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Résumé: Cette thèse explore l’intégration
du comportement humain dans la modélisa-
tion épidémique. La pandémie de Covid-19 a
mis en évidence l’importance du facteur hu-
main dans les modèles épidémiques, à la fois
par les réponses spontanées des individus face à
l’épidémie et par les mesures restrictives mises
en place par les autorités. Ces effets créent une
boucle de rétroaction qui influence à son tour
l’évolution de l’épidémie. Cependant, la plupart
des modèles actuels utilisés pour les prévisions
épidémiques ne prennent pas en compte ce fac-
teur humain dans la boucle, le traitant plutôt
comme un paramètre externe. Dans cette thèse,
nous étudions le paradigme des jeux à champ
moyen (Mean-Field Games, MFGs), qui offre un
cadre prometteur pour intégrer le comportement
humain dans les modèles épidémiques. Notre
objectif est de progressivement combler l’écart
entre cette approche théorique et de potentielles
utilisations pratiques. Concrètement, cela con-
siste en deux étapes: implémenter le cadre des
MFG dans des modèles épidémiologiques util-
isés aujourd’hui, et évaluer la pertinence d’une
éventuelle application pratique: les comporte-
ments prédits par le modèle sont-ils cohérents
avec ceux attendus ? Quels types de questions
pouvons-nous adresser en pratique ? Quels sont
les paramètres clés qu’il s’agira d’évaluer cor-
rectement ?

La première partie de la thèse applique
l’approche MFG à un modèle compartimen-
tal SIR accompagné d’une structure sociale,
où les individus arbitrent entre le risque lié à
l’infection et les coûts associés à la réduction
des contacts sociaux. Une fois implémenté, nous
simulons numériquement ce modèle avec un jeu
de paramètres réalistes afin d’évaluer le com-
portement que pourrait avoir notre modèle en
pratique. Un équilibre de Nash, résultant de
l’optimisation égoïste des individus, est établi
et résolu numériquement. Il est comparé à
l’optimum social, qui correspond à une stratégie
optimale où chacun coopère pour minimiser les

coûts sociétaux. L’écart entre ces deux scénarios
est en partie réduit en résolvant des équilibres
de Nash sous contraintes, qui intègrent des in-
terventions gouvernementales. Enfin, nous ex-
plorons d’autres stratégies collectives suscepti-
ble de mettre fin à une épidémie. Nous mon-
trons que des changements dans la taille de
la population ou dans la durée du “jeu” peu-
vent conduire à des transitions de phase du pre-
mier ordre parmi les stratégies optimales du
point de vue sociétal. Dans la seconde par-
tie de la thèse, nous appliquons les MFG à
des réseaux complexes, où les individus sont
classés selon leur nombre de connexions (de-
gré). Nous dérivons d’abord la dynamique des
quantités épidémiques macroscopiques sur des
réseaux en utilisant l’approximation par paires,
puis nous implémentons l’approche MFG. Nous
simulons le modèle avec un réseau de contacts
réaliste puis nous étudions l’impact de la forme
du coût social sur l’équilibre de Nash. Nos
résultats révèlent d’importantes variations des
comportements individuels selon leur degré ou
la forme du coût choisie. Enfin, dans un pro-
jet annexe, nous dérivons une solution analy-
tique implicite du modèle SIR sur des réseaux
réguliers de degré k quelconque. Dans la limite
SIR, nous dérivons une nouvelle formulation de
résultats analytiques connus, apportant de nou-
veaux éclairages.

L’implémentation des MFG apparaît réal-
isable et flexible dans la plupart des modèles
d’épidémiologie utilisés aujourd’hui. Cette ap-
proche permet l’émergence de comportement
dynamiques réalistes et permet d’adresser de
nombreuses questions relatives aux restrictions
d’un point de vue quantitatif. Au delà de
recherches supplémentaires concernant les coûts
associés à l’infection et à la réduction des con-
tacts, la connaissance de la structure sociale
et l’horizon temporel choisi semblent être des
critères déterminants dans l’établissement de
l’équilibre de Nash.
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Abstract: This thesis explores the integration
of human behavior into epidemic modeling. The
Covid-19 pandemic has highlighted the impor-
tance of the human factor in epidemic mod-
els, both through individuals’ spontaneous re-
sponses to the outbreak and through the restric-
tive measures imposed by authorities. These ef-
fects create a feedback loop that, in turn, influ-
ences the evolution of the epidemic. However,
most current models used for epidemic forecast-
ing do not account for this human-in-the-loop
factor, treating it instead as an external pa-
rameter. In this thesis, we study the Mean-
Field Game (MFG) paradigm, which provides a
promising framework for incorporating human
behavior into epidemic models. Our goal is to
progressively bridge the gap between this the-
oretical approach and potential practical appli-
cations. This involves two main steps: imple-
menting the MFG framework in currently used
epidemic models and assessing the feasibility of
practical applications. Do the behaviors pre-
dicted by the model align with expected out-
comes? What kind of questions can this model
help address in practice? What are the key pa-
rameters that must be accurately evaluated?

The first part of the thesis applies the MFG
approach to a compartmental SIR model with a
social structure, where individuals make trade-
offs between the risk of infection and the costs
associated with reducing social contacts. After
implementing this model, we simulate it numer-
ically using realistic parameters to evaluate the
model’s potential real-world behavior. A Nash
equilibrium, which arises from individuals’ self-
ish optimization, is established and solved nu-
merically. It is then compared with the so-
cial optimum, which corresponds to a coopera-

tive strategy aimed at minimizing societal costs.
The gap between these two scenarios is par-
tially reduced by solving constrained Nash equi-
libria, which include government interventions.
Finally, we explore other collective strategies to
end an epidemic. We show that changes in pop-
ulation size or the duration of the model can
lead to first-order phase transitions among op-
timal strategies from a societal perspective. In
the second part of the thesis, we apply the MFG
framework to complex networks, where individ-
uals are categorized by their number of con-
nections (degree). We first derive the dynam-
ics of macroscopic epidemic quantities on net-
works using pairwise approximation, and then
we implement the MFG approach. We simulate
the model using a realistic contact network and
investigate the impact of different social cost
structures on Nash equilibria. Our results re-
veal significant variations in individual behav-
ior depending on their degree or the chosen cost
structure. Lastly, as a related project, we derive
an implicit analytical solution for the SIR model
on regular networks with any degree k. In the
SIR limit, we present a novel formulation of pre-
viously known analytical results, providing new
insights.

The implementation of the MFG framework
appears feasible and flexible in most current
epidemiological models. This approach allows
for the emergence of realistic dynamic behav-
iors and can address numerous questions regard-
ing restrictions from a quantitative perspective.
Beyond further research on the costs associated
with infection and contact reduction, knowledge
of the social structure and the chosen time hori-
zon seem to be critical factors in establishing the
Nash equilibrium.

3



4



Remerciements

Cette thèse a été financée par l’École Doctorale Physique en Île-de-France (EDPIF), que je souhaite
remercier pour sa confiance, et pour la prolongation qui m’a été accordée à la fin de ma thèse pour me
permettre d’achever mes travaux de recherche et mon manuscrit dans de bonnes conditions. Je tiens à
remercier sincèrement tous les membres de mon jury, en particulier mes rapporteurs, qui ont accepté
de lire mon travail avec un regard critique et de participer à ma soutenance.

Je souhaite remercier les membres de mon comité de suivi, qui m’ont accompagné pendant cette
thèse, à savoir Marc Barthélémy et Françoise Cornu, ainsi que Véronique Terras pour son accompag-
nement au sein de l’école doctorale.

J’ai passé un peu plus de 3 ans au LPTMS, depuis mon stage de master 2 qui a démarré en
avril 2020. Je souhaite tout d’abord remercier sincèrement Denis Ullmo, qui m’a donné l’opportunité
d’effectuer ce travail de recherche, lequel m’a beaucoup plu au quotidien. J’ai apprécié le cadre de
travail qu’il m’a proposé, avec bienveillance, autonomie et confiance, dans une relation davantage
d’égal à égal que hiérarchique; ainsi que nos nombreuses discussions au cours de ces 3 années lors des
pauses déjeuner. Merci !

Ma thèse a été marquée par un passage compliqué en 2e année. J’ai fait une chute à vélo en
septembre 2022, qui m’a conduit à rester un mois et demi en dehors du labo, avec des soins qui se sont
ensuite poursuivis pendant un an, suite à plusieurs fractures de la mâchoire et la perte de plusieurs
dents. Peu après mon retour au laboratoire, Denis a lui aussi rencontré des soucis de santé qui l’ont
éloigné pendant un peu plus de 6 mois. Durant toute cette période, j’ai été particulièrement soutenu,
notamment par le directeur du LPTMS, Alberto Rosso, ainsi que par l’équipe du secrétariat et plusieurs
autres chercheurs. Merci à vous tous. Je tiens à remercier spécifiquement Olivier Giraud, qui s’est
rapidement manifesté pour se proposer de travailler avec moi et m’accompagner pendant ma thèse à
partir de janvier 2023, en devenant mon co-directeur.

Cette collaboration m’a permis de me remobiliser pendant cette période, elle a été très enrichissante.
En mars 2023, Olivier est parti à Singapour, et notre collaboration s’est donc poursuivie à distance.
Malgré cela, Olivier s’est toujours montré disponible et volontaire pour poursuivre le travail de recherche
que nous avions entamé. Je le remercie aussi pour l’opportunité qu’il m’a offerte de partir à Singapour
pendant 3 semaines en septembre 2023. Je tiens également à remercier le laboratoire qui m’a accueilli,
le Majulab de Singapour, sa directrice Alexia Auffèves, ainsi que les différents chercheurs avec qui j’ai
pu échanger et passer d’agréables moments là-bas, comme Gabriel ou Maxime. Cette mission a été très
enrichissante pour moi, tant sur le plan scientifique, en passant de nombreuses journées avec Olivier
à échanger et avancer ensemble, que sur le plan culturel, en découvrant un pays, une culture et des
paysages très différents de ceux que l’on connaît en France.

Je remercie particulièrement Denis et Olivier pour leur travail patient, attentif et rigoureux qu’ils
ont effectué en acceptant de relire ma thèse.

Au-delà du travail de recherche, le LPTMS m’a permis de pleinement profiter de mon doctorat en
me donnant l’opportunité de participer, en plus de mon voyage à Singapour, à des congrès, séminaires,
workshops, ainsi qu’à une école d’été en Sicile et une conférence sur les réseaux à Venise. Je tiens à
remercier Alberto Rosso pour ces différentes opportunités, ainsi que l’équipe du secrétariat composée
de Claudine Le Vaou, Delphine Hannoy, et auparavant Karolina Kolodziej, pour leur excellente gestion
et leur façon de faciliter la vie des membres du laboratoire.

Je retiendrai les discussions et échanges que j’ai pu avoir avec des scientifiques inspirants, parmi
lesquels Martin Lenz, Guillaume Roux, Nicolas Pavloff, Christophe Texier, ainsi que Satya et Leonardo.
Je remercie particulièrement Guillaume pour son implication dans la direction du laboratoire et pour
ses réflexions sur la réduction de l’empreinte carbone du LPTMS. J’espère que le travail que nous avions
initié avec Stéphane Ouvry et Karolina pourra se poursuivre ! La vie du laboratoire est également
portée par de nombreux doctorants et post-doctorants avec qui j’ai eu le plaisir de partager ces années.
I want to thank the former students of the lab, such as Felix for our chess games together, as well as Sap,
Lara, and Lorenzo among others. I also want to acknowledge the current students and post-docs of the
lab: Jules, Benoît, Alice, Lukas, Pietro, Giorgio, Vincent, Andrey, Florent, Marco, Charbel, Romain,
and others for their energy and efforts in promoting various activities at the lab (dinners, parties,

5



journal clubs, aperos, climbing, and, of course, the traditional lunchtime). These activities create a
nice atmosphere, particularly for integrating new students into the lab. Je tiens particulièrement à
remercier Matteo avec qui j’ai partagé mon bureau pendant ces 3 ans. J’ai beaucoup apprécié nos
nombreuses discussions, et j’espère que cette amitié pourra perdurer au-delà de cette thèse.

Enfin, ces 3 années m’ont permis de m’épanouir dans mes projets personnels, notamment en co-
fondant un parti politique, Équinoxe. J’ai également pu faire du sport de façon parfois intensive avec
les différentes associations du secteur (club de triathlon, de cyclisme et d’échecs d’Orsay).

Bien sûr, je ne peux pas terminer ces remerciements sans évoquer ma famille et mes proches.
Je tiens à remercier mes parents pour tout ce qu’ils ont fait pour moi jusqu’à présent, pour leur
éternelle bienveillance, pour la curiosité et pour le goût de l’apprentissage qu’ils m’ont transmis. Je
sais que je peux toujours compter sur eux ; ils ont été des soutiens importants au moment de mon
accident en m’aidant à traverser cette épreuve de la meilleure des façons. Mes frères, et ma famille de
façon plus générale, m’ont également apporté un soutien dont je suis reconnaissant. Je souhaite plus
particulièrement évoquer mon frère jumeau Vincent avec qui je suis en colocation depuis 2 ans. Je
réalise la chance que j’ai de partager la quasi-totalité de mes passions avec lui. Nous avons souvent joué
aux échecs, fait du vélo, et travaillé ensemble pour Équinoxe, parmi d’autres passions partagées. Sur le
plan plus personnel, je tiens à remercier Yasmine, qui m’a aidé à reprendre confiance et à me rétablir
après mon accident. Enfin et surtout, un immense merci à Marianne pour sa gentillesse omniprésente,
sa bienveillance envers chacun, son énergie, sa curiosité dans nos discussions, et sa patience pendant
la rédaction de mon manuscrit ainsi que les élections. J’ai beaucoup apprécié cette dernière année
passée à tes côtés, avec tous les moments que nous avons partagés ensemble. J’espère qu’il y en aura
de nombreux autres.

Je souhaite une bonne lecture à celles et ceux qui prendront le temps de lire cette thèse. Pour ceux
qui le souhaitent, une synthèse en français est présentée à la fin de la thèse (appendice F) ; elle est plus
accessible (sans équations ni notations) et permettra, je l’espère, de comprendre l’essence du travail de
recherche que j’ai réalisé avec Denis et Olivier.

6



Contents

General introduction 12

1 Introduction: human behavior in epidemiological models 13
1.1 Basic SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Current epidemiological models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Human behavior in epidemiological models . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 An introduction to Mean-Field Games using the SIR model 33
2.1 Basics of game theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Mean-field Game approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Mean-Field Game on the SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Applications of MFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5 A view of epidemiological family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 MFG Approach to Non-Pharmaceutical Interventions in a Social Structure model
of Epidemics 55
3.1 Social structure based modeling of epidemics dynamics . . . . . . . . . . . . . . . . . . 55
3.2 Mean-field game approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 Optimal scenarios to deal with an epidemic from the health authority point of view . . 73
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Epidemics spreading on networks through a MFG approach 83
4.1 Basic tools for network analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Mean-Field approximations on networks . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Mean-Field Games on networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Analytical results on random homogeneous networks 103
5.1 Analytics results for homogeneous networks . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Large-k limit of the SIR-k model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Numerical techniques 115
6.1 Reaching a Nash equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Reaching the societal optimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Numerical Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 Other numerical techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 133

A Choice of parameters in Chapter 3 139

B Complements on the Pairwise Approximation 141
B.1 Alternative derivation of Gxy

kk′ dynamics with a more formal approach . . . . . . . . . . 141
B.2 Normalization rules for Gxy

kk′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.3 Validation of our batching procedure on the Pairwise Approximation . . . . . . . . . . 145

C Social structure description of epidemic propagation with a MFG paradigm 147

D Mean-Field Game Approach to Non-Pharmaceutical Interventions in a Social Struc-
ture model of Epidemics 153

7



E Analytical solution of SIR models on homogeneous networks 185

F Mean-field game approach to epidemic propagation on networks 195

G Synthèse en Français 207
G.1 Introduction aux modèles épidémiologiques . . . . . . . . . . . . . . . . . . . . . . . . 207
G.2 Introduction aux jeux à champ moyen . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
G.3 Une approche basée sur les jeux à champ moyen pour évaluer et construire les interven-

tions non pharmaceutiques dans un modèle SIR muni d’une structure sociale. . . . . . 210
G.4 Propagation des épidémies sur réseaux avec une approche de jeux à champ moyen . . . 213
G.5 Résultats analytiques sur les réseaux homogènes . . . . . . . . . . . . . . . . . . . . . . 216
G.6 Techniques numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
G.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8



General introduction

Epidemics have posed significant challenges to human societies for millennials. One
of the earliest recorded pandemics is Antonine Plague (165-190) which significantly im-
pacted Romanian empire, particularly the Roman army [1]. It has been followed by the
Plague of Justinian (541-549), which originated in Constantinople and spread throughout
the Byzantine Empire, affecting the Middle East, much of the Mediterranean Basin, and
Europe. This plague is estimated to have killed between a quarter and half of Europe’s
population [2], leading to profound economic, social, and political consequences, includ-
ing conflicts and a rise in grain prices [3]. Several centuries later, the bubonic plague
(1346-1353), caused by the same bacterium and also known as the Black Death, wiped out
approximately 50% of Europe’s population [4]. Originating in Eastern Europe, it spread
across the continent via trade routes. For the first time, authorities implemented measures
like social distancing and quarantine to curb the epidemic. The Black Death remains one
of the deadliest pandemics in human history, with more than 50 million deaths. More
recently, pandemics such as the Spanish Flu (1918-1920) and Covid-19 (2020-present) have
claimed tens of millions of lives globally, profoundly impacting human life.

In response to these crises, people have long sought to understand epidemics, though
early efforts were largely empirical. For instance, quarantine measures during the Black
Death were based on observation rather than scientific understanding. It was not until
the discovery of pathogens by Louis Pasteur in the late 19th century that the mechanisms
of infectious diseases became clear. Pasteur’s pioneering work led to the development of
vaccines and treatments against pathogens [5], and he initiated a research field focused
on understanding the biological structures of pathogens and viruses [6]. This research
made significant progress throughout the 20th century, culminating in the development
of highly effective vaccines against viruses [7]. These advancements have been crucial for
public health, not only in combating human-transmitted epidemics but also in addressing
infectious diseases more broadly. The containment and eradication of numerous deadly
infectious diseases during the 20th century can largely be attributed to the development of
vaccines and medical treatments [7].

A few decades after Pasteur’s groundbreaking discoveries, physicists and mathemati-
cians began to study the propagation of infectious diseases in more detail. This led to the
introduction of the famous Susceptible-Infected-Recovered (SIR) model by Kermack and
McKendrick in 1927 in their seminal paper [8]. This marked the beginning of a second
field of research in combating epidemics —epidemiological modeling— which has signifi-
cantly enhanced our understanding of epidemic dynamics and the effectiveness of various
control measures. While theoretical advancements in this field progressed slowly after Ker-
mack and McKendrick, the late 20th century saw a surge in research due to the advent
of computational power and the availability of data sets, enabling more accurate epidemic
predictions. Nevertheless, despite its potential to mitigate and anticipate outbreaks, the
impact of epidemiological modeling on global health has been significantly less pronounced
compared to biological approaches.

Despite the substantial progress in both biology and epidemiological modeling, epi-
demics continue to pose a major challenge to human societies today. The recent Covid-19
crisis is a stark example, but many other epidemics emerge each year, such as Ebola, var-
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ious dengue fevers, cholera, and different types of influenza [9]. The apparent increase
in disease outbreaks is likely due to a combination of improved global health monitoring
systems, which detect more epidemics than in the past, and societal changes [10]. In-
deed, most viruses originate in wildlife, with transmission occurring through animals [11];
and Human-wildlife interactions are increasing for several reasons [10, 12, 13], such as
the artificialization of land leading to closer contact between humans and wildlife, and
the exploitation of animals. These interactions are expected to grow further due to cli-
mate change [14]. Additionally, epidemics are now more likely to spread rapidly across
the globe, as human interactions have significantly increased and become faster than ever
before. Within countries, the rise in urban populations – which is expected to reach around
60% by 2050 [15] – also contributes to higher interaction rates. Internationally, even ge-
ographically distant regions are now connected through air travel, facilitating the spread
of infectious diseases. Consequently, both biologists and epidemiological modelers must
develop more effective and accurate solutions or predictions in a timely manner to combat
future pandemics.

The recent Covid-19 crisis is a perfect illustration of the interplay between biology and
epidemiological modeling. At the onset of the epidemic, biologists focused on identifying,
sequencing, and understanding the behavior of the pathogen, while epidemiologists and
modelers worked to collect data from infected individuals to estimate key characteristics of
the virus, such as the reproduction number Reff. They quickly needed to develop models
and predictions about the potential extent and impact of a global pandemic, as well as to
propose various strategies to mitigate its effects for policymakers. Meanwhile, biologists
and physicians explored different medical treatments and, most importantly, worked on
developing a vaccine against the virus. Until the vaccine was developed in a record time
(just a few months), the world largely relied on the restrictions and guidelines provided by
epidemiologists and modelers.

Both fields demonstrated the significant advances made over the past few decades, such
as agent-based models in epidemiology and RNA-based vaccines, and showed impressive
reactivity and results during the Covid-19 crisis. However, the crisis also revealed sig-
nificant limitations that persist in the models used. Modeling an epidemic is a complex
task involving numerous parameters, each with substantial effects on the model’s accuracy.
Among these, the reproductive number Reff is the most critical and still carries consider-
able uncertainty [16, 17]. This parameter represents the average number of individuals an
infected person will transmit the virus to during their infectious period. If Reff > 1, the
epidemic will grow, while it will decline if Reff < 1. Accurately knowing Reff and predicting
its evolution are crucial tasks for modelers. At the onset of an epidemic, Reff is largely
determined by biological factors (such as contagiousness and transmission mode), but its
evolution is influenced by three main factors:

• The emergence of new variants with different levels of contagiousness.

• Changes in the number of susceptible individuals within the population.

• Changes in contact patterns among individuals due to the epidemic (i.e., individual
behavioral responses).

While the first factor is difficult to predict with models [18], the second is relatively well
understood through models that simulate population structure. However, there remains
a significant gap in modeling the third factor. The individual behavioral response to an
epidemic is a major source of uncertainty in current models, which often fail to account
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for it beyond the macroscopic constraints that might be imposed by a government.

To address this issue, several recent works [19, 20] investigate a way to integrate the
individual behavioral response to the epidemic through a promising route: the Mean-Field
Game (MFG) paradigm. This framework relies on the mathematical game theory, in which
a mean-field approach is realized. It allows to consider individuals as rational individuals
who act for their own interest making a balance between their risk perception of infection,
and their cost due to reduction of social contacts. Thus, the individual contact rate become
an outcomes of the model that we do not have to guess. Moreover, this approach allows to
consider the design of appropriate strategies to mitigate an epidemic, by evaluating their
cost on the entire society.

The goal of this thesis is to explore theoretically the complex interplay between human
behavior and epidemics dynamics. For that purpose, we use the MFG approach to develop
and investigate further the work started by the community, and close the gap between the
mathematical framework and practical applications.

Structure of the thesis
The first part corresponding to Chapters 1 and 2 is dedicated to a progressive introduction
into the specific topic of this thesis.

Chapters 1 and 2: This part introduces the essential tools for our analysis. Chapter 1
provides an overview of fundamental epidemiological models, with a particular focus on
deriving the well-known SIR model. A brief review of the epidemiological models currently
studied is also presented. Following this, we explore the importance of incorporating human
behavior into these models. In Chapter 2, we introduce the Mean-Field Games paradigm,
outlining the key conceptual tools that will be employed throughout our work, and apply-
ing these concepts directly to the SIR model.

Then, the three following Chapters 3-4-5 correspond to the three main projects conducted
during this thesis.

Chapter 3: This Chapter addresses our first main project. We develop a mean-
field game version of an epidemic model that incorporates a social structure. We then
explore the potential of this model through a numerical experiment. Initially, we focus
on individual optimization, followed by the design and control of Non-Pharmaceutical
Interventions (NPIs) adapted to the specific characteristics of the disease.

Chapter 4: In this part, we focus on our second main project: applying MFG to
complex networks. We begin by deriving approximated equations for epidemic models on
networks using a novel approach. Subsequently, we incorporate the MFG framework and
investigate the resulting behavior of individuals within both homogeneous and heteroge-
neous networks.

Chapter 5: Apart from MFG, we show in our third project that new analytical re-
sults can be obtained for random homogeneous networks using the pairwise approximation,
leading to meaningful insights.

A final part including a discussion of numerical techniques and a concluding section.
Chapter 6: This Chapter is dedicated to the numerical techniques used all along the

thesis, particularly for solving MFG equations.
Chapter 7: Discussion and conclusion of our work, providing a summary of our main

results and perspectives for following research.
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We then provide several appendices to complete the work presented.
Appendix A provides supplementary details about the choice of parameters used in

the numerical experience in Chapter 3.
Appendix B provides supplementary details of our work to complete Chapter 4.

Subsequently, the different works which have been published (or submitted) during this
thesis are displayed in their original version.

Appendix C is the letter published in Phys. Rev. E associated with Chapter 3.
Appendix D is the long version of the previous paper. This paper has been published

in Phys. Rev. E and is associated with Chapter 3.
Appendix E corresponds to our paper published in Phys. Rev. E on analytical results

on random homogeneous networks, associated with Chapter 5.
Appendix F corresponds to a preprint letter submitted in Phys. Rev. E on a Mean-

Field Game approach to epidemic propagation on networks, associated with Chapter 4.

Finally Appendix G is a French summary of the thesis.
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1 - Introduction: human behavior in epidemiological
models

This introduction first focuses in Sec. 1.1 on the construction of epidemiological models,
particularly the SIR model, providing essential conceptual and mathematical tools for the
subsequent work. Next, in Sec. 1.2, we examine the progresses made by theoreticians in
the field up to the present day. The most complex epidemiological models currently under
study explore various promising directions, ranging from fully microscopic to macroscopic
descriptions. These models are used both for practical applications and theoretical re-
search, yet they still exhibit certain limitations, particularly regarding the incorporation
of human behavioral responses to epidemics. In Sec. 1.3, we discuss the potential bene-
fits of integrating human behavior as an outcome of these models, and we review various
approaches that have been proposed to achieve this integration.

1.1 Basic SIR model

In this section, we begin by building step by step the well-known SIR model (Susceptible
- Infected - Recovered). In Sec. 1.1.1, we start with an epistemological discussion on the
key features of epidemics that need to be modeled, particularly emphasizing the stochastic
nature of epidemics. Then, in Sec. 1.1.2, we introduce the mathematical tools required to
handle stochastic processes, through a Markovian description. This groundwork enables us
to derive the SIR model in Sec. 1.1.3 from an individual based (and stochastic) perspective,
highlighting the various approximations made, which will be important to recognize in
order to refine and improve the SIR model in the following sections.

1.1.1 Key parameters

In our work, we focus on transient epidemics that spread through direct contact be-
tween individuals over a certain period and eventually dissipate due to factors such as
natural immunity or vaccination. In this context, transmission occurs when a susceptible
individual comes into direct contact with an infectious person. Other types of epidemics,
which reach stable configurations known as endemic phases or spread through more com-
plex interactions (such as waterborne or non-human epidemics) will not be our primary
concern here. Our first goal is to identify the key parameters necessary to describe these
transient epidemics, aiming at using the minimal number of parameters that can effectively
capture most of the dynamics.

Based on the above discussion of the transmission mechanisms, we can see that the
state of an individual (specifically their susceptibility to infection) and the transmission
dynamics between individuals are essential components of a fundamental model. The sim-
plest approximation is to neglect all the other contributions and adopt a compartmental
model where individuals are categorized by their state: s, i, or r, with s for “susceptible”,
i for “infected” and r for “recovered”. These three compartments are well-defined: an indi-
vidual is classified as “susceptible” if she can be infected by the virus, “infected” when she is
contagious and capable of transmitting the disease, and “recovered” when she is immune to
the disease and no longer infectious. Once these compartments are established, we need to
define the transitions between these states using a minimal set of parameters. Typically,
this involves two parameters: one governing the transition from susceptible to infected,

13



describing the infectious process, and another governing the transition from infected to
recovered, describing the recovery process.

Another critical aspect of epidemics is their inherent randomness; it is impossible to
predict exactly when and how an individual will become infected. This uncertainty comes
from numerous unknown factors, such as the complexity of interactions between suscep-
tible and infected individuals, the conditions of contact (e.g., duration, location), the
infectiousness of the infected person, natural immunity, and the viral load received by the
susceptible individual. These variables are too complex to be model precisely. Additionally,
even the frequency and nature of contacts between individuals are influenced by numerous
unpredictable factors. To address this complexity, it is common to treat these parameters
probabilistically. This shifts our focus from deterministic processes, where outcomes are
precisely known, to stochastic processes, where variables evolve according to probabilistic
laws. In the next section, we provide a brief introduction to the mathematical tools used
for modeling epidemics within this stochastic framework.

1.1.2 Stochastic processes

Stochastic processes are widely used in statistical physics to model the behavior of
complex systems which have many interacting elements. A system is considered stochastic
if it comprises a set of dynamic random variables, where these variables follow probabilistic
laws rather than deterministic processes. In physics, stochastic processes are often repre-
sented through noise, which are random variables with specific probabilistic characteristics,
such as a Gaussian white noise. A classic example in physics is the Brownian motion, where
the motion of a particle with mass m and velocity v in a fluid is described by the Langevin
equation, which includes a Gaussian white noise as a representation of stochastic variability.

Similarly, epidemics involve numerous uncertain events that can be modeled using a
stochastic approach. Unlike Brownian motion, which is described by a continuous state
variable x(t), epidemics are characterized by discrete states (susceptible, infected, recov-
ered). Moreover, epidemic processes are typically characterized by short-term memory,
meaning that the dynamics at time t depends only on the state of each individual at that
moment, not on their previous states. Such processes are said to be Markovian.

These Markovian processes are a specific type of stochastic processes characterized
by the Markov property, which assumes a short-memory hypothesis [21]. These pro-
cesses involve a discrete (or occasionally continuous) set of random variables X(t) =

(x1(t), x2(t), . . . , xN (t)), indexed by a parameter t that can be either discrete or continuous.
Markovian processes are often referred to as Continuous Time Markov Chains (CTMC) or
Discrete Time Markov Chains (DTMC) [22], where the chain represents the different states
of the system X(t) at each time t. In a DTMC, the state space is discrete, and the process is
described by a set of random variables xi(t) that represent the N elementary components of
the system. To illustrate the Markov hypothesis, we consider a DTMC. Let (X1, . . . , Xn) a
list of consecutive states of the system and (t1, . . . , tn) a set of discrete times. The evolution
of the system is given by the joint probability P (Xn−1, tn−1; . . . ;X1, t1), which represents
the probability that X(t) is in state X1 at t1, X2 at t2, and so forth until Xn−1 at tn−1.

The dynamics of the process is then described by the conditional probability P (Xn, tn |
Xn−1, tn−1; . . . ;X1, t1). The Markov assumption states that the future state of the system
depends only on its most recent state. Therefore, we get

P (Xn, tn | Xn−1, tn−1; ...;X1, t1) = P (Xn, tn | Xn−1, tn−1) . (1.1)
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Markov assumption is very useful to express this conditional probability, also known as the
transition rate, in a very simple way. For epidemics, this approximation suits particularly
well, it is used almost everywhere in the literature of epidemiological models. Nevertheless,
some works has recently focused on non-Markovian approaches, which notably allows to
consider a time delay for the appearance of symptoms [23, 24].

All along our work, we will consider a CTMC to describe the dynamics of epidemics.
With those mathematical tools at hand, we now introduce to build in detail the SIR model.

1.1.3 The basic SIR model as a founding element

In this section, we rebuild the famous SIR model. This derivation has already been
performed several times since its introduction by McKendrick and Kermack in 1927 [8]
(see [25] for a complete introduction to the subject). However, we find it useful to rederive
it here, as it will be the first step towards more complex models. Also we would like to
highlight some steps and approximations which will be useful later but are often skipped
in the derivations present in the literature.

The SIR model is defined as follows. We consider a fixed population of N individuals.
Let xk(t) ∈ {s, i, r} be the state of individual k at time t. Starting from some initial
configuration at t = 0, we then assume that the system evolves in a stochastic way, with
a dynamics described by a Markovian process (CTMC) where {xk(t)} are stochastic vari-
ables. Between times t and t + dt, individuals can switch from one state to another with
a certain probability, which depends on their contact rate with the rest of the population
and of the status of people they meet. In a population composed of N individuals, the
probability for a susceptible individual k to have contact with another individual l dur-
ing the interval [t, t+ dt[ is 1

Nχkl(t)dt, with χkl(t) a (possibly time dependent) parameter
corresponding to the contact rate between individuals k and l. If individual l is infected,
then there is a probability ρ that the disease be transmitted from l to k. Finally, infected
individuals have a probability ξdt to recover from their illness during the interval [t, t+dt[,
after which they are immune to the disease. Note here that we introduce 3 types of param-
eters even though only 2 are required to set the model. We distinguish explicitly ρ and χ,
to ease the derivations regarding the contact rates and in preparation for the models that
we will consider later.

We thus obtain the following Markov equations describing our process at the micro-
scopic level for each individual k



P [xk(t+ dt) = i|xk(t) = s] = ρ

N∑
l=1

1

N
χkl(t)δxl(t),i dt

P [xk(t+ dt) = s|xk(t) = s] = 1− ρ

N∑
l=1

1

N
χkl(t)δxl(t),i dt

P [xk(t+ dt) = r|xk(t) = i] = ξ dt ,

P [xk(t+ dt) = i|xk(t) = i] = 1− ξ dt ,

(1.2)

with P [e] the probability of the event e, and δa,b the Kronecker symbol, all other transition
rates are zero. Figure 1.1 summarizes the process that drives an individual from state s

to i to r. We can know compute the evolution of macroscopic quantities of the epidemic.
The relative proportions of susceptible, infected and recovered in a population of size N
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Figure 1.1: Illustration of the Markov process for the classic SIR model with the transition
rates to move from one state to another between time t and t+dt. An individual susceptible
at t has a probability ρχ(t)I(t)dt to become infected (we omit the bracket notation on I).
If this individual is already infected at t, she will have a constant probability ξdt to recover
from the disease.

can be written as 

S(t) =
1

N

N∑
k=1

δxk(t),s

I(t) =
1

N

N∑
k=1

δxk(t),i

R(t) =
1

N

N∑
k=1

δxk(t),r .

(1.3)

These quantities are stochastic because xk(t) is. Let us now consider an individual k which
is susceptible at time t (i.e. δxk(t),s = 1). To become infected at time t+ dt, this individual
must meet an infected individual l in the time interval [t, t + dt[, and this encounter
must lead to a transmission of the disease. Thus the proportion of individuals which are
susceptible at time t and infected at time t + dt is given, for a given realisation of the
Markov process, by

S(t+ dt)− S(t) = − 1

N

N∑
k=1

N∑
l=1

Ckl(t) δxk(t),s δxl(t),i , (1.4)

with Ckl(t) the purely stochastic variable which takes value 1 if k and l met during the
interval [t, t + dt[ and this encounter leads to k being infected (if k is susceptible and l

is infected), and 0 otherwise. This stochastic variable Ckl(t) has an average value (over
random realizations of the Markov process) which is the product of the probability of con-
tact during dt, 1

Nχkl(t)dt, by the transmission rate ρ since both events are independent.
At this point, we need to make the assumption that all individuals can be met by k with
equal probability (in other words, the population considered from the point of view of k
is homogeneous), namely χkl(t) = χk(t). One then takes the average over realizations as-
suming the independence of the two stochastic variables δxk(t),s, and δxl(t),i which amounts
to assume that the events “individual k is susceptible at t”, and “individual l is infected
at t” are independent because N is large and the population is homogeneous. One also
made a natural independence hypothesis between the stochastic variable Ckl(t) and the
state variables xk,l(t). The previous approximations lead to

d⟨S(t)⟩
dt

= − 1

N2

N∑
k=1

N∑
l=1

ρχk(t)⟨δxk(t),s⟩⟨δxl(t),i⟩

= − 1

N

N∑
k=1

ρχk(t)⟨δxk(t),s⟩⟨I(t)⟩ .

(1.5)

The next simplification is to assume that the contact rate χk(t) only depends on the state
xk(t) of individual k at t. That means that all individuals with the same status have
the same contact rate χk(t) = χxk(t)(t). Denoting by χ(t) = χs(t) the contact rate of
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individuals which are susceptible at t, Eq. (1.5) reduces to

d⟨S(t)⟩
dt

= −ρχ(t)⟨S(t)⟩⟨I(t)⟩ . (1.6)

The other SIR equations in Eq. (1.7) are obtained in the same way.
Noting ⟨S(t)⟩, ⟨I(t)⟩ and ⟨R(t)⟩ the average over realizations of the Markov process,

the evolution of the epidemic is governed by this system of equations

⟨Ṡ⟩ = −ρχ(t)⟨S(t)⟩⟨I(t)⟩
⟨İ⟩ = ρχ(t)⟨S(t)⟩⟨I(t)⟩ − ξ⟨I(t)⟩
⟨Ṙ⟩ = ξ⟨I(t)⟩ .

