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First very general question : What can physicists bring to the
study of Mean Field Games ?

Seen from a physics laboratory, it seems there are two main
avenues of research for MFG :
» Internal consistency of the theory, existence and uniqueness of solutions
to the MFG equations, introduction of new tools making it possible to
extend the theory to more complex setups

[cf Monday to Wednesday morning sessions]

» Exact solutions, either through numerical schemes or for simple models

[eg: yesterday morning session, Luca Nenna’s talk, etc..]



Approach we (physicist) try to promote:

» develop a more “gualitative” understanding of the solutions of the MFG

equations :
= extract characteristic scales,
= find explicit solutions in limiting regimes,
= etc..

> Facilitated for “ ” MFG thanks to the connection with Non-linear

Schrodinger equation.

* Interacting bosons in the
mean field approximation

* Non-linear optic

* Superconductivity

* Etc..

Rubidium atoms (170 nK)



D.

Outline

Mapping to the Non-Linear Schrodinger equation for Quadratic
mean field games [prl]

A case study: a quadratic mean field game in the strong
positive coordination regime [prl]

Fine points [arXiv:1708.07730]

= Collapse

= Mutimodal initial densities
Perturbations [arXiv:1708.07730]




A. Quadratic mean field game &
non-linear Schrodinger equation

i i hite noise
Quadratic mean field games control ~ White noi

e N agents, state X' € R” with Langevin dynamics dX! = a!dt +@1W'§

T
® Cost function] dT [ V[m](X;:T)} + CT(X?F)
'

e System of coupled pde’s [a(x,t) = —Vyu(x,t), m(x,t) = density of agents]

2
o
{ dm + Vxlam) — 7Axm =0 (Kolmogorov) .

m(xz,t=0) = mo(x)

21

{ Oyu — S (Vxu)® + %Axu =V V[m](x,t) (HIB) |

u(x, t=T) = cp(x)



Quadratic MFG represent clearly a small subclass of
Mean Field Games, but, this subclass is large enough
that :

» One cannot expect explicit solutions for all them
» It includes monotone systems as well as non-monotone systems

» ltincludes potential MFG as well as non-potential MFG

= A priori, a non trivial problem
:> = There is a possibility to be at some level representative

of a larger class of MFG



Particular interest for long optimization time limit
& relaxation to « ergodic » state

Th : [Cardaliaguet, Lasry, Lions,Porretta (2013)]
= No explicit time dependence: V[m| (JC)Q
= Longtime limit for the optimization: T — oo

= .+ other conditions ....

3 an ergodic state (meq(x), ue(x), A) such that,

m(x,t) ~ me(x)
for 0 <t T
u(x,t) ~ ue(x) + At
( 1 5 2
A — o (Vxte)™ + ?Axue = Vime|(z)
(Me, Ue, A) such that < H




Transformation to NLS

1
e Cole-Hopf transform: ®(x,t) = exp (——Qu(x, t))
po

4
—> | —po®0,d = %A,ﬂ) + V[x, m|®

e “Hermitization” of Kolmogorov: I'(x,t) = m(x,t)exp (u(x, t)/(LLUQ))
(i.e. m(x,t) = T'(x,t)®(x,t))

4 2
9 B O'_ o E (9u B 1 ) 0'_A
oo 5 A, = LL (815 2 (Vxu)” + 5 xu)

A >y

Vix,m] M

4
—> 1028,T = %AXF + Vx, m|T




hz
iho, U = —ZAX\IJ + Up(x)U + g|U|* T

Non-Linear Schrodinger

e MFG equations, specifying to V[m](x) = Uy(x) + gm(x,t)
4 0_4
1029, = “TAXF + Up(x)T + gmlD

\ o m =TI'd
—uo?0,® = TAX(I) + Up(x)P + gmP

\

Formal change (¥, ¥* h) — (®,T,iu0?) maps NLS to MFG !!!




Why the excitement ?

