n, &)

e Potential representation : (7, &)

1
Og eX + OnnX + Eanx =0

(Laplace equation in cylindrical coordinates)

= E=-VV, {

e Implementing boundary conditions is however not so
straighforward : e.g. at t =0

m(z,t=0) =mo(x) < m(x(n,§) st. t(n,§)=0)=mo(x(n,§))



Boundary conditions (eg at t=0)
To meet the intial boundary condition, one needs to

e Pick a solution of

1
Og X + Onnx + Eanx =0

e Derive z(&,n) and £(&,n) from

{E77 = —nt(&,7) _ t= —11%(5,77)/?7 5

e Locate the surface t(£,n) =0

e Check that on that surface that

z(&n) = (mo) ™" [(@Y] since 1) = lglm

g H



Multipolar expansion

e View Y are originating from a distri-
bution of charges p(&,n) located either
near the orgin ((¢ > 7)), or at infinity

((t < 0)).

e Mulitpolar expansion (r = /&2 + n?)

+00
XEn =Y T%HG)

(I > 0 — charge near origin;
| < 0 — charge at infinity)

e For 0 <t < T : keep only the monopole
Qo

7

x(&n) =

t=0
1_
05 t — T
£ OQ
05|
At
15
&
2
0
n




Multipolar expansion

e View Y are originating from a distri-
bution of charges p(&,n) located either
near the orgin ((¢ > 7)), or at infinity

((t < 0)).
e Mulitpolar expansion (r = /&2 + n?)

x(&,n) = io %fle (£>

(I > 0 — charge near origin;
| < 0 — charge at infinity)

e For 0 <t < T : keep only the monopole
Qo

7

x(&,n) =




Long optimization time limit T - oo

e Monopole potential

X fa —
= e
e Electric field
( Qo r o)
E, = — N, _
< SN Ny t (n? + &2)3/2
Qo . . e
\E& = 5(772 + £2)3/2 2(x — &t) ké’t =2z — &) = ¢ = o
e And thus (remember that 1> = |g|m/p)
/32 .2
772 — @ 2/3— 2_56 — § (QO Z(t) v ) E(t) §t2/3
t 3t 2 2(1)3 >



Long optimization time limit T = oo

e Monopole potential

X(gan) — QO
Vo
e Electric field
| - & — = ( _ Qo
< N n(ﬁg e " = 4 - (n2 + £2)3/2
¢ 2
\Eg:_g(n“g?)?’/? = 2= &) \€t=2(:c—£t);»g:3_f

e And thus (remember that n° = |g|m/u)

2/3 -
L (%)Q/S(QQCY_;(QO 2(1) — 2?) o B

¢ 3t



What about the charge Q"

Gauss Qo = i/ (E - 7)dS
S

t

dS = n\/(0:6)2 + (0,m)2dfdz  h =

1 [T .
Qo = 5/ —t 83;(7725) +2 xn0yn
PN N—— N——
i —0 —x0,(n?)
-
(Z(t)z — :132)




Multipolar coefficients Q,,

* The Mean Field Game equations with U,(x) = 0 are
integrable with the “charges” (,, as constant of motions

 Q,n=0=> “usual” integral of motion in the language
of Non-Linear Schrodinger Equation
(eg Q; 2 momentum, Q, > energy)

* Q,n<0=> “new” integral of motion

(eg: Q_, =2 initial time)



Conclusion

Limit 0 — 0 of Mean Field Games equations share a lot of
formal similarity with the quantum h—0 limit

For the Fokker Planck equation, a WKB approach “a la Maslov”
can be constructed with minor modifications, an work
beautifully well.

In the “large repulsive interaction” limit where Uy (x) can be
neglected, the system of coupled Mean Field Games equations
become integrable.

The (semiclassical) Thomas Fermi regime can then be
addressed using a potential representation in which the
“charges” of the multipolar expansion are the integral of
motion.

In the large optimization time T limit,andfor0 K t K T
regime, keeping only the monopolar term leads to the scaling
behavior observed numerically.