(1.7)

This system of equations, almost a century old [8], involves only the average quantities
⟨S⟩, ⟨I⟩, and ⟨R⟩, which are determined as solutions of the system. It is also characterized
by two “extrinsic” parameters: the recovery rate ξ and the product of the contact rate χ(t)

by the probability ρ of transmitting the disease. The term “extrinsic” here indicates that
these parameters are inputs to the model, requiring empirical data for practical application.

According to the central limit theorem, the actual realizations of the Markov process
which yield S, I, and R will be distributed according to a Gaussian distribution around
the solution given by Eq. (1.7), with a standard deviation for I that scales as 1/

√
N⟨I⟩

(and respectively for S and R). This implies that stochastic effects can significantly impact
finite populations, particularly at the beginning or end of epidemics when ⟨I⟩ is small, as
is well known. However, since our focus is on large populations and the core phase of the
epidemic, fluctuations will not play a significant role. Therefore, we will not emphasize
them in our analysis. To simplify the notation, we will omit the bracket notation ⟨ ⟩ around
epidemic quantities in the following sections.

Despite its simplicity, and even in its most basic form where χ(t) = χ is constant,
there is no known explicit analytical solution for Eq. (1.7), with the solutions only existing
in implicit integral form [26]. While numerical solutions can be easily obtained, analyti-
cal understanding of the model’s equations is often necessary to fully understanding the
model (and thereby the underlying phenomena). For instance, several insights can still be
extracted from the SIR equations without their analytical solution. In Eq. (1.7), we see
that the ratio

R0(t) = ρχ(t)/ξ (1.8)

must exceed 1 for an epidemic to develop (assuming S(0) ≃ 1). This insight led to the main
contribution of Kermack and McKendrick, who derived the threshold theorem “R0 = 1”
for the onset of epidemics.

In addition to identifying this threshold, this simple model also helps to explain the
concept of collective (or herd) immunity. By rewriting the second equation of Eq. (1.7),
we obtain İ(t) = ξ (Reff − 1) I(t), where Reff(t) = R0(t)S(t). Thus, when S(t) falls below
a critical level, specifically when ρχ(t)S(t)/ξ drops below 1, or equivalently S < 1/R0,
then İ < 0 and the epidemic begins to decrease until it eventually disappears. Note that
Reff(t) can be interpreted as the average number of individuals to which an infected person
at time t will transmit the virus: each infected individual has a probability ξReff(t)dt of
infecting a susceptible individual during the time interval [t; t+dt[, and remains infectious
for an average duration of 1/ξ.

These considerations highlight the clear advantages of simple models, particularly the
ability to understand a phenomenon from a physical perspective. However, this simplicity
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comes with the drawback of significant oversimplifications of the complex realities of the
world. Below, we outline the main approximations of the SIR model, which are important
to identify both for recognizing the model’s limitations and for identifying potential avenues
to refine and improve this model. First, regarding the contact structure: we assume three
types of homogeneity. The first one concerns the uniformity of individual’s contact rate
with others, meaning that the probability of meeting any other individual is the same,
expressed as χkl(t) = χk(t) being independent of l. The second concerns homogeneity in
individuals’ contact rates, assuming they are identical, i.e., χk(t) = χ(t) is independent of
k. The third involves homogeneity over time, where χ(t) = χ becomes constant.

Second, we consider a very large population. This allows us to neglect the intrinsic
fluctuations of epidemic dynamics and assume that the status of two individuals in contact
are independent. In reality, correlations may exist, either due to individuals’ status or
because of specific links (e.g., family members).

Third, all other parameters, such as ρ and ξ, are taken constant, even though they
may vary across individuals and time. For instance, individuals may require different
viral loads to become infected, or they may engage contacts of varying risk (e.g., wearing
masks, avoid physical gestures like handshakes). Recovery rates may also differ between
individuals. Furthermore, the emergence of new variants during an epidemic could alter
both ρ and ξ.

A final approximation is the consideration of only three compartments (S, I,R). As we
will see, additional compartments may be necessary to adequately characterize the state of
each individual. However, adding such compartments is straightforward and can be easily
implemented.

Since the SIR model, epidemiological modelers have developed various methods to
refine the SIR model, leading to the sophisticated models studied nowadays. We discuss
some of these advancements in the next section.

1.2 Current epidemiological models

In the previous section, we observed that the SIR model employs several approximations
that, while beneficial for theoretical understanding, fall short for practical applications.
The natural approach to enhancing this model is to relax (at least partially) some of
these approximations. In Sec. 1.2.1, we discuss the balance required to develop models
that are both practical and efficient, drawing an analogy with climate science. Then, in
Sec. 1.2.2, we introduce the three main families of epidemiological models that researchers
have explored for decades: compartmental models, models based on networks, and agent-
based models. We present each of these families, providing examples of recent works
and highlighting their remaining limitations. We start with compartmental models in
Sec. 1.2.3, followed by network-based models in Sec. 1.2.4, and finally, agent-based models
in Sec. 1.2.5.

1.2.1 Practical efficiency: a balance between accuracy and complex-
ity

As discussed earlier in the context of the SIR model in Sec. 1.1.3, advancing the model-
ing process requires introducing new parameters. On the one hand, this is done to enhance
accuracy, i.e., reduce the discrepancy observed between theoretical predictions and real-
world data. On the other hand, incorporating more parameters can enable the model to
address specific questions that cannot be tackled with simpler frameworks. For example,
assessing the role of vaccination in mitigating epidemics requires the introduction of an-
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other compartment, which cannot be addressed with the basic SIR model alone. However,
the inclusion of more parameters also increases the complexity of the model in several
ways:

1. Model calibration: The practical use of the model will be harder, as fixing the
parameters will require larger data sets or specific data which can be very complicated
to obtain with precision.

2. Overfitting risks: The potential number of free parameters will increase. This
increase the risk of overfitting, that is to find particular sets of parameter which will
only fit the training set but not pass the validation test.

3. Interpretability: The physical understanding of the system become less clear. It
will be harder to know what is the exact influence of each parameter when there are
competing in a sophisticated and intricated way.

4. Numerical complexity: The increasing complexity will lead to more sophisticated
systems to solve. This usually leads to the increasing time of numerical computa-
tions, which may also be more challenging to realize technically.

All these issues are already present in several fields in physics and complex systems par-
ticularly, including epidemics. We provide below an illustrative example of climate science
which already faced number of these issues, before turning to epidemiological field.

1.2.1.1 Analogy with climate science
In climate physics, highly complex models with thousands of parameters are used.

This field, developed through extensive international collaboration, directly confronts
the limitations mentioned earlier. Climate physicists contend with a limited number
of observations and inherent uncertainties in data, which challenge the model calibra-
tion. This calibration may also be affected by the chaotic nature of weather, which
could impede advancements in forecasting due to data uncertainties, despite progress
in modeling. However, thanks to the vast number of databases available for param-
eter fitting, overfitting risks are less significant in this field (unlike for instance in
biology, where data accessibility is a major issue). At a macroscopic scale, emergent
phenomena such as the dynamics of major atmospheric currents influencing global air
circulation are not always fully understood, even though models predict them. To ad-
dress this, climate physicists study these phenomena by focusing on smaller models
with fewer parameters, retaining those suspected of causing unexplained phenomena
to enhance the interpretability of their model. This approach through fractional mod-
els, where phenomena are divided for separate study (e.g., water, atmosphere, ice),
is widely used. The field also faces the challenge of increasing computational power
required for climate (and especially weather) simulations.

Considering these points, we can understand why climate physicists build their
models using grids of a few kilometers square, still far from the molecular scale of
atmospheric constituents. As illustrated in Fig. 1.2, a balance between accuracy and
complexity is necessary in most complex systems. However, there are often multiple
ways to construct such models, and climate physicists have developed numerous formu-
lations that are not always easy to classify. In this context, an effective way to ensure
accurate predictions is to verify that multiple models with slightly different assumptions
yield predictions within a certain small interval, which then becomes the “confidence in-
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terval”. The IPCC [27] has employed this approach with a certain success in predicting
climate change, despite its complexity.

Figure 1.2: Illustration inspired from [28] of the evolution of “accuracy” and “forecast capac-
ity” of models describing a complex phenomenon in terms of “complexity”. Here, “accuracy”
refers to a model’s ability to provide predictions close to real observations on unknown data
sets, while “complexity” typically represents the number of parameters in the model. Ac-
curacy generally increases with complexity, following a concave pattern, as key parameters
are considered first. “Forecast capacity” refers to model’s practical usability, reflecting its
ability to closely match real data sets, together with factors such as ease of use, the amount
of required data, simulation time, and the risk of overfitting (which is the main factor con-
sidered in [28]).

1.2.1.2 The case of epidemic modelling

Forecasting epidemics presents similar challenges. For model calibration, the issue of-
ten lies in data accessibility and availability, as population testing is frequently required.
Even when data are available, they often lack quantitative details. For instance, if an
individual tests positive for a disease, we know she is infected at the time of the test, but
we do not know when or how she has been infected, nor the duration of her infectiousness.
The stochastic effects also considerably affect model calibration, as epidemiologists need
to infer reproductive numbers or other critical parameters with a very limited number of
data in a short time. Related to this aspect, the risk of overfitting is also relevant in epi-
demic modeling, as appropriate data sets for parameter estimation are not always available.
Additionally, large-scale numerical simulations may sometimes be required, especially for
agent-based models. Finally, specific (or fractional) models for particular dynamics such as
information spreads, vaccination, are also developed to allow interpretability. These chal-
lenges —among others— are areas where epidemiologists can learn from climate physicists
[29]. In recent decades, numerous models have emerged as strong candidates for epidemic
prediction. During the Covid-19 crisis, epidemiologists began to really compare model
forecasts to provide robust guidelines to policymakers [30]. Such direction could be further
explored to enhance global predictions. In this thesis, we will rather focus on specific mod-
els of spontaneous behavior changes and their possible integration to more global models.

In this section on the practical efficiency of models, we aimed to show that while
epidemiological models can be enhanced in various ways, it is crucial for modelers to avoid
introducing excessive complexity due to inherent limitations. In the next section, we will
explore the most promising directions currently being explored by the epidemiological
community.
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1.2.2 Epidemiological models family

Epidemiological modeling has grown to become a vast field encompassing a wide range
of topics. While it is beyond the scope of this work to provide a comprehensive review
of the literature, certain techniques and methods have emerged as particularly effective.
These are discussed below along with specific examples.

Epidemiological models can be broadly categorized into three main families:

1. Compartmental models: These models, which belong to the same family as the
SIR model, employ a “top-down” approach. They begin with broad compartments
that may be numerous. Then, the fully homogeneous description of the population
is often abandoned for more refined descriptions, by introducing various batches that
consider for instance factors like age classes or different living regions. This allows
for a mesoscopic-scale description of individuals’ characteristics through mean-field
equations.

2. Compartmental models based on explicit networks: In these models, individ-
uals are represented as nodes within an explicit network, with specific descriptions for
each node. To make the system of equations more manageable, mean-field equations
are often derived, incorporating the network’s structural properties.

3. Agent-based models: These models provide a detailed individual-level description
of contacts. Each individual has a specific risk of infection, and there are no mean-
field equations. Instead, the model relies on the concept of synthetic populations,
which are designed to mimic the characteristics of a real population by capturing
relevant distributions such as age, employment status, etc.

1.2.3 Compartmental models currently used by health authorities

As discussed in Sec. 1.1.3 concerning the SIR model, compartmental models, first in-
troduced in 1927, have since undergone significant extensions. In these models, individuals
are grouped into compartments, and macroscopic parameters describe their average inter-
actions, such as the probabilistic law of infection determined by the transmission rate.

A natural extension of the SIR model is to introduce more than three compartments,
allowing for a more structured representation of individuals’ status. Indeed, the status of
individuals plays a crucial role in epidemic dynamics. For instance, the presence of indi-
viduals with natural immunity or a high proportion of vaccinated people can significantly
alter the epidemic’s trajectory. Common extensions of compartmental models include the
SEIR model (E for exposed [31]), the SIRD model (D for deceased [32]), the SIRV model
(V for vaccination [33]), the MSIR model (M for maternally derived immunity [34]), and
the SIRC model (C for carrier but asymptomatic [35]). Models used by authorities often
combine multiple compartments to capture the complexity of real-world epidemics.

Then, the assumptions on the homogeneity of contacts (among individuals and regard-
ing contacts) are the strongest ones as we know now that the contact networks of individuals
is far from homogeneity [36]. Thus, such approximations are almost always partially bro-
ken in recent epidemiological models where individuals are classified in batches according
to their age and sometimes to their living place. Then, the contacts between individuals
batches are described by the so called contact matrices [37, 38]. Each entry Mij of a contact
matrix M will describe the contact frequency of individuals of batch i with individuals of
batch j. These matrices are not always symmetric due to the possible difference of popu-
lation between batches.
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Among the various models currently employed to predict epidemic dynamics, compart-
mental models remain the most widely used. For a comprehensive review of the models
applied to the Covid-19 pandemic, primarily compartmental ones, refer to [39]. One of
the most notable models is the spatiotemporal compartmental model developed by Alex
Arenas et al. [40] for the Covid-19 epidemic in Spain that we present below.

In this study, the authors present a metapopulation compartmental model where in-
dividuals are characterized by three key factors: their region of residence (corresponding
to towns in Spain), their age group (young, middle-aged, elderly), and their status (with
ten possible categories). Within this population, individuals interact according to contact
matrices, and mobility matrices are used to model interactions across different regions.
Figure 1.3 illustrates this model. Building on this compartmental model, the authors ac-

Figure 1.3: Figure extracted from Alex Arenas et al. [40]. Compartments of the epidemic
model. The acronyms correspond to susceptible (Sg), exposed (Eg), asymptomatic infec-
tious (Ag), symptomatic infectious (Ig), prehospitalized in ICU (P g

H), predeceased (P g
D), in

ICU before recovery (Hg
R), in ICU before death (Hg

D), deceased (Dg), and recovered (Rg),
where g denotes the age stratum for all compartments. The arrows indicate the transition
probabilities.

count for population density in each region to estimate the number of contacts between
individuals. Additionally, they differentiate between two transmission rates for asymp-
tomatic and symptomatic individuals. On top of that, a model for confinement measures
is proposed (cf Laura Di Domenico’s PhD thesis [41] for possible ways of implementing
restrictions). They introduce a parameter to represent the severity of lockdown, reducing
individuals’ mobility between regions, which becomes time-dependent. They also incorpo-
rate a reduction in contact rates by introducing a social distancing parameter, alongside
a reduction in contacts due to the closure of public spaces (limiting contacts to home or
work environments).

Another focus of their study is the utilization of Intensive Care Unit (ICU) beds and
the duration of ICU stays. From their formalism, the authors derive a probability of
infection for individuals. Using a discrete-time Markov chain approach, they describe the
model with a system of 10 coupled equations. While this system is highly coupled and
analytically unsolvable, it remains numerically tractable. The authors simulated the model
for the first wave of the Covid-19 epidemic in Spain, yielding the results shown in Fig. 1.4.
These findings, along with other results presented in the paper, demonstrate excellent
agreement between the model’s predictions and the actual data. This model introduces
significant complexity, incorporating tens of independent parameters. It provides a far more
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Figure 1.4: Figure extracted from Alex Arenas et al. [40]. Model validation and spatiotem-
poral propagation of Covid-19 across Spain. Top: Solid lines show model predictions for
the daily fatalities (a) and the daily number of new symptomatic individuals (b), whereas
dots correspond to real data. The shadowed areas represent the 95% prediction interval.

accurate representation of reality compared to the simpler SIR model discussed earlier.
However, it requires extensive data to describe individual contacts within the country
being modeled. The key advantage of this model is that only 6 parameters are calibrated,
while the remaining parameters derived from existing datasets. The small number of fitted
parameters suggests that the model’s complexity is manageable, as the necessary databases
are accessible. Moreover, it implies that the model’s predictions are robust, since only a
few parameters depend on the optimization process.

Additionally, the optimization procedure converges within a relatively narrow region,
indicating that the parameter set fitting the data points closely matches the optimized
set. The authors also demonstrate that the model can be used to study the effects of
lockdown measures. They derive an approximate formula for the reproduction number
R(t) and show how adjusting the three confinement parameters can control the epidemic
by ensuring R(t) ≤ 1.

Despite these impressive results, which represent cutting-edge research in epidemic
modeling, there are still limitations. One key issue is the need for the time-dependent
evolution of a parameter, κ0(t), which quantifies the severity of confinement, specifically,
the fraction of people who is under lockdown at time t. Essentially, the authors calibrate
their model up to beginning-April 2020 and validate it from beginning-April to mid-May.
However, they rely on data available until mid-May, which corresponds to the validation
period. This reliance on future data for κ0(t) limits the model’s practical applicability for
forecasting subsequent epidemics, as such data will not be immediately available. Epidemi-
ologists often address this challenge by using data from previous epidemics or by estimating
trends based on recent patterns. This issue highlights a broader challenge for epidemiolo-
gists: predicting or fitting extrinsic time-dependent parameters, a topic discussed further
in Sec. 1.3.1.

With respect to social contacts, these sophisticated compartmental models are based
on an implicit network that is homogeneous at a “mesoscopic” level (e.g., within age strata
in each city). A natural extension is to employ fully heterogeneous networks, which involve
explicit contact networks. This field emerged in the late 20th century, and we introduce it
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in the following section.

1.2.4 Networks-based models

Network-based epidemic models enable the study of contact connectivity patterns
among individuals, through which diseases spread. The structure of such networks has long
been recognized as a critical factor in epidemic dynamics [42, 43, 44, 45, 46, 47, 48, 49, 50].
For a comprehensive review on the structure and dynamics of complex networks, reader
can refer to [51] while for a review applied to epidemics, see [52].

Beyond epidemic related questions, research in the area of complex networks began in
the second half of the 20th century with two primary focuses:

• Analytical study of network phenomena (e.g. threshold effects such as percolation
or avalanches)

• Developing methods to construct realistic networks

Networks were initially explored in physics for their ability to explain the emergence
of macroscopic phenomena, such as phase transitions, from microscopic interactions. Per-
colation theory was introduced in 1957 by mathematicians [53] to study the behavior of
networks, particularly the size of the giant component (i.e., the largest connected portion
of the network) as edges are removed or nodes are deactivated. This led to the discovery
of geometrical phase transitions, a topic still actively researched today [54]. Similarly, the
study of avalanches or cascades on networks focuses on sequences of causally linked events.
This field, which emerged in the early 2000s, primarily concerns neuronal avalanches in the
brain, where neurons activate in cascades [55]. Another key concept in diffusion phenom-
ena on networks are the thresholds for epidemic onsets, which aim to identify the critical
value of key parameters that drive the spread of processes across the network. The concept
originated in 1943 with the work of Ryan et al. [56] and has since been applied to a wide
range of topics, including epidemic spreading at the end of the 20th century [57, 58, 59], and
more recently with [60]. Threshold effects have also been studied extensively since 2000,
starting with [61] and continuing to recent work such as [62], to assess network robustness
to attacks and resilience.

In parallel, researchers have built efficient algorithms to construct artificial but realistic
networks. One of the most famous model is the one of Erdős-Rényi introduced in 1960
[63]. In Erdős-Rényi networks, each edge exists with a fixed probability p. These networks,
which have been extensively studied, exhibit homogeneous properties with a Poisson degree
distribution.

However, many real networks appear to be heterogeneous. A number of them exhibit a
power-law degree distribution with “fat tails” that have been observed in contexts such as
airline connections [64], the World Wide Web [65], and inter-bank connections [66]. These
networks are referred to as “scale-free” networks, as they lack a characteristic scale. In
1999, Albert and Barabási published their seminal work [67], demonstrating how scale-free
networks emerge from two simple mechanisms: the continuous addition of nodes and a
preferential attachment rule. This rule states that new nodes are more likely to connect
to highly connected nodes than to those with low connectivity.

Like Barabási-Albert networks, small-world networks have been observed in numerous
real-world systems, including social networks [68], food webs [69], electric power grids
[70], and neural networks in the brain [71]. These networks are said “small-world” as
they display unique features such as hubs, shortcuts, and clusters (small regions with
densely connected nodes). Notably, small-world networks are characterized by the average
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path length between any two nodes scaling as logarithm of the number of nodes in the
network. Watts and Strogatz introduced their renowned small-world model in 1998 [42],
showing how a regular network can be transformed into a random one through a simple
rewiring process. This process involves a single parameter p that controls the network’s
regularity. For intermediate values of p, these networks become “small-world” and exhibit
the associated properties.

These models, along with many others, were extensively studied throughout the 2000s,
greatly advancing the understanding of network dynamics and structure. Since then, re-
search in complex networks has extended the study of epidemiology on networks and ex-
panded the field into new directions:

• Simulating macroscopic dynamics on networks using refined mean-field equations,
rather than focusing solely on the early stages of the dynamics.

• Building, collecting, and inferring real networks from large datasets.

In the early 2000s, several studies focused on deriving mean-field equations to predict
and simulate dynamic processes on networks. These dynamics often rely on Markovian
processes at the node level, which are stochastic and highly dependent on the network’s
structure. Various mean-field approximations have been proposed, with varying degrees
of consideration for network structure (see [72] for a recent review). These equations also
enable the calculation of new epidemic thresholds across different network types. For in-
stance, the epidemic threshold on heterogeneous scale-free networks have been shown to
vanish [46], highlighting how the presence of super-spreaders (highly connected individu-
als) can significantly accelerate disease transmission. A more detailed discussion of these
mean-field equations is provided in Chapter 4.

For a long time considered exclusively as a theoretical problem, experimentalists and
data scientists investigated the field of complex networks approximately two decades ago.
For instance, network inference —constructing complete networks from partial observa-
tions— is increasingly studied. To do so, researchers collect data on the precise contact
network of, for example, a neighborhood or a school, and then extrapolate to the broader
system. For recent work on the subject see [73, 74, 75, 76, 77]. Other studies focus on
gathering data from real networks, such as modifications to air transportation during the
Covid-19 pandemic [78], or directly analyzing social contact networks, as in [79]. In this
paper, the authors used GPS data from a specific application to build the contact network
of 468 individuals, on which they simulated and tested different epidemic containment
strategies. This work exemplifies the efforts of the contact tracing community, particularly
over the last decade.

Despite recent progress, compartmental models on complex networks using mean-field
equations are still mainly employed to derive insights and properties of epidemics, rather
than to accurately predict epidemic dynamics. However, taking advantage of advancements
in network theory and computational capabilities, researchers have developed new methods
to model processes at the microscopic scale, leading to the emergence of Agent-Based
Models, which we consider now.

1.2.5 Agent-Based Models

Agent-Based Models (ABM) are powerful numerical tools developed over the past few
decades, designed to simulate virtual populations at the individual level. In these models,
interactions between individuals can take various forms, such as social contacts, economic
exchanges, or road traffic. The key idea is to capture the emergent behavior resulting
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from complex interactions at the microscopic level. In the context of epidemics, these
interactions represent social contacts between individuals occurring in different locations.
For a practical introduction to ABM, the reader can refer to [80].

Pioneers of this approach include Eubank et al. [36], who introduced a rigorous mathe-
matical framework for ABMs. The authors described a bipartite network structure, where
individuals and locations form distinct sets of nodes, as illustrated in Fig. 1.5.

Figure 1.5: Figure extracted from Eubank et al. [36]. An example of a small social contact
network. a, A bipartite graph GPL with two types of vertex representing four people (P)
and four locations (L). If person p visited location l, there is an edge in this graph between
p and l. Vertices are labelled with appropriate demographic or geographic information,
edges with arrival and departure times. b, disconnected graph Gp induced by connecting
vertices that were separated by exactly two edges in GPL.

Two individuals interact when they are in the same location at the same time. This ap-
proach generates a large-scale, dynamic contact graph, replacing the traditional differential
equations used in classical epidemic models. The epidemic simulation, called EpiSims, is
built upon the Transportation Analysis and Simulation System (TRANSIMS), developed
at Los Alamos National Laboratory. TRANSIMS enables the creation of a synthetic pop-
ulation that closely mirrors a real population in terms of age, income, and demographic
movement patterns. EpiSims was the first microsimulation tool designed for epidemic
modeling at this level of detail.

The authors applied it to a specific case study in Portland, with the bipartite graph
consisting of 1.5 million individuals and 180,000 locations. The representative distributions
of various network characteristics are shown in Fig. 1.6. The authors simulated the spread
of smallpox within this network, which exhibited small-world characteristics due to its
high clustering coefficient [36]. They also explored how intervention strategies, such as
early detection and targeted vaccination, could mitigate the disease. Since this work,
numerous other numerical tools have been developed to implement ABM approaches (see
[81] for a review). Notable examples include the Pandemic Simulator (PanSim), which
was used for Covid-19 simulations [82], and the model by Ferguson et al. [83] (2005-2006),
initially designed for influenza pandemics, and later adapted for Covid-19 response by
Imperial College [17]. These models simulate millions of individuals to generate a synthetic
population for the UK and the US.

This detailed representation allows direct modeling of interventions without additional
assumptions. For example, a “stay-at-home” order is straightforward to model: individuals
affected by the restriction will stay at home, altering the contact network and the trans-
mission dynamics accordingly. There is no need for extra parameters, like those required
in compartmental models. Ferguson et al. presented their findings, depicted in Fig. 1.7,
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Figure 1.6: Figure extracted from Eubank et al. [36]. Degree distributions for the estimated
Portland social network. a, The number of people QPL

j who visited j different locations in
the bipartite people–locations graph GPL. b, The number of locations MPL

i in GPL that
are visited by exactly i different people. The slope of the straight-line graph is -2.8. c,
The number of people who have k neighbours in the static people–contact graph GP on
log–log scale. d, The in and out degree distributions of the locations network GL. The
slope of the straight-line graph is -2.8.

which had a profound global impact. Headlines warned that without intervention, the UK
could face over 500,000 deaths from the Covid-19 pandemic. The authors demonstrated
the potential outcomes of the epidemic under various mitigation scenarios and with dif-
ferent estimates of R0, which was still uncertain at the time. This work, published on
March 14, 2020, directly influenced the policy decisions made few days later. Due to the
rapid increase in Covid-19 cases and these alarming predictions, policymakers in several
European countries opted to impose lockdown measures [84].

Agent-based modeling holds significant promise, especially in highlighting the role of
heterogeneity within a system. However, ABM also presents several challenges. The most
immediate issue is the computational power required for such simulations. Despite notable
progress in the development of efficient algorithms [85, 86, 87, 88], this remains a substan-
tial obstacle. A second issue arises from the complexity of these models. They typically
involve a large number of parameters, many of which are free and must be determined us-
ing data that are not always readily available. Moreover, these models can become highly
specific to a particular disease or region due to the choices made during their construction.
This specificity can make them less tractable for theorists and limit their generalizability,
as they often lack analytical results, complicating physical interpretation.

This concludes our review of the various modeling approaches used in epidemiology.
The following section will focus on the central topic of this thesis: modeling human behavior
within epidemiological frameworks.
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Figure 1.7: Figure extracted from Ferguson et al. [17]. Suppression strategies for GB. Im-
pact of three different policy option (case isolation + home quarantine + social distancing,
school/university closure + case isolation + social distancing, and all four interventions) on
the total number of deaths seen in a 2-year period. Social distancing and school/university
closure are triggered at a national level when weekly numbers of new Covid-19 cases di-
agnosed in ICUs exceed the thresholds listed under “On trigger” and are suspended when
weekly ICU cases drop to 25% of that trigger value. Other policies are assumed to start in
late March and remain in place. Peak GB ICU surge capacity is approximately 5000 beds.
Results are qualitatively similar for the US.

1.3 Human behavior in epidemiological models

Among the key parameters influencing the virus transmission rate, two primary com-
ponents can be identified: one coming from biological factors [89] (such as the viral load
required for infection, natural immunity, or the specific variant), and the other linked to
individual behavior (nature and frequency of contacts, willingness to be vaccinate). In the
latter case, a portion of this behavior is influenced by the progression of the epidemic itself,
as individuals tend to adjust their actions based on the evolving dynamics. In Sec. 1.3.1,
we discuss the significance of this behavioral adaptation in shaping epidemic dynamics,
justifying its integration into theoretical models. In Sec. 1.3.2, we examine how this be-
havioral aspect is incorporated into epidemiological models, ranging from simple models
driven by “social forces” to more complex frameworks.

1.3.1 Modeling human behavior is crucial

Human behaviors influencing the course of epidemics are twofold: behaviors consistent
across epidemics and those that respond to the epidemic itself. On the one hand, some
behaviors relate to mobility patterns [90], such as attending school or taking holidays, as
well as the socio-demographic structure of the population [91], which captures the het-
erogeneous nature of contacts based on factors like living location, age, or occupation.
Despite its complexity, this aspect has been extensively studied, and this beyond epidemic
prediction. Researchers benefit from the fact that these behaviors are generally stable over
time within a population, even though contact patterns may vary (e.g., depending on the
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day of the week). This stability enables precise forecasting, as seen in energy consumption
predictions by authorities or utility companies [92]. Thus, this first behavioral component
is relatively well-understood compared to the second.

On the other hand, behavioral changes induced by epidemic outbreaks can play a crit-
ical role in the dynamics of the disease [93, 94]. Beyond government-imposed restrictions,
these changes are driven by individuals’ perceptions of fear and risk regarding the disease.
For instance, some people, feeling vulnerable, may reduce risky behaviors during an out-
break [95, 96]. Additionally, depending on their level of information and risk perception,
individuals may choose whether to participate in vaccination programs [97]. The impact
of these self-protective actions on epidemic dynamics has received increasing attention
recently [98, 99, 100, 101], from both theoretical and empirical perspectives. These ac-
tions, referred to as spontaneous behavioral responses in the literature [102], encompass all
behavior changes triggered by the epidemic, driven by factors such as individual decision-
making, risk perception, beliefs, and access to information.

These behavioral responses can be broadly classified into two subcategories [102]: a
first one with reactions to vaccination campaigns and another one with actions aimed at
reducing social contacts and transmission risk. We provide here a meaningful example
of the different concepts describe above for the Covid-19 pandemic where one can clearly
observe the feedback loop between human behavior and epidemic dynamics. Throughout
the pandemic, various behavioral changes significantly influenced the spread of the virus.
These included imposed restrictions, such as lockdowns, non-spontaneous shifts (e.g., holi-
day periods [103]), and spontaneous adaptations, notably vaccination campaigns and social
distancing measures. The latter two, being directly linked to the epidemic’s course and
highly dependent on individual choices, remain the least understood aspects. These be-
havioral shifts, along with other factors like variant emergence, are illustrated in Fig. 1.8,
which shows the temporal evolution of Reff during the Covid-19 pandemic in France. The

Figure 1.8: Evolution of Reff in France during the Covid-19 pandemic between June 2020
and June 2023. Reff corresponds to the effective reproduction number of the virus, that
is, the average number of people to which the virus is transmitted by a sick individual. If
Reff > 1, the epidemic grows, and it decreases if Reff < 1. We see that there are significant
variations of Reff which range from 0.6 to 2. We marked on the figure some peaks and
valleys that have clearly identified origins (Data from “Santé Publique France”, author:
Guillaume Rozier [https://covidtracker.fr].)
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figure illustrates that Reff(t) does not follow a continuously decreasing trend over time, as
would be expected if the transmission rate were constant and Reff = R0S(t). This devia-
tion can be partially attributed to spontaneous behavioral changes triggered by the spread
of the epidemic, which played a significant role in shaping the dynamics of Covid-19 [104],
corroborating earlier studies on the subject. Recently, researchers have attempted to inte-
grate these behavioral dynamics into theoretical models using various approaches, which
will be discussed in the next section. While much of the literature focuses on vaccination
behavior [105, 102], our focus will be on modeling social distancing adaptations.

Before turning into the modelization of these spontaneous behavioral responses, it is
crucial to clearly distinguish between extrinsic and intrinsic parameters in epidemiological
models.

• Extrinsic parameter: These are parameters that can be time-dependent and are
typically fitted using real-world data. In epidemic modeling, biological parameters
such as the recovery rate or the transmission rate β(t) often fall into this category.
Extrinsic parameters are usually considered constant over time because fitting them
over varying time intervals can be challenging. However, incorporating time depen-
dence is sometimes necessary, as in [40], which may involve significant guesswork
or predictions based on available data. The uncertainty on such parameters mainly
depends on the quality and precision of the available databases.

• Intrinsic parameter: These are parameters which emerge from the internal dy-
namics of the model, they depend on extrinsic parameters. Here, the uncertainties
sources came both from the extrinsic parameters on which these parameters rely on,
and on the modelization itself.

In our context, the goal of modelers is to shift from an extrinsic β(t), which is chal-
lenging to infer from datasets, to an intrinsic β(t) that evolves based on the epidemic’s
dynamics. This intrinsic β(t) would depend on the state of the epidemic itself, while relying
on extrinsic but time-independent parameters. This shift aims at simplifying the model by
reducing reliance on time-varying external data and instead focusing on parameters that
remain constant over time, thus providing a more manageable framework for prediction
and control.

1.3.2 The various ways to model human behavior: from social forces
to game theory

Early efforts to model the transmission rate as a time-dependent function date back
several decades. A straightforward approach is to modify the bilinearity of the incidence
rate in S and I (as seen in Eq. (1.7)), and instead assume that the transmission rate β

is a function of time, or more specifically, of the epidemic incidence: β = β(t) = β(I(t)).
In 1978, Vincenzo Capasso et al. [106] proposed a model where the contact rate decreases
once the number of infected individuals surpasses a certain threshold, using an ad hoc
form for β(I(t)) that decreases as I increases. Although human behavior is not effectively
modeled in these approaches, these models can still generate complex dynamics [107].

In the early 2000s, Mark Tanaka et al. [108] introduced a model distinguishing be-
tween two behavioral types: “careful” and “risky”. The proportion of each behavior type
evolves in the population based on interactions, with each having its own transmission
rate. This approach demonstrated how fear and information could influence the dynamics
of an epidemic.

Further research focused on the behavior of infected individuals during an epidemic.
In [109], infected individuals were modeled as reducing their contact rates due to sickness.
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Similarly, in [110], the authors assumed that symptomatic individuals did not interact with
healthy people because they were isolated (e.g., at home, in quarantine, or hospitalized).

Another part of research which began almost two decades ago rather focused the con-
cept of “information epidemics” [111, 112, 113, 114, 115] which can evolve independently
from the primary epidemic. This parallel spread has also been studied in the context of
complex contagion processes (see [116] for a review), where changes in behavior, such as
mask-wearing, spread when a critical fraction of neighbors adopt the behavior [117, 118].
Although these information dynamics may influence some parameters in our future work,
we will not address them further in this thesis. Indeed, these models suggest indirect reac-
tions to epidemics which surely play a significant role, but they lack some specific features
that can be reached out by direct reactions models.

We present an illustrative example of such models, discussed in [98] by Poletti et
al. The authors consider an SIR model in which susceptible individuals can adopt one of
two exclusive behaviors: bn (“normal”) or ba (“altered”). Individuals who adopt behavior
ba reduce their contact rate, leading to a lower transmission rate of the disease compared
to those with behavior bn. The population is thus divided into two groups: “normal”
individuals, who become infected at a rate βnI(t), and “altered” individuals, who are
infected at a rate βaI(t).

The authors introduce Sa and Sn to represent the proportion of “altered” and “normal”
susceptible individuals in the population, respectively, with S = Sa + Sn. Defining x =

Sn/(Sa + Sn) as the fraction of “normal” individuals among the susceptible, the dynamics
of the model can be written as follows:

Ṡ(t) = − [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)

İ(t) = [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)− γI(t)

Ṙ(t) = γI(t)

ẋ(t) = x(t)(1− x(t))(βa − βn)I(t) ,

(1.9)

where the final equation describes the dynamics of the distribution of “normal” individ-
uals among the susceptible population, driven by the fact that βa < βn. To account for
behavioral adaptation, the authors allow individuals to switch between the two strategies
(bn and ba) based on the information they receive, their beliefs, and perceived risk.