= Man Field Games exist since 2005-2006, the Non-Linear
Schrodinger equation since at least the work of Landau and
Ginzburg on superconductivity in 1950.

= NSL applies to many field of physics : superconductivity, non-
linear optic, gravity waves in inviscid fluids, Bose-Einstein
condensates, etc..

— huge literature on the subject

= We feel we have a good qualitative understanding of the

“physics” of NLS, together with a large variety of technical

tools to study its solutions.

[NB : Change of variable giving NLS known by Guéant, (2011)]



B. case study: a quadratic mean field game in
the strong positive coordination regime

To illustrate how this “transfer of knowledge” works, consider a simple
(but non-trivial) quadratic mean field game:

e d=1; local interaction V|m|(x) = Uy(x) + gm(x)

e Strong positive coordination (large positive g)

(If it helps, think of it as a population dynamics model for an aquatic
specie living in a river:

e Uy(x) = intrinsic quality of the location (e.g. for food gathering).

e ¢ measures the protection from predator by other members of the
group.

e T = daylight duration, mg(z) = initial distribution in the morning,
cr(x) = quality of shelter for the night.)



Tool #1 : Heisenberg representation & Ehrenfest relations

Quantum mechanics

e State of the system = wave function ¥(z,1)

) T =xX
e Observables = operators: O = f(p, T) p = 1ho,
e Average (O) = /d:c\ll*(a:)()\ll(m)
. PP h?
e Hamiltonian = H = o +Vi(x) = —ZA:U + V(x)
: A Ld o o4 A A
(d . 1,
& @)=~
|:> £ p H (Ehrenfest)
) = (V@)




Quadratic Mean Field Games

A A

o Operators: X =azx I =po?d, O=f(II,X)

e Average: (O)(t) = /dwF(m,t)O(D(x,t) m =10

= if O = OM)A() (0) = fd:c m(x)O(x)
X

— oo, = HT x4 A A
+1020,® = HD



Exact relations

Force operator : F[my| = —V,V[m](X)

A A

22 = ((X?) —(X)?) A= ((XII+IIX) — 2(II)(X))

( d o L 1 A ( d 2 . 1 A A A A A A
< %) = i J i = ((RTT+ 1) — (M) (X) )
d 2 d £, 2 A2
\ %<H> = (F[my]) \ %A = —2(XF[my]) + 2(I?)

Local interactions  V[my|(x) = Up(x) + fm:(x)]

— Flm] = fg/ —g Vaemy f'(my))

() = (Fo) e

(XF) = (XFo) — [ dsxmy ) e ()]



Tool #2 : solitons

Ergodic solution

Let W.(x) the solution of the stationary NLS

po*
A\, = TAx\IJe + Up(2)We + g | V)T,

4

le(x,t) = exp (+#t> U, (x)
O (x,t) = exp (—ﬁt) U (x)

( N04
po?o,I = 5 AxI 4+ Uo(x)T' + gmI

2 _ po’
—po 0P = TAXCID + Up(x)P + gmP

Define ¢

\

= solution of <

\
with me(x) = De(x, 1) Pe(x,t) = |¥o(x)|? = const.
I:> Ergodic solution of the MFG problem



Limiting case Up(x) = 0 (NB: g > 0)
In that case solution of stationary NLS known (bright soliton)

g (o) = Y11

9 ( - ) 1n=2uct/g
cosh | —
2 caracteristic length scale

“Strong coordination” regime

e meaning :  variations of Uy(x) on the scale n are small

e ergodic state

Tmax = argmax|[Up]



Tool #3 : action and variational approach

Action 12

4
27 _V&.VT + Uy(z) @I + g@2F2

2
_ﬁ—o_ﬁ— 28@—“;‘4A ® + V[x,m|®
[0S | 4
5 = 0| & +uc?o,l = %AXF + V[x,m|l

1 - N N
C d tity:  Eop = — II2) + (Ug(X Hi,
e Conserved quantity tM 2)&( Y + (Uo(X)) + (Hint)
e Variational anzatz = Ordinary Differential Equations