In this model, individuals face different costs associated with each strategy. The risk
of infection is modeled as linear in I, and is higher for “normal” individuals. On the other
hand, “altered” individuals incur a cost k due to their reduced contact rates. The authors
define the payoffs for each strategy as follows

pn(τ) = −mnI(τ)

pa(τ) = −maI(τ)− k ,
(1.10)

with mn > ma, which may correspond to the risk of developing symptoms, and where τ

represents the time scale at which individuals consider these payoffs, related to t by τ = αt.
These payoff are coupled to the system dynamics, their dynamics are influenced through a
selection process based on imitation [119]: the authors assume that a fraction of “normal”
individuals can choose to become “altered” after comparing the two strategies, at a rate
proportional to ∆p = pn(τ)−pa(τ) with a proportional factor ρ. Furthermore, an element
of irrational behavior is introduced, with a constant random switching rate χ between the
two strategies. Thus, the last equation in Eq. (1.9) becomes

ϵẋ(t) = x(t)(1− x(t))(1−mI(t)) + µ(1− 2x(t)) , (1.11)
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with ϵ = α
kρ ,m = (mn −ma)/k + ϵ(βn − βa), µ = χ

kρ . The authors then analyse the differ-
ent mathematical properties of equilibrium solutions than can emerge from Poletti’s model
[98]. This example of “direct reaction” model illustrates how individuals can adapt their
behavior in an explicit way due to the prevalence of infected in the population and the risk
associated to the disease. Indeed, it is clear that this risk play a significant role, as adap-
tive behaviors due to a common cold will be much less important than for a deadly disease.

However, this model of spontaneous change behavior, as the ones presented before,
overlook the phenomenon known as the “free rider problem” [102]: the term “free rider”
originates from public transportation, where individuals who use a bus without paying are
considered free riders. Although the system needs to operate efficiently, there is a collective
interest in everyone paying for their tickets. This situation highlights the conflict between
individual optimization and collective optimization, which can result in antagonistic be-
haviors.

In the context of epidemics, collective optimization might require individuals to stay at
home. However, if everyone adheres to this, an individual acting solely in her own interest
might prefer to go outside, as the risk of infection would be minimal. This illustrates the
equilibrium that must be achieved between individual optimization and the collective be-
havior of the population. To accurately capture this interplay between individual decisions
and the collective behavior, game theory provides an appropriate formalism that we will
adopt in our work. The mathematical framework is introduced in the next chapter.

As we will discuss, there are several other advantages of a game theoretical approach
compared to classical methods:

• Parameters are less “artificial”. Previous approaches, such as those by Poletti, re-
quired introducing parameters like mn and ma, which have not always have clear
physical understanding as they are derived from the equations rather than from a
fundamental reasoning.

• Game theory is well-suited to account for anticipation, which is particularly impor-
tant in scenarios where a central authority is responsible for optimizing the response
strategy to an epidemic (see Sec. 2.4.2).

This concludes our general introduction on epidemic models and the modeling of spon-
taneous behavioral changes due to epidemic propagation. In the subsequent sections, we
will employ the framework of game theory, specifically Mean-Field Game theory, to model
the interactions between the epidemic and the human behavior through the formation of
Nash equilibra.
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2 - An introduction to Mean-Field Games using the
SIR model

In the previous chapter, we examined how human behavior and epidemic dynamics can
significantly influence each other. While this coupling can be artificially modeled through
additional forces, its underlying mechanism lies in individual optimization. Game theory
provides a natural framework to address such problems, where each agent (or player)
optimizes their actions within an environment shaped by the optimizations of others. In
Sec. 2.1, we introduce the fundamentals of game theory and the key conceptual tools
necessary for our analysis. Subsequently, in Sec. 2.2, we discuss the approximations that
lead to the Mean-Field Game approach in game theory, which facilitates the modeling of
more realistic scenarios and enables the computational feasibility for large-scale games. In
Sec. 2.3, we provide an application of this framework to epidemic modeling with the original
SIR model, based on the work of Elie et al. [19]. This work will serve as a foundational
basis for our following analysis. In Sec. 2.4, we explore other domains where mean-field
games are currently being applied in epidemic modeling, as well as potential real-world
applications of MFG. Finally in Sec. 2.5 we provide an overview of epidemiological models
together with the original works of this thesis that will be presented in the subsequent
chapters.

2.1 Basics of game theory

The field of game theory was first developed by mathematicians in the early 20th cen-
tury, notably by John von Neumann and Oskar Morgenstern. Their groundbreaking work,
Theory of Games and Economic Behavior (1944) [120], is often regarded as the foundation
of the field. Since then, game theory has become a cornerstone in economics [121, 122],
leading to several Nobel Prizes, including those awarded to Nash, Selten, and Harsanyi
in 1994, followed by Aumann and Schelling in 2005. Over time, the application of game
theory has expanded to various fields such as biology [123], pedestrian behavior [124], epi-
demic modeling [125], traffic modeling [126], and energy consumption [127], among others.
These fields, which largely focus on the behavior of individuals or species, have benefited
from game theory’s ability to provide new insights into phenomena such as anticipation
and sub-optimal equilibrium that are otherwise difficult to capture. In this section, we
will introduce the fundamentals of game theory, beginning with the concept of the utility
function in Sec. 2.1.1, which underpins the theory. We then explore a well-known yet in-
sightful example, the prisoner’s dilemma, in Sec. 2.1.2. Following this, we introduce the
framework of individual optimization in Sec. 2.1.3. In Sec. 2.1.4, we discuss the different
solutions obtainable through game theory, accompanied by an illustrative example. Fi-
nally, in Sec. 2.1.5, we provide a brief overview of the diverse modeling opportunities that
game theory offers.

2.1.1 Utility as the key idea of game theory

The rationale behind a game theoretical approach can be illustrated through its suc-
cessful application in economics. The concept of utility originates from the philosophical
school of utilitarianism, developed by philosophers like Bentham in the late 18th century.
The core idea in game theory is that a rational individual weighs the positive and negative
effects of potential actions. This evaluation, termed “utility”, is carried out by each agent
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independently, often based on personal judgment. For any given choice, the agent will
select the option that maximizes her utility. While not all actions are rational, and the
accurate assessment of outcomes is crucial even for rational ones, the explicit formulation
of utility function makes it a valuable tool for theoreticians, enabling optimization. Con-
sequently, a key objective in formulating such theoretical model is to define the positive
and negative impacts of each choice within the game. These impacts may be immediate
(e.g. displacement costs) or extend into the future (e.g. rewards at specific stages of the
game). Agents’ rationality also incorporates this temporal aspect, reflecting anticipation.
This leads to an inter temporal utility that agents aim to maximize. However, by con-
vention, utility is often expressed as the opposite of an inter temporal cost function C

that agents aim to minimize. Before turning to the formal framework of game theory, we
present a simple example to illustrate several underlying mechanisms of games.

2.1.2 A pedagogical example: the prisoner dilemma

The Prisoner’s Dilemma is perhaps the most well-known two-player game, originally
formulated by Flood, Dresher, and Tucker in 1950 [128]. In its simplest form, the game
involves two rational agents, A and B, who are charged with theft. Each agent can either
cooperate (neither betrays the other) or betray (betray their partner for personal gain).
The outcomes, and thus the utility balance described previously, depend on the choices
made by both players. The general structure of the game is illustrated in Fig. 2.1. Consider

Figure 2.1: Possible outcomes of the prisoner dilemma. Each agent has two choices: stay
silent or betray. The situation is symmetric for A and B, they cannot communicate and
have no way to know the choice of the other. They both make their choice in independent
rooms where they are auditioned.

the classic non-cooperative scenario where both players aim to minimize their own costs
without regard for the other’s outcome. Agent A faces two choices: if A remains silent and
B also, then A and B will receive a small sentence (serve for 1 year). However, if B betrays
A, A will receive a severe sentence. Conversely, if A betrays B, A will receive no sentence
if B remains silent, and a moderate sentence if B also betrays. A thus concludes that
regardless of B’s choice, betraying will always result in a lesser sentence. Since A’s choice
does not influence B’s decision (as the choices are independent), A will rationally choose
to betray. Similarly, B reaches the same conclusion and chooses to betray A. The dilemma
arises because both players would benefit from mutual cooperation, yet they each have an
incentive to betray, leading to a suboptimal outcome for both. This phenomenon is also
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employed in police investigations, where suspects are separated to encourage confessions.
A scenario (as this one) where no player can improve their situation by deviating

from their chosen strategy to another without change in other strategies is called a Nash
equilibrium. A formal definition of a Nash equilibrium is provided in Sec. 2.1.4.

In contrast, we can consider a cooperative game solution, where both players aim to
minimize the total cost, defined as the sum of individual costs. In this cooperative setup,
the optimal choice is for both players to remain silent, representing the societal optimum.

There is often a significant discrepancy between the societal optimum (resulting from
collective optimization) and a Nash equilibrium (resulting from individual optimization).
This illustrates the common misconception that “individual optimization will lead to the
collective optimum”. The Prisoner’s Dilemma highlights the principle of individual op-
timization, foundational to game theory, but many variations of the dilemma has been
designed to model additional phenomena. For instance, the work [129] shows that a suc-
cessful strategy in repeated Prisoner’s Dilemma games is to “tit-for-tat”, which involves
cooperating until the opponent betrays and then mimicking the opponent’s previous move.

This concludes our discussion of this canonical example in game theory. We now turn
to a more formal description of the game, incorporating various costs and a larger number
of players.

2.1.3 Dynamics of games with large number of players

We consider a formal game involving i = 1, ..., N players, where N may be large. The
dynamics of the game is formed of two parts. In Sec. 2.1.3.1 we present the first part
discussing the dynamics at the system level, considering the whole population of players
who have determined strategies. This will fix the environment in which each player will
evolve. The second part is discussed in Sec. 2.1.3.2 and concerns the individual optimiza-
tion, that is, the way players choose their strategies by optimizing their utility in a given
environment.

2.1.3.1 System dynamics at the population level

Players are characterized by their state which can be either discrete or continuous. In
the continuous case, the status of a given player is defined by her position x⃗i, while she
controls a variable ai(t), which influences her position (a is often related to the velocity).
Continuous games lead to systems of equations distinct from those in discrete games,
they are used to model phenomena such as pedestrian dynamics, continuous stocks, or
energy consumption, among others. Notably, in scenarios where a represents velocity
and x corresponds to displacement, the total cost C can be interpreted as a physical
action, with players acting as particles [130]. The principle of least action for particles is
then analogous to the minimization of the cost function, yielding similar equations and
productive analogies (see [131] for an analogy with pedestrian games).

Yet, we will rather focus on discrete games in this thesis. Here, players can occupy
a finite number of states, denoted as y1, ..., ym where m is the number of possible states.
Player i in the kth is denoted xi = yk. We denote by capital letters the number of players
in each state k as Yk. The game unfolds over a time interval [0, T ]. Due to the complexity
of these systems, many parameters are often unknown and are represented by stochastic
variables. This stochasticity is often introduced into discrete games by allowing individuals
to control a fraction of their transition rates between states, ensuring stochastic dynamics
governed by a Markovian process rather than deterministic transitions. A common example
of such stochastic process is the individual transition rate to infection in the SIR model: an
individual, susceptible at t and controlling her transmission rate χ(t) will have a probability
χ(t)I(t)dt to become infected at t+dt. Thus, her state at t+dt is unknown and stochastic,
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it depends on χ(t) and I(t). Consequently, each player’s state {xi} becomes stochastic,
and the dynamics of the number of players in each state Yk is itself a stochastic quantity
which emerge from the Markovian process and the choices followed by each individual.
This creates a stochastic environment in which agents can performed their optimization to
build their optimal strategy.

2.1.3.2 Individual optimization

We now focus on deriving the equations that arise from individual optimization. We
take player i as a reference for this discussion. Importantly, player i is assumed to anticipate
the strategies of all other players during her optimization. These strategies define the
environment in which player i anticipates to evolve, even though the states of other players
remain stochastic and are determined by the underlying Markovian process. Naturally, this
anticipation is not guaranteed to be valid a priori; we will come back to this issue later.
To pursue with the optimization process, we first define the utility function that each
agent seeks to maximize. Yet, for consistency with the literature, we will rather define
a cost function that agents want to minimize, with an opposite convention. This cost
function represents the cost incurred by player i from the current time t until the end of
the game at time T . At each time s within the interval [t, T ], player i incurs a current
cost ci(ai(s), xi(s), x−i(s))ds during the time step ds. This current cost ci depends on
the characteristics of individual i such as her choice at s, ai(s), and her state xi(s). It
also depends on the state of all other players than i at s, denoted x−i(s) (similarly, their
associated strategies over the whole game will be denoted a−i(.)). Given that the states
x−i (and xi(s)) are stochastic, player i will pay the following stochastic cost

Ci(ai(.), a−i(.), t) =

∫ T

t
ci (ai(s), xi(s), x−i(s)) ds , (2.1)

which depends on the precise realization of the states xi(s), x−i(s) in [t, T ]. We omitted
the initial state of each player in the argument of Ci for simplicity, and similarly, to avoid
cumbersome notation, we will often omit the control variables of other players than i in the
arguments of Ci (similarly for ci), since i has no influence over them. In certain contexts,
a terminal cost at T could be added, but we omit it here as it is not relevant for our
subsequent analysis. However, as we shall see in Sec. 3.4, the duration of the game T

could have a significant impact on the results, although it is not explicitly mentioned as
an argument of Ci.

Player i aims at minimizing Ci. However, since Ci is a stochastic quantity, player i

will rather aim to minimize Ci ≡ ⟨Ci⟩ the average cost over realizations of the Markovian
process (from t to T ). To achieve this, we define the value function of i, denoted Ui, which
corresponds to the minimum expected cost that the agent can incur between t and T . This
value function is given by

Ui(t) = min
ai(.)

E [Ci(ai(.), t)] ≡ min
ai(.)

[Ci(ai(.), t)] = E [Ci(a
∗
i (.), t)] , (2.2)

where the expectation E represents the average over the realizations of the Markovian
process, that is over players’ states x−i(.), and xi(.), during the time interval [t, T ]. The
strategy a∗i (.) corresponds to the optimal strategy that player i seeks to determine (for
fixed a−i(.)). To derive the evolution of Ui, we employ a standard Bellman argument [130].
The minimal possible cost at time t is obtained by summing two quantities: the minimal
possible cost at time t+ dt , and the cost incurred during the interval [t, t+ dt[ under the
optimal strategy at time t. This implies that the optimal strategy from t to T must also
be optimal from t+ dt to T , considering that the state at t+ dt depends on the state at t
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and the optimal strategy applied at t. Given an initial state at time t, we then obtain

Ui(t) = min
ai(t)

E [Ui(t+ dt) + ci(t, xi(t))dt] ,

a∗i (t) = argmin
ai(t)

E [Ui(t+ dt) + ci(t, xi(t))dt] ,
(2.3)

which is much simpler than Eq. (2.2) as the minimization is performed only with respect
to the time t. Note that we add a t dependence to ci to make explicit that the current cost
ci will depend on the state of the game at t (it depends rigorously on x−i(t)). Equation
(2.3) can be solved analytically in some cases, and is at least usually solvable numerically.
To do so, one typically solves it backward in time. Starting from U(T ) = 0 – since with
no terminal cost, there is no remaining cost at t = T – one can numerically solve the
minimization Ui(T − dt) = min

ai(t)
E [ci(T − dt)dt] and then continue this scheme backward.

Upon completing the optimization, one obtains a∗i (.), the optimal strategy for player i. It
is important to note that this strategy a∗i (.) depends on the other strategies a−i(.) through
the cost function Ci, leading to a self consistent condition that is described below.

2.1.4 Nash equilibrium and societal optimum

Here, we formally introduce, in Sec. 2.1.4.1, the concept of Nash equilibrium emerg-
ing from individual optimization. Then, we outline in Sec. 2.1.4.2, the societal optimum
emerging from global optimization, before an illustrative example in Sec. 2.1.4.3.

2.1.4.1 Nash equilibrium
The game is said to be at a Nash equilibrium if the strategy used by each player is

optimal for a given set of player’s strategies {aNash
j (.)}. Namely, for any player i which

follows a strategy aNash
i (.) one has

Ci

(
aNash
i (.), aNash

−i (.), 0
)
= min

ai(.)
Ci

(
ai(.), a

Nash
−i (.), 0

)
, (2.4)

where the minimization is performed on the set of admissible strategies of ai(.) at time
t = 0. Indeed, thanks to the Bellman argument previously described, the minimization
performed at t = 0 will be also correct at any time t > 0. Existence and uniqueness
conditions of such Nash equilibrium are difficult subjects which have been studied by
mathematicians [132]. If the existence can be shown under several hypotheses on the game
or on the cost, uniqueness is not always guaranteed. This Nash equilibrium has been first
described by Nash in this thesis at the end of the 1940s, and corresponds to an equilibrium
resulting from an individual optimization. It is an equilibrium in the sense that any change
away from aNash

i (.) will lead to a positive extra cost for player i due to Eq. (2.4). Therefore,
nobody has interest to change her strategy to another one if nobody else changes, this is
the meaning of “equilibrium under individual optimization”.

In the prisoner’s dilemma described earlier in Sec. 2.1.2, the strategy where each player
chooses to betray is a clear example of a Nash equilibrium. In fact, this strategy is even
stronger: a player who chooses to betray does not need to adjust her strategy in response
to the other player’s possible actions, unlike what is required in Eq. (2.4), since betraying is
always the optimal choice. Such strategies are known as “dominant” strategies, they always
result in a Nash equilibrium, though not all Nash equilibria imply dominant strategies. In
cases involving “non-dominant” Nash equilibrium, the convergence of players’ strategies to
such Nash equilibrium is a complex issue, which we briefly explore in Sec. 2.4.2.

2.1.4.2 Societal optimum
A Nash equilibrium results from individual optimization, but the cost associated with

such a strategy is often not the minimal one, either from individual’s perspective or from
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society as a whole. This raises the possibility for authorities to build a cost function that
better represents societal utility. However, defining utility at the societal level is inherently
complex, as it is a psychological concept that is difficult to quantify for a collectivity. Should
the goal be to maximize the average utility, or ensure that individual utilities stay above a
certain threshold ? What metrics should be used to evaluate societal utility ? For instance,
one possible approach could be to aim for a Pareto equilibrium [133], defined as a strategy
where no individual can change their strategy without negatively affecting someone else’s
cost.

Yet, the most common and natural approach in the literature [19] is to construct the
societal cost as the average of all individual costs:

Cglob ({aj(.)}, 0) =
1

N

∑
i

Ci ({aj(.)}, 0) . (2.5)

With this definition, all individuals are treated equally, simplifying the optimization of
social utility by averaging well-defined individual costs. In any case, this societal cost is
more aligned with what should be considered in terms of societal utility compared to a
Nash equilibrium. The set of player’s strategies {aj(.)} which minimizes this cost, denoted
{aSO

j (.)}, is called societal optimum strategies and must fulfill the following condition

Cglob
(
{aSO

j (.)}, 0
)
= min

{aj(.)}
Cglob ({aj(.)}, 0) . (2.6)

By definition, this cost is lower than the global cost obtained under the Nash equilibrium
strategy1. Indeed, the inherent competition among individuals often results in a sub-
optimal Nash equilibrium, where a societal optimum would be more beneficial for everyone
(as illustrated in the neighborhood game example below). However, the societal optimum is
often achieved by balancing costs among individuals, where some individuals bear a higher
cost (compared to the Nash equilibrium) to benefit a larger group, ultimately minimizing
the global cost. This discrepancy between the global costs for Nash and Societal optimum
strategies is commonly referred to as the “cost of anarchy” in the literature:

∆C = Cglob
(
{aSO

j (.)}, 0
)
− Cglob

(
{aNj (.)}, 0

)
. (2.7)

For an authority aiming at minimizing the societal cost, the objective is to approach
the societal optimum as closely as possible. Achieving this optimum is idealistic, as it
requires perfect control over the population at all times t, but one can still try to improve
the Nash equilibrium. This “unconstrained” Nash equilibrium arises from individual, self-
serving optimization in an unrestricted space, meaning that well-designed constraints could
yield a “constrained” Nash equilibrium with a global cost closer to the societal optimum.
Referring to Eq. (2.7), this approach aims at reducing ∆C by imposing constraints on the
control parameters aj(.) of individuals, leading to a new Nash equilibrium. This raises
the question of how to design and implement such collective constraints. We will further
investigate this in our study, especially in the context of epidemic modeling in Sec. 3.3.4.

2.1.4.3 A simple illustration: the neighborhood game
We consider a simple game to make the concepts of Nash equilibrium and societal

optimum more concrete. This illustration is inspired from Jean-Philippe Bouchaud M2
lecture and Schelling model of segregation [134]. Suppose there are N individuals who
must be distributed across four identical neighborhoods in a town. Each neighborhood
has a capacity of 3

4N individuals (the town has therefore a capacity of 3N individuals).

1we often assume the uniqueness of the Nash equilibrium for simplicity
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When deciding in which neighborhood to settle, each individual considers the following
cost, which is identical for everyone:

C(η) = 3η2 − 2η , (2.8)

where η is the density of the neighborhood in which the individual will settle (namely, η is
equal to the total number of individuals in the neighborhood divided by its capacity). The
quadratic term in η2 reflects congestion effects in overly crowded areas, while the term −η

indicates that individuals prefer to be with friends and neighbors (they do not want to be
isolated). The constants 3 and −2 represent the sensitivity to these effects. The cost in
Eq. (2.8) can be minimized, achieving a minimum at η = 1/3 with C(1/3) = −1/3. This
results in a distribution of N/4 individuals per neighborhood, totaling N individuals, which
clearly represents the societal optimum of the game, as illustrated in Fig. 2.3. However,
the Nash equilibrium in this game is different. We assume that individuals arrive one
by one in the city and start by settling in one neighborhood. Once settled, individuals
are free to move to any other neighborhood if it appears beneficial to reduce their cost.
When the density η reaches 1/3, it represents the optimal density for those already settled.
However, new individuals will prefer to move into this neighborhood rather than an empty
one because the associated cost is lower (see Fig. 2.3). Consequently, η increases until it
reaches 2/3 with C(2/3) = 0. At this point, it becomes more advantageous for new arrivals
to choose another neighborhood and continue the same process. This leads to a Nash
equilibrium where neighborhoods have either η = 0 or η = 2/3 with C(0) = C(2/3) = 0,
as shown in Fig. 2.2). It is clear that, in this scenario, any move by any individual will
result in a higher cost, thus confirming that we are at a Nash equilibrium.

Figure 2.2: Illustration of the evolution of the cost per individual, C, according to the
density η of the neighborhood in which the individual want to take place. This cost is zero
at η = 0 and η = 2/3, and admits a minimum for η = 1/3 with C(1/3) = 1/3.

Regarding the cost, the societal optimum results in a global cost of −1/3, whereas the
cost at the Nash equilibrium is 0. Therefore, by allowing individuals to act independently,
the outcome can be worse for everyone. Specifically, while each individual’s cost is 0 at
the Nash equilibrium, it is −1/3 at the societal optimum. The town authority, concerned
with the welfare of its citizens, could implement rules to improve the situation, such as
restricting the arrival of new individuals to neighborhoods that are already half occupied.
By applying this rule, the Nash equilibrium under these constraints results in a global cost
of −3/16, which is closer (but still above) the societal optimum cost.

This simple neighborhood game illustrates the concepts of a (free) Nash equilibrium,
societal optimum, and Nash equilibrium under constraints in a practical example. From
a societal perspective, the game provides insights into phenomena such as segregation,
where individuals prefer to settle with similar people, leading to a socially homogeneous
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Figure 2.3: Left: illustration of the societal optimum with the four neighborhoods occupied
with η = 1/3. Right: illustration of the Nash equilibrium with the two neighborhoods
occupied with η = 2/3 and two other ones empty. Neighborhoods are fulfilled progressively,
the first one starts from η = 0 to 2/3, and then the second one, and so forth.

environment that diverges from the initial intent. Reader can refer to the Schelling model
for a reference work on the subject [134]. It also demonstrates how implementing simple
rules can benefit the entire population.

With the framework of game theory, one must consider every single player to determine
their optimal strategy and ultimately achieve the Nash equilibrium. This procedure is
often impractical, especially numerically, as the number of players N increases (it becomes
impossible with even a few dozen players). To proceed analytically or numerically, several
approximations are necessary, leading to the so-called “Mean-field” paradigm. Readers can
go directly to Sec. 2.2 to pursue the derivation of the mean-field approach.

2.1.5 Other concepts in game theory

Since its development, game theory has been applied across various fields, leading to
the emergence of diverse concepts. We briefly present some of these below:

• Rationality: In the games we presented, we considered the agents as perfectly
rational, meaning they balance well-known costs. However, we know that human
behavior is also influenced by various biases and that cooperative effects can emerge
even in non-cooperative situations. Different approaches, such as psychological game
theory [135], are therefore investigated to account for these effects.

• Information: Related to rationality, information is central in game theory. For
each game, it is essential to determine whether players have complete or incomplete
access to information. Various methods can represent this lack of information, with
one natural approach being to include noise and stochasticity in the quantities to
which players have only partial access [136, 137].

• Evolutionary Games: This type of games was developed to study evolving pop-
ulations in biology [123]. It defines a framework where Darwinian competition can
occur. These games differ from classical ones as they focus on the evolution of
strategies over time to find the most effective ones. Players, such as individuals of
different species, experiment with strategies without knowing the utility associated
with them. Through repeated games, which could correspond to prey-predator situ-
ations in this context, individuals adapt their strategies and attempt to find better
ones through random trials.

• Simultaneous vs iterative games: As we mentioned with the prisoner dilemma,
another type of games are the ones which are iterative. In such contexts, individuals
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adapt their strategy at each occurrence of the game, depending on the strategies
previously adopted by others [138].

• Limited anticipation: Anticipation plays a crucial role in game theory, as it is
factored into the utility function, which accounts for future expected costs. However,
a well-known bias in human behavior is that present costs (or gains) are perceived
as higher than those occurring in the future. This can be modeled in game theory
using a discount factor on future costs [139].

2.2 Mean-field Game approach

In the previous section, we discussed that traditional game theory is manageable only
for a small number of players. As the number of players increases, the complexity of
solving individual optimization equations becomes computationally infeasible. To address
this challenge, Lasry and Lions introduced Mean-Field Games (MFG) nearly two decades
ago [140, 141, 142], a concept that was independently developed by Huang, Malhamé, and
Caines [143]. MFG theory focuses on determining Nash equilibria in populations with a
large number of agents. For an in-depth mathematical treatment, readers can refer to
[144, 145, 146], while [131, 147] provide an introduction for physicists. MFG has a wide
range of applications, including finance [148], economics [149], crowd dynamics [150], and
opinion dynamics [151].

In this section, we will explain the mean-field approximation in Sec. 2.2.1. Then, in
Sec. 2.2.2, we will demonstrate how the equations from game theory simplify into a system
of two equations, which form the mean-field game system.

2.2.1 Mean-field approximation

The mean-field approximation is a well-established concept in physics, used to simplify
many-body problems by reducing their dimensionality. The rationale behind this approach
is to approximate the total force experienced by any element in the system—resulting from
the sum of all microscopic interactions—by an averaged field.

For example, in the case of 1/2 spins on a 2D lattice, the mean field corresponds in the
simple case to the average spin across the entire lattice. By averaging the spin-up and spin-
down states, we can compute the total magnetization m, which influences the behavior of
individual spins. This effective field closely approximates the true field if the fluctuations
around the mean are minimal, which generally requires a large number of neighbors per
spin and a large overall number of spins. Consequently, the mean-field approximation
becomes more accurate as the system’s dimensionality increases.

In a similar way, the mean-field approach in game theory allows us to reduce the N

optimization equations, derived from individual decisions (analogous to the minimization
of free energy in a physical system), to a system of two equations supplemented by a
consistency condition that must be satisfied. We pursue now the previously introduced
framework describing the game theoretical concepts through the point of view of an indi-
vidual i in state yk. Referring back to the cost function for a single agent i, this cost is
expressed as in Eq. (2.1)

Ci(ai(.), a−i(.), t) =

∫ T

t
ci (ai(s), xi(s), x−i(s)) ds . (2.9)

A first approximation that might seem natural in the context of spins is to assume that
the Hamiltonian experienced by each particle is the same, as we are dealing with identical
particles. However, for individuals in a game-theoretical setting, the cost for each person
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would inherently differ, given that individuals have varying sensitivities to different param-
eters. Thus, the function ci, which describes the current cost, and consequently the total
cost Ci, could vary between individuals. Nevertheless, to proceed further, we often make
the approximation that the costs are uniform. Consequently, the strategy of each agent
will depend not specifically on the individual i, but rather on the state of i (indexed by
k). In cases where individual behaviors are highly diverse, we classify them into distinct
categories based on characteristics such as gender, age, or ethnicity.

In the mean-field games framework, we consider scenarios involving a very large number
of players, N , where each player interacts with many others. The first step in the mean-
field approximation is to assume that individuals are not affected by the precise state of
every other individual xj , but rather by the distribution of individuals across different
states, denoted by Yk. The second step is to disregard fluctuations in Yk and assume that
individuals are only influenced by the mean field, ⟨Yk⟩. We can therefore rewrite the cost
function in Eq. (2.1) to reflect this mean-field approach, which now takes the following
form, starting from t:

C(ai(.), {akcol(.)}, t) =
∫ T

t
c (ai(s), xi(s), {⟨Yk⟩(s)}) ds . (2.10)

In Eq. (2.10), {akcol(.)} represents the set of strategies followed by individuals in each state
k at any time during the game. This strategy is termed “collective” because it is adopted by
all individuals except for our reference player i, who is evaluating potential choices for her
strategy. Given that N → ∞ and individuals are treated on an equal footing, the strategy
chosen by agent i can be considered negligible in its effect on the collective behavior. The
current cost c now depends on the average number of individuals in each state k, ⟨Yk⟩(s),
which is deterministic. The only remaining stochastic variable in this cost is the state of
the reference individual xi(s), which may significantly influence her behavior. As a result,
the optimization now only concerns the different possible states, and the value function in
Eq. (2.2) simplifies to a single equation:

Ui(t) = min
{ai(.)}

Exi(.) [C(ai(.), t)] , (2.11)

where the expectation is now only over the future states xi(τ > t) of the reference individual
i. The value function still implicitly depends on the initial state xi(t), resulting in m

distinct value functions instead of N . As before, the full dependencies of C are often
omitted to avoid cumbersome notation.

Finally, the Markovian process which was stochastic and dependent of individuals’
strategies reduces to a deterministic process depending on the different collective strategies:

˙⟨Yk⟩ = gk

(
{⟨Yk⟩(s)}, {akcol(.)}

)
, k = 1, ...,m , (2.12)

where functions gk correspond to the macroscopic dynamics of each state yk. This equation
is said to be the Kolmogorov equation in the context of MFG. It is also known as the
Fokker-Planck equation for continuous systems, driving the dynamics of the latter.

2.2.2 Mean-Field Games equations

Let us summarize the main point discussed above. A MFG can be described as follows:
Let us consider N → ∞ symmetrical agents, optimizing their own cost C in [0, T ].

Agent’s state evolves among m possible states yk, k = 1, ...,m, with Yk(t) the number
of agents in state k at t. Each agent follows a strategy ai(.), and the collective strategy
associated with each state is denoted akcol(.). The Nash equilibrium solution of the MFG
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is given by any set of strategies akcol(.) such that:

˙⟨Yk⟩ = gk

(
{⟨Yk⟩(s)}, {akcol(.)}

)
, k = 1, ...,m , (2.13)

with a given set of initial conditions {Yk(0)}. This Kolmogorov equation is coupled with
the Hamilton-Jacobi-Bellman equation which will be identical for any player i of the game:

Ui(t) = min
ai(t)

E [Ui(t+ dt) + c(t, xi(t))dt] = Ci(a
∗
i (.), t) , (2.14)

with
a∗i (t) = argmin

ai(t)
E [Ui(t+ dt) + c(t, xi(t))dt] , (2.15)

To be at equilibrium, the strategy followed by all individuals should be optimal from an
individual point of view, otherwise that individual would change her strategy to another
one. Thus, this system is completed with the self consistent condition

a∗i (t) = akcol(t) , ∀t , (2.16)

where the individual i is in the state k at t, namely xi(t) = yk. A solution of this system
corresponds to a Nash equilibrium of the game. As for classical games, the existence and
uniqueness of a Nash equilibrium is not often guaranteed, we will infer it from our numerical
simulations. We describe the numerical techniques used in Chapter 6. In the next section,
this MFG framework is illustrated with a founding application to epidemics dynamics.

2.3 Mean-Field Game on the SIR model

Once the framework is established, we can apply the Mean-Field Game approach to
epidemic dynamics. As mentioned earlier, this method allows for the modeling of human
behavior in response to epidemics, where agents make decisions based on rationality rather
than simply adhering to predefined rules.

The application of MFG to epidemic dynamics was first introduced about a decade
ago by Reluga et al. [99] to model social distancing. Since then, MFG has been used
to describe vaccination strategies, which are influenced by individual decision-making.
Early contributions in this area include works by Laguzet et al. [152] (see also [153, 154]).
More recently, in 2020, Elie et al. [19] proposed a similar approach to study the impact of
individual decisions on distancing and isolation, exploring how these choices affect epidemic
dynamics (see [155, 156] for a mathematical perspective). A comprehensive review of
recent advances in this field is available in [157]. In this section, we will build upon the
framework developed by Elie et al. [19] in 2020. We begin by presenting the model in
Sec. 2.3.1, followed by the derivation of costs in Sec. 2.3.2. The Hamilton-Jacobi-Bellman
equation resulting from individual optimization is derived in Sec. 2.3.3. The outcomes of
the game are discussed in Sec. 2.3.4 for the Nash equilibrium and in Sec. 2.3.5 for the
societal optimum. A final discussion on the costs is provided in Sec. 2.3.6.

In their paper [19], the authors applied the MFG framework to the simplest epidemic
model, the SIR model, which has been discussed in Chapter 1 (see Sec. 1.1.3). Their work
primarily focused on the mathematical properties of the game solutions. In this section,
we will carefully derive the MFG paradigm they used, using a more physical and extended
approach. The notations have been adjusted to align with the forthcoming analysis.

2.3.1 Model presentation

In their paper [19], the authors consider an epidemic spreading over the time interval
[0, T ] within a large, homogeneous population of N identical individuals. Each individual
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exists in one of three possible states at any time t: susceptible, infected, or recovered, de-
noted respectively as s, i, and r. The Kolmogorov equation (2.12) of the game corresponds
to Eq. (1.7), with a contact rate χ̄ that depends on the decisions made by individuals:

Ṡ = −ρχ̄(t)S(t)I(t)

İ = ρχ̄(t)S(t)I(t)− ξI(t)

Ṙ = ξI(t) .

(2.17)

This equation describes the dynamics of the average number of individuals in each state
of the game, which depends on the contact rate χ̄(t). This contact rate is now treated
as a variable outcome of the model and represents the strategy chosen by susceptible
individuals at time t. At equilibrium, this strategy should be optimal and identical for all
individuals. To find this equilibrium, we proceed to the optimization process to derive the
Hamilton-Jacobi-Bellman (HJB) equation of the game, preceded by the cost derivation of
each individual. The optimization is conducted exclusively for the “susceptible” state, as
the authors assume a fully individualistic game where infected and recovered individuals
do not have incentive to reduce their contact rate. Indeed, and contrarily with what we
will consider in Chapter 3, contacts are not symmetric in this simple SIR model and the
infection probability of a susceptible individual will only depend on her contact rate χ(t).

2.3.2 Cost derivation

Consider a reference individual k. This individual assumes that all other individuals
will adopt the same strategy, denoted by χ̄(t). At time t, individual k estimates the total
cost associated with the epidemic as the sum of two components: the cost of the efforts
made to avoid infection, and the potential cost of infection if it occurs. This overall cost
is dependent on the strategy χk(t) that individual k decides to follow. If individual k

becomes infected at some future time τ > t, the total stochastic cost incurred between
time t and the end of the optimization period at time T is given by:

C (χk(.), t, τ) ≡ rI1τ<T +

∫ min(τ,T )

t
f (χk(s)) ds . (2.18)

This cost depends on χk(t) over the period from t to τ (the infection time) or T (if the
individual remains uninfected). It also depends on the collective strategies χ̄(t) within
this interval, but this dependency is implicit through the infection time τ . The first
term in Eq. (2.18) represents the infection cost, denoted by a constant rI, which covers
expenses related to illness, symptoms, and social isolation (such as quarantine). This cost
is incurred immediately upon infection at t = τ , as indicated by the indicator function
1. If τ > T , this cost is not incurred and τ = +∞ is assigned to τ . The second term is
the cost associated with reducing social contacts, given by f(χ). This term measures the
psychological and financial costs of limiting social interactions. During each time interval
s from t to min(τ, T ), the agent incurs a cost of f (χk(s)) ds. For s > τ , this cost is zero,
as the individual is either infected (with social costs included in rI) or recovered (with no
further infections possible in this model). The authors adopt a standard form for this cost
function, which is

f(χ(t)) =
χ0

χ(t)
− 1 , (2.19)

where χ(t) ranges within the interval [χmin, χ0], with χmin representing the minimum ad-
missible contact rate (e.g., during a strict lockdown) and χ0 representing the standard
contact rate in the absence of epidemic. From the perspective of agent k at time t, and
given that epidemic propagation is a stochastic process, the infection time τ is a random
variable with a probability distribution Pk(τ). This probability distribution also depends
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on t, as the agent has obtained information regarding whether she has been infected during
the interval [0, t]. Consequently, the cost in Eq. (2.18) is also stochastic. At each time t,
a rational agent should select her future strategy χk(s) for s > t to minimize the expected
value of C over the possible realizations of the epidemic,

C (χk(·), χ̄(·), t) ≡
∫ ∞

t
dτ Pk(τ) C (χk(·), t, τ) , (2.20)

where τ > T is interpreted as an absence of infection (allowing us to normalize
∫∞
t Pk(τ)dτ =

1, and so C (χk(·), t, τ > T ) =
∫ T
t f (χk(s)) ds).

We now need to determine the probability Pk(τ) for an agent k who is following a
specific strategy χk(t). Let ϕk(τ) denote the cumulative probability, which represents the
probability that k will be infected before time τ . The probability that the infection time
for k falls between τ and τ + dτ is given by

ϕ′
k(τ)dτ = Pk(τ)dτ = P [xk(τ + dτ) = i|xk(τ) = s]× P [xk(τ) = s] , (2.21)

where the probability that k is susceptible at time τ is P [xk(τ) = s] = 1 − ϕk(τ). The
probability for k to become infected between τ and τ + dτ is given by average version of
the Markovian process of SIR model Eq. (1.2), which reads

P [xk(τ + dτ) = i |xk(τ) = s] = λk(τ)dτ , (2.22)

with λk simply given by
λk(t) ≡ ρχk(t)I(t) . (2.23)

λk(t) is the force of infection seen by individual k, with ρ the contagiousness per contact,
χk(t) her behavior and I(t) the average proportion of infected individuals at t (mean-field
approximation). Equation (2.21) thus leads to ϕ′

k(τ) = λk(τ)(1 − ϕk(τ)), which together
with ϕk(t) = 0 gives

ϕk(τ) = 1− exp

(
−
∫ τ

t
λk(s)ds

)
. (2.24)

The average cost (2.20) reads

C (χ(·), χ̄(·), t) =
∫ T

t
dτ Pk(τ)rI +

∫ ∞

t
dτ Pk(τ)

∫ min(τ,T )

t
ds f (χk(s)) , (2.25)

then we develop the second term∫ ∞

t
dτ Pk(τ)

∫ min(τ,T )

t
ds f (χk(s))

=

∫ T

t
dτ Pk(τ)

∫ τ

t
ds f (χk(s)) +

∫ ∞

T
dτ Pk(τ)

∫ T

t
ds f (χk(s))

=

∫ T

t
f (χk(s)) ds

∫ T

s
Pk(τ)dτ +

∫ T

t
ds f (χk(s))

∫ ∞

T
dτ Pk(τ)

(2.26)

where we invert integrands in the first term using
∫ T
0

[
f(t)

∫ t
0 g(s)ds

]
dt =

∫ T
0

[
g(t)

∫ T
t f(s)ds

]
dt.

Equation (2.25) can be therefore written as

C (χ(·), χ̄(·), t) =
∫ T

t
ds Pk(s)rI +

∫ T

t
ds f (χk(s))

∫ ∞

s
dτ Pk(τ) . (2.27)

We then use ϕ′
k(τ) = Pk(τ) = λk(τ)(1− ϕk(τ)) to get [19]

C (χ(·), χ̄(·), t) =
∫ T

t
[λk(s) rI + f (χk(s))] (1− ϕk(s))ds , (2.28)
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or in a very explicit way, with Eq. (2.19),

C (χk(·), χ̄(·), t) =
∫ T

t

[
χk(s)I(s) rI +

χ0

χk(s)
− 1

]
exp

(
−
∫ u

t
χk(u)I(u)du

)
ds . (2.29)

In the following, we will often use C (χk(·), t) for simplicity, but the cost still depends
implicitly on χ̄(·) through I(.) which is given by Eq. (2.17).

2.3.3 Hamiton-Jacobi Bellman equation

The expected cost at time t for agent k is a function of her own strategy χk and of
the infected proportion I(.). The next step is to solve the optimization problem, that is,
find the optimal strategy χ∗ for a given epidemic S(.), I(.), R(.). Following our previous
derivation in this context Eq. (2.3), we introduce the value function

Uk(t) =

min
χk(·)

C (χk(·), t) , k susceptible at t

0, k infected (or recovered) at t.
(2.30)

This corresponds to the minimal cost that an agent has to pay between t and the end of the
game (averaged over random realizations of the game, and assuming that all other players
follow some given strategies χ̄). Note that in Eq. (2.28) we assumed that the total cost of
infection is paid right after infection, so that individuals do not incur any additional cost
at later times. The Markov process of the game is described by the following equations,

P [xk(t+ dt) = i|xk(t) = s] = λk(t)dt

P [xk(t+ dt) = s|xk(t) = s] = 1− λk(t)dt

P [xk(t+ dt) = r|xk(t) = i] = ξ dt .

(2.31)

We use the standard Bellman argument used in Eq. (2.3) to find the evolution of U .
Assuming a status xk(t) = s at time t, it can be expressed as

Uk(t) = min
χ(t)

Exk(t+dt) [Uk(t+ dt) + c(t, χk(t))] , (2.32)

which corresponds to Eq. (2.14), where the expectation is on the status of individual k
at t + dt and the current cost c(t, χk(t)) corresponds to the integrant of Eq. (2.28). Two
situations can occur at t+ dt according to the state of the agent k, xk(t+ dt):

• if the agent remains susceptible, that is xk(t + dt) = s, the only cost at t is
c(t, χk(t)) = f(χk(t))dt. Following Eq. (2.30), the quantity Uk(t + dt) involves the
average cost C(χk(·), t+ dt) and is non zero.

• if the agent becomes infected, xk(t + dt) = i, individual k has to bear the cost due
to infection in addition to the social cost which will be at first order in dt, and thus
c(t, χk(t)) = rI+O(dt). In this case, we simply have Uk(t+ dt) = 0 since there is no
remaining cost.

Writing explicitly the expectation in Eq. (2.32) and using the probabilities given by Eqs. (2.31)
we get

Uk(t) = min
χk(t)

[(rI +O(dt))λk(t)dt+ (1− λk(t)dt) (Uk(t+ dt) + f(χk(t))dt)] . (2.33)

At first order in dt, this gives the Hamilton-Jacobi-Bellman (HJB) equation of our Mean-
Field Game

−dUk

dt
= min

χk(t)
[λk(t) (rI − Uk(t)) + f(χk(t))] , (2.34)
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and the optimal strategy χ∗
k(t) at time t is given by

χ∗
k(t) = argmin

χk(t)
[λk(t) (rI − Uk(t)) + f(χk(t))] . (2.35)

By taking the particular form for f , Eq. (2.19), one can compute χ∗
k(t) by setting to zero

the derivative of the right hand side of Eq. (2.35) with respect to χk, noting that Uk is
independent of χk. Here, we get an explicit expression of χ∗

k,

χ∗
k(t) =

(
1

χ0
[rI − Uk(t)] I(t)

)− 1
2

, (2.36)

which allows to transform Eq. (2.34) into an explicit equation in Uk which is simple to
solve numerically. We now summarize the equations describing our system to solve them
and get the Nash equilibrium of the game.

2.3.4 MFG system and Nash equilibrium

Let us first consider the (unconstrained) Nash equilibrium. We have seen that it is
described by two sets of differential equations. The first one is the rate equation of the
epidemic, Eq. (2.17) (also known as the Kolmogorov equation in this context), which is
forward in time, that is, starting from initial conditions S(0), I(0), R(0), populations at
later time t are obtained by solving

Ṡ = −ρχ̄(t)I(t)S(t)

İ = ρχ̄(t)I(t)S(t)− ξI(t) ,

Ṙ = ξI(t)

(2.37)

The second set of equations corresponds to the Hamilton-Jacobi-Bellman equation (2.34),
with one reference individual k, we recall it here for consistency

−dUk

dt
= min

χ(t)
[λk(t) (rI − Uk(t)) + f(χk(t))] . (2.38)

As only the terminal condition on U is fixed, namely, Uk(T ) = 0, Eq. (2.38) is backward
in time.

At equilibrium, all individuals will follow their own optimal strategy; but as all agents
are symmetric, this optimal strategy should be comon for all agents k (who are susceptible
at t). Thus we have the additional self-consistency condition

χ∗
k(t) = χ̄(t) . (2.39)

Equations (2.37)-(2.38)-(2.39) form the MFG system of the game. Equations (2.39) imposes
that if all other agents follow the strategy solution of the MFG system, then deviating from
that strategy implies a higher cost. This system of equations couples all epidemic rates
S(.), I(.), R(.) and strategy χ̄ via the individual optimal strategies χ∗

k. Indeed, the optimal
strategy χ∗

k for a reference individual k is a solution of HJB equation (2.38) and is explicitly
given by Eq. (2.36), which depends on the epidemic rate I(.) and therefore on χ̄ through
Eq. (2.37). In a mathematical perspective, the self consistent condition (2.39) is a fixed
point of the function F : χ̄ 7→ χ∗

k.
One obtains in this way an initial-terminal value problem (ITVP), which can be solved

numerically in different ways; we present some of them in Chapter 6. The authors of [19]
used a specific gradient descent on the cost Eq. (2.29) to obtain numerically the Nash
equilibrium, but the use of Eq. (2.36) could be more efficient (see Sec. 6.1.1).

In Fig. 2.4, we provide a generic example of what we can obtain by solving the Nash
equilibrium of this game (left figure for epidemics dynamics, and right figure for the evo-
lution of χ∗(t) at the Nash equilibrium).
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2.3.5 Societal optimum

In the previous scenario, each agent optimizes their own cost independently, focusing
on self-interest. To gauge the impact of these egoistic strategies, it is useful to compare
them with the societal optimum strategy introduced in Sec. 3.3.5 that could be enforced by
a “benevolent global planner” such as a well-meaning government with complete authority.
The goal here is to determine the optimal strategy χSO that minimizes the total cost for
the entire society, defined by Eq. (2.5), averaging over individual costs. Thus, the societal
optimum strategy is determined by

χSO(·) = argmin
χ̄(·)

[C (χ̄(·), χ̄(·), 0)] . (2.40)

There is already an extensive literature on societal optimization in epidemic models (see,
for example, [158, 159, 19, 160, 161, 162, 163, 164, 165, 166]), where the problem typically
reduces to a global optimization task (there is no Nash equilibrium resolution here).

In Fig. 2.4, we illustrate an example of the societal optimum strategy for this game
(right panel). Both strategies, χN (.) and χSO(.), start and end at the baseline contact
rate χ0 = 0.2. In both cases, efforts are concentrated around the epidemic peak, but
the societal optimum involves more prolonged and intense efforts. This “optimal” strategy
minimizes the average cost for society when everyone adheres to it. However, from an
individual perspective, some agents could deviate and adopt a different strategy to lower
their personal costs. Thus, this strategy is effective only in a cooperative context or when
imposed by an authority, not in a Nash equilibrium context where individuals optimize
selfishly.

Figure 2.4: Left figure: epidemics dynamics of the MFG system at Nash equilibrium, for
χ̄ = χ∗ solution of the system (2.37)-(2.38)-(2.39). Right figure: evolution of χN (t) (blue
solid) compare to the evolution of χSO(t) (red dotted). Figure adapted from [19], with the
same set of parameters as the ones used by the authors in their numerical experiments.

2.3.6 Discussion about the cost

We briefly discuss here the choice of costs associated with infection and social contact
reduction.

In principle, a more generalized infection cost could be considered in Eq. (2.28), which
might take the form I(I(s)), as the cost of infection is primarily influenced by the number
of infected individuals in the population, particularly through its impact on healthcare
capacity. Despite this, the assumption of a constant infection cost rI is not overly restrictive.
This cost encompasses various elements (such as symptoms, quarantines, and healthcare
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expenses) that may differ among individuals. One could model rI as a stochastic variable
with a distribution PrI , typically Gaussian, centered around a mean value ⟨rI⟩ with a
standard deviation σ. However, from an individual’s perspective, the focus would still be
on the expected value of their cost, leading them to consider the average rI since there
is no inherent correlation with the infection time τ . One scenario where σ could become
relevant is in the context of risk aversion, where an individual may react differently (and
thus non-linearly) when faced with a high risk (e.g., risk of death) coupled with a low
probability.

On the other hand, the cost associated with reducing social contacts can take various
forms. The simple choice f(χ(t)) = χ0/χ(t)− 1 reveals several inherent properties of such
a cost function:

• Domain of Definition: The function f is defined over the interval [χmin, χ0]. To
avoid any unrealistic divergence and reflect practical constraints, χmin represents the
minimum contact rate necessary for individuals to sustain themselves during a strict
lockdown.

• Positivity: The cost function f is always positive, f(χ) ≥ 0 for χ ∈ [χmin, χ0], with
f(χ0) = 0 indicating no incurred cost when no efforts are made to reduce contacts.

• Monotonicity and Convexity: The function f is decreasing within [χmin, χ0] and
has a positive second derivative, meaning that as efforts to reduce contacts increase,
the marginal cost associated with additional reductions also increases.

The chosen cost form is a simple model that satisfies these natural properties with minimal
parameterization.

Determining the effective value of the cost parameters such as rI and χmin and the
realistic form of the cost function should be regarded as a whole research program. As
discussed in Sec. 2.1.1, these costs often involve non-monetary factors, which must be
compared on a common scale. Several approaches have been developed to address this,
the most prominent being the QALY (Quality-Adjusted Life Year) and DALY (Disability-
Adjusted Life Year) scales [167, 168].

The QALY scale, introduced in 1970 by Joseph S. Pliskin in his doctoral thesis, mea-
sures the sanitary impact of health conditions on both the quality and quantity of life
lived. It assigns a utility value ranging from 0 (death) to 1 (perfect health) to reflect the
impact of a specific health condition, such as an amputation, on an individual’s quality of
life. This utility is then integrated over the expected life years affected. For example, an
amputation might yield a utility of 0.5; over 10 years of expected life, this would result
in a QALY of 5, equivalent to 5 years in perfect health. QALY is commonly used to as-
sess the benefits of medical interventions and to guide resource allocation. The potential
QALY gain from a medical procedure is compared with its monetary cost to determine
the intervention’s overall value. The utility values for various health impacts are typically
determined through surveys conducted with large populations.

The DALY scale, on the other hand, measures the overall burden of a disease. It com-
bines the years lived with disability (YLD) and the years of life lost (YLL) due to premature
death. The total impact of a disease is thus calculated by summing the premature deaths
and the years affected by disability, using a weighting factor. This weight varies based on
the severity of the disability and the individual’s age. For example, individuals between 20
and 30 years old may be more significantly affected by a disability than people younger or
older, as their “life potential” is higher at this age. Like QALY, DALY is frequently used
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to optimize resource allocation in healthcare settings.

While these measures are well-established, they are insufficient for our purposes, as we
seek to compare health-related costs with those arising from reductions of social contacts.
In the work of Thunström et al. [169], the authors examine the impact of reduced social
interactions on the GDP of the USA during the Covid-19 pandemic. This study provides a
quantitative framework for comparing the costs of social distancing with the health-related
costs of the epidemic, assigning a monetary value to each death. However, it overlooks other
important factors, such as psychological costs, which can also be significant. The authors
conclude that the restrictions imposed during the Covid-19 pandemic were appropriate
when considering both health outcomes and the economic impact on GDP.

We will not discuss further these measures in this thesis, but we have to keep in mind
that despite considerable progress in the field, a gap remains, particularly concerning the
precise form of cost functions, which should be addressed to enable the practical application
of MFG to real-world datasets.

2.4 Applications of MFG

In the previous section, we thoroughly explored the application of Mean-Field Games
to epidemics through the modulation of the contact rate χ(t). However, MFG can be
utilized in various other epidemic contexts as well. In Sec. 2.4.1, we outline some of the
key applications found in the literature. Then, a crucial aspect to consider is determining
the conditions under which Mean-Field Game modeling can accurately represent a real
world situation. This discussion on practical applicability is presented in Sec. 2.4.2.

2.4.1 Other applications to epidemics

There are currently two main approaches to applying MFGs to epidemic modeling. For
a recent and extensive review on the subject, readers can refer to [157]. The first approach
corresponds to the one we have already explored, where χ(t) serves as the control parameter
for individuals. This approach extends beyond the examples presented in this chapter, with
several studies focusing on the analysis and design of Non-Pharmaceutical Interventions
(NPIs) [20, 170, 155]. These studies differ based on the types of models they rely on and
their interpretations and implementations of NPIs.

Another branch of the literature focuses on constructing Stackelberg games [171, 172].
This is a specific type of MFG in which a player, often referred to as the “principal”, holds
a central and non-negligible role. In the context of epidemics, the principal typically repre-
sents a central authority, such as a government, that can impose constraints on individuals
to optimize a societal cost. The population, modeled as a mean-field, responds to these
constraints by finding their optimal strategies. This interplay influences the principal’s
decisions, leading to an equilibrium that accounts for the responses of both individuals
and the principal to the epidemic.

The second main application of MFGs in epidemic modeling focuses on vaccination be-
havior. Vaccination, when available, is a key strategy for limiting the spread of epidemics.
While authorities may establish vaccination programs, these efforts sometimes fail due to
concerns about cost, risk, inefficacy, or side effects of vaccines. As a result, individual per-
ceptions and choices diverge from the authority’s approach, with each person making their
own vaccination decisions based on perceived risks and costs. These individual decisions,
such as whether or not to get vaccinated, significantly impact epidemic dynamics, making
the MFG paradigm a promising tool for studying this behavior. This emerging field of
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research has been growing rapidly over the past decade, particularly in response to the
recent Covid-19 crisis [152, 153, 173, 154].

2.4.2 Practical applications of MFG

Beyond the “technical” requirements such as the assumption of a large number of players
and the notion that agents operate in a competitive environment where optimal strategies
depend on the behaviors of others, Mean-Field Games typically rely on two fundamen-
tal assumptions: perfect information and the mathematical ability to compute the Nash
equilibrium.

Taking the example of an MFG applied to the evacuation of a multi-level building by
Djehiche and coworkers [174], the assumption of perfect information would require agents to
know not only the building’s geometry but also the density of other agents in various rooms
and levels, much of which would be out of sight. Furthermore, even if this information were
available to an agent, it is questionable whether the Nash equilibrium could be computed
quickly enough to be useful in a stressful, real-time situation like an evacuation, given that
such computations could be quite demanding even for modern computers.

This leads to the plausible concern that, in scenarios like building evacuations, agents
might react intuitively based on limited information —- such as their approximate knowl-
edge of the building’s layout and whatever they can see -— resulting in behavior that
deviates significantly from what an MFG description would predict. In the same way,
it is hard to imagine that agents will be able to perform the computation of the Nash
equilibrium in a context of epidemics.

At first glance, this analysis suggests that the applicability of MFGs might be extremely
limited. However, the range of MFG applications might actually be broader than initially
expected, mainly because the strict requirements of perfect knowledge and computability
can, to some extent, be relaxed.

In our view, MFGs can be applied in at least the three different following configurations:

• The pure case: This is the ideal scenario where agents indeed have sufficient
information and possess the operational or numerical capability to compute the
Nash equilibrium. One can think to contexts such as energy consumption or financial
market where anyone can access to the same global information and to computing
capacities.

• The learned case: In this situation, agents can anticipate the behavior of others
because they have encountered the situation frequently enough to have learned and
internalized it, even if they do not perform explicit computations in real-time. This
is for example the situation of pedestrian dynamics, or in biological and ecological
contexts.

• The case with a central planner: Here, although agents may not have the capac-
ity to compute or intuitively guess the Nash equilibrium, they can receive guidance
or directives from a trusted central entity (like a government or an emergency man-
agement system) that does have the computational ability to determine the optimal
strategies. In practical contexts such as global energy consumption, epidemics, or
traffic management, it is conceivable that a trusted authority could directly provide
a Nash equilibrium (through a specific mobile app for instance), which individuals
would be incentived to follow if everyone else does the same. However, a natural
question arises regarding the sensitivity of the Nash equilibrium to deviations by
individuals who choose not to comply. If the equilibrium is too sensitive to such
deviations, it could become ineffective in practice.
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These configurations suggest that MFGs could be applicable in a wide array of real-
world situations, even when the strict assumptions of perfect information and computa-
tional capacity are not fully met.

2.5 A view of epidemiological family

This section conclude this first part of the thesis, dedicated to the introduction of
the different tools that will be used on the following, together with the bibliography and
previous works that motivated our research. We summarize in Table 2.1 the main models
we presented which are represented in the illustration on Fig. 2.5. On this figure, we make
an overview of the different epidemiological families, and we indicate in red the different
models that will be investigated during this thesis with their location inside the existing
works.

N° Model presented (reference)

M1 SIR model, Kermack and McKendrick [175]

M2 Reference compartmental model, Alex Arenas et al. [40]

M3 Heterogeneous networks generation, Barabasi and Watts [67, 42]

M4 Epidemics on complex networks for Covid-19, Josh A. Firth et al. [79]

M5 Basic Agent-Based Model, Eubank et al. [36]

M6 Agent-Based Model for Covid-19, Ferguson et al. [17]

M7 Adapting transmission rate with I(t), Vincenzo Capasso et al. [106]

M8 Spontaneous behavioural changes, Poletti et al. [98]

M9 A MFG approach to the SIR model, Elie et al. [19]

N° Models studied in this thesis (reference)

M ′
1 MFG Approach in a Social Structure model, Bremaud et al. [176, 177]

M ′
2 MFG on networks [paper under preparation], Bremaud et al.

M ′
3 Analytical solution of SIR on homogeneous networks, Bremaud et al. [178]

Table 2.1: Summary of the 9 main models presented through this introduction.
Their associated location in the literature of epidemiological models is illustrated in
Fig. 2.5 (black stars). The contributions of this thesis to the literature is summarized
by the three works at the bottom of the table. Associated locations in the literature
are indicated in Fig. 2.5 (red stars).
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Figure 2.5: Illustration of epidemiological family which split in three categories: Compart-
mental models with a “top to bottom” approach (green box), Agent-Based models
models with a “bottom to top” approach (blue box), without mean field approximations,
and Network-based models which often rely on mean field approximations based on the
degree of nodes (brown box). For each type of model, a differentiation is made between
“Toy models” (blue ellipsis), which correspond to simple models for physicists who develop
theoretical tools, while the “Models for applications” (purple ellipsis) are those that are
built for practical use (with a more complex structure). Finally, our topic of research
(Mean-Field Game approach, red box) is included inside the larger family of models which
include theoretically the human response to epidemics (yellow box). Black (Resp. red)
stars corresponds to models already present in the literature which have been presented in
this thesis (Resp. models or results which have been developed in this thesis). See Table 2.1
for the correspondence between the model index and the associated reference.
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3 - MFG Approach to Non-Pharmaceutical Interven-
tions in a Social Structure model of Epidemics

In Section 2.3, we explored how the MFG framework can model individual behavior
during epidemics by treating the contact rate χ(t) as an emergent outcome of the model.
This approach developed by Elie et al. [19] represents a significant step forward, but its
application to more complex models is necessary to be practically relevant. As discussed in
Sec. 2.3, the basic SIR model is likely too simplistic to provide meaningful policy guidance.

In this chapter, we demonstrate how MFG models can incorporate a high level of com-
plexity in modeling individuals’ differentiated responses to an epidemic. Specifically, these
models can account for the social structure within which the epidemic spreads. More-
over, we will illustrate how the MFG approach can address practical issues of significant
relevance, such as determining optimal government strategies for the implementation of
lockdowns. This aspect of our work aligns with the study of non-pharmaceutical interven-
tions (NPI) strategies to mitigate epidemics through MFG approaches. This Chapter is
associated to the works [176, 177] which can be accessed in App. C-D. Thus, some tech-
nical details specific to this model which are besides similar to earlier derivations, are not
included here; interested readers can refer to App. D for a more comprehensive explanation.

In Sec. 3.1, we introduce the SIR model with an incorporated social structure, which
serves as the foundation for our analysis. In Sec. 3.2, we apply the MFG framework to this
model, presenting the individual optimization process and the system to solve numerically,
to reach the Nash equilibrium of our game. In Sec. 3.3, we make a numerical experience
with fictive but realistic data sets, to explore the possibilities of the model. We consider
a modified Nash equilibrium under constraints (such as partial lockdowns) imposed by a
central authority, and compare this outcome with the societal optimum for our system. In
Sec. 3.4, we consider scenarios where the total population size N or the final time T of the
epidemic dynamics are finite. We demonstrate that varying these parameters can lead to
first order phase transitions, where optimal strategies present discontinuous changes, and
we discuss the distinct characteristics of the resulting phases. Finally, concluding remarks
and further discussion are provided in Sec. 3.5.

3.1 Social structure based modeling of epidemics dynamics

In this section, we begin by outlining the structure of the model, moving from a het-
erogeneous macroscopic description to a microscopic one in Sec. 3.1.1. Then, in Sec. 3.1.2,
we introduce the various variables and parameters involved in our model. Although the
model includes numerous parameters, only a subset requires fitting to specific epidemic
data, and all are time-independent. Finally, in Sec. 3.1.3, we briefly present the time
evolution equations governing the epidemic dynamics in our model.

3.1.1 Social structure and contact rates

We now introduce a SIR model with a social structure, in the spirit of [38]. In this
model, rather than taking society as monolithic, we consider a refined description of social
contacts. Namely, we introduce three age classes: young, adult and retired, and we assume
that individuals have contacts with one another in four different settings: schools, house-
holds, community and workplaces; of course a larger number of age classes and settings
could easily be implemented. The structure of the population is illustrated in Fig. 3.1. We
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assume the total size of the population, Ntot, to be large.
In our model, following [38], interactions between individuals depend on two factors:

the setting γ ∈ {school, workplace, community, household} in which they meet, and their
age class α ∈ {young, adult, retired}. We denote by N tot

α the total number of individuals
in class α. We first consider the simple case of a single setting where interactions only
depend on age class, which will be labeled by the Greek letters α or β; extension to the
case of multiple settings is then straightforward.

A natural assumption, in the spirit of compartmental models, is that behaviour of indi-

Figure 3.1: Graphical illustration of the social structure we implemented. A reference
individual (a, b and c for each age class) will have (symmetric) contacts in each setting,
with different type of individuals (more adults at workplaces, more children at school, etc).
The precise structure of interactions is detailed in the following section.

Figure 3.2: Graphical illustration of the interactions in our model. Two age classes α and β
are represented, here with N tot

α = 3 individuals of age class α and N tot
β = 4 of class β. Each

vertex is either “active” (in red) if the corresponding individual is willing to have contact
with the other class, or “inactive” (in blue). The N tot

α N tot
β possible contacts are represented

in dashed black lines, and effective contacts between pairs of active individuals are red solid
lines. Here we have wαβN

tot
α = 1 active individual of age class α and wβαN

tot
β = 2 active

individuals of age class β, which gives wαβ = 1
3 and wβα = 1

2 . The probability for a
randomly chosen pair to be in contact is Wαβ = wαβwβα = 1

6 . The average number of
contacts with β for an individual a ∈ α is WαβN

tot
β = 2

3 . Similarly, the average number
of contacts with α for an individual b ∈ β is WβαN

tot
α = 1

2 . The total number of contacts
between the two classes, corresponding to the number of red links in the graph, is given
by N tot

β N tot
α Wβα = 2.
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viduals toward different age classes is differentiated, but that a given age class is considered
homogeneous from the point of view of an individual. That is, an individual a ∈ α can
decide whether she chooses to encounter members of class β or not, but does not decide
which individuals she may encounter in that class. In other words, any individual a ∈ α

willing to meet someone from class β will possibly meet all individuals from class β who
themselves are willing to meet individuals from class α. At each time, an individual a ∈ α

can decide whether she is open or close to interactions from class β. Let us denote by
wαβ ∈ [0, 1] the fraction of individuals a ∈ α open to meet people from class β. The will-
ingness wαβ thus indicates the probability of an individual a taken at random in α to be
open to contacts with class β. There are wαβN

tot
α individuals a ∈ α willing to meet people

with class β, and wβαN
tot
β individuals b ∈ β willing to meet people from class α. A contact

becomes effective (i.e. occurs with probability dt in the interval [t, t + dt[) only if both
individuals are willing, and therefore among all N tot

α N tot
β possible links between α and β,

only wαβN
tot
α ×wβαN

tot
β dt are realized during dt. The number of pairs effectively realized

can also be expressed as WαβN
tot
α N tot

β dt, hence Wαβ = wαβwβα (and Wαβ is a symmetric
array, as it should be). Figure 3.2 illustrates the interactions we have introduced here on
a simple example.

In “normal times”, that is in the absence of epidemic threats, the contact willingness of
an individual of class α with class β is a constant w

(0)
αβ . During an epidemic, however, the

agent will adapt her behavior to mitigate the risk of infection, and we assume the contact
willingness to take the form

wαβ(t) = nα(t)w
(0)
αβ , (3.1)

that is, her initial willingness is modulated by a time-dependent coefficient nα(t) which
measures the effort made by agents in the class α to limit their contacts with others. For
simplicity we suppose that this effort is independent of β, but a β dependence can easily
be implemented to this model and only slightly changes the equations. We additionally
assume that nα(t) ∈ [nα

min, 1], with nα
min the maximum effort that can be expected from

an agent in class α. The upper bound 1 corresponds to the natural assumption that the
epidemic situation can only reduce the initial willingness.

3.1.2 Asymptomatic individuals

Interactions between individuals may vary with time, but also differ between different
age classes and in different settings. As a result, the dynamics of the epidemic will be
different in each subcategory. This turns out to be particularly relevant for susceptible
agents, and we will go back to this in more details in the next subsection. But the issue
could be raised also for infected individuals whose behavior may range from a completely
egoistic one, in which they stop limiting their contacts since they are not worried any more
about being infected, to being completely altruistic and isolate themselves from the rest of
population. To make things more concrete, we assume this latter option, but also assume
that a fraction µ of the population is asymptomatic (they do not know if they are infected
or not) and hence behave as susceptible, while the other fraction 1 − µ is symptomatic
and stay home to protect others. This additional status (symptomatic or asymptomatic)
is random in the population and is fixed at the beginning of the epidemic. Therefore, the
epidemic is only spread by individuals who are both asymptomatic and infected. They
represent a fraction µI(t) of the population. We summarize our compartmental model in
Fig. 3.3.

The parameters defining our SIR model with social structure can thus be divided in
two groups. On the one hand we have three “biological” parameters: the probability ρ of
transmission of the virus per effective contact between a susceptible and an infected indi-
vidual, the fraction µ of the infected population which is asymptomatic, and the recovery
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Figure 3.3: Graphical illustration of the particular SIR model we use. An individual
infected at time t has a probability µ to be asymptomatic and 1 − µ to be symptomatic.
The force of infection λα is derived in Sec. 3.1.3 and drives the probability of infection
λαdt. Then, all individuals have a constant recovery rate ξ to recover from the disease.

Parameter Definition

ρ Probability of transmission per contact

µ Proportion of asymptomatic individuals in the population

ξ Recovery rate

N tot
α Number of individuals of age class α

Wγ (0)
αβ = w

γ (0)
αβ w

γ (0)
βα Willingness of contacts between two age classes α and β

(symmetric in α ↔ β) in the setting γ

Table 3.1: Biological parameters and parameters defining the structure of the society.
The number of parameters implied by this list is significant, since in particular the
array Wγ (0)

αβ has 3 × 3 × 4 = 36 entries. However the methodology to get these
parameters in any specific implementation is relatively well established (see e.g.
discussion in App. A).

rate ξ. On the other hand the social structure is defined by the number of individuals N tot
α

in the age classe α and by the coefficients Wγ (0)
αβ ≡ w

γ (0)
αβ w

γ (0)
βα determining the structure

of our society, i.e. the contact rates in the absence of the epidemics. Table 3.1 summarises
this information.

For a given epidemic in a given geographic location, determining the parameters of
Table 3.1 follows a priori a well defined, though not necessarily straightforward, path,
both for the “biologic parameters” (ρ, µ, ξ) typically encountered in traditional SIR-like
models [40], but also for the ones associated with the social structure [37]. Much less
straightforward is the determination of the time dependence of the “effort parameters”
nα(t) introduced in Eq. (3.1). For the rest of section 3.1, we assume these nα(t) known,
and we will discuss how their dynamics can be computed using the MFG approach in
section 3.2.

3.1.3 Time evolution equations
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We now derive the time evolution equations of the epidemic quantities for this model.
The fraction of susceptible (resp. infected, recovered) individuals in class α is Sα (resp. Iα, Rα),
with Sα + Iα + Rα = 1. In order to establish the mean-field equations, we single out a
reference individual a ∈ α who is susceptible at time t and has status xa(t) = s, i or r at
subsequent times. We furthermore here lift the hypothesis that all individuals of a given
age class behave in exactly the same way, and assume that the reference individual has her
own time-dependent strategy na(t) and willingness waβ(t) = na(t)w

(0)
αβ , with however the

understanding that, nα is the average over susceptible individuals of na, which we express
as

nα =
1

SαNtot

∑
a

naδxa,s . (3.2)

Let b ∈ β be an individual of class β, whose willingness to meet class α is wbα(t) =

nb(t)w
(0)
βα . In order for a to be contaminated by b during [t, t + dt[, b must be infected

and asymptomatic, and a and b must meet; contamination then occurs with probability ρ.
Distinguishing within the i =“infected” status between ia =“asymptomatic infected” and
is =“symptomatic infected”, the probability that a become infected by b during [t, t + dt[

is therefore
Pab(t)dt = ρna(t)nb(t)W(0)

αβ δxb(t),iadt , (3.3)

where we used the fact that w(0)
αβw

(0)
βα = W(0)

αβ (see Table 3.1). Taking the sum over all b ∈ β

and all age classes β we get the total probability that an individual a susceptible at time
t is infected between t and t+ dt

Pa(t)dt := P [xa(t+ dt)= i |xa(t)=s] =
∑
β

∑
b∈β

Pab(t)dt . (3.4)

We then follow the same reasoning as in the SIR case (see Eq. (1.4)). Averaging over
all individuals a ∈ α and over realizations of the Markov process, and summing over age
classes β, we obtain

dSα(t)

dt
= −ρ

∑
β

W(0)
αβ

( 1

N tot
α

Ntot
α∑

a=1

na(t)δxa(t),s

)(Ntot
β∑

b=1

nb(t)µδxb(t),i

)
(3.5)

= −ρ
∑
β

W(0)
αβ (Sαnα)

(
µN tot

β Iβnβ

)
. (3.6)

To get this last expression, Eq. (3.2) was used, together with the assumption that asymp-
tomatic infected individuals responsible for epidemic spreading behave on average in the
same way as susceptible individuals, so that we have also for all age classes

nβ(t) =
1

µIβN
tot
β

∑
b∈β

nb(t)δxb(t),i . (3.7)

It should be borne in mind that this approximation would not be valid if a group of agents
have higher contact willingness on the whole duration of the epidemic compared to the
others.

Equation (3.5) then becomes

dSα

dt
= −λα(t)Sα(t) , λα(t) ≡ µρnα(t)

∑
β

nβ(t)W(0)
αβ N tot

β Iβ(t) . (3.8)

This equation generalizes in a straightforward way when we include different settings γ in
the model. In that case we have

λα(t) ≡ µρ

ncl∑
β=1

N tot
β

nset∑
γ=1

nγ
α(t)n

γ
β(t)W

γ(0)
αβ Iβ(t) , (3.9)
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with ncl and nset the number of age classes and settings respectively. Equation (3.8) is the
analog of the SIR Eq. (1.6) but in the case of a population with social structure. The two
other equations analogous to the system (1.7) are derived in the same way. The system of
coupled differential equations for the SIR model with social structure finally reads

Ṡα = −λα(t)Sα(t)

İα = λα(t)Sα(t)− ξIα(t)

Ṙα = ξ Iα(t) .

(3.10)

These equations are the main equations of our SIR model with a social structure, they nat-
urally lead to the averaged epidemic quantities S(t) ≡ 1

Ntot

∑
αN

tot
α Sα(t), and respectively

for I and R. Once the “interaction strategies” nγ
α(.) are fixed for each age class α and each

setting γ, one can solve Eq. (3.10) and obtain the dynamic of the relative proportion of
susceptible, infected and recovered in each class. However, for rational agents interaction
strategies should depend on the evolution of the epidemic. To address this interplay, we
need the machinery of mean-field games, which we now introduce.