(i) = 5 [ domi(ay



Resulting Generic scenario [for strong positive coordination]

1) Herd formation: extension 7, mean position xg = (x).,,
(very short time process)

2) Propagation of the herd :

— as a classical particle of mass p in pot Uy(x)
— initial position: X (0) = z
— final momentum: P(T) = —0,cr(X(T))

3) Herd dislocation near t =T
(again very short process)

NB: Boundary pb rather than initial valuer pb
e possibly more than one solution

e [T — | motion governed by unstable fixed points




Propagation phase in the long time limit : role of
the unstable fix points

7
1
\
X\

T e e oo SV i WV Final condition
\ YN\ \§:\Q‘ S 7 s

1
ﬂ

[ '}

Initial condition

(X = —1.5]




Herd formation

First stage of dynamic = herd formation.

= |t takes place on a short time scale.

= Can we be more precise ?

e Assume initial distribution mg(z) “featureless”,

i.e. well characterized by its mean zy and variance 2

e Neglect Uy during the herd formation phase
. (:c—a:o)2 (1 A )i|

I:> variational Ansatz :
ex
p |: 432 po?

T(z,t) = o= V() /o’
( ) vV 27th

_(3:425) (1 + ;3;2 )}

V 27T2t

, €XP [
O(xz,t) = eT7B)/1o



Action :

S[[(x,t),(x,t)] E/dtda: [%‘Q(th)l“ — ®o,IN)

po

—~5-V&.VT + Up(«)@T + J p212

2

: | Ma4 A2 1 g
Ay=——@1-=
z,u( 4)2§+2\/7r2t

|:> hyperbolic fixed point : A*=0 X~

4
— /ot
g

~ soliton scale n



Flow near the fix point

10

Large T : need to stay on stable
and unstable manifold of the fixed
point.

051

051

A0

1 — Zt t * E* [,LO'2

—(z — z) — lo _ ™~ X _ (po”
5, o
4 = — Zi = —
t Y 7 Y



Comparison with numerical simulation




Intermezzo : notion of “qualitative” description

= We clearly can describe in plain English what is happening to
the agents (here the fishes) playing the mean field game :

o Initial formation and final destruction of the heard (short time
scale).

o Beyond this motion as a classical particle in potential Uy (x).

o Role of the unstable fixed points and of the associated stable
and unstable manifold.

* Understanding associated with accurate approximation
scheme

How much did we actually learn ?

Maybe one could have “guessed” that once the heard will be
formed, interaction would become irrelevant, and then

» optimization = classical evolution

» Time scale could be get from dimensional analysis




C. Fine Points [things harder to guess]

1) Collapse

Generalization of the model :
e Higher dimensionality (d > 1)

e Non linear interaction : Vim](x) = Up(x) + g [m(x)]

Generalized variational ansatz :

d
—y¢ + Py - x 1 (z — X})?
d(x,t) = exp { > } 171 &P { PORE (1—
H =1 L(27(37)?) i
S
+7 — Py x 1 (z¥ — X})°
['(x,t) = exp { } exp { - (1+
po? 1;[1 (2r(xy)2)* (253%)




Center of mass coordinates:

Y Py
t 7 |:> classical motion
P, = —(0"Uy(x))s =~ —0"Up(Xy)

Variances and position-momentum correlators

v AV
Y = ,
222
i () — et 20 ﬁ [ 1 ( 1 )“]
P 2u(%)? a+1 Va+1@2m)«2 \XY' ) |

v'=1
(AY =0

fixed point ¢ | ~1/(2-ad)
»Y =

*

4o 1 4/2
a+1 \(a+1)(2m) po

\



Back to d =1 (— critical o = 2)