3.2 Mean-field game approach

Let’s take the individual point of view. In our model, an individual a can choose at
each time the value of her own control parameter nγ

a(t), which reflects her desire to have
contact with someone in each setting γ. In practice, each agent will adjust her control
parameter nγ

a(t) to minimize her foreseeable cost over the epidemic time interval. Hence,
nγ
a(t) corresponds to χk(t) of Sec. 2.3, while the global strategy χ̄(t) will be denoted nγ

α(t)

here (one strategy for each age class in each setting). We already derived the Kolmogorov
equation of our game Eq. (3.10); we now derive in this section the optimization made by
the agents, following in the spirit the work of Elie et al. in [19]. Here also, detailed of
the computation can be found in App. D.III. We begin with individual optimization in
Sec. 3.2.1 with the cost function, before obtaining the Hamilton-Jacobi-Bellman equation
in Sec. 3.2.2 and finally describing the Nash equilibrium of our game in Sec. 3.2.3.

3.2.1 Calculation of the expected cost Ca

We assume here µ ≪ 1. As shown in App. D.C, considering a finite µ makes notations
slightly heavier without changing qualitatively the dynamics of the epidemics. Therefore
in the following sections we shall restrict ourselves to the regime µ ≪ 1.

Consider a fixed individual a ∈ α. Individual a can be in one of the three states
sα, iα, rα, depending of her age class α and on whether she is susceptible, infected or
recovered. We denote by xa(t) the state of a at time t. We do not make a distinction
between susceptible and asymptomatic individuals as far as the calculation of the cost
function is concerned, since agents know their infected status only when they are infected
and symptomatic.

Individual a makes the assumption that all individuals in each age class β will follow
the same strategy nγ

β(t). If a has no symptoms at time t, she estimates the averaged cost
that the epidemic will incur as the sum of two terms: one which is due to the social cost
of efforts to avoid infection, denoted fα and one due to the cost of infection if it happens,
denoted Iα. This cost depends on the strategies that a will follow in each of the settings
γ. Following the same reasoning as the one in Sec. 2.3.2, we get

Ca

(
nγ
a(·), {nγ

β(.)}, t
)
=

∫ T

t
[λa(s) Iα(I(s)) + fα (n

γ
a(s))] (1− ϕa(s))ds . (3.11)
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Here also, we will often use Ca (n
γ
a, t) for simplicity, but the cost still depends implicitly

on all the nγ
β(·). The choice of cost dependencies is discuss in Sec. 3.3.1. Note that the

notation nγ
a(·) actually means (n1

a(·), ..., nnset
a (·)), as quantities involving nγ

a(·) will never
depend on a specific γ. Thus, the cost (3.11) is independent of γ.

3.2.2 Hamilton-Jacobi-Bellman equation

The expected cost at time t for agent a is a function of her own strategy na and of
the epidemic functions S(.), I(.), R(.). The next step is to solve the optimization problem,
that is, find the optimal strategy n∗

a for a given epidemic S(.), I(.), R(.). Following the
approach that we have already derived in Sec. 2.3.3, we get the Hamilton-Jacobi-Bellman
(HJB) equation of our Mean-Field Game

−dUa(t)

dt
= min

nγ
a(t)

[λa(t) (Iα(I(t))− Ua(t)) + fα(n
γ
a(t))] , (3.12)

and the optimal strategy nγ∗
α (t) at time t is given by

nγ∗
a (t) = argmin

nγ
a(t)

[λa(t) (Iα(I(t))− Ua(t)) + fα(n
γ
a(t))] , (3.13)

with

λa(t) ≡ µρ

ncl∑
β=1

N tot
β

nset∑
γ=1

nγ
a(t)n

γ
β(t)W

γ(0)
αβ Iβ(t) (3.14)

In Eq. (3.13), the minimization is on the vector nγ
a(t) as the term to minimize depends

on all settings γ (see for instance Eq. (3.14)). However, thanks to the form of fα we will
choose, this minimization will be decoupled for each setting of our model, making the
analytical and numerical computations much easier.

3.2.3 Nash equilibrium system

Let us first consider the (unconstrained) Nash equilibrium. We have seen that it is
described by two sets of differential equations. The first one is the rate equation of the
epidemic, Eq. (3.10) (or Kolmogorov equation), which is forward in time, with starting
from initial conditions Sα(0), Iα(0), Rα(0). The second set of equations corresponds to the
Hamilton-Jacobi-Bellman equation Eq. (3.12), with one reference individual a for each age
class α and the terminal condition on U fixed, namely, Ua(T ) = 0, Eq. (3.12) is backward in
time. At equilibrium, as in the SIR Nash equilibrium presented in Sec. 2.3.4, all individuals
will follow their own optimal strategy; but as all agents in a given age class are equivalent,
this optimal strategy should be the same for all agents a of age class α. Thus we have the
additional self-consistency condition

nγ∗
a (t) = nγ

α(t) . (3.15)

This equation imposes that if all other agents follow the strategy solution of the self-
consistent system Eqs. (3.10)-(3.12)-(3.15), deviating from that strategy implies a higher
cost. The solution of the MFG equations thus corresponds to a Nash equilibrium.

3.3 Numerical experiment

Before we dive into a detailed analysis of the kind of behavior that may emerge
within our MFG model, let us summarize briefly the content of the two previous sec-
tions. We have first introduced in section 3.1 a SIR model with social structure in
which we distinguish three age classes α ∈ {young, adult, retired} and different settings
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γ ∈ {schools, household, communities,workplace}. In addition to the time dependent vari-
ables nγ

α(t) ∈ [nγmin, 1] corresponding to the effort made by individuals in the setting γ to
avoid infection, the model is characterized by three “biological parameters” (the probability
ρ of transmission of the disease per contact, the proportion µ of asymptotic individuals in
the infected population, and the recover rate ξ), and a set of “social structure parameters”
(the number of individuals N tot

α in each age class, and the array Wγ (0)
αβ specifying the

contact rate of the agents in the absence of epidemics); cf Table 3.2.
One remark is in order here. The N tot

α and (the inverse of) Wγ (0)
αβ are extensive quanti-

ties: as Ntot → ∞, so does the N tot
α , and the Wγ (0)

αβ have to go to zero to maintain a finite
rate of infection for a given individual. While the formal developments of sections 3.1 and
3.2 were better performed using theses variables, we shall from now on use related intensive
parameters, which are well-defined in the limit Ntot → ∞ and easier to relate to observable
data. We thus introduce Nα = N tot

α /Ntot, the proportion of agents in age class α, and the
array

Mγ (0)
αβ ≡ Wγ (0)

αβ N tot
β , (3.16)

which corresponds to the average number of contacts with β for an individual a ∈ α. The
requirement that Wγ,0

α,β is a symmetric matrix implies the constraint NαMγ (0)
αβ = NβMγ (0)

βα ,
for all age class pairs (α, β) and all settings γ. We can rewrite the previous equations in
terms of these parameters. In particular, λα(t) become independent of N :

λα(t) ≡ µρ

ncl∑
β=1

nset∑
γ=1

nγ
α(t)n

γ
β(t)M

γ (0)
αβ Iβ(t) . (3.17)

The theoretical framework of our model is now well established. We will now realize
a numerical experiment to explore the full range of its possibilities. In particular, we
will examine how our framework can help identify the appropriate types of constraints
on individuals to close the gap between societal optimum and Nash equilibrium costs,
noting that some constraints may be entirely ineffective. The choice of cost function and
parameter values, as detailed in Sec. 3.3.1, are designed to be realistic, meaning that
this type of analysis could be applied to actual datasets. However, these choices do not
correspond to specific real datasets with precisely fitted parameters, as such work requires
specialized tools and data to be conducted reliably and is beyond the scope of this study.
We begin with an overview of the epidemic dynamics resulting from the different strategies
studied here in Sec. 3.3.2. Subsequently, we describe the different strategies, beginning by
the Nash equilibrium in Sec. 3.3.3. It is followed by the Nash equilibrium under constraints
in Sec. 3.3.4 and the societal optimum in Sec. 3.3.5. Finally, we compare the costs and the
corresponding individual behavior of these different strategies in Sec. 3.3.6.

3.3.1 Cost function and choice of parameters

We turn now to the specific choice of parameters we will use in most of the following
to illustrate the properties and operational properties of our MFG model. In practice we
need essentially to make a choice, on the one hand for the “social structure” and “biological”
parameters of Table 3.1 (or their rescaled version introduced), and on the other hand for
the functions Iα(I) and the fα(n

γ
a) of the cost (3.11), and the associated “cost-function”

parameters.
For the former set of parameters, there is a fairly large scientific literature devoted

to their evaluation from field data in specific, real-world situations. However, our goal
is not to model a particular instance of epidemic dynamics, but rather to illustrate the
kinds of questions that can be addressed and the kinds of behaviors that can typically
be obtained within our formalism. We have therefore chosen parameter values that we
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MS MW MC MH100 0 0
0 0 0
0 0 0

 0 0 0
0 75 0
0 0 0

 12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

  15 25 10
12.5 32.5 5
10 10 30


Nα ≡ N tot

α /Ntot Iα(0) (ξ, ρ, µ)
(0.25, 0.5, 0.25) (0.01, 0.01, 0.01) (1.2, 0.1, 0.2)

Table 3.2: “Social structure” and “biological” parameters used in our simulations.
The matrix entries Mγ (0)

αβ correspond to the average frequency of contacts (per week)
between an individual of age class α and someone of age class β in the setting γ.
Nα = N tot

α /Ntot is the proportion of the population in each age class. Iα(0) are the
initial proportion of infected for each age class (we always assume Rα(0) = 0). ξ is
the recovery rate (per week), ρ the transmission rate per contact, and µ corresponds
to the proportion of asymptomatic individuals in the population. Finally, α = 1, 2, 3
for age class of young, adults and retired individuals, respectively. The way these
parameters have been chosen is discussed in details in App. A.

consider “generic”, relying on a number of studies [40, 179, 38, 180, 181, 182] that analyze
real epidemiological datasets. This approach makes it possible to evaluate the performance
of the model under conditions that closely reflect practical scenarios, and allows us to expect
that our model will produce comparable results in realistic applications. The exact way
the “social structure” and “biological” parameters were chosen is detailed in App. A, and
their values is summarized in Table 3.2.

Turning now to the cost (3.11), we take, for the cost of infection

Iα(I(t)) = rI,α exp

[
qsat

I(t)− Isat

Isat

]
. (3.18)

This function includes the effect of a possible saturation of health services, and we assume
an exponential increase of the strain on human and material resources as the saturation
threshold Isat is approached, with a slope qsat corresponding to the impact of saturation
on the cost. As I ≪ Isat, or qsat → 0, Iα approaches an age-class dependent constant rI,α
which implements the possibility that retired individual might be put significantly more
at risk by the infection that younger ones. In practice we shall write these constants as
rI,α = rIκα, and keep the age-class dependent part κα fixed for all our simulations, while
in some instance exploring the changes due to the variations of rI.

Turning now to fα(n
γ
a), the cost of modifying social contacts, we choose to follow the

same form as Turinici et al. in [19], namely

fα(n
γ
a(t)) =

∑
γ

(
nγ
a(t)

−mγ − 1
)
, (3.19)

where mγ models the degree of “attachment” to the setting γ: for example it is usually
easier to reduce contacts at work than inside families. Moreover, f is decreasing with a
positive second derivative, meaning that the more one decreases once social contacts, the
higher the price to pay.

The set of values chosen in this section for the parameters characterizing the functions
Iα(I) and fα(n

γ
a) is summarized in Table 3.3. Finally the parameter T denotes the time

at which agents end their optimization process. This corresponds for instance to the time
where herd immunity is reached, or it can depend on other circumstances such as the
expected production of a vaccine, the seasonality of the virus, among others. In Sec. 3.3,
our simulations are performed on a duration of T = 40 weeks to focus on scenarios where
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(Isat, qsat) κα mγ nγ
min (Id, Il, s) T

(0.1, 0.1) (1,10,100) (2,2,1,3)
(
1
3
, 1
5
, 1
5
, 1
2

)
(0.12, 4.10−4, 0.35) 40

Table 3.3: “Cost-function” parameters associated with the function Eq. (3.11) chosen
for our simulations. The cost of infection Iα Eq. (3.18) is characterized on the one
hand by its value under “normal circumstances” rI,α = rIκα, where we distinguish
a common coefficient rI that will take different values depending on the simulation,
and an age-dependent part κα, which we will keep fixed at the value given in this
table. On the other hand, Isat characterizes the fraction of infected individuals at
which the sanitary system starts to malfunction, and qsat the speed at which this
malfunction sets in. The cost of reducing once social contact is then parameterized
by nγ

min, the minimum contact willingness in each setting γ, and mγ, which weights
the cost of contact reduction in each setting. Id, Il are the thresholds for the best
lockdown and s its intensity level. T (in weeks) represents the total duration of the
optimization, which in this section is consistently much longer than the characteristic
timescale of the epidemic.

collective immunity is reached and to avoid short end-time effects. Scenarios for which,
due to short end-time, collective immunity is not reached at the end of the optimization
period will be studied more specifically in Sec. 3.4. Since the main wave of the epidemic
appears in the first 10 weeks, we often present the results on a duration of 15 weeks.

3.3.2 Epidemic dynamics

Solving the MFG equations (3.10)-(3.12)-(3.15) for the set of parameters defined in
Tables 3.2-3.3 above yields the dynamics of S, I and R. Technical detail about the numer-
ical implementation is given in Sec. 6.2.2. The corresponding curves are displayed at the
second line of Fig. 3.4.

The characteristic features of the Nash equilibrium are better revealed if one compares
the corresponding epidemic dynamics with other scenarios. We shall consider the following
options, which will be discussed in greater detail in the following subsections. We shall
refer to the Nash equilibrium presented in Sec. 3.3.3 as the unconstrained Nash equilibrium.
By contrast, the second scenario (see Sec. 3.3.4) is a constrained Nash equilibrium, where
individuals have to deal with global constraints imposed by an authority, for instance
a temporary lockdown which limits the agent’s strategy freedom, which translates into
bounds on na. This second scenario divides into two subscenarios, depending on whether
these constraints are naive or optimally chosen. A third scenario, discussed in Sec. 3.3.5,
is the one of the societal optimum, which is the idealistic case where everybody strives
to optimize the global cost and chooses their strategy na accordingly. We call the “null”
scenario business as usual : the agents do not adapt their behavior to the epidemics, so
that no modification of the contact parameter is done, namely, na is fixed to 1.

Solving the MFG equations in these different contexts leads to different dynamics for
S, I and R. The dynamics for each of the above scenarios is summarized in Fig. 3.4; the
precise description of the scenarios is the object of the following subsections. As Fig. 3.4
shows, there are notable similarities between the different “optimized” scenarios (Nash,
constrained Nash and societal optimum) and the business as usual one. For instance, the
number of susceptible individuals at the end of the epidemic is S∞ ≃ 0.4 in all cases but
for the business as usual scenario, where it is significantly below (first row). This is due
to the fact that in all circumstances one needs to reach herd immunity to escape from the
disease, and the fact that S∞ is much below this required value is a clear indication of the

64



business as usual sub-optimal character. In the same way, for all optimized scenarios there
is a significant difference between the height of the infection wave for the different age
class, as retired individuals and adults are more impacted by the disease than the youths,
and therefore protect themselves. In the business as usual scenario the difference is much
less significant, and only due to the relative proportion of contacts in each age class. On
the other hand, the constrained Nash equilibrium with “naive” constraints differs from all
the others because of the existence of two epidemic waves, which can be understood as
originating from an excessive limitation of contacts that prevents the society from reaching
herd immunity. Other differences, which are mainly quantitative, also exist between these
different scenarios, and will be discussed in more details in section 3.3.6. We now turn to
the detailed description of each scenario.

3.3.3 The (unconstrained) Nash equilibrium

Let us first consider the (unconstrained) Nash equilibrium. The two equations (3.10)
and (3.12), together with the self consistency condition Eq. (3.15), form a system of equa-
tions coupling all epidemic rates S(.), I(.), R(.) and all age-class strategies nγ

α via the in-
dividual optimal strategies nγ∗

a . With the precise form of the costs Iα(I(s)) and fα(n
γ
a(t))

chosen in Sec. 3.3.1, nγ∗
a can be computed explicitly and reads

nγ∗
a (t) =

µρ

mγ
[Iα(I(t))− Ua(t)]

ncl∑
β=1

nγ
β(t)M

γ (0)
αβ Iβ(t)

− 1
mγ+1

, (3.20)

which depends on the global strategies nγ
β(.) explicitly, and implicitly through the epidemic

rate I(.). One obtains in this way an initial-terminal value problem (ITVP).
The solutions of the MFG system are displayed in the second row of Fig. 3.4 for the set

of epidemics quantities Sα(.), Iα(.), Rα(.), and in Fig. 3.5 for the set of optimal strategies
nγ
α(.). For our choice of parameters, young individuals do not modify at all their behaviour,

when retired people reach maximal effort for significant amount of time in both community
and household settings, and adults do some efforts, but without ever reaching the maximum
one.
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Figure 3.4: Time evolution of the epidemic quantities with rI = 1 and parameters of
Tables 3.2-3.3. From top to bottom: Business as usual (no efforts), (unconstrained) Nash
equilibrium, Nash equilibrium under optimal constraints, Nash equilibrium with naive
constraints, societal optimum. Left: time evolution of the proportion of susceptible S
(cyan), infected I (red) and recovered R (yellow) in the population. Right: time evolution
of the proportion of infected in each age class Iα, retired people are in blue, adults in
orange and youth in green.
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Figure 3.5: Time evolution of the contact willingness nγ
α(t) with rI = 1 at the Nash

equilibrium. We plot nγ
α(t) for each type of individual according to their age class (retired

people in blue, adults in orange and youth in green) in community (upper left), households
(upper right), schools (lower left, for the young) and workplaces (lower right, for the adults).
The dotted gray horizontal lines correspond to the minimum contact willingness allowed
(maximum effort).

3.3.4 The Nash equilibrium under constraints

In the Nash equilibrium considered above, each agent optimises for herself, and this
leads to a global cost for the society,

Cglob ({nβ}) ≡
∑
α

NαCα (na=nα, {nβ}) , (3.21)

which is sub-optimal. In Eq. (3.21), {nβ} is the set of strategies followed by each age class,
na = nα means that any given individual a of class α follows the strategy nα assigned to
age class α, and the cost for each age class is weighted by the proportion Nα of individuals
in that class. A question that naturally arises from a public policy point of view is to know
whether one could improve the global wellbeing of the population by driving the position
of the Nash equilibrium through constraints on the population. This is, in some sense,
what has been attempted in many countries during Covid-19 pandemic. The restrictions
taken then, however, involved a lot of guesswork, both about the precise decisions to take,
and about their potential effects on society (individuals behavioral response, impact on
economic, health, etc).

Here we present a possible quantitative approach to study such restriction policies,
which aim at reducing the societal cost by constraining the behavior of individuals. Again,
we remain here at the level of a “proof of concept”, as practical implementations of our
formalism would require determining realistic forms of the cost functions and of the con-
straints, which is clearly beyond the scope of our work.

With the free (i.e. unconstrained) Nash equilibrium, individuals choose their contact
willingness nγ

α(t) in the range [nγα,min, 1], where the maximum 1 correspond to the situation
without epidemic. We now add a constraint similar to a partial lockdown, by setting this
maximum to nγ

α,l < 1 when some epidemic level is reached. In that way, everyone is
required to make a minimal amount of efforts to preserve the sanitary system and reduce
the societal cost (3.21). This “lockdown” is implemented when the proportion of infected
I(t) reaches a certain threshold Id, and, as the proportion of infected decreases we assume
the lockdown is lifted when I(t) goes below a value Il < Id (which is assumed lower than Id
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Figure 3.6: Time evolution of the contact willingness nγ
α(t) with rI = 1 for the Nash

equilibrium under optimal constraints (s = 0.35, Id = 0.12, Il = 4.10−4). We plot nγ
α(t)

for each type of individual according to their age class (retired people in blue, adults in
orange and youth in green) in community (upper left), households (upper right), schools
(lower left, for the young) and workplaces (lower right, for the adults). The dotted gray
horizontal lines correspond to the minimum contact willingness allowed.

to avoid unrealistic oscillations around Id). The lockdown has thus a hysteresis form, and
is implemented in the following way (with L a Boolean variable which is 1 if the lockdown
is active and 0 otherwise):

if I(t) < Il : n
γ
α(t) ∈ [nγα,min, 1] & L 7→ 0 no constraints

if I(t) > Id : nγ
α(t) ∈ [nγα,min, n

γ
α,l] & L 7→ 1 active constraints

if Il < I(t) < Id and L = 0 : nγ
α(t) ∈ [nγα,min, 1] no constraints

if Il < I(t) < Id and L = 1 : nγ
α(t) ∈ [nγα,min, n

γ
α,l] active constraints.

(3.22)

In Eq. (3.22), we choose nγ
α,l = s nγα,min + (1− s), with s ∈ [0, 1] a variable measuring the

intensity of the lockdown: s = 0 corresponds to the free situation without any constraint,
while s = 1 corresponds to a strict lockdown with no freedom, as nγ

α(t) is fixed to nγα,min.
Therefore, the lockdown is described by a set of three variables (s, Id, Il): the intensity s,
the first threshold Id, and the second threshold Il. The numerical implementation of this
set of equations is briefly discussed in Sec. 6.1.3.

In Fig. 3.4 (third row) we show the evolution of the epidemic quantities for the choice
of parameters (s = 0.35, Id = 0.12, Il = 4.10−4). As shown in Sec. 3.3.6.3 this choice
corresponds to an optimal value in the sense that these parameters minimise the global
cost Eq. (3.21) among all possible constraints in the parameter space (s, Id, Il). In Fig. 3.6
we display the corresponding strategies chosen by individuals under these constraints. The
constraints are enforced after 2 or 3 weeks into the epidemic, and are raised after almost
14 weeks (over 40 for the total epidemic time) when the proportion of infected is low
and there is no risk of any epidemic rebound. The values of the constraints appear as
straight lines followed by youth individuals, whose behavior is not dictated by their own
“egoistic” optimisation but by the fact they are forced to respect the lockdown as soon as
it is imposed. Retired people on the other hand choose most of the time to limit their
contact even more than required by the constraints; adults most of the time just follow the
lockdown, but sometimes limit their contacts further.

As we shall discuss in section 3.3.6 this optimal lockdown, despite the fact that it
depends on only three parameters, can improve on the free Nash equilibrium, in the sense

68



Figure 3.7: Time evolution of the contact willingness nγ
α(t) with rI = 1 for the Nash

equilibrium under naive constraints (s=0.8, Id =0.06, Il =0.01). We plot nγ
α(t) for each

type of individual according to their age class (retired people in blue, adults in orange and
youth in green) in community (upper left), households (upper right), schools (lower left,
for the young) and workplaces (lower right, for the adults). The dotted gray horizontal
lines correspond to the minimum contact willingness allowed.

that the societal cost Eq. (3.21) is lower. However, public policies executives have to be
careful about their choice as it can generate situations which are clearly worse than the
free Nash equilibrium. We illustrate this situation in Figs. 3.4 (fourth row) and 3.7 with
parameters (s=0.8, Id=0.06, Il=0.01): in that case one imposes a very strong but short
lockdown. Since we consider here a long end-time configuration with T = 40 weeks, for
which collective immunity is required to end the epidemic, this leads to epidemic rebounds
and increases significantly the epidemic cost. Indeed, all drastic efforts that are made while
the epidemic is low, and before collective immunity is obtained, are essentially useless, and
just add to the global cost endured by the population. In what follows we shall thus
distinguish Nash under optimal constraints (NOC) and Nash under “naive” (uncarefully
chosen) constraints (NNC).

3.3.5 The societal optimum

We recall that the finding the societal optimum of the game is defined as finding the
minimum of the global cost Eq. (3.21) which is a possible choice of a societal cost among
many others.

In Fig. 3.4 (fifth row) we show the epidemic quantities associated with the societal
optimum. This situation is optimal from a society point of view if we look for the global
cost only, that is, the addition of all individual costs. However, the total number of infected
individuals is not the lowest possible, as infection within the youths does not carry the same
cost as within the retired agents. The total amount of infected at the end of the epidemic
is still relatively high, because in our framework, one has to reach collective immunity to
definitely escape from the disease. Also, the epidemic peak is still at a rather high level,
as it is efficient to allow an epidemic spread while keeping the epidemic under control to
reach quickly herd immunity. However, the precise distribution of infected proportion in
each age class is different from the free Nash equilibrium.

In Fig. 3.8 we show the corresponding optimal contact willingnesses. They do not
correspond to individual optimum; rather, there is a cooperation between individuals in
different age classes to get an epidemic which will make lower damage with a reasonable
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Figure 3.8: Time evolution of the contact willingness nγ
α(t) with rI = 1 for the societal

optimum. We plot nγ
α(t) for each type of individual according to their age class (retired

people in blue, adults in orange and youth in green) in community (upper left), households
(upper right), schools (lower left, for the young) and workplaces (lower right, for the adults).
The dotted gray horizontal lines correspond to the minimum contact willingness allowed.

amount of efforts. In the community setting and in households, we observe that all indi-
viduals make significant efforts during the epidemic peak to avoid a global infection peak
that would saturate the sanitary system: they do it in particular in those two settings to
avoid a too strong diffusion to retired people. On the other hand, efforts are done with
less intensity in schools and workplaces. Once the epidemic peak is reached, we see that
the epidemic continues to spread, in particular in young and adults classes, so that collec-
tive immunity can be reached and in this way protect retired people. Thus, the efforts in
schools and workplaces are here to smooth sufficiently the epidemic, avoid any rebound,
and get a relative collective immunity as fast as possible, making it possible to lift the
efforts in communities and households.

3.3.6 Comparison between the different scenarios

In this section, we compare the various scenarios discussed previously. First, in Sec. 3.3.6.1,
we assess the societal cost of each scenario in quantitative terms by using the global cost
function. Next, in Sec. 3.3.6.2, we analyze the two most effective strategies to understand
how the structure of the societal optimum can offer insights into designing optimal con-
straints. Finally, in Sec. 3.3.6.3, we explore the parameter space of the constraints to
intuitively understand the underlying mechanisms driving the system.

3.3.6.1 Comparison of global costs
In order to compare quantitatively the scenarios presented above, we normalize the

costs with respect to the total cost of the societal optimum, which we set equal to 100.
In Fig. 3.9 we show, for the choice of parameters given in Tables 3.2-3.3, the global costs

obtained with the different kinds of strategies considered above. As expected, the societal
optimum (SO) is the best strategy at society level, followed quite closely by the Nash
equilibrium under optimal constraints (NOC), which itself is better than the free Nash
equilibrium (N). As the imposition of societal-optimal strategies implies a lack of freedom
for the individual, as well as a coordination cost which may be significant and which is not
included in Eq. (3.21), we argue that the constrained Nash equilibrium presumably forms
in practice a good compromise between effectiveness and practicability. One should bear in
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Figure 3.9: Comparison of costs for the different scenarios studied: SO (Societal Optimum),
NOC (Nash under Optimal Constraints), N (free Nash equilibrium), NNC (Nash under
naive constraints), BU (Business as Usual). The costs are represented on a base of 100 for
SO; the color bars represent the total cost of each age class. Thus, the level of each bar
comes from the cost per individual multiplied by the proportion Nα of his age class.

mind, however, that with a naive choice for the constraints, such as for the NNC strategy
of Fig. 3.9, one could easily obtain a result worse than for the free Nash equilibrium.

The color bars in Fig. 3.9 illustrate the relative importance of each age class in the
total cost paid by the society. This shows that, to reach a global optimum, the key point is
to reduce as much as possible the cost for retired people whose contribution is large. This
contribution is actually larger than that of adults, despite the latter representing twice as
many people as retired individuals in our population choice. Note that, from the point of
view of adults or young people, the free Nash equilibrium is the best strategy, as they do
not have to make efforts for others. We can also notice that making a wrong choice for
the constraints will not lead to the same “extra cost” for everyone. Indeed, for the NNC
scenario, the cost for retired people is still relatively low because the epidemic is maintained
at a low level, but the cost of social restrictions becomes very high for adults and young
individuals. This has to be contrasted with the business as usual scenario where the extra
cost is borne almost exclusively by retired people.

3.3.6.2 Comparison of contact willingness for the two best strategies

In Fig. 3.10, we show the comparison between the contact willingness obtained with the
societal optimum (dashed line) and the Nash equilibrium under optimal constraints (solid
line). We see that for the Nash equilibrium under constraints we get constraints which
start at almost the same time as the ones of the societal optimum (after typically 2 weeks);
but since it is a Nash equilibrium, these constraints are raised after a long time, around
14 weeks, so that even without individual efforts from adults and youth the epidemic is
kept under control. At a global level, these constraints are not too strong compared to the
ones of the societal optimum, but since they are less localized, both spatially (in the good
settings) and temporally (during the epidemic peak with a progressive release afterwards),
they are less effective to protect retired people who suffer from a higher epidemic with a
larger total number of infected people at the end of the epidemic.

These two strategies, the societal optimum and the Nash equilibrium under constraints,
suggest interesting guidelines for public health executives to mitigate an epidemic through
collective immunity. First, quite naturally, sufficiently strong constraints should be im-
posed at the epidemic peak to avoid saturation of the sanitary system; and the constraints
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Figure 3.10: Comparison of contact willingness for the Societal Optimum (dashed line)
and the Nash equilibrium under optimal constraints (solid line). We plot nγ

α(t) for each
type of individual according to their age class (retired people in blue, adults in orange and
youth in green) in community (upper left), households (upper right), schools (lower left,
for the young) and workplaces (lower right, for the adults). The dotted gray horizontal
lines correspond to the minimum contact willingness allowed.

need to protect people at risk, which implies to limit contact both among these people as
well as between the rest of the society and these individuals. On the other hand, in a per-
haps less intuitive way, constraints on people who are not at risk should be relatively light.
Indeed, the epidemic needs to spread on the population, in a controlled way, to reach as
fast as possible the collective immunity. After the epidemic peak, one can lift progressively
the constraints, until the collective immunity is reached. At this point, the epidemic will
be back at a low level and will stay low while the constraints can be completely lifted. The
precise characteristics of the constraints, such as their intensity or their timing, will depend
on the characteristics of the population and of the disease under consideration. However,
strategies that induce epidemic rebound, like the Nash scenario with naive constraints de-
scribed above, are quite ineffective in such a context, because the time span between the
peaks does not help reaching collective immunity and is very costly in terms of constraints
on the society.

3.3.6.3 Comparison of global cost for the Nash equilibrium under dif-
ferent constraints

We now study how the global cost for the Nash equilibrium under constraints changes
with the three parameters of the constraint; results are displayed in Fig. 3.11. The param-
eters used in Fig. 3.6 correspond to the minimum found here.

At s = 0 we recover the free Nash equilibrium, with the same global cost, around
Cglob = 120. When the intensity s is increased, society carries a lower cost than in the free
Nash equilibrium, because all individuals are forced to make some efforts. But at a certain
intensity, a minimum is reached; the location of this minimum is mainly influenced by rI,
and corresponds here to the region around s = 0.3−0.4. In this interval, we find the optimal
lockdown configuration that we presented above with s = 0.35, Id = 0.12, Il = 4.10−4.
Among the three parameters (s, Id, Il) characterizing the partial lockdown, the one which
has the most impact on the global cost is s, as there are no significant variations between
the different curves of Fig. 3.11. For s > 0.5, the constraints become too strong with
respect to the epidemic threat for all choices of thresholds, but especially for low Id and
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Figure 3.11: Comparison of global cost for different parameters of the constraints. The x-
axis correspond to the intensity of the lockdown s, which could vary from 0 (no constraints)
to 1 (maximal constraints). The different curves correspond to different choices for the
two threshold parameters Id and Il. We choose Id = (0.12, 0.08, 0.04), a too low Id will
clearly deteriorate the situation as it will impose a duration of the constraints which is
too long to reach collective immunity. A higher Id is, on the other hand, not effective,
as typically the maximum effort with the free Nash equilibrium is around 0.15 for our
choice of parameters, and thus the threshold would never be reached. For Il we took Il =
(1.10−2, 4.10−4, 1.10−5). Il will have a major impact on the duration ∆t of constraints, with
a log relation of the form ∆t ≃ −log(Il). Increasing Il will decrease the extent of lockdowns
and conversely. A too high Il will lead to epidemic rebounds (the constraints is lifted too
early), and a too low Il will impose useless extra social cost to the population. Blue curve
(Id, Il) = (0.08, 4.10−4), red (0.12, 4.10−4), green (0.04, 4.10−4), magenta (0.08, 1.10−2)
and cyan (0.08, 1.10−5). Dotted gray horizontal lines from top to bottom correspond
respectively to business as usual cost, free Nash equilibrium, and societal optimum.

Il, because this imposes long constraints which become very costly as s increases. When
s approaches 1 we even reach a point above the business as usual scenario (which had
Cglob = 266), as we enter a regime characterized by a succession of lockdowns followed by
epidemic rebounds which are suppressed by the next lockdown before herd immunity can
be reached.

3.4 Optimal scenarios to deal with an epidemic from the
health authority point of view

Up to this point, we have only considered dynamics with a very long end-time T ,
and a large number of agents Ntot, so that the only option to terminate the epidemic is
to reach herd immunity. However there are many circumstances (expected production of
a vaccine, seasonality of the virus which is expected to disappear in the summer, etc..)
where the finiteness of T plays a role, and others (isolated geographic configuration such
as islands, strict control of borders, etc..) where the finiteness of Ntot does. This opens the
way to other possible scenarios, from the point of view of the centralized health authority,
to control the epidemics. Our approach allows for the selection of optimal strategies by
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providing a quantitative measure: the cost at the societal level. We first describe a threefold
approach to controlling an epidemic in Sec. 3.4.1. Then, in Sec. 3.4.2, we develop “template
strategies” for each scenario which are designed to approximate the best possible strategies.
Finally, we explore the first order phase transition that emerges between these strategies
in Sec. 3.4.3.

3.4.1 The threefold way of controlling an epidemic

Based on these considerations, we can identify three possible ways to deal with an epi-
demic: reaching collective immunity (typically for T,N large), contain the epidemic (for
T small), or eradicate the epidemic (for Ntot small). We characterize these three ways as
follows.

Strategy n°1: reaching collective immunity.
This is the strategy that was implicitly used in the previous sections since we assumed

both T and Ntot very large. More formally, we consider that collective immunity has been
reached at time t if the proportion of infected individuals is a decreasing function of time
for t′ > t even in the absence of efforts after t. For the basic SIR model Eq. (1.7) with
constant χ, let Reff(t) = S(t)R0 be the effective reproduction number at time t, that is, the
average number of secondary infected caused by a single infected agent, with R0 = ρχ/ξ

the initial value of Reff when S = 1. For this model we have İ(t) = ξI(Reff(t) − 1). In
this case, collective immunity is reached as soon as Reff(t) < 1 since S is decreasing. In a
similar way, for our compartmental model we introduce

Rα(t) =
µρ

ξ

∑
β,γ

nγ
α(t)n

γ
β(t)M

γ
αβSβ(t) , (3.23)

the average number of secondary infected caused by a single infected agent of age class α.
We stress that Rα < 1 does not imply İα < 0, since the number of infected in the age
class α involves the Rβ of all classes, and some of them may be greater than 1. On the
other hand, if all the Rα are less than one, the average proportion of infected individuals,
I ≡ ∑

αNαIα can be easily shown to be a decreasing function. Indeed, from Eq. (3.10),
we have İ =

∑
αNαSαλα − ξI, and∑

α

NαSαλα = µρ
∑
β,γ,α

NαSαn
γ
α(t)n

γ
β(t)M

γ
αβIβ = ξ

∑
β

NβIβRβ , (3.24)

where we used the sum rule MαβNα = MβαNβ enforced by the symmetric nature of
contacts. We therefore have

İ = ξ
∑
α

NαIα(Rα − 1) . (3.25)

In the absence of effort, the rates Rα(t) become R(0)
α (t) = µρ

ξ

∑
β,γ M

γ
αβSβ(t), and Eq. (3.25)

becomes
İ(0) = ξ

∑
α

NαIα(R
(0)
α − 1) , (3.26)

where the superscript denotes the absence of effort. Since the R(0)
α are obviously decreasing

functions of time, the constraint that R
(0)
α (t) < 1 for all age classes α is a sufficient, but

not necessary, condition to have reached herd immunity. This constraint is, however, too
strong, and is actually not met in our simulations, even when herd immunity is achieved.
We thus find more effective to replace it by a heuristic condition obtained by assuming
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the Iβ to be not very different from the average I (as can be seen for example in Fig. 3.4
towards the end of the epidemics). Using Eq. (3.26), we get İ(0) ≃ ξI(R(0) − 1), with

R(0) ≡
∑
α

NαR
(0)
α . (3.27)

R(0) is also a decreasing function of time, and the heuristic criterion R(0)(t) < 1 indicates
that herd immunity has been reached at t. This empirical condition does not guarantee
mathematically the absence of an epidemic rebound once R(0)(t) < 1 (heterogeneous Iα
could allow İ(0) > 0). Nevertheless, we will check below numerically that for the cases we
considered it does actually correspond to herd immunity 1. This strategy, where S needs to
be low at the end of the epidemics, is often used for moderate epidemics and for epidemics
where no other strategy is available.

Strategy n°2: containing the epidemic.
If an external event (e.g. vaccine) is expected to end the epidemic within a relatively

short time, another possibility to deal with an epidemic is to contain it during the period
of optimization T , keeping the epidemic at a low level, and end at T with a number of
susceptible far above the collective immunity threshold. In practice, we are in this phase
if R(0)(T ) > 1. This is the strategy adopted by most countries during the Covid-19 pan-
demic: hold on and contain the epidemic until a vaccine is available.

Strategy n°3: eradicating the epidemic.
A final possibility is to act on the epidemic sufficiently early and sufficiently intensely,

that one will be able to eradicate it before it spreads to the general population. To
implement such an idea, we need to assume a finite size Ntot of the population, and state
that below a certain rate of infected, of order 1/Ntot, the epidemic vanishes or is at least
under control so that there is no propagation anymore. Of course in practice, one would
need to know precisely who is infected and isulate them from the rest of the population
(by keeping them in quarantine at hospital for instance), which would induce an extra cost
of coordination which is not taken into account here. Discussing this strategy requires
to add one parameter, Ithr, which corresponds to the threshold at witch we consider that
the epidemic vanishes, with a value for Ithr of order 1/Ntot. This approach is in practice
possible only during the early stages of the epidemic, otherwise it will induce a considerable
cost. This strategy has been used many times in China and some insular countries during
Covid-19 pandemic, with strong restrictions at the early stages of the epidemic to avoid a
massive spreading.

3.4.2 Template strategies

The above scenarios can be classified according to whether İ(0)(t) < 0, ∀t > T (herd
immunity), and if this is not the case, whether I(T ) > Ithr (containment) or I(T ) < Ithr
(eradication). Thus, any set of strategies n(.) ≡ {nγ

β(.)} (i.e. defined for each age class, in
each setting, and all times t) belongs to one and only one of these classes. We can, however,
do a little bit more than this formal classification, and introduce for each of these scenarios
what we will call a “template strategy”, that is, a set of strategies n(.) which provides a
good approximation to the optimal one within a given scenario. These “templates” can be
defined as follows:

1Our criterion is actually better suited to describe herd immunity at the end of the epidemics
than, for instance, the one which requires S < 1/R̃0 with R̃0 = ρ(ρµM/ξ) [38, 183]
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• Reaching collective immunity nim: Our template for the herd immunity scenario is
defined as the optimal strategy defined in Sec. 3.3.5 taken in the limit T → ∞ (with
Ithr ≡ 0), namely

nim(.) = argmin
n(.)

[ Cglob (n(.), T −→ ∞)] . (3.28)

Indeed, we can expect that when the best approach is to use herd immunity, there
is little end-time effect and the optimal strategy for a finite T will be quite close to
the one corresponding to T → ∞. As seen in Fig. 3.12, the global cost associated
with nim rises quite significantly at the beginning of the epidemic, as a significant
number of agents assume the cost of infection, but once herd immunity is reached
this cost flattens out since infection decreases while no effort is required anymore.
It can be noted furthermore that nim does not depend much on rI, as it minimizes
the cost due to social contacts (which is independent from rI), while reaching col-
lective immunity. This leads in first approximation to a constant number of agents
who have been infected at the end time T , as the collective immunity threshold is
unchanged for any value of rI. Therefore, the associated final cost of this strategy
nim grows with a form Cglob(nim) ≃ Ftot(nim) + (S0 − S∞)rI, where Ftot is the total
amount of efforts made by agents for a strategy n(.), which is (almost) independent
of rI, and the second term grows linearly with rI.

• Containing epidemic ncont: We define the reproduction factor R as the R(0) which
was introduced in Eq. (3.27), with here arbitrary value for n(t) instead of 1. One
can easily claim that a sufficient condition to strictly contain the epidemic in a
homogeneous infected population is to keep R(t) = 1. With that condition, one
will enforce I(t) to stay as the same level or below the initial condition I(0) with a
priori the lowest possible cost from the social point of view (keep R(t) < 1 will be
more expensive). We can therefore define the template strategy of the containment
scenario as the one coming from the optimization

ncont(t) = argmin
n(.)

[Ftot(n(.)) such that R(t) = 1 ∀t] , (3.29)

where we furthermore assume that for all age classes Sα(t) ≃ Sα(0) ≃ 1, so that
ncont is actually time independent. Since the social cost only involves current time t,
the problem reduces to a simple, local in time, optimization problem, where n(t) be-
comes a constant n which must respect R = 1 and minimize f(n). The result of this
optimization, obtained numerically through a gradient descent under constraints, is
illustrated in Fig. 3.12. Note that this (constant) strategy ncont is independent of rI,
and the associated global cost Cglob(ncont) ≃ Tf(ncont) is essentially independent of
rI and grows linearly with T .

• Eradicate epidemic nera: For this case, it can be shown (see App. D.E) that, for
the parameters we consider, the optimal eradication strategy is always obtained
by an application of the maximal effort until the time tthr corresponding to the
eradication of the epidemics, I(tthr) ≡ Ithr. This strategy, will be taken as our
template eradication strategy. The associated final cost is therefore expected to
be of the form Cglob(nera) ≃ Tfmax if T < tthr , the cost grows linearly with T ,
and Cglob(nera) ≃ fmaxtthr if T > tthr, where fmax denotes the social cost (rate)
associated with a maximum amount of efforts and tthr mainly depends on Ithr.
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Figure 3.12: A. Comparison of the evolution of the global cost Cglob(n, T ) for the three
template strategies nim (blue line), nera (red lines), ncont (green line) which are well defined
for any value of t (from 0 to ∞). For the global cost associated to the eradication strategy
nera (in red) we take respectively Ithr = 1.10−5 (resp. Ithr = 1.10−3) for the solid line
(resp. dotted line). Regarding the strategy nim, T = ∞ is approximated here by T = 100.
Finally in orange, we plot the true societal optimum cost at T (with Ithr = 1.10−5, solid
line parameters). B. Evolution of the global cost of the societal optimum (orange solid
line) close to the transition time Tc (see text). Dotted blue (resp. green) line: evolution of
the global cost with a continuous change of the strategy n for the herd immunity scenario
(resp. containment scenario). Details of the computation are explained in the main text.

3.4.3 Phase transition

For these three scenarios, we show on Fig. 3.12A the evolution of the global cost with
the optimization time T , for rI = 1 and the parameters of Tables 3.2-3.3. As expected, all
costs increase with T , but in different ways. In blue, the collective immunity cost grows
rapidly at the beginning of the epidemic, so that collective immunity is reached as soon
as possible without saturating the sanitary system, after which the cost levels up. For
the containment strategy ncont (green), we see that the corresponding cost increases al-
most perfectly linearly, as the amount of effort due to contact reduction is constant. As
S(0) = 0.99 < 1, there is in this scenario a small spread of the infection at the beginning
of the epidemic (and thus a small additional infection cost), before it vanishes completely.
Finally the cost of the eradication strategy (red curve) starts with a strong linear increase
(the slope of the curve here is clearly higher than the one of the containment strategy since
the maximal effort is applied), and then saturates at a level which depends on the thresh-
old Ithr. Figure 3.12A also shows the societal optimum cost (orange curve, Ithr = 1.10−5),
which always closely follows one of the templates. At low T , it is a bit below the cost
of the containment strategy ncont, taking advantages of end-time effects (as illustrated in
Fig. 3.13) to slightly reduce the cost. For large T , it follows, again from below, the col-
lective immunity template. For the societal optimum cost, there is a transition around 20

weeks for our choice of parameters, from a “containment” cost to a “collective immunity”
cost. For Ithr = 10−3 (dotted line in Fig. 3.12), the transition would go from “containe-
ment” to “eradication”.

This transition between different scenarios’ costs strongly suggests that the associated
strategies will follow the same pattern, with a transition from the neighborhood of ncont

to the neighborhood of nim. To assess this, we compare in Fig. 3.13 the optimal strategy
found from the societal optimum approach with the template strategies. We observe that
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the small gap between template costs and societal optimum cost which was observed on
Fig. 3.12A corresponds to a small difference between the corresponding strategies. For
strategy 1 (rows 1-2) we observe a finite-T effect: an additional amount of efforts around
10 to 25 weeks appears to be profitable to limit the number of infected, even though the
epidemic is almost over. The structure of the two strategies is nevertheless very similar.
Regarding the “containment” strategy (rows 3-4), in each setting the contact willingness
of each age class of agents is the same (thereby, only one constant dotted line per setting
is plotted) The societal optimum is very close to the strategy ncont, but two effects make
it deviate from the idealistic strategy ncont. First, as S(0) is not strictly equal to one
(here 0.99), there is some moderate spreading of the epidemics, which induces a small
increase of effort from retired people, as well as a small increase of infection cost. Second,
there is a clear end-time effect, meaning here that individuals who are not at risk reduce
their efforts just before T since epidemic will not have time to propagate massively until
T (one can think of a vaccination campaign where individuals will start increasing their
contacts before the campaign is completed). Note however that as T gets close, since the
epidemic begins to grow, retired individuals protect themselves and actually further limit
their contacts. Lastly, for the eradication strategy, the societal optimum is the same as
our template strategy nera (see App. D.E for more details).

Figures 3.12A and 3.13 indicate that our template strategies provide an accurate ap-
proximation of the societal optimum at small and large T . One question we may ask now
is whether the transition we see at Tc ≃ 20 from one scenario to another can be understood
as a true phase transition, or is rather of a crossover type. To address this question, in
Fig. 3.12B we compare the societal optimum near Tc, i.e. the absolute minimum of the
global societal cost, with the result of a gradient descent obtained in the following way:
starting from above Tc (blue) or below (green), we change T by small steps δT , and use
as a starting point for the gradient descent at T + δT the result of the calculation at T .
What we observe is that doing this procedure, our algorithm finds, for a significant range
of T values around Tc a local minimum which follows the herd-immunity template below Tc

(dotted blue) or the containment template above Tc (dotted green). This local minimum
corresponds either to the true minimum when the blue or green curves match the orange
one, and to a metastable state when they do not. Note that both local minima eventually
fall to the global minimum (in orange) when they are sufficiently far from Tc, ending in a
hysteresis cycle.

There is therefore a discontinuous change of the optimal strategy at Tc, which is the
signature of a first-order phase transition. In this analogy with thermodynamics, the cost
Cglob represents the free energy, and T some macroscopic parameter such as temperature.
The Ehrenfest classification, which defines a first-order phase transition as a discontinuity
of the first derivative of Cglob with respect to T at Tc, is clearly observed in Fig. 3.12B. We
expect this phase transition to exist for a large range of parameters of our model, and we
have verified its existence numerically on a number of cases. In particular, we have checked
that the transition between “containment” phase and “eradication” phase is also first-order.

We end up with three distinct phases for the societal optimum, which exhibit first-order
phase transitions between them, and which are well-approximated by template strategies
defined above. Since these template strategies provide good approximations of the societal
optimum one, we use them in Fig. 3.14 to show the “phase diagram” of the optimal scenarios
as a function of the optimization time T and the infection cost rI. Of course, the optimal
strategy will depend on all the parameters that we have introduced until now, but some of
them (matrix of contacts M, capacity of the sanitary system qsat, proportion of agents in
each age class Nα) may be assumed to be quite similar for different epidemics affecting the
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Figure 3.13: Contacts willingness for the three template strategies defined in Sec. 3.4.2
(dotted lines) and the (finite-T ) societal optimum for the corresponding parameters (solid
lines). Rows 1-2: collective immunity (T → ∞, computed in practice with T = 100
and rI = 1, dotted line) and societal optimum (computed with T = 30, rI = 1, Ithr =
0, solid line). Rows 3-4: contained strategy (dotted) and societal optimum (solid) for
T = 10, rI = 1. Rows 5-6: eradication strategy (dotted) and societal optimum (solid)
for T = 30, rI = 1, Ithr = 1.10−5 – the two strategies matches perfectly. Sub-panels and
legends are the same as in Fig. 3.5.
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Figure 3.14: Phase diagram showing the best type of strategy to follow among “reach
collective immunity” (blue), “contain” (green) and “eradicate” (red) with the parameters of
Tables 3.2-3.3 and Ithr = 1.10−7 for the eradication strategy (it is more realistic, as it means
Ntot ≃ 107). Change Ithr or the initial conditions will naturally change the transition lines
(between immunity and eradication areas).

same population, while T and rI depend a lot on the virus under consideration and have
a major impact on the best strategy. The three different scenarios appear to be optimal
in distinct well-defined areas of the phase diagram. When T is small (below 20 weeks),
the containment strategy is optimal whatever rI. Then, there is a transient regime, where
the optimal strategy can be any of the three scenarios, collective immunity, containment,
or eradication according to rI. Finally, after T ≃ 80 weeks, containing the epidemic is no
longer an option, as the linear increase of the cost becomes prohibitive, and the best choice
is either to reach collective immunity or to eradicate the epidemic. Since we use template
strategies, the first-order phase transitions are represented by linear lines on the graph.

3.5 Discussion

In the present Chapter we developed, following [38], an epidemic model based on the
well-known SIR compartmental model supplemented by a social structure. This social
structure relies on the idea that contacts are heterogeneous in society, both because indi-
viduals socialize in different contexts, and because they react in various ways to the disease
(different perception of risk). Therefore, one can divide society into classes of agents which
differ by their behavior, by the risk that the disease represents for them, and by the set-
tings in which socialisation takes place. Here we used an age differentiation, but other
kinds of classification (e.g. based on the immune status or on the presence of comorbidity)
could easily be implemented within the same formalism. In the same way, one can easily
add more compartments and more classes or settings to the model, without changing the
global framework. The description of social structures obtained in this way is clearly less
refined than one that would take into account the heterogeneity of social behaviors at an
individual level, but it probably represents a good balance between precision and ease of
application when trying to understand the dynamics of an epidemic and take appropriate,
targeted action against it.
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To this compartmental epidemic model with social structure, we have, following the
approach of Elie et al.[19], added a Mean-Field Game description of the dynamics: agents
may change their individual behavior depending whether they feel at risk of infection or not.
After deriving the MFG equations, we computed numerically the Nash equilibrium, where
each individual seeks to optimize her own interests. In this paradigm, individuals make a
perfectly rational optimization, and are assumed to be able to perform the corresponding
calculations which is something that we cannot expect from people in practice, as discussed
in Sec. 2.4.2.

As discussed in Sec. 3.3.1, the choice of parameters we used for our simulations does
not aim to describe a specific real-world configuration, but nevertheless corresponds to a
rather generic situation, and the qualitative behavior we obtained is most likely rather
typical of what would be observed in a realistic case. For this set of parameters, the
Nash equilibrium obtained within the Mean-Field Game framework reduces significantly
the costs associated with the epidemic when compared to the “business as usual” approach
where social contacts are kept unchanged. However, there is usually still a gap between
the MFG cost and the one that would correspond to the societal optimal policy, which
represents the minimal global cost that can be borne by the society. To approach this
optimal policy, we introduce the notion of “constrained Nash equilibrium”, in which we
assume that under some conditions, the central authority can impose some constraints,
analog to the partial lockdowns that we have seen during the Covid-19 epidemic, under
simple rules which are known to the agents. In our work, we used a simple restrictive policy
with three parameters (s, Id, Il) and we optimized this policy (i.e. we find the optimal set
(s∗, I∗

d, I
∗
l )) to get the lowest possible societal cost, and in this way close as much as possible

the gap between the free Nash equilibrium and the societal optimum (see Figs. 3.6 and
3.9).

In our discussion of the Nash equilibrium and of the “constrained Nash” approach to the
societal optimum, we have implicitly limited ourself to a regime of very long optimization
time T , and of large population Ntot, for which the societal optimum policy necessary
implies in some way to reach herd immunity. In Sec. 3.4, we go back in more details
to the analysis of the societal optimum, in particular lifting these constraints on T and
Ntot. Depending (mainly) on the values of T , Ntot, and rI, we can identify three phases
that we label as “reaching collective immunity” (the one implicitly assumed in the previous
sections), “containing the epidemic” or “eradicating it” (see Fig. 3.14 showing which scenario
is optimal depending on the parameters T and rI). The transition between any two of these
phases can by understood as a first-order phase transition, in the sense that the associated
strategies present discontinuities and are different from one phase to another. An important
consequence of this discontinuity is that it is primordial for an authority to clearly identify
the appropriate scenario, as a wrong choice could lead to significant additional costs.

Among these three scenarios, “reaching collective immunity” is the one for which the
time dependence of the agent strategies {nγ

α(.)} are the more complex, and an authority
will probably not be able to impose such exact strategy for all individuals. For this sce-
nario, an approach through a Mean-Field Game paradigm under constraints as the one
presented in this work is probably more relevant to approach the societal optimum cost,
which would slightly shift the phases boundaries in Fig. 3.14. On the other hand, the
“containment strategy” appears to be easier to design for an authority, as it consists in
adjusting in real time the constraints, depending on whether the epidemic is growing or
not, to follow R(t) ≃ 1. Nevertheless, to find the best set of constraints to hold R(t) ≃ 1

still involves some complexity, as one should still adapt the strategy to the response of
individuals. Advantage of this scenario is that this can be performed “on the fly”, and
does not really imply any anticipation. Finally, in the “eradication strategy”, authority
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has to impose the maximum admissible constraints, which is conceptually rather simple.
We stress, however, that, contrarily to the “herd immunity” strategy, the societal optimum
obtained with strategy “contain” and “eradicate” are very far from any Nash equilibrium,
even under “reasonable” constraints. The restrictions imposed with the two latter scenarios
lead to epidemics which stay at low levels. In this context, the best individual strategy
is to do essentially no effort, as there is almost no risk of infection. The social optimum
strategy in this case is thus extremely far from the Nash equilibrium. This emphasizes a
profound difference in nature between “herd immunity”, where individual optimization is
closed to the societal optimum, and the two others where the gap is much more important.
This would need to be considered by institutions when they will built collective strate-
gies, as it is presumably very difficult to convince a population to follow on its own will a
strategy which is far from a Nash equilibrium, and the required degree of coercion would
significantly vary between the two cases.

This concludes our first project which has been the central focus of this thesis. We in-
vestigated a complex compartmental model at a mesoscopic scale, with particular attention
to the impact of varying infection costs between individuals, differentiated by age class.
A natural extension of this work is to further refine the heterogeneity of contacts between
individuals by relying on networks based models and exploring the behaviors that would
emerge from a MFG analysis, varying the cost associated to social contact reduction. This
will be the focus of our second project, presented in the next chapter.
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4 - Epidemics spreading on networks through a MFG
approach

The previous chapter was dedicated to the implementation of the MFG paradigm in
a particular compartmental model with a social structure. The underlying network was
implicit, and people were gathered in batches where they interacted between each other in
an homogeneous way. This type of epidemiological models corresponds to the first family
identified in Fig. 2.5 (in green). In this chapter we turn to the models based on mean-field
approaches on networks (network-based models, in brown). Indeed, a game theoretical
approach would be probably out of reach numerically on an explicit network without any
mean-field approximation (it would correspond to an Agent Based Models). The goal of an
explicit network approach is to explore how the structure of the network will influence the
course of the epidemic. This structure will be mainly explored through the distribution of
the number of neighbors, as well as their correlations between them. We first describe the
essential mathematical tools on networks that would be needed for our work in Sec. 4.1,
based on degree measures. Then, in Sec. 4.2, we develop the different possible degree-based
Mean-Field approximations that can be developed for epidemic spreading on networks,
concluding by the degree-based pairwise approximation (PA) system that will be used in
the following. In Sec. 4.3, we implement the MFG paradigm on both homogeneous and
heterogeneous networks, and we compute the corresponding Nash equilibrium for various
forms of the social contact reduction function f leading to significantly different observed
behaviors.

4.1 Basic tools for network analysis

In this section, we outline the tools necessary for our analysis. In Sec. 4.1.1, we in-
troduce degree measures on networks, which are central to our analysis, taking a general
approach. Since the epidemic spreads through the links of the network, the number of
neighbors —or degree— is a key factor influencing the infection probability of each indi-
vidual. Next, in Sec. 4.1.2, we introduce degree correlations which also play a significant
role in epidemic dynamics. Then, in Sec. 4.1.3, we present additional network measures
relevant to epidemic dynamics analysis, though they will not be explored further in our
work.

4.1.1 Degree distribution

A network can be mathematically described by a set of N nodes (or vertices), which
may be connected by links (or edges). The adjacency matrix A allows to represent the
connections between nodes, where an entry Aij = 1 indicates that nodes i and j are
connected, and Aij = 0 otherwise. A network is classified as directed if node i can be
connected to node j without j being connected to i. Otherwise, it is undirected, and the
adjacency matrix is symmetric. In this work, we focus on the latter case.

The degree of a node is the number of neighbors it has, given by Deg(i) =
∑

j∈N Aij .
The degree distribution P (k), representing the probability that a randomly selected node
has degree k, can then be constructed by collecting the degrees of all nodes. This distri-
bution plays a critical role in understanding complex processes on networks, especially for
epidemics, it allows for the definition of the network’s average degree ⟨k⟩ = ∑∞

k=1 kP (k)

and higher degree moments ⟨kµ⟩ =∑∞
k=1 k

µP (k). A primary distinction in network struc-
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ture can be made based on the shape of the degree distribution P (k).
When P (k) is sharply centered around the average degree ⟨k⟩, meaning the standard

deviation σ =
√
⟨k2⟩ − ⟨k⟩2 is small and scales at worst like ⟨k⟩ (see Fig. 4.1), the network

is said homogeneous. In perfectly homogeneous networks (also called regular), all nodes
have the same degree k0, described by P (k) = δk,k0 , indicating that every node has exactly
k0 neighbors. Such networks can be generated randomly through several procedures. One
of the most well-known homogeneous networks are the Erdös-Rényi (ER) networks, where
each link exists with a fixed probability p. These networks exhibit a degree distribution
that follows a Poisson law, with the following form: P (k) = (Np)ke−Np/(k!). ER net-
works, extensively studied since [63], are particularly useful for exploring general network
properties.

On the other hand, if P (k) has a long tail (see Fig. 4.1) or a large standard deviation
σ, the network is classified as heterogeneous. A common form of heterogeneous networks
in nature [51] is the one which follows a power-law degree distribution, P (k) ∝ k−γ , char-
acterized by a parameter γ. In the thermodynamic limit (N → ∞), such distributions are
feasible only for γ > 1 (to allow the normalization of the distribution). For 2 < γ < 3, we
have scale-free networks, where the second moment of the degree distribution is undefined,
while the first moment exists. In these networks, fluctuations and correlations can grow
arbitrarily large. One well-known method to generate such networks is the Barabási-Albert
(BA) preferential attachment model [67], where nodes with a higher degree are more likely
to attract new connections. In this model, the probability of a new link attaching to node i

is proportional to its degree, pi = ki/(
∑

j kj). Networks of similar degree distribution can

Figure 4.1: Illustration of the different type of networks. Homogeneous networks are peaked
around the average degree ⟨k⟩ while heterogeneous networks have a large distribution.

nevertheless be significantly different due to the existing correlations inside the network
and we need additional quantities to fully characterize them.

4.1.2 Correlations inside the networks

The correlations within a network reflect how the neighborhood structure, or the set
of neighbors for a given node, can vary across different nodes. These correlations are often
linked to the degrees of the nodes and can be expressed using the conditional probability
P (k′|k), which denotes the probability that a randomly selected neighbor of a node with
degree k has degree k′. This conditional probability can be formulated as a correlation
matrix, Gkk′ ≡ P (k′|k). This provides all the information about our network, as we will
work with Markovian networks which are fully characterized by their degree distribution
and their correlation matrix, in the sense that higher moments and higher order correlations
inside the network can be written as combination of P (k) and Gkk′ [184]. Moreover, the
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degree correlations is not completely free and must satisfy the detailed degree balance
condition

P (k)kGk′k = P (k′)k′Gkk′ , (4.1)

which symmetrically accounts for the number of edges between nodes of degree k and k′.
Unfortunately, Gkk′ can be complex and difficult to interpret directly. Therefore, more

intuitive metrics, such as the nearest-neighbor degree, denoted by Knn, are often used.
The nearest-neighbor degree is defined as Knn(k) =

∑
k′ k

′P (k′|k) and represents the av-
erage degree of the neighbors of nodes with degree k. In uncorrelated networks, P (k′|k) is
independent of k, leading to P (k′|k) = k′P (k′)/⟨k⟩ which ensures the normalization of the
sum over k′.

Discussion on the physical rationale behind P (k′|k) = k′P (k′)/⟨k⟩.

Contrarily to what can be expected intuitively, we did not have P (k)P (k′|k) =
P (k′)P (k|k′) = P (k∩k′) as for Bayesian probabilities, as P (k′|k) contains the specific
information that the node of degree k′ is a neighbor of the node of degree k. Instead,
we have the detailed balance condition Eq. (4.1) which counts the number of edges
from nodes of degree k to nodes of degree k′: a given neighbor of a given node of
degree k has a probability P (k′|k) = Gkk′ to be of degree k′. The node of degree k
has therefore kP (k′|k) neighbors of degree k′. We finally add the factor NP (k) (where
N is then simplified) to account for the number of nodes of degree k on the network.
The right hand side of Eq. (4.1) corresponds to the symmetric reasoning with k′ and k
instead of k and k′. Taking the sum over k, we get for uncorrelated networks (meaning
that P (k′|k) is independent of k):

P (k′|k)⟨k⟩ = P (k′)k′
∑
k

P (k|k′) , (4.2)

which using the normalization
∑

k P (k|k′) = 1 leads to the formula we mentioned.
This formula is rather not intuitive, as one would expect to get P (k′|k) = P (k′) which
would also be normalized to 1 and independent of k. Actually, this tells us that even
on uncorrelated networks where everyone has the same environment, our neighbors
have more neighbors, in average, than us. Indeed, computing explicitly Knn(k) on
uncorrelated networks leads to

Knn(k) =
∑
k′

k′P (k′|k) =
∑
k′

(k′)2P (k′)

⟨k⟩ =
⟨k2⟩
⟨k⟩ ≥ ⟨k⟩ , (4.3)

since the standard deviation should be positive. This equations literally says that the
average degree of neighbors of degree k is above ⟨k⟩ and independent of k, meaning
that we also have ⟨Knn(k)⟩ ≥ ⟨k⟩. Physically, the fact that neighbors have more
neighbors in average is due to the overrepresentation of the neighbors of high degree
in the environment of all the nodes, with respect to their representation in the network
(kNP (k) edges are starting from them, while they are NP (k) in the network).

In the case of uncorrelated networks, Knn(k) is therefore constant, meaning that the
average degree of a node’s neighbors is independent of the node’s degree, and the envi-
ronment appears statistically uniform across the network. The behavior of Knn(k) as a
function of k reveals important information about the degree correlations in the network.
Generally, three families of correlations emerge (see Fig. 4.2):

• Assortative mixing: Nodes with a high degree k are more likely to connect with
other high-degree nodes.
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• Constant: No degree correlations between nodes.

• Disassortative mixing: Nodes with a low degree k are more likely to connect with
high-degree nodes.

Figure 4.2: Illustration of the different type of correlations inside a network.

Examples of assortative mixing are prevalent in social networks, where individuals with sim-
ilar attributes (such as age, nationality, or location) are more likely to be connected [185].
Conversely, technological and biological networks often exhibit disassortative mixing [185].
Here, we will nevertheless focus on uncorrelated networks, which already exhibit complex
behaviors. This approach allows us to distinguish between phenomena arising from the
degree distribution structure P (k) and those potentially caused by Gkk′ .

4.1.3 Other measures on networks

Several additional metrics are commonly employed to model epidemic dynamics on
networks, as they provide insights into network structure:

• Path: A path denotes the set of links and nodes between a starting node and a
final node. In a connected network, there are often several paths between two nodes.
The path with the minimum number of links is considered the shortest path. An
epidemic will propagate inside the network through these paths.

• Community: There exist several formal definitions of a community, which have
more or less the same goal: capture the set of nodes such that those nodes are
densely connected internally, and poorly connected outside, possibly allowing over-
lapping between communities. It is a global measure at the scale of the network and
a whole topic of research in itself to find the best definition and then the best algo-
rithm that would be able to detect communities in a network. These communities
often play central role in the emergence of mesoscopic structure [186]. In epidemics,
specific phenomena can occurs in different communities (as different contact rates
for epidemics, based on the age, the race or the habits of a certain community)

• Betweenness centrality: Betweenness centrality quantifies the importance of a
node within a network by counting the number of shortest paths that pass through
it. Nodes with high betweenness centrality serve as main intermediaries in the flow
of information, often acting as bridges between different communities and occupying
central positions in the network. Conversely, nodes with low betweenness centrality
reside at the network’s periphery. Despite their peripheral location, these nodes can
still play a crucial role in complex spreading processes [187, 188], where infection
requires a certain proportion of infected neighbors for transmission to occur [189].
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• Clustering coefficient: Clustering is a local metric that measures how close the
neighborhood of a given node is to forming a complete graph, indicating whether the
node’s neighbors are densely interconnected. In the context of epidemics, clustering
plays a significant role at a local level, as it influences correlations within the network
[36]. For instance, if a member of your cluster, such as a family member, becomes
infected, the high level of interconnectivity increases the likelihood that you will also
become infected.

There exists a wide literature to find the pertinent measures on networks for epidemic
spreading analysis, reader can refer to [52] for a more thorough development. We will not
develop them further in our work, and rather use the degree distribution P (k) and the
degree correlation matrix Gkk′ .

4.2 Mean-Field approximations on networks

In this section, we assume that networks are fully described by their degree distribu-
tion and their correlation matrix which can be general (Markovian networks). Although
some specific features of real social networks may be overlooked, Markovian heterogeneous
networks provide a reasonable approximation of real social structures. These networks can
be fully controlled and offer a practical framework for implementing the Mean-Field Game
paradigm. Before introducing the game, we will first assess the suitability of different
Mean-Field approximations in this context in this section.

In the context of epidemics spreading, we would like to compute the macroscopic num-
ber of susceptible, infected and recovered individuals on a network. An epidemic will
spread through it with a classical Markov description, with for node i

P [xi(t+ dt) = i | xi(t) = s] =
∑
j∈Vj

δxj(t),iλdt , (4.4)

which denotes the probability for node i to be infected at t, and Vj represents the set
of neighbors of node i, while λ is the infection rate. However, this description is micro-
scopic and specific to each node, requiring a vast amount of computational power to be
performed numerically without approximations. For practical applications, this model de-
mands detailed knowledge of the network structure, which is often difficult to obtain from
real datasets. Additionally, since the model is stochastic, multiple simulations are needed
to obtain quantitative results. These kinds of models fall under the category of agent-based
models, which are computationally intensive and make the implementation of paradigms
like Mean-Field Games challenging, as discussed in Sec. 1.2.5.

To overcome these issues, physicists have developed Mean-Field approaches that reduce
the complexity of the system to a reasonable set of equations, allowing for the prediction
of average epidemic dynamics within the network. These techniques help to better under-
stand the different types of correlations that occur within the network. A brief overview
of these methods is provided in this section.

We first present in Sec. 4.2.1 the Pure Mean-Field approach (PMF), which coincides
with the SIR model, we then turn to the Heterogeneous Mean-Field approach (HMF) in
Sec. 4.2.2, in which all nodes of the same degree are equivalent. In Sec. 4.2.3, the Quench
Mean-Field (QMF) approach is briefly presented, involving the whole adjacency matrix
of the network, while in Sec. 4.2.4 the Dynamical Message Passing approach (DMP) is
presented, with the cavity state method. Finally in Sec. 4.2.5, the degree Pairwise Ap-
proximation approach is presented (PA). This latter approximation will be the one used in
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the following, as it accounts for the main correlations in the networks, and reproduces per-
fectly the numerical simulations of Markovian networks with a reasonable set of equations.
A complete introduction to these approximations can be found in [72].

4.2.1 The pure Mean-Field approach

In this very simple case, all the nodes of the network are considered equivalent and the
infection probabilities of two nodes are assumed to be the same (nodes are independent).
We have at the microscopic level for each node,

P [xi(t+ dt) = i | xi(t) = s] = ⟨k⟩Iλdt , (4.5)

which therefore gives at the macroscopic level for the probability I(t) of a node to be
infected at t:

İ = ⟨k⟩λIS − γI , (4.6)

which is nothing but the classical SIR equations Eqs. (1.7). This approach has been widely
used during the 20th century. The main advantage of this approach is that the system is
reduced to a single equation. However, the only network structure which is considered is
⟨k⟩, and no correlation or specificities of nodes are taken into account.

4.2.2 Heterogeneous Mean-Field approach

The next natural step is to consider that nodes of same degree are equivalent, through
an heterogeneous Mean-Field approach developed by Pastor-Satorras and Vespignani at
the beginning of 2000s [190]. This leads to the formation of degree classes; we will thus
denote Ik(t) the fraction of infected nodes of degree k at t. We then compute θk(t) which
corresponds to the average probability (over nodes of degree k) that a given neighbor is
infected. This quantity is defined by

θk(t) =
∑
k′

k′P (k′|k)Ik′(t) . (4.7)

Then, one makes the assumption that networks are uncorrelated, which leads to a θk(t)

independent of k which can be written as

θ(t) =
1

⟨k⟩
∑
k

kP (k)Ik(t) , (4.8)

which, together with
İk(t) = βkSk(t)θ(t)− γIk(t) , (4.9)

forms a close system that can be solved numerically easily. The macroscopic number
of infected is naturally given by I =

∑
k P (k)Ik. This approach has several interesting

advantages. It only involves the knowledge of the degree distribution P (k), which is a rather
accessible quantity, and it provides a precise epidemic threshold which explicitly depends on
the network structure and heterogeneity through ⟨k2⟩ (the threshold is βHMF = ⟨k⟩/⟨k2⟩).
Hence, for homogeneous networks of high degree, one recovers 1/⟨k⟩, but for heterogeneous
networks with power-law distribution with 2 < γ < 3, the epidemic threshold vanishes
due to the divergence of ⟨k2⟩, which is one of the main results on epidemic growth on
heterogeneous networks.

Nevertheless, as shown on Fig. 4.3, the quantitative comparison on long time scale is
still not satisfying. θ is unique to all the nodes, and ignores the intrinsic correlations inside
the networks (both regarding degrees and states). We still miss a part of the network
topology, and a part of this topology can be captured directly through the adjacency
matrix.
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4.2.3 Quench Mean-Field approach

Another approach in [72], more radical, is to take directly the adjacency matrix A to
capture all the topology of the network. We still do not consider the existing correlations
between the states of two neighbors in the network, meaning that the probability for a
neighbor j of node i to be infected at t will be Ij(t) (independent of i). This leads to a
dynamical evolution of Ii(t) given by

İi(t) = λSi(t)

N∑
j

AijIj(t)− γIi(t) . (4.10)

This Quench Mean-Field approach consider the full topology of the network through adja-
cency matrix A, which can be a drawback for numerical simulations notably, as the precise
use of Eq. (4.10) involves one evolution equation for each node, which would become very
time consuming for large N . Moreover, Eq. (4.10) still lacks the intrinsic existing corre-
lations between the states of neighboring nodes, which appears to be a crucial element
(Fig. 4.3).

4.2.4 Dynamical Message Passing approach

The issue with Eq. (4.10) is that the term Ij , which represents the probability for node
j to be infected at t, is overestimated when i is itself susceptible. To take into account the
correlation effect that a neighbor j of a susceptible node i is less likely to be infected than
usual Ij , Karrer and Newman propose the Dynamical Message Passing approach [191], in
which the reference node i is disallowed and cannot be infected. Thus, Eq. (4.10) becomes

İi(t) = λSi(t)
N∑
j

Aijθj→i(t)− γIi(t) , (4.11)

where θj→i(t) is the probability for j to be infected in the absence of node i (from the
beginning of the dynamics). Thus, in the extreme case where j has only one neighbor i, it
will never infect him while it was possible in Eq. (4.10). Evolution equation of θj→i(t) can
be derived in a straightforward way (see [72]). Although DMP approach can be numerically
accurate [191], the system (4.11) is still very hard to solve, as it involve N +2E equations
(where E is the number of edges). To simplify this system, Barthelemy et al. [46] classify
the nodes according to their degree, writing the system

İk = λSk(t)kθk(t)

θk(t) =
∑
k′

Ik′
k′ − 1

k′
P (k′|k) ,

(4.12)

with the factor (k′ − 1)/k′ coming from the fact that the neighbor considered has k′ − 1

neighbors which could have infected him, as the initial node of degree k considered is
still susceptible (“cavity mode” [191]). System (4.12) only has 2kmax equations, with kmax

the maximum degree of the network. It shows better results numerically than the HMF
approach (see Fig. 4.3), thanks to the cavity mode technique, but it still fails to be accurate
at long time when I significantly increases, because the correlations between two neighbors
are more tricky than the one described in Eq. (4.12). This method is however well suited
to study the beginning of epidemics [46].
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4.2.5 The degree Pairwise Approximation approach

We now turn to the approximation we will adopt in the following. The core idea of
the degree Pairwise Approximation approach is to still consider that nodes of the same
degree are equivalent, but add their state (s, i, r) into their characterization (and not only
the degree). Thus, susceptible nodes of degree k will be equivalent between them, but
different from infected nodes of degree k, as their neighbors will have different states due
to correlations. Pairwise Approximation has been introduced in [192, 60] through the ad-
jacency matrix, and in [193] with a degree classification. This latter classification is more
convenient in practice, as it will considerably reduce the number of equations.