'4 Zt
Jt — 2— )
canonical coordinates : { - Y. A,
\ pt — 2 Zt
2 4
L _ P po” | 1 !
Hamitonian : h(p,q) = _QMXE + 152 [2q2 - a—qa]
[ Oh(p,
P (pq) _ p_
. . op D%
Equation of motion : < A
._ Oh(p,q) _pot |1 1
S R vl P RCESY
Fixed point : (g, =1, p,=0)
82h -1 9%h 0%h !
O?pl(=)  p¥2’ Opdql(e) 0?ql(g) 433



Stability of the fixed point
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When ad < 2

} — stability

e Interactions dominate at large distances

e Diffusion dominates at small distances



Stability of the fixed point
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a > 2 : fixed point = maxima
— elliptic f.p.

a < 2 : fixed point = saddle
— hyperbolic f.p.

When ad > 2

} —  collapse/spreading

e Interactions dominate at small distances

e Diffusion dominates at large distances



Stabilisation of the collapse by a finite range interaction
(d=1,a=3 > 2)

V[m](x) = gm(x)>can be seen as the £ — 0 limit of

Vim|(z) :g/dyzdygdy4K(:c,y2,yg,y4)m(yz)m(y3)m(y4)

1
with K (y1,y2, ys3, = exp | ——— s — )
(Y1, Y2, Y3, Ya) vaee P | 1@ > (yi — )

—0(y1 —y2)0(y2 —y3)0(y3 — 1)  —ooo— A

§—0 _—
AT A e |
+ T‘» A T e R T S
04 | et ™, e«
R S e a |
h boli N e
New hyperbolic o3l MN 2 a4 = -
- . T | A 4 /’/ P ————.—
o o F ‘, \ > /’/ Pt — .
fixed point | WSt tne S
W r——=s
\ 3 T i %
Q 0.0F - o ({1 o >
Ml b A T T‘ \ ly\ ‘\ \ I\\ E e Y,
(here 6 = .3) ) I [T AN T s
- * | 4 ’y/,’-\\ \‘ \\\ Sy »—-..—y——'—_'__’_,
I w f | l4 \ \\‘\\,\:‘\ ;* . _t; >
-0.2 i | |' ‘,“ -"I_\\\\\\ \\7_1: s e
3 PE W >
i A e e
N A e
-0.4 A4 ad. 4 -
L | f [ »~ AL e e
2 ‘ | " v“ ,“//_t ~\’">n;k T ———
.................
0.0 0.5 1.0 1.5




2) Multi-modal initial conditions

Mono-modal case

? What if :




Bi-modal case:

Variational ansatz:

_—"}/t—l—Pf'.fL‘_

po?

Ly — Pf 2]

Uo




Dynamics [before the two subgroups merge]

e Variances and position-momentum correlators

Same dynamics as for the mono-modal case, except for
g _> g(a’vb) —_ p(a’:b)g
(lighter groups contract more slowly and remain more extended)

e Center of mass motion

— obtained through conservation of energy and momentum
P = papa, + pbe _ ﬂ(PaUa + pb’Ub) —0

> LM + [ RE V= By, = 19
. 9 tot tot 87 /1»0-4

3
a.,b b,a
— |v’|:\/ﬂp’vg

(lighter groups move more quickly)



Muti-modal case:

» Can be obtained from a generalization of the two-modal case as long as the

groups are well separated enough

» Until the last merging, total momentum of each subgroup is nonzero (even if

Uyis neglected).

» The order in which the mergings occur is non-trivial

O

O O Q

O
O



Muti-modal case:

» Can be obtained from a generalization of the two-modal case as long as the

groups are well separated enough

» Until the last merging, total momentum of each subgroup is nonzero (even if

Uyis neglected).