In a slightly different way than in the literature, we introduce the conditional probabil-
ity for a given node to be of state y and degree k′, knowing that this node has a neighbor
of state x and degree k. We denote it Gxy

kk′ and we denote the nodes’ classes as xk and
yk′ respectively. Thus, we consider the state of the node (x = s, i, r) and its degree (k)
to compute the probability for one of its neighbors to be infected. The time evolution
equation of Ik can therefore be written as

İk(t) = λSk(t)k
∑
k′

Gsi
kk′(t)− γIk(t) , (4.13)

where Gsi
kk′(t) is the correlation matrix between states and degrees, describing the proba-

bility to find an infected neighbor of degree k′, considering a susceptible node of degree k.
The time evolution equation of this quantity can be obtained as follows.

The key idea of our derivation is to examine the evolution of directed edges x − y,
from a starting node of state x to an arrival node of state y. At time t, there are
NP (k)kxk(t)G

xy
kk′(t) edges between the classes xk and yk′ . This moreover verifies the

degree-states detailed balance relation between these two classes

NP (k)kxk(t)G
xy
kk′(t) = NP (k′)k′yk′(t)G

yx
k′k(t) . (4.14)

Our edges under consideration have a probability xk(t)G
xy
kk′(t) of connecting nodes from

class xk to yk′ at t. At time t+ dt, the probability for each edge to link these two classes
becomes xk(t+ dt)Gxy

kk′(t+ dt), to first order in dt. There are two main possibilities based
on the situation at time t: either the edge was already linking the two classes xk and
yk′ at time t and remains linked at t + dt with some probability, or the edge was not
connecting the two classes at time t but establishes a connection at t+ dt. We break these
two possibilities down into five sub-cases (the first three corresponding to the former, and
the latter two to the latter):

1. No change for the starting and the arrival node. Contribution: +xk(t)G
xy
kk′(t)

2. The state of the starting node change from x to z ̸= x: −∑z ̸=x

[
xk(t)G

xy
kk′(t)T

kk′

(x,y)→(z,y)dt
]

3. The state of the arrival node change from y to z ̸= y: −∑z ̸=y

[
xk(t)G

xy
kk′(t)T

kk′

(x,y)→(x,z)dt
]

4. The state of the starting node change from z ̸= x to x: +
∑

z ̸=x

[
zk(t)G

zy
kk′(t)T

kk′

(z,y)→(x,y)dt
]

5. The state of the arrival node change from z ̸= y to y: +
∑

z ̸=y

[
xk(t)G

xz
kk′(t)T

kk′

(x,y)→(x,z)dt
]

where T kk′

(x,y)→(x′,y′)dt denotes the probability that the states of the starting and ending node
changes from (x, y) to (x′, y′), with k and k′ denoting their respective degrees. We define
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similarly T k
x→x′ for the transition probability of one node taken alone or if the state of the

other node has no influence on it - like in the recovering process. For the SIR model, we
obtain four non-vanishing transition rates:

T k
i→r = γ

T k
s→i = λGsi

k k

T kk′

(s,y)→(i,y) ≃ λ
[
δy,i + (k − 1)Gsi

k

] (4.15)

where we introduce the notation Gsi
k =

∑
k′′ G

si
kk′′ . In Eq. (4.15), we use the pairwise

approximation for the equation of the form T kk′

(s,x)→(i,x): to close the evolution equation
and restrict correlations to pairs (without considering correlations between three, four, or
more nodes), we assume that the probability for another neighbor (different than the one
already considered of class yk′) of the starting susceptible node of degree k to be infected
is given by Gsi

k . This implies that we disregard the information about the state of the
neighbor from class yk′ when computing this probability (as it should have an influence
on Gsi

k ), although we include it with the term δy,iλ in T kk′

(s,x)→(i,x), which accounts for the
contribution of a node whose state is known. Thus, this approximation neglects the impact
of triangles and higher-order loops on a node’s state, leading to limitations in networks
with high clustering. However, in the thermodynamic limit N → ∞ for the Markovian
networks studied, this approximation becomes exact, as the number of finite loops becomes
negligible. The two other transition rates of the form T k

x→x′ are the usual ones when one
knows nothing about the neighbors of the starting node. Summing all the contribution
together, we get at time t+ dt

d
[
xk(t)G

xy
kk′(t)

]
dt

= xk(t)
∑
z ̸=y

[
Gxz

kk′T
kk′

(x,z)→(x,y) −Gxy
kk′T

kk′

(x,y)→(x,z)

]
+
∑
z ̸=x

[
zk(t)T

kk′

(z,y)→(x,y)G
zy
kk′ − xk(t)T

kk′

(x,y)→(z,y)G
xy
kk′

]
,

(4.16)

which is the usual equation we found in the literature [194, 195, 196], with usually a
compact notation for xk(t)G

xy
kk′(t). However, having introduce Gxy

kk′ allows to write ẋk(t) =∑
z ̸=x

[
zkT

k
z→x − xkT

k
x→z

]
and then express the evolution of Gxy

kk′ as

Ġxy
kk′ =

∑
z ̸=y

[
Gxz

kk′T
kk′

(x,z)→(x,y) −Gxy
kk′T

kk′

(x,y)→(x,z)

]
+
∑
z ̸=x

[
zk(t)

xk(t)

(
T kk′

(z,y)→(x,y)G
zy
kk′ − T k

z→xG
xy
kk′

)
+Gxy

kk′(T
k
x→z − T kk′

(x,y)→(z,y))

]
,

(4.17)

which involves the two forms of transition rate we introduced. This equation together with
Eq. (4.13) close the system of equations with 3+(3kmax)

2 equations, which is smaller than
N or E for large N networks. We adopted a somewhat physical approach, following a
single edge, but a more formal approach is proposed in App. B.1, reader may also refer to
[195] for a mathematical derivation in the case of homogeneous networks.

The introduction of state correlated matrices Gxy
kk′ , instead of the the quantities xkG

xy
kk′

usually introduced in the literature, allows to easily obtain all marginal probabilities ob-
tained by summing over one or more variables of Gxy

kk′ . For instance, G y
k will denote

the probability to encounter a neighbor of state y, whatever its degree, knowing that the
starting node is of degree k, it can be computed rather naturally as

G y
k =

∑
x,k′

xkG
xy
kk′ =

∑
x

xkG
xy
k . (4.18)
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With this notation, Gkk′ naturally denotes the conditional probability P (k′|k) and we get
a large number of closure and normalization relations among these different conditional
probabilities (See App. B.2). Moreover, as shown in App. B.2, the detailed balance relation
Eq. (4.14) remains valid over time, which demonstrates the consistency of the system.

The Pairwise Approximation is the one which accounts for almost all the existing
correlations that we know on the network (between degrees and states). We will now
test numerically the different approximations we presented to check whether the Pairwise
Approximation is accurate or not.

4.2.6 Comparison between the different approaches

In Fig. 4.3 we illustrate the performance of the different approximations to predict the
infected curve I(t) of a random heterogeneous (Markovian) network. At each iteration,
another network is drawn with the same macroscopic characteristics and another seed of
infected is realized at t = 0. We have chosen our parameters in order to test the approxi-
mations on a random heterogeneous (scale-free) network, they are somewhat arbitrary and
other parameter sets will likely lead to the same conclusions (for heterogeneous networks).
We observe in Fig. 4.3 that the Pairwise Approximation (red curve) matches perfectly the

Figure 4.3: Comparison of the different approximations mentioned above with the “true”
simulated number of infected nodes in a random heterogeneous network, represented by
the average of the Markovian process Eq. (4.4) (black solid line). We took N = 3000
nodes averaged over nit = 200 iterations of the Markovian process. PMF, QMF and HMF
approaches (respectively orange, blue and purple lines) clearly overestimate the number
of infected, as they consider that a neighbor of a susceptible has a probability I to be
infected, whereas it is in reality lower due to the state correlations. DMP (green line)
provides a better approximation thanks to the cavity method which partially accounts
for the state correlation between neighboring nodes. Finally, the Pairwise Approximation
(red line) provides a very accurate result. Other parameters: P (k) ∝ k−2.5 ∈ [kmin, kmax],
λ/γ = 2/3, I0 = 0.01, kmin = 2, kmax = 20.

average Markovian process (black curve), as it should in the limit nit , N → ∞. Other
approximations fail to reproduce the results of the Markovian process but are rather useful
in other contexts or at the beginning of epidemics. For instance, the Dynamical Mes-
sage Passing approach, widely studied, is rather efficient in networks with high level of
clustering.
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In the following of our work, we will (naturally) continue with the Pairwise Approxi-
mation. The numerical complexity of the different approximations we presented here was
also a significant stake of this work, we display them in Sec. 6.3.3.

4.3 Mean-Field Games on networks

We are now ready to apply the Mean-Field Games framework to networks. Similarly
to Chapter 3, individuals will optimize a control variable related to their contact rate.
However, instead of classifying individuals by age, we will categorize them by their number
of neighbors (degree). This classification is particularly relevant when considering infection
probability, as individuals with a higher number of contacts (i.e., a higher degree) are
more susceptible to contracting the disease. In this context, it becomes crucial to assess
whether individuals “at risk” due to a high number of contacts will choose to reduce their
interactions or accept the associated risk. This decision is reflected on the shape of the
social cost function f , particularly its dependence on k. Understanding how f(k) influences
behavior will provide insights into the strategies adopted by different individuals according
to their degree.

In Sec. 4.3.1, we first introduce an implementation of the MFG paradigm applied to a
general heterogeneous network using the pairwise approximation, in the spirit of the MFG
approach used in Chapter 3. In Sec. 4.3.2, we analyze the results of the Nash equilibrium
on a homogeneous network. Then, we explore the MFG Nash equilibrium in more details
for realistic heterogeneous networks in Sec. 4.3.3, considering social cost functions f which
can be either increasing or constant with k. Finally, Sec. 4.3.4 is dedicated to a brief
discussion of the obtained results. This Section is associated with the paper presented in
App. F.

4.3.1 The MFG model on a network

We split the model presentation into three sections: one dedicated to the system dy-
namics in Sec. 4.3.1.1, another one dedicated to the individual optimization in Sec. 4.3.1.2
and finally a short section dedicated to the choice of parameters in Sec. 4.3.1.3. Before, we
briefly precise the network structure on which we will rely.

We will consider a population of N individuals which can be in one of the three pos-
sible states (x = s, i, r) represented by random Markovian networks. In practice, we will
work in this section with uncorrelated networks, but any specific Gkk′ could be easily im-
plemented. For each edge between two neighbors, there is a probability λ(t)dt that an
infected individual will infect its (susceptible) neighbor during the time interval [t, t+ dt[.
This probability λ(t)dt will therefore correspond to a certain contact probability βdt times
the probability ρ to infect someone when a contact occurs. As in the basic SIR model,
infected individuals may also recover from the disease during that time interval with a
probability denoted γdt here. The dynamics will follow a standard Markovian process and
the averaged macroscopic quantities will be computed through the pairwise approximation
Eq. (4.13), which is the more appropriate under our hypothesis.

4.3.1.1 System dynamics

To implement a Mean-Field Game, a natural approach, in line with Chapter 3, is to
ensure symmetry in the contacts between individuals. In this model, individuals control
their contact rate λ(t) with their neighbors via a control variable n(t), which they can
adjust. The symmetry in the infection rate λ arises from including the actions of both
neighbors in an equivalent manner. Following the approach of Chapter 3, we assume
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that individuals within the same degree class exhibit identical behavior at equilibrium.
This leads to defining individual control coefficients nk for each degree class. Physically,
nk represents the willingness of individuals with degree k to engage in risky interactions
with their neighbors. We will call it the “effort parameter”, while the maximum effort
corresponds to nk(t) = nmin for a certain value of nmin and the minimum effort corresponds
to nk(t) = 1. Note that nk is assumed to be independent of the neighbor’s degree k′.
While this assumption could overlook some practical circumstances, it simplifies both the
analytical and numerical resolution of the model.

Thus, the symmetric contact rate between individuals a and b is given by λ(0)nanb,
where λ(0) represents the baseline contact rate in the absence of epidemic. Consequently,
the pairwise equation and, more generally, the SIR system for each degree class can be
expressed as

Ṡk(t) = −λ(0)nk(t)Sk(t)k
∑
k′

nk′(t)G
si
kk′(t) ,

İk(t) = λ(0)nk(t)Sk(t)k
∑
k′

nk′(t)G
si
kk′(t)− γIk(t) ,

Ṙk(t) = γIk(t)

(4.19)

with the dynamics of Gsi
kk′(t) given by the 9k2max equations given by Eq. (4.17) which are

coupled, although some of them are not independent:

Ġxy
kk′ =

∑
z ̸=y

[
Gxz

kk′T
kk′

(x,z)→(x,y) −Gxy
kk′T

kk′

(x,y)→(x,z)

]
+
∑
z ̸=x

[
zk(t)

xk(t)

(
T kk′

(z,y)→(x,y)G
zy
kk′ − T k

z→xG
xy
kk′

)
+Gxy

kk′(T
k
x→z − T kk′

(x,y)→(z,y))

]
,

(4.20)

with the slightly modified relations with respect to Eq. (4.15):

T k
i→r = γ

T k
s→i = λ(0)nk(t) k

∑
k′

nk′(t)G
si
kk′(t)

T kk′

(s,x)→(i,x) = λ(0)nk(t)
[
nk′(t)δx,i + (k − 1)

∑
k′′

nk′′(t)G
si
kk′′(t)

]
,

(4.21)

where nk indicates the collective behavior followed by individuals of degree k, similarly to
nα for individuals of age class α in Chapter 3. This system forms the Kolmogorov system
of our MFG. We now turn to the individual optimization.

4.3.1.2 Individual optimization
As in the previously introduced MFG, we assume that individuals of degree k are

sensitive to an inter-temporal mean-field cost between the optimization time t and the end
of the game at time T . A representative individual a of degree k considers the following
averaged cost:

C (na(·), {nk′(·)}, t) =
∫ T

t
[λa(s) rI + fk (na(s))] (1− ϕa(s))ds , (4.22)

where {nk′(·)} denotes the set of collective strategies of individuals of all the possible
degrees k′ (including k). This cost has exactly the same form as Eq. (2.28), with the force
of infection given by

λa(s) = λ(0)na(t)k
∑
k′

nk′(t)G
si
kk′(t), (4.23)

while the probability of being infected at time s > t is given by ϕa(s) = 1 − e−
∫ s
t λa(u)du.

Regarding the cost functions, we assume a constant infection cost rI, as there is no inherent
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natural difference between individuals of varying degrees. However, the social cost is likely
to depend on the degree k and will therefore be denoted fk, it will be specified in the
following sections depending to the context.

As in Eq. (2.30), we then introduce the value function to minimize the cost (4.22) from
the individual’s perspective:

Ua(t) =

min
na(·)

C (na(·), {nk′(·)}, t) , a susceptible at t

0, a infected (or recovered) at t.
(4.24)

This value function corresponds to the minimum cost that individual a can expect to pay
between t and the rest of the game, according to her status. A straightforward derivation,
following the one of Sec. 2.3.3, leads to

−dUa

dt
= min

na(t)
[λa(t) (rI − Ua(t)) + fk(na(t))] , (4.25)

which together with the final condition Ua(T ) = 0 provides the HJB equation of our game.
Besides, we will compute explicitly the optimal strategy n∗

a(t) for individual a of degree k,
susceptible at t, which will depend on the precise shape of fk.

Finally, the consistency condition to be at a Nash equilibrium is that for any individual
a one has

n∗
a(t) = nk(t) , (4.26)

with k the degree of individual a. Equations (4.19)-(4.17)-(4.21) (Kolgomorov system)
together with Eq. (4.25)(HJB) and Eq. (4.26)(Consistency) form the MFG system of our
game whose solution is a Nash equilibrium.

4.3.1.3 Parameters choice for our simulations

To explore the behavior of this MFG system, we implemented and solved it numerically
using the gradient descent method (see Sec. 6.1.2) to reach the Nash equilibrium of our
game1, for different parameters of our game. We explore two kinds of networks: perfectly
homogeneous and a “realistic” heterogeneous network. On the latter case, we will study
the Nash equilibrium for increasing or constant fk with k. Importantly, we will keep the
“biological” parameters of our system constant to be able to compare them, which means
that the baseline contact rate λ(0) has to be rescaled according to ⟨k⟩: µ = γ/(λ(0)⟨k⟩)
is fixed to 1/4. Other parameter used are summarized in Table 4.1. For the social cost
function, we chose the specific form

f ϵ
k(n(t)) = kϵ

(
1

n(t)
− 1

)
, ϵ = 0, 1 , (4.27)

which allows us to explore different regimes of social dependence to neighbors. Physically,
the choice ϵ = 1 implies that a constant social cost of ( 1

na(t)
−1) is assigned to each neighbor,

which means that for a fixed fraction of contacts lost, an individual with a higher number
of neighbors is more impacted than an individual with fewer neighbors. In the case ϵ = 0

the social cost is the same for all individuals, whatever their degree. This two bounds
appear to be the most natural ones that one can think about, the dependency of f with k

in practice will probably be for ϵ in [0, 1], regarding the physical meaning associated to ϵ

only.

1Here also, the Nash equilibrium seems unique
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(S0, I0, R0) µ λ(0)⟨k⟩ rI nmin

(0.995, 0.005, 0) 1/4 4 50 0.1

Table 4.1: Parameters used in our simulations for MFG on networks. We took
a small µ = γ/(λ(0)⟨k⟩) = 1/4 to ensure that an epidemic will easily propagate
even for epidemics on homogeneous networks of low degree (where the threshold is
(k−2)/k as we will see in Chapter 5) and for the low degree region of heterogeneous
networks. We keep λ(0)⟨k⟩ = 4 in all our simulations to be able to compare epidemics
between them, for both homogeneous and heterogeneous networks. rI is chosen to be
comparable with fk. Finally, we took an arbitrary nmin = 0.1 which corresponds to
the lower bound of the effort parameter, sufficiently low to not affect the observed
behaviors here. The time scale of the results are in days, it may vary according
situation studied: we have always chosen the time scales of our simulations to enforce
reaching collective immunity and thus compare similar scenarios each time.

4.3.2 Nash equilibrium on homogeneous networks

We first consider the simplest case of homogeneous networks (or regular graphs), where
each node has the same number k of neighbors. The Kolmogorov system (4.19)-(4.17)-
(4.21) is then significantly simplified (see the system (5.1)-(5.2) for an explicit version). In
an homogeneous network of degree k, we are left with a single class of individuals, with
λ(t) equal to λ(0)n2(t) and n(t) is the effort parameter chosen by individuals of degree
k (we drop the index as there is no other k involved). For our specific choice f ϵ

k we can
compute the optimal strategy nϵ,∗

a (t):

nϵ,∗
a (t) =

(
k1−ϵ λ(0)Gsi

k (t)[rI − Ua(t)]
)−1/2

, (4.28)

which allows us to more easily compute the Nash equilibrium of the game numerically (and
verify that we have reached the Nash equilibrium). After numerically solving the system
of equations discussed above and reaching a Nash equilibrium, we obtain the epidemic
rates and associated effort parameters. They are displayed in Fig. 4.4 for the two different
possibilities f0,1

k . Several observations can be made.
First, we observe in Fig. 4.4 that while individuals reduce their contact rate predom-

inantly during the epidemic peak, their maximal effort occurs slightly after the peak is
reached (see, for instance, the case k = 4 on the first row), and they maintain their effort
well beyond the peak. This suggests that individuals engage in a form of “reverse antici-
pation”. More precisely, it is not the anticipation of the incoming epidemic that motivates
their behavior, but the compound effect of the actual (present time) intensity of the epi-
demic and of the anticipation of its end. Indeed, at the onset of the epidemic, the prospect
of maintaining a significant effort for the whole duration of the epidemic, while the latter is
still growing slowly and individuals anticipate that collective immunity will not be reached
anytime soon, appears more costly (with our choice of parameters) than paying the “one
time” cost of infection. However, as collective immunity is in sight, shortly before the
epidemic peak and for some time after, it becomes advantageous to make efforts to avoid
infection, since the epidemic is still severe, and the remaining time before the epidemics is
over is reasonably short. It then becomes advantageous for susceptible individuals to make
significant efforts, as they have a good chance of avoiding infection forever if they protect
themselves for a relatively short period.

While the mechanism described above is rather generic, the precise range and inten-
sity at which it is at play of course depends on the choice of parameters. In particular,
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Figure 4.4: Left column: Dynamics of infected individuals, corresponding to the Nash
equilibrium, with the parameters of Table 4.1 for different homogeneous networks, with
k = 4 (blue), 6 (orange), 8 (green), 12 (red), 20 (purple) and classical SIR model (black
dashed); the social cost function is f ϵ

k with ϵ = 1 (top) and ϵ = 0 (bottom). Inset:
dynamics of the probability ϕ(t) to be infected before t. Right column: Dynamics of the
corresponding individual effort parameter, with the same parameters and color code as for
the left column. Dashed lines correspond to the best individual response in a population
which follow the solid lines strategies. They perfectly match solid lines, meaning that we
have reached a Nash equilibrium of our MFG system (it is a check of the self-consistent
equation (4.26)).

epidemics on random homogeneous networks progress faster and are more intense as k

increases as we shall see in Chapter 5. For constant fk (ϵ = 0, second row of Fig. 4.4), the
ratios between social effort and infection cost remain essentially constant across degrees,
and are fairly low for our choice of parameters. This leads to effort patterns that are
similar across degrees, with individuals tending to protect themselves by “flattening” the
infection curve ϕ(t), thereby minimizing their probability of infection. The only difference
between classes is that individuals with higher degrees face more intense epidemics, re-
quiring greater and more prolonged effort while maintaining the same overall pattern. On
the other hand, when the social cost fk increases with k (ϵ = 1, first row of Fig. 4.4), this
increasing social cost may compete with the one of the infection. As Fig. 4.4 shows, these
two factors essentially balance each other around a critical value k∗ ≃ 6, leading there
to a significant intensity of efforts. However, below this threshold, the epidemic is not
sufficiently virulent, and above k∗ efforts becomes too costly to justify a strong reduction
of social contact. As k → ∞, individual behavior converges to the effortless parameter
n(t) = 1, and the infection curve approaches that of the classical SIR model (see dashed
curve in Fig. 4.4).

4.3.3 MFG on heterogeneous networks

In this section, we examine the behavior of the Nash equilibrium on heterogeneous
networks in order to apply our MFG framework on a more realistic scenario. The charac-
teristics of the network are as follows: first, we use an uncorrelated network, meaning that
Gkk′ = P (k′)k′/⟨k⟩ is independent of k. Although we know that realistic social contact
networks tend to be assortative, we were unable to find a satisfactory analytical description
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of the associated correlation matrix in the literature. However, any specific correlation ma-
trix can easily be implemented, and the system we derived works for any Gkk′ . Interested
reader can refer to the paper in App. F in which we found a way to implement a realistic
assortativity.

Regarding the degree distribution, the work of Eubank et al. [36] highlights that
degree distributions follow a piecewise power-law distribution. For realistic measures, we
based the degree distribution on Béraud et al. [181], who conducted extensive surveys
to infer the French social contact network. Initially in [181], P (k) increases from k = 1

or k = 2 to a maximum at kpeak ≃ 5. Then, as shown in [197], P (k) decreases in two
phases, following a power law. We chose the critical degrees and coefficients to align with
the observations made by Béraud et al. [181]. The average number of contacts per day is
given by

P (k) ∝


k1 2 ≤ k ≤ 5

k−1.5 5 ≤ k ≤ 10

k−3 10 ≤ k ≤ 100 ,

(4.29)

where the normalization values are set such that branches coincide at boundaries and the
distribution is normalized. We then compute the average degree ⟨k⟩ ≃ 9 and the standard
deviation σ ≃ 10 to verify that it was coherent with the ones given in [181]. This allows
us to consider that our degree distribution is rather typical of a real contact networks, al-
though we still not consider the higher level structure of the network (we did not consider
degree correlations between two or more neighbors).

In order to perform the numerical simulations in reasonable time scales (see Sec. 6.3.3),
we split our distribution P (k) in nb batches:

Bi =
[
k̃i, k̃i+1

[
, i = 1, ..., nb , (4.30)

where the variables k̃1, ..., k̃nb+1 allow to define the degree boundaries of the batches. They
are chosen such that

k̃i+1−1∑
k=k̃i

P (k) ≃ 1

nb
, (4.31)

meaning that the proportion of nodes in each batch is approximately identical. Inside each
batch, we treat all the degrees k equivalently, using the averaged Ki of the batch Bi and
its associated probability P̃ (Ki):

Ki =

k̃i+1−1∑
k=k̃i

kP (k) , P̃ (Ki) =

k̃i+1−1∑
k=k̃i

P (k) . (4.32)

Thus, our distribution P (k) of maximum degree kmax is transformed into a distribution
P̃ (K) composed of nb different batches which have degrees K. Similarly, the correlation
100× 100 uncorrelated matrix Gkk′ is transformed into a 5× 5 uncorrelated matrix GKK′ .
We summarize in Table 4.2 the choice we made for the batch distribution that we will
use throughout our work on heterogeneous networks. We show in App. B.3 that the error
associated with this approximation is reasonably small.
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Interval [k̃i, k̃i+1[ ( [2, 5[, [5, 7[, [7, 10[, [10, 19[, [19, 100] )

Average K (3.2, 5.4, 7.8, 12.5, 31.2)

Distribution P̃ (K) (0.26, 0.25, 0.22, 0.20, 0.07)

Table 4.2: Parameters of the batches used to simulate our heterogeneous network of
degree distribution P (k) described in Eq. (4.29). We took nb = 5 batches with the
following form for each batch: Bi = ( [k̃i, k̃i+1[, Ki, P̃ (Ki) ).

The dynamics of the epidemics and the associated effort parameters at the Nash equi-
librium are obtained by solving Eqs. (4.21)–(4.26). We assume that Gxy

kk′(0) = Xk(0)Gkk′ ,
which indicates that there is no correlation between states and degrees at time t = 0. The
results are displayed in Fig. 4.5 for the two different choices of f ϵ

k. The specific impact of
a realistic distribution, together with the interactions between classes (heterogeneity), can
be captured. In all cases, we observe that, contrary to what might be expected, the spread,
as a function of k, of the total number of infected at T (inset panel) increases compared
to the homogeneous case. This is related to the collective immunity that is now achieved
at the network level (and not for each degree class as in the homogeneous case). This
essentially means that very high-degree individuals cannot really avoid the disease, since
they are infected before all other classes. For them, applying a strong social distancing
would only delay the infection peak, but would not lead to heard immunity. Then, the
epidemic continues to spread in the network even though all high-degree individuals have
been infected, since they represent a very small fraction of all nodes. On the other hand,
low degree individuals take advantage of this situation and reach a collective immunity
with a rate Ik below that required in the homogeneous case. In fact, more than the pro-
portion of infected individuals among high-degree individuals, the average degree of the
remaining susceptible nodes decreases rapidly, which helps achieve herd immunity.

Differences in infection rates result in infection curves that strongly depend on the
degree. For ϵ = 1 (Fig. 4.5, upper row), interactions between classes tend to synchronize
the epidemic peak times which occur in a very narrow period, with differences regarding
the intensity of the curves. This results in effort parameters which display similar patterns
between degree classes with differences for the intensity only. The “reverse anticipation”
effect can clearly be observed here also.

For ϵ = 0 (Fig. 4.5, lower row), two categories emerge: first, very high-degree indi-
viduals (K = 31.2) has a particular infection curve compare to others, which lead them
to an high probability of infection - it is almost impossible for them to avoid the disease.
The remaining susceptible individuals of such degree employ a specific strategy with a
constant effort to protect themselves once the epidemic peak is behind them (note that the
epidemics curves are only display in [0, 10] time to ensure the readability of the curves).
The second category regards all other individuals which act in a more homogeneous man-
ner: infections curves and effort parameters display similar patterns among degrees, with
low-degree individuals which tend to act less to protect themselves, while benefiting from
the collective immunity achieved by others and get a low final infection probability (e.g
ϕ(T ) < 0.5 for K = 3.2). In this case, we observe a long tail for the decrease of effort
parameters because of the infection dynamics which remain non negligible for a long time.
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Nevertheless, thanks to high the infection rate of high-degree individuals, this tail is shorter
than for homogeneous networks.

Figure 4.5: Left panels: Dynamics of infected individuals at Nash equilibrium for different
batches, with the parameters of Tables 4.1 and 4.2. Inset: dynamics of the probability
ϕ(t) to be infected before t. Right panels: Dynamics of the corresponding individual
effort parameter. Colored solid lines corresponds to the dynamics (for infected and effort
parameter) associated with each batch of the network: K = 3.4 (blue), 5.4 (orange), 7.8
(green), 12.5 (red), 31.2 (purple). Each row represents a specific choice of f ϵ

k: ϵ = 1, 0 for
the first and second row, respectively. Dashed lines (right panels) correspond to the best
individual response in a population which follow the solid lines strategies. They perfectly
match solid lines, meaning that we have reached a Nash equilibrium of our MFG system
(it is a check of the self-consistent equation (4.26)).

4.3.4 Discussion

In this chapter, we refined our understanding of how the Nash equilibrium, resulting
from individual decisions, is influenced by the cost of social contact reduction, fk, when oc-
curring on networks. This work complements our findings in Chapter 3, where individuals
were classified by age, creating differences in their infection costs. Unlike the age classifi-
cation, which only marginally impacts epidemic dynamics in the absence of an outbreak
(as seen in the “Business as Usual” plot in Fig. 3.4), the degree of connectivity plays a
significant role in shaping the epidemic dynamics itself. Specifically, an epidemic spreads
more rapidly and intensely among individuals with higher connectivity. Thus, there is a
balance between this effect and the dependence of fk on k.

In the first configuration, when fk increases with k, the two effects act oppositely,
resulting in a threshold k∗ below which slow epidemic dynamics discourage individuals
from exerting effort due to low associated infection risk. Above this threshold, high costs of
fk prompt individuals to accept the risk, as reducing social contacts becomes prohibitively
expensive. Thus, the absolute value of efforts are peaked around k∗.

When fk remains constant with respect to k, the observed differences in dynamics
among the batches within the network are solely due to their inherent characteristics and
therefore individuals of high-degree, who are more at risk of infection, will tend to act with
an higher intensity (see homogeneous case, Fig. 4.4). Interestingly, we observe a specific
regime in the heterogeneous case for high-degree individual for which important efforts
during the epidemic peak will not be efficient as they are for others, because the epidemic
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is already too virulent. Instead, remaining susceptible individuals will do efforts after the
epidemic peak to try to avoid infection once the collective immunity is in sight.

Thus, our MFG approach to networks highlights the “reverse anticipation” effect, where
individuals adjust their behavior in anticipation of the end of the epidemic - a phenomenon
likely to be observed in contexts other than networks. This anticipation can be brief, as
in the case of increasing social costs with k, or have a long tail, as in the case of constant
social costs, when efforts effectively reduce the probability of infection without being too
costly. The introduction of heterogeneity in a realistic network leads to differentiated col-
lective immunity at the node level: low-degree individuals benefit from the fast spreading
of the epidemic among high-degree individuals, which reduces the effective connectivity of
the remaining susceptible network. Contrary to expectations, heterogeneity reduces costs
for low-degree individuals.

It is essential to note that our analysis was conducted using a realistic degree dis-
tribution P (k); however, we have not accounted for significant features such as degree
correlations, which are characteristic of real-world networks known to be assortative (in
contrast to the uncorrelated network considered here). This assortativity is expected to ho-
mogenize the network and thus to decrease the discrepancy between degree classes, as the
network will be more homogeneous from the point of view of individuals. To be concrete,
links between low and high degree nodes will be less present whereas they was helping low
degree to avoid infection.

The insights derived from this study should be viewed at a general viewpoint: a pre-
cise characterization of individuals, whether by age or degree, is crucial for understanding
their behaviors, as these factors influence how they are affected by the epidemic and their
sensitivity to associated costs.

This achieves our second project of this thesis, which, chronologically, was the third
to be undertaken. In our progression toward developing MFG on networks, we became
particularly interested in the Pairwise Approximation discussed in this chapter. The inves-
tigation of this approximation on random homogeneous networks led us to an unexpected
but productive avenue for discovering new analytical solutions. This third project, which
leaves the MFG approach, is presented in the following chapter.
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5 - Analytical results on random homogeneous net-
works

In our way to implement the Mean-Field Games paradigm on networks, we first derived
and concentrated on the degree pairwise approximation Eq. (4.13). After checking that
the numerical results were according with the numerical simulations, we investigated the
analytical resolution of such system, before any MFG implementation. Indeed, despite their
success, most of network models so far lack one important feature which is the existence
of analytical solutions for the models’ equations. The importance and usefulness of these
analytical results should not be underrated, as they provide a much deeper understanding
of the mechanisms at work than can be achieved numerically. Moreover, they constitute
a benchmark for more complex models where no analytical solution is available. Our goal
here is to provide such analytical results in the case of random homogeneous networks,
which are characterized by their constant connectivity k (also called regular networks). For
any given value of k we obtain analytic expressions analogous to (and in some circumstances
stronger than) the ones existing for the SIR model Eq. (1.7); when k = 2 or 3 we obtain
simple explicit expressions, while in the limit k → ∞ we recover the basic SIR, leading
to some new physical insight as well as some useful approximations of this well-known
model. This chapter is organized as follows. In Sec. 5.1, we derive the (implicit) analytical
solution of the SIR model on random homogeneous networks. We then study the impact of
our results on the epidemic threshold, and the case of a small number of neighbors, which
provides more explicit expressions. In Sec. 5.2, we focus on the limiting case k → ∞ to
derive the exact solution of the SIR model. We then derive some significant approximations
with simpler expressions, and finally study the consequences of our results on the epidemic’s
peak time. Finally, concluding remarks are gathered in Sec. 5.3.

This work corresponds to the third and last original project of this thesis. This chapter
follows, for a large part, the paper we published on this subject [178]. Reader can refer to
this paper for a more comprehensive and detailed presentation, including the appendices.

5.1 Analytics results for homogeneous networks

In this section, we first present the SIR equations for the degree pairwise approximation
on a random homogeneous network that we aim to solve analytically in Sec. 5.1.1. We
then derive the general analytical expression of this system in Sec. 5.1.2. Subsequently, we
analyse these results, first regarding the mathematical consequences, with the derivation
of the epidemic threshold in Sec. 5.1.3, and second through the small neighbors case in
Sec. 5.1.4 where explicit expressions are available.

5.1.1 Presentation of the system to solve

In the case of random homogeneous networks of degree k, the degree pairwise approx-
imation Eq. (4.13) straightforwardly reduces to

Ṡ = −λkGsiS (5.1a)

İ = λkGsiS − γI (5.1b)

Ṙ = γI , (5.1c)

with S(t) + I(t) + R(t) = 1. Here Gsi(t) corresponds to the probability that a neighbor
of a given susceptible individual is itself infected; thus kGsi(t) is the average number of
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infected individuals in the neighborhood of a susceptible individual. The time dependence
of these two-point correlators is given by (see Eq. (4.17))

˙[SGss] = −2SGss(k − 1)Gsiλ (5.2a)
˙[SGsi] = SGss(k−1)Gsiλ

− SGsi
[
(k−1)Gsi + 1

]
λ− γSGsi (5.2b)

˙[SGsr] = γSGsi − SGsr(k − 1)Gsiλ . (5.2c)

In the case of homogeneous networks with a large number of nodes N → ∞, as we consider
here, the fraction of loops with arbitrary finite size vanishes [198, 199, 200]. Therefore the
correlations beyond two-point ones can be neglected and the degree pairwise approximation
becomes exact in this limit [201]. Equations (5.1)-(5.2) form what we will call the “SIR-
k model” in the following. In Fig. 5.1 (left inset), we demonstrate the accuracy of our
approximation by comparing a numerical solution of Eqs. (5.1)-(5.2) with a Markovian
evolution of a population according to the same dynamics. The parameters of our problem
are S0 the initial proportion of susceptible agents, k the number of neighbors, β = λk the
contagiousness and γ the recovery rate, which leads to a dimensionless quantity µ = γ/β

driving the epidemic, while β only changes the time scale (see for example [202]).