» The order in which the mergings occur is non-trivial

O O

O ® Q

O



D. First order perturbations theory

Oposit regime of weak interaction between the agents
» Main forces : external potential Uy(x) and noise
» Interaction term gm(x) weak, treated perturbatively

1
1) Non-interacting limit Hy = —%Am — Up(x)
1620, — +Ho®. e cigenvectors 1y(x), 1(x), ...
A <
1029,T = — [T, e cigenvalues \g < A\ <
ol ) = 3 e (2 )
n=>0
( O(x,t) = fdx Oz, t") Go(z,z,t' —t) t <t (®(z,T) = &r(x))
<
T(z,t) = /d:c’ Go(z, 2’ t —t)D(x,t') t>¢ (D(x,0) = ;‘;{(’B)))



o _ _po
2) Long optimization time T'> terg = N — A

e Still non-interacting
* Focuson (t <"T/2")

Ergodic state

Q. (x,t) = C e"')‘ot/’wgwo(x)
Te(a,t) = O e 01 g (x)

(C = e 20T/8" (4| )]

Density propagator

me(x,t) =

()

m(x,t) = /daz'Fo(a:,x',t)mo(x')

Fo(ili‘, xla t) = wO(CE)GO(xv 33,7 t)

eﬂL)\ot/lﬂfZ

Yo (z')




2) Weak interactions unperturbed density
e perturbation : 6U(t) = gm(9 (x,t)

e basic tool q.m. time dependent perturbation theory
G=G"+G%UG" +.....
e two catches :

- Need to perform time dependent perturbation theory ar-

round the static perturbed potential Uy(x) + gmgo)(m )

- Perturbation acts in three places :

['(0)= o ; ’f ®, ergodic
(T)(()) * state




first order solution to the Mean Field Game equations

~ 1 " 1
H, = ——1II2 — Up(x) — gm. - 2 -7
2o 0(x) —gme(x)  H, 1 o(%)

m(x,t) = m*o(x) +/d$'(Fe(x,ac’,t) — Fy,(z,2',t)) mo(x')

i

F(t) +% dsfdydxl [Fﬂo(xayat_s) _FHo(xvxlat)]
o= Jo

X [mHD (ya S) — mfo (y)} Fr, (ya 33,9 S)mo (IE,)

b 2 (" s [ ayas oy, ) = i) Fi (o5
HO™ Jy

X [FHO (y,:c, S — t) - FHo(yrxlv 8)] mo(ac')

I (0) (1)



Conclusion

Formal, but deep, relation between a class of mean field games and
the Non-Linear Schrodinger equation dear to the heart of physicists

Classical tools developed in that context (Ehrenfest relations,
solitons, variational methods, etc ..) can be used to analyze the
solutions of the mean field games equations

Here: application to a simple population dynamics model

— rather thorough understanding of this model
(including more structured initial conditions, collapse of
the soliton,..)

It seems rather clear that the connection with NLS will eventually
provide a good level of understanding for a large class of quadratic
mean field games :

- repulsive interaction (Thomas-Fermi approximation, etc...)

- two-populations [Schelling-like] models (domain formation,
tunneling effect, etc ..)




Question : how much is this useful ?



Question : how much is this useful ?

If you are physicist ...

» Mildly useful but a lot of fun



Question : how much is this useful ?

If you are an economist / sociologist / etc ...

>

Understanding the qualitative properties of the solution of
MFG equations is presumably more important than
guantitative accuracy (no point in being more precise than the
model itself).

There may be some quadratic MFG actually relevant to a
practical problem (but not necessarily to the one you are
interested in).

However many of the approximation scheme (variational
approximations, Ehrenfest relations) etc .. do not necessarily
rely in a fundamental way on the transformation to NLS



Question : how much is this useful ?

If you are a mathematician ...

» Understanding deeply a class of MFG could help gaining intuition for
the more general setting (cf Ising model).

» Eg:non-monotone systems :

= Non-unigueness of the solution appear more as a feature than as

a bug. Quadratic MFG may represent a good setup to think about
this.

= Same thing for the existence of the ergodic state [eg : relation
between the local point of view that emerge from the variational
approximation and the more general constraints of monotonicity]

» Eg: monotone systems : for large interactions, noise may become
largely irrelevant for most of the dynamics (Thomas Fermi
approximation) - may justify simplified description.

A\

Models with two different kind of small players (eg: Schelling).
Etc ...

A\