5.1.2 General analytical expression

From Eqs (5.1)-(5.2), we can obtain an ordinary differential equation involving only
S(t). Inserting Gsi = −Ṡ/(βS), which we get from Eq. (5.1a), into Eq. (5.2a), we have

˙[SGss]

SGss
= 2

k − 1

k

Ṡ

S
. (5.3)

At t = 0, S(0) = S0 = Gss(0) if we assume that there are no correlations at time 0 (i.e. the
neighborhood of infected and susceptible individuals is the same). Then Eq. (5.3) can be

integrated as Gss = S
2
k
0 S

1− 2
k . Using Eq. (5.1a) and this expression for Gss, Eq. (5.2b)

yields

S̈ = λS
2
k
0 S

1− 2
k (k − 1)Ṡ +

k − 1

k

Ṡ

S
− (γ + λ)Ṡ. (5.4)

This is a second-order differential equation in S that we need to integrate twice. A first
integration is obtained by dividing Eq. (5.4) by Ṡ and introducing φ(S) = Ṡ, which verifies

dφ(S)

dS
= λS

2
k
0 S

1− 2
k (k − 1) +

k − 1

k

φ(S)

S
− (γ + λ) . (5.5)

Equation (5.5) can be integrated as an equation in the variable S to give

φ(S) = kS
2/k
0 λS2(1− 1

k
) − k(λ+ γ)S + C1S

1− 1
k , (5.6)

where C1 is given by the initial conditions: C1 = Ṡ(0)S
−1+1/k
0 − λkS

1+1/k
0 + k(λ+ γ)S

1/k
0 .

Using Ṡ(0) = −λkS0(1 − S0), this constant reduces to C1 = kγS
1/k
0 . Changing to the

variable z ≡ (S/S0)
1
k , and using µ = γ/β, we obtain

ż = λP (z) , P (z) = S0z
k−1 − (kµ+ 1)z + kµ . (5.7)

Separating the variables z and t and using the partial fraction decomposition of 1/P (z) in
terms of the roots zj (j = 0, · · · , k−2) of P (z), the integral of Eq. (5.7) becomes∫ z

1

dz′

P (z′)
=

k−2∑
j=0

∫ z

1

Aj

z′ − zj
dz′ = λt , (5.8)
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with
Aj =

1

P ′(zj)
=

1∏
l ̸=j(zj − zl)

. (5.9)

Equation (5.8) readily gives an explicit expression for t as a function of S as

t(S) =
1

λ

k−2∑
j=0

Aj log

(
(S/S0)

1/k − zj
1− zj

)
. (5.10)

Note that the complex roots zj are pairwise complex conjugate so that the whole sum is
real, as it should. One then gets a parametric solution for the number of infected individuals
under the form (t(S), I(S)) by integrating Eq. (5.1b). Indeed, since S(t) is monotonous,
Eq. (5.1b) can be rewritten

dI

dS
= −1− γI

dt

dS
, (5.11)

which upon integration yields

I(S) =

(
1− S0 −

∫ S

S0

eγt(s
′)ds′

)
e−γt(S) . (5.12)

The maximum of I corresponds to the value of S where dI/dS = 0, that is,

I(S)
dt

dS
= −1

γ
, (5.13)

with t(S) explicitly given by Eq. (5.10), while the calculation of I(S) involves a single
numerical integral over S.

We checked, for many different values of the parameters (S0, µ, k), that the analytical
solution Eq. (5.10) perfectly reproduces the numerical resolution of Eqs. (5.1)-(5.2), and
we illustrate it for one example in Fig. 5.1. Note that a similar approach allows to address
the SI model, which corresponds to the limit µ → 0; in that case we get

S(t) = S
− 2

k−2

0

(
1− S0

S0
eλ(k−2)t + 1

)− k
k−2

, (5.14)

which in the limit k → ∞ coincides with the known solution of the SI model [203].

5.1.3 Epidemic threshold

We now comment on the consequences of Eq. (5.10). Polynomials such as P (z) in
Eq. (5.7) have a long history, dating back to Lambert [204, 205] and Euler [206]. In
particular, one can explicitly express all the roots zj as infinite series (see [207, 208]).
As illustrated in Fig. 5.2A, for k > 2 there are two real positive roots, z0 ∈ [0, 1] and
z1 ∈ [1,∞[. Since S/S0 ∈ [0, 1], the only possible divergence of t in Eq. (5.10) corresponds
to the root z0, and we thus get that S∞ ≡ limt→∞S(t) = S0z

k
0 . A useful quantity for

public agencies in charge of controlling the epidemic (see [209] for the basic SIR model) is
the fraction of the population which will be infected during the course of the epidemic; it
can be expressed as I(k)

tot = S0−S∞ = S0(1−zk0 ). The second positive real root z1 can then
be interpreted as the non-physical limit to which S would tend if one follows the SIR-k
equations for negative times, S−∞ ≡ limt→−∞S(t) = S0z

k
1 > 1. As illustrated in Fig. 5.2C,

the associated quantity z(t) = (S(t)/S0)
1/k decreases from 1 to z0 for t ∈ [0,+∞[, and

from z1 to 1 for the non-physical part t ∈]−∞, 0].
Whatever the value of µ and k, P (1) = S0− 1. Thus, as illustrated in Fig. 5.2D, z = 1

cannot be a root of P (z) for S0 < 1, but always is for S0 = 1. In this latter case, two
situations can occur. The first one would be that z1 = 1 and z0 < 1, in which case an
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Figure 5.1: Main panel: Time delay ∆t = t(S)− tSIR(S) with tSIR obtained by numerically
solving Eq. (1.7). Solid thick dark blue: analytical expression Eq. (5.25), corresponding
to the limit case SIR-∞, yielding 0 as expected. Purple (k = 50) and magenta (k = 20)
plots: numerical resolution of the SIR-k model Eq. (5.1) (solid lines) and corresponding
analytical solution Eq. (5.10) (dots). Right inset: proportion of susceptible S(t) for the
same configurations. The gray horizontal dotted lines indicate the range of S values taken
for the main panel. Left inset: proportion of infected I(t) for k = 5. Red dotted line:
numerical resolution of the SIR-5 model Eqs. (5.1)-(5.2); green solid line: average over 100
realizations of the Markovian process of an epidemic on a large homogeneous network of
degree k = 5, with N = 3000 nodes (with random initial infected nodes); black dashed
line: basic SIR model with β = λk . Parameters are µ = 0.25, S0 = 0.99.

epidemic starting with S0 = 1 (i.e. with an infinitesimal fraction of infected individuals)
will eventually propagate into the network and infect a finite fraction of the population.
Introducing the time t0 corresponding to the constant term in Eq. (5.10), namely

t0 = − 1

λ

k−2∑
j=0

Aj log |zj − 1| ∼
S0→1

log(1− S0)

λ(2 + k(µ− 1))
, (5.15)

we see that limS0→1 t0 = ∞. This expresses the fact that the beginning of the epidemic
takes an infinite amount of time as the initial proportion of infected individuals goes to
zero. The other possibility, z0 = 1 and z1 ≥ 1, corresponds to S∞ = 1: an epidemic
starting with S0 = 1 does not propagate. The value µ∗

k of the parameter µ corresponding
to the transition between these two regimes is the threshold beyond which, for S0 = 1,
the epidemic does not spread. At the threshold, z = 1 is a double root of P (z) and thus
µ∗
k = (k − 2)/k1. As k → ∞ we get µ∗

k → 1, which coincides with the result of Kermack
and McKendrick [175] for the original SIR model.

5.1.4 Small number of neighbors

It is possible to invert the expression Eq. (5.10) for k = 2 and 3. Consider first the
case k = 2. A random network of size N then corresponds to a set of disconnected loops

1This expression for the threshold can also be derived from the results in section III.C of [50]
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Figure 5.2: A. Orange squares (resp. black diamonds): location, in the complex plane, of
the roots of the polynomial P (z) Eq. (5.7) for k = 50 (resp. k = 20) with S0 = 0.8 and
µ = 0.25 B Blow-up showing, in the complex plane, the limit as k → ∞ of the αj defined
by zj = 1 + αj/k. The complex zj (and thus the complex αj) come in conjugate pairs.
C Zoom on the complex plane close to 1 with z(t) = (S(t)/S0)

1/k traveling the green line
from z1 = z(−∞) to z0 = z(∞) and passing through z(0) = 1. D Blue line (resp. red line):
illustration, for k = 20, of the variation with µ of the roots z0(µ) (resp. z1(µ)) for S0 = 0.99
(solid line) and S0 = 1 (dashed line). The value µ∗

k such that z0(µ
∗
k) = z1(µ

∗
k) = 1 is the

epidemic threshold.

of different sizes. In the N → ∞ limit, however, all but a negligible proportion of agents
would belong to a large loop, and the average quantities we consider here, for example
in Eqs. (5.1)–(5.2), behave in the same way within a random network or within a single
connected loop. Furthermore, there is only one root z0 = 2µ/(I0 + 2µ), with I0 = 1 − S0

the initial fraction of infected individuals. We can therefore write Eq. (5.10) as

t(S) =
1

λ
A0 log

(
(S/S0)

1/2 − z0
1− z0

)
, (5.16)

with A0 = −1/(I0 + 2µ) < 0. Inverting Eq. (5.16) we get

S(t) = S0

[
1 +

I0
(
e−t/τ − 1

)
I0 + 2µ

]2
, τ =

1

λ(2µ+ I0)
. (5.17)

S(t) thus follows an exponential decay with rate τ and converges to S∞ = S0z
2
0 , as ex-

pected. We get I(2)
tot = S0

(
1− (1− I0/(2µ))

−2
)
, which varies from S0 for strong epidemic

I0/µ ≫ 1 to 0 with I0/µ ≪ 1. In particular limS0→1 I(2)
tot = 0 for any positive value of

µ, which can also be seen from the fact that µ∗
2 = (k − 2)/k = 0. This is unique to the

k = 2 case because of its essentially 1d geometry, which implies that the number of infected
agents caused by a single “patient zero” is necessarily finite.

For the case k = 3, we get P (z) = S0z
2 − (3µ+1)z+3µ, which has two (real positive)

roots

z0,1 =
1

2S0

[
(3µ+ 1)±

√
(3µ+ 1)2 − 12µS0

]
, (5.18)
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yielding

t(S) =
A0

λ
log

[(
(S/S0)

1/3 − z0
)
(1− z1)(

(S/S0)1/3 − z1
)
(1− z0)

]
, (5.19)

where we have used that A1 = −A0 = 1/(z1 − z0). We can invert Eq. (5.19) to get

S(t) = S0

(
z0 − z1Beλ(z0−z1)t

1−Beλ(z0−z1)t

)3

, B =
1− z0
1− z1

. (5.20)

As expected, this expression verifies that S(0) = S0 and S∞ = S0z
3
0 . The explicit

expression for I(3)
tot is S0 − 1

8S2
0

[
(3µ+ 1) +

√
(3µ+ 1)2 − 12µS0

]3
. For S0 = 1, the roots

simplify to z0 = min(1, 3µ), z1 = max(1, 3µ), and we recover µ∗
3 = 1

3 ; for µ < µ∗
3, I

(3)
tot =

1− (3µ)3, while for µ ≥ µ∗
3 the epidemic does not propagate as S∞ = 1.

Finally, we consider the case k = 4, but limiting ourselves for simplicity to the limit
S0 → 1 and the regime µ < µ∗

4 = 1/2. In that case P (z) has three roots, which, introducing
κ =

√
1/4 + 4µ, can be written as z0 = κ − 1

2 , z1 = 1, z2 = −κ − 1
2 with furthermore

A0 = [κ(2κ + 3)]−1, A1 = [2 − 4µ]−1, A2 = [κ(2κ − 3)]−1. The epidemics propagates only
if z0 < 1, that is if µ < µ∗

4 = 1/2, in which case, scaling out the time t0 introduced in
Eq. (5.15), the dynamics is described by

t− t0 =
1

κλ

∑
ϵ=±1

(
1

2κ+ 3ϵ
log

∣∣∣∣∣S1/k + ϵκ+ 1
2

S1/k − 1

∣∣∣∣∣
)

, (5.21)

and I(4)
tot = (−16µ2−8µ+1/2)+(1+8µ)

√
4µ+ 1/4 (which is indeed such that I(4)

tot (µ
∗
4) = 0).

This expression illustrates how the complexity of the solution for t(S) grows with
increasing k. The case k = 4 is the first instance where the solution becomes non-invertible,
and we observe how quickly the expressions for the roots zj and I(k)

tot become complicated.
However, the large k limit remains somewhat manageable, as it converges to the well-known
SIR model. The corresponding results are presented below.

5.2 Large-k limit of the SIR-k model

Another interesting limit of the SIR-k model is k → ∞, through which we recover
the original SIR model, but with a new point of view. In Sec. 5.2.1 we derive a new
formulation of an analytical exact expression of t(S) for the basic SIR model. Then,
in Sec. 5.2.2, we present useful approximations for t(S): a first one in the regime of µ

close to 1, which appears to be valid broadly with a great accuracy. The second one
regards explicit expressions of the analytical formulation for three different regimes of µ:
µ → 0, intermediate µ and µ → 1. These expressions are less precise than the previous
approximation but they come with direct dependencies of t(S). From these approximations,
explicit expressions of the epidemic peak time are derived and investigated in Sec. 5.2.3
for the three different regimes of µ.

5.2.1 Exact expression

As illustrated in Fig. 5.2A, z0 and z1 converge to 1 (from below and from above re-
spectively) and all the other roots converge to the unit circle in the complex plane. This
can be understood from their series expansion in [207, 208]. Using that zj is a root of P (z)

we can write the factor Aj defined in Eq. (5.9) as

Aj =

[
(k − 1)kµ

zj − 1

zj
− k(µ− 1)− 2

]−1

. (5.22)
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Figure 5.3: Two real branches (0 in blue and −1 in red) of the Lambert W function, related
to Euler T function with the relation Wj(z) = −Tj(−z). The two branches coincide at
their left boundary in z = 1/e with W0(−1/e) = W−1(−1/e) = −1. In our context, this
point corresponds to the coincidence of the two roots z0 = z1 = 1 when µ = 1 and S0 = 1.

For most roots of P (z), zj − 1 = O(k0) (we refer to them as “far from one”) and thus Aj =

O(k−2). It is only for the roots close to one, and more precisely such that zj−1 = O(k−1),
that Aj = O(k−1). In the same way, the logarithm factors are O(k−1) for the roots far
from one and O(k0) for the roots close to one. In Eq. (5.10), noting that λ−1 = kβ−1,
we see that the sum over roots far from one involves O(k) terms of order O(k−2) and has
therefore a negligible O(k−1) contribution, whereas each root close to one has an O(k0)

contribution. We can thus write all relevant roots as zj = 1 + αj/k where αj reaches a
constant value as k → ∞. Writing that zj is a root of P (z) thus reads

S0

(
1 +

αj

k

)k−1
= kµ

[(
1 +

1

kµ

)(
1 +

αj

k

)
− 1

]
(5.23)

which, taking the limit k → ∞ on both sides (with αj now corresponding to that limit),
gives exp(αj) = (µ/S0) (1/µ+ αj). Defining now γj = αj + 1/µ and χ = (S0/µ)e

−1/µ, we
get

χ = γj exp(−γj) . (5.24)

Equation (5.24) can be rewritten in terms of the Euler T function (see [205] for mathe-
matical details) as γj = T (χ). The T function has two real branches T0 and T−1 which
correspond to the two positive real roots of P (z) (the shape of T is illustrated in Fig. 5.3)),
and an infinite number of complex branches corresponding to the complex numbers γj . In
particular we get for the first root limk→∞ S∞ = µT0(χ), which is equivalent to the well-
known self-consistent equation S∞ = 1 + µ ln(S∞/S0) given for instance in [34]. Taking
the large-k limit in Eq. (5.22) and Eq. (5.10), together with β = λk and the expression of
the relevant zj = 1 +

αj

k , leads to

β t(S) =
1

µ

∞∑
j=−∞

1

αj + 1/µ− 1
log

(
1 +

log(S0/S)

αj

)
,

αj = T−j(χ)− 1/µ , (5.25)

where the complex quantities αj are pairwise complex conjugate (T−2 is conjugate with
T1, T−3 with T2, etc) so that the whole sum is real. In Fig. 5.1 we check the accuracy of
this expression.
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5.2.2 Approximate expression for t(S)

An implicit analytical solution t(S) for the SIR model is known in the literature and
takes the form of an integral (see for instance [26]). Our formula Eq. (5.25) is an alternative
expression for t(S) and comes with interesting new insights, as it depends on quantities αj

which have an explicit expression. In Fig. 5.2B we show the first terms of the sequence.
We see that α0 < 0 and α1 > 0 are indeed the two unique real values, while the subsequent
αj are purely complex; the latter are well approximated by αj ≃ 2πij for large (possibly
negative) j as the roots zj converge to the unit circle exp

(
2πij
k−2

)
. Therefore, for m suf-

ficiently large, the contributions of the terms j ≥ m of Eq. (5.25) can be approximated
by

2

µ
Re

 ∞∑
j=m

log
(
1− 1

αj
log(S/S0)

)
αj + 1/µ− 1

 ≃ −2 log (S/S0)

(2π)2µ

∫ ∞

m

1

α2
j

dj ≃ 2 log (S/S0)

(2π)2µ

1

m
,

(5.26)
in which we use that αj + 1/µ− 1 ≃ αj which is valid as long as 2πj ≫ 1/µ , and which
becomes quickly negligible as m increases if µ is not too small.

Further understanding of the qualitative behaviour of the sum Eq. (5.25) can be ob-
tained noting that the effective reproduction number Reff = S/µ has to be larger than 1 for
the epidemic to propagate. One can therefore assume µ ∈ [0, 1] and S0 in the interval [µ, 1].
Thus, for µ not too far from 1 and using δµ = (1−µ) as a small parameter, we can in any
case assume δS0 = (1−S0) < δµ. In practice, however, we think of the initial time t = 0 as
a situation where most agents are susceptible, only a very small fraction is infected , and
nobody has recovered yet. In most concrete case, and for essentially all the illustration we
shall consider below δS0 ≪ δµ, and we shall assume that at worse δS0 = O(δµ2). In that
case one can show (App. E.A3) that at all times δS = (1−S) = O(δµ), implying also that
log(S0/S) = O(δµ).

Noting (cf App. E.A) that at α0(µ=1) = α1(µ=1) = 0 , when for j ≥ 2 α0
j := αj(µ=

1) ̸= 0, this means that the contribution of the two first terms j = 0, 1 are O(δµ0), when
all the higher j contributions are O(δµ). We thus have

βt(S) =
1

µ

∑
j=0,1

log
(
1 + 1

αj
log(S0/S)

)
αj + 1/µ− 1

− 2K(0) log(S0/S) +O(δµ2)

 , (5.27)

with K(0) := Re(
∑∞

j=2(α
0
j )

−2) ≃ −0.028 a, fairly small, pure number. As illustrated on
Fig. 5.4, the approximation Eq. (5.27) is actually very accurate on a significant portion
of the range [0, 1], and this range can be even further extended by computing the O(δµ2)

correction to Eq. (5.27) (cf App. E.A).

5.2.3 Epidemic peak time

As mentioned earlier, an important quantity in the context of an epidemics breakout is
the epidemic peak time, which, using the fact that, for SIR, the epidemic peak dI/dt = 0

implies S = µ, can be obtained as tpeak = t(S = µ), and for which even a leading order
approximation is presumably useful.

For µ sufficiently close to 1 this can be obtained starting from Eq. (5.27), neglecting
the −2K(0) log(S0/S) correction, and evaluating α0 and α1 to leading order in δµ. This
calculation is performed in App. E.B. From this we get

βtpeak ≃ 1

p

[
log

(
1− log(S0/µ)

δµ− p

)
− log

(
1− log(S0/µ)

δµ+ p

)]
(5.28)
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Figure 5.4: Comparison of exact S (solid lines) with approximation Eq. (5.27) at first and
second order in δµ = (1−µ) (dotted and dashed lines respectively). S0 = 0.99 is fixed and
µ evolve from 0.1 to 0.9: (µ = 0.1, red), (µ = 0.3, brown), (µ = 0.5, magenta), (µ = 0.7,
green), (µ = 0.9, blue). Although Eq. (5.27) is formally an expansion near µ = 1, we see
that its validity extends in practice in the whole range of µ, excepted the neighborhood of
0.

with p =
√

2δS0 + δµ2, valid for δµ = (1 − µ) small (δS0 = (1 − S0) < δµ, and possibly
≪ δµ).

For µ a bit further away from 1, where this approximation starts to degrade, it turns
out that a better approximation of tpeak can be obtained following the same approach but
using the µ → 0 expansion of α0 and α1. We get (see App. E.B2)

βtpeak ≃ 1

µ

 log
(
1− log(µ/S0)

χ+χ2−1/µ

)
χ+ χ2 − 1

+
log
(
1− log(µ/S0)

(1−S0)/(S0−µ)

)
(1− S0)/(S0 − µ) + 1/µ− 1

 , χ = (S0/µ)e
−1/µ .

(5.29)
An expansion for µ ≪ 1 can finally be obtained from the integral form of t(S) given in

[26]), and leads to (cf App. E.B1)

βtpeak ≃ log

(
S0

1− S0

)
− logµ− µ

(
1 + log(1− S0)−

1

2
log2

S0

µ
− Li2(S0)

)
(5.30)

with Lin the polylogarithm function.
In Fig. 5.5, we compare the predictions Eqs. (5.28)-(5.29)-(5.30) with the exact βtpeak,

demonstrating that, with S0 ≥ 0.999, the full range of µ ∈ [0, 1] is covered with these three
regimes.

Eqs. (5.28)-(5.29)-(5.30), corresponding respectively to large, intermediate and small µ,
provide explicit expressions and physical indications of how one can delay the epidemic peak
in practice. Let us assume that the parameter γ which characterises the rate of recovery
from the illness is given by biological factors, and thus fixed, but that the transmission rate
β can be modified by non-pharmaceutical interventions such as wearing masks or limiting
contact between people. We thus assume that µ can be modified, but that this is done
with βµ = γ constant.
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Figure 5.5: Comparison of the exact βtpeak(µ) (blue solid line) with different approxima-
tions, for a fixed S0 = 0.999 and µ ∈ [0.05, 1]. Cyan dotted line: approx. (5.30) which
works at small µ. Red dashed line: approx. (5.29) which is valid rather for small and
intermediate µ. Orange dashed line: approx. (5.28) for µ close to 1 and also for interme-
diate µ. Dotted green line: approximation obtained from Eq. (5.27) with S = µ, which
match the exact tpeak(µ) extremely well except for very small µ’s. The regimes of validity
of the different approximations improve as S0 → 1, and would somewhat degrade as δS0

increases.

First, we see in Fig. 5.5 that the curve βtpeak(µ) is rather flat in the range µ ∈ [0.05, 0.5],
implying that tpeak is essentially proportional to 1/β for µ < 0.5. Then, different kinds
of corrections appear in the different regimes. The most useful formula is presumably
Eq. (5.29), which provides a compact and explicit analytical result (with only 2 terms), in
a regime which corresponds to most of the practical use (2 ≤ R0 ≤ 5).

As a practical example, starting with S0 = 0.99 and applying restrictive measures to
change µ = 0.25 to µ = 0.5 (which means changing R0 from 4 to 2) would allow to reduce
tpeak by a factor 2.25 according to Eq. (5.29), while the exact reduction factor is 2.18, with
very similar amplitudes. For S0 = 0.9, this factor is only of 1.61 according to Eq. (5.29),
while the exact value is 1.57. We therefore have an precise indication about tpeak from a
very simple expression, which does not require any knowledge of the Lambert function,
and does not involve the computation of an integral. This makes it possible to analyse
qualitatively why early detection of the epidemic is important, as restrictive measures to
delay the peak will be significantly less efficient for an epidemic which has already spread
significantly in the population.

5.3 Discussion

In this chapter, we investigated the Pairwise Approximation on random homogeneous
networks of degree k, referred to as the SIR-k model. This study serves as a complementary
work on complex networks, offering valuable insights into the dynamics of epidemics in
these types of networks.

More precisely, we have derived Eqs. (5.1)-(5.2) for the SIR-k model, and obtained an
exact implicit expression of t(S) (5.10), valid for arbitrary k, as a finite sum over the roots
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zj of the polynomial P (z) Eq. (5.7).
It turns out that the main qualitative properties of the epidemic dynamics are governed

by its two positive real roots (z0, z1). In particular the proportion of agents infected during
the total duration of the epidemic is given by I(k)

tot = S0(1 − zk0 ), for which we have an
explicit formula both for small and very large k. Taking S0 = 1, i.e. assuming a negligibly
small initial proportion of infected agents (for easier reading), we got I(3)

tot = 1− (3µ)3 for
k = 3 , while for the SIR model limit we obtained I(∞)

tot = 1−µT0(χ) ≃ 1−µχ = 1−e−1/µ.
Thus, for small µ (contagious diseases), the larger k, the more virulent the epidemic, as
I(∞)
tot will converge faster to 0 with µ → 0 than I(k)

tot .
The values of the real roots, (z0, z1), also affect the threshold value of µ for which,

even for an infinitely small initial proportion of infected individuals, an epidemic starts
to propagate and affects a finite proportion of the agents. This threshold is given by the
condition z0(µ

∗
k) = z1(µ

∗
k) = 1, leading to µ∗

k = (k − 2)/k. This value is lower than its
counterpart for the basic SIR model µ∗

SIR = µ∗
∞ = 1, which indicates that the propagation

of epidemics is more difficult in the SIR-k model than in the basic SIR one, in agreement
with the final epidemic size which is also lower for the SIR-k model. This contrasts with
heterogeneous networks, where an epidemic spreads more easily compared to the SIR
model. In all these cases, we compare the relative speed of the epidemic on networks
keeping the parameter constant µ = γ/(⟨k⟩λ) constant.

In the cases k = 2 and k = 3 we got exact explicit expressions for S(t). In the limit
k → ∞ we obtained new exact expressions for the original SIR model, which provides a
new point a view, together with useful approximate results for this well known problem. In
particular Eq. (5.27) and Fig. 5.4 demonstrate that for all values of µ except near 0, keeping
only the contributions of the real αj ’s, i.e. j = 0, 1, provides an excellent approximation
of t(S). Further approximation for the epidemic peak time Eqs. (5.28)–(5.29)–(5.30) are
shown in Fig. 5.5 to work extremely well numerically.

The SIR-k model on homogeneous networks presumably provides a good balance be-
tween increase of complexity and increase of effectiveness. It is characterized by only three
parameters (S0, µ, k) which, compared with the basic SIR, only adds the parameter k cor-
responding to the average number of possible contacts of individuals, a relatively accessible
quantity in practice.

Our results pave the way for the analytical study of more realistic social networks, such
as heterogeneous networks with the small-world property [42, 67].

This concludes the third and final project of this thesis. We will now move on to a
more transverse chapter focused on the numerical techniques developed throughout this
work.
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6 - Numerical techniques

Throughout our work, we relied heavily on numerical simulations to compute and
solve the different Nash equilibria we encountered, as well as the societal optima and more
generally to compute epidemics dynamics. All the codes and simulations have been realized
in Python language. We employed mainly the following Python libraries:

• First regarding system resolutions, we essentially applied Runge-Kutta methods.
At first, this method was implemented manually but for more complex systems
we operated the efficient methods of the library scipy.integrate, and particularly
solve_ivp with Runge-Kutta 5(4) method or Radau method.

• Second regarding networks, we used the library networkX which is powerful to create
a network and then access all quantities of interest such as the adjacency matrix, the
neighbors of each node, etc, see [210] for an introduction. For Network generation,
we adopted the random_degree_sequence_graph method which create a random
network from a given sequence of nodes and their degrees. The algorithm makes a
certain number of fixed tries to create the network, it links randomly the nodes of
the given sequence to build the network successively until the end of the sequence.
The algorithm may fail at the end of the network when the remaining links to make
cannot fulfill the constraints of the sequence. Reader may refer to [211] for a complete
description of this implementation of the Configuration Model.

In this chapter, we outline the different specific methods we employed, as well as different
promising techniques. In Sec. 6.1 we focus on the methods we applied to reach Nash
equilibra. Next, in Sec. 6.2, we introduce the techniques for solving the societal optimum
of the game, which differs from the Nash equilibrium as it requires global minimization
across all strategies. In Sec. 6.3, we provide an overview of the numerical complexity of the
algorithms we utilized. In Sec. 6.4, we discuss two other promising methods to reach the
societal optimum or a Nash equilibrium: the Pontryagin Maximum Principle and Genetic
Algorithms respectively. Finally, Sec. 6.5 corresponds to a short discussion.

6.1 Reaching a Nash equilibrium

We will outline the different approaches for the simplest MFG model presented in
Sec. 2.3, although these methods have been applied in this thesis to the more complex
models discussed in Chapters 3-4.

Let us start by the problem of reaching a Nash equilibrium. It is a solution of a specific
system, we recall it below for clarity in the context of the MFG presented in Sec. 2.3. First
the Kolmogorov equation with initial conditions S(0), I(0), R(0),

Ṡ = −χ̄(t)I(t)S(t)

İ = χ̄(t)I(t)S(t)− ξI(t) ,

Ṙ = ξI(t)

(6.1)

and then the Hamilton-Jacobi-Bellman equation, with one reference individual a,

−dUa

dt
= min

χa(t)
[λa(t) (rI − Ua(t)) + f(χa(t))] , λa(t) = qχa(t)I(t) , (6.2)
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with only the terminal condition on U fixed, namely, Ua(T ) = 0. Finally, the self consistent
condition needs to be satisfy:

χ∗
a(t) = χ̄(t) . (6.3)

Even though this MFG is specific, any MFG will present the same two kind of equations,
which together form an Initial Terminal Value Problem, making it impossible to solve with
classical solvers of differential equations which require only initial or final conditions.

We tackle this problem with first a natural approach to solve the Nash equilibrium
presented in Sec. 6.1.1, based on an inductive sequence. Then, in Sec. 6.1.2, we present
a more reliable but slower approach in cases where the first method does not converge,
relying on the equivalent definition of the Nash equilibrium on the cost. In Sec. 6.1.3,
we finally show how we modified this second method to solve a Nash equilibrium under
(evolving) constraints.

6.1.1 Inductive sequence

The first method is likely the most intuitive. The idea is to iterate a scheme until
stable and consistent solutions for χ and χ̄ are obtained. The rationale is as follows:

We begin by initializing a global strategy χ̄(0)(.) (where brackets (.) indicate that this
strategy is defined over the entire time horizon). This strategy is typically χ(0)(t) = χ0

the business as usual configuration. Using this initial strategy, we compute the associated
epidemic quantities (S(0)(.), I(0)(.), R(0)(.)) through Eq. (6.1), given the initial conditions
of the system. Next, we solve backward the Hamilton-Jacobi-Bellman (HJB) Eq. (6.2) to
determine the optimal individual response, χ∗(0), to that epidemic dynamics.

In some cases, the solution for χ∗ can be computed explicitly, for example, by using
expressions like Eq. (3.20), which allow us to solve Eq. (6.2) directly without further
computation. When no explicit solution is available, a standard minimization procedure
is used (see Sec. 6.4.2 for a concrete example).

Once χ∗(0) is obtained, it represents the optimal response for all individuals, as each
agent is optimizing the same cost function. The global strategy is then updated by setting
χ̄(1) = χ∗(0) (consistent condition). This process is repeated iteratively until the Nash
equilibrium condition is met, namely χ̄(k) ≃ χ∗(k) for sufficiently large k. The global
scheme is summarized in Fig. 6.1.

Figure 6.1: Global scheme used for the inductive sequence.

Each step of the process is numerically straightforward, as it essentially involves classi-
cal partial differential equations. The sequence described by Fig. 6.1 represents an induc-
tive process χ̄(k+1) = F (χ̄(k)), where the functional F is defined such that F (χ̄(k)) = χ∗(k).
However, this inductive sequence does not always guarantee convergence to a fixed point of
F . The Picard-Banach fixed-point theorem provides sufficient conditions for convergence.
It states that every contractive mapping on a complete metric space has a unique fixed
point. Furthermore, the theorem ensures that any inductive sequence of the form described
will converge geometrically to this fixed point [212]. However, if F is not a contractive
mapping, the sequence may fail to converge. In case of convergence, advantages of this
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method are twofold: convergence is both fast (geometric) and certain (we always reach the
Nash equilibrium). Figure 6.2 illustrates how the iterative process converges to the fixed
point, representing the Nash equilibrium. However, when the slope of F is too steep or

Figure 6.2: Illustration of the inductive sequence we use. We start with χ̄(0) and we then
follow the scheme of the inductive sequence with χ̄(1) = F (χ̄(0)), χ̄(2), etc. The blue curve
corresponds to the function F , while the red curve is the one where χ̄ = χ∗ which is
therefore the line where Nash equilibrium can occur. The green mark is the fixed point
of F and corresponds to the Nash equilibrium of the game (unique here). This drawing
illustrates that any other χ̄ different from the fix point will lead to an optimal individual
response χ∗ different from χ̄.

in presence of discontinuities, the method may fail to converge to the Nash equilibrium,
necessitating the use of alternative approaches. Besides its efficiency with its geometric
convergence, this method has an additional advantage: it allows us to verify whether we
have reached a Nash equilibrium by confirming that the system has reached a fixed point
of F .

To ensure the uniqueness of the equilibrium, one can run this algorithm with different
initial starting points and check that the final fixed point remains consistent across all
runs. This provides further confidence that the Nash equilibrium is indeed unique in the
system. We turn now to the second method to deal with the cases, actually numerous,
where the first method does not converge.

6.1.2 Gradient descent

We present in Sec. 6.1.2.1 the general rationale for this second method based on a
gradient descent, for a general control parameter χ. Then, in Sec. 6.1.2.2, we demonstrate
the application of this scheme and detail the computations for the specific case of the MFG
model introduced in Chapter 3.

6.1.2.1 Presentation of the gradient descent method

This method, as employed in [19], converges to a Nash equilibrium more gradually but
with greater robustness. From a cost optimization perspective, a Nash equilibrium corre-
sponds to a strategy χN such that, when χ̄ = χN , the cost function achieves a minimum
C(χN , χN ) = minχ C(χ, χN ) with respect to the first variable χ, representing individual
behavior. This formulation reflects that any strategy other than χN is suboptimal for
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the individual, making χN the Nash strategy of the game. This definition inspired the
following procedure:

χ(k+1)(t) = χ(k)(t)− h · ∇1C
(
χ(k)(.), χ̄(k)(.), t

) ∣∣∣
χ(k)(.)=χ̄(k)(.)

, (6.4)

where we compute the derivatives of the cost C for individual and collective strategies
that are identical, which are along the red curve on Fig. 6.2. The gradient is on the
first variable of C, the individual parameter χ, and should be interpreted as follows:
∇1C

(
χ(k)(.), χ̄(k)(.), t

)
corresponds to the change of the total cost C (over the game)

upon a small change of χ(k) at t. Mathematically, it is defined through the functional
derivative of C with respect to its first variable χ, in the direction h (with h a time de-
pendent function, usually a Dirac delta). This functional derivative is denoted DhC and
is defined as

DhC (χ, χ̄) ≡ lim
ϵ−→0

1

ϵ
(C(χ+ ϵh, χ̄)), (6.5)

where we insist on the fact that the cost C we compute here and in all this section is the
global cost of the game, starting at t = 0. Indeed, the Nash equilibrium is computed from
the cost starting at t = 0 thanks to the Bellman property (the optimal strategy at t = 0

will also be optimal later for any t). Using the definition of the gradient, this functional
derivative can be reexpressed as

DhC (χ, χ̄) =

∫ T

0
h(t) · ∇1C (χ, χ̄, t) dt , (6.6)

which leads to the intuitive formula

Dδ(t−t0)C (χ, χ̄) = ∇1C (χ, χ̄, t0) =
δC (χ, χ̄)

δχ(t0)
. (6.7)

Thus, the time t in the gradient denotes the time at which we take the gradient, and not
the starting time of the optimization (as it was for the same notation with C). We keep the
notation ∇1C in the following, as it allows to denote a vector notation when χ is a vector
to, changing the classical product h(t) · ∇1C into a scalar product. This scalar product
is the same as the one in Eq. (6.4), where h is the step of the gradient descent, usually
taken constant over time (but with possibly a vector form). Coming back to the scheme
Eq. (6.4). When the latter converges, that is when ∇1C

(
χ(k)(.), χ̄(k)(.), t

)
= 0 for all t;

then we are, at least, at a local minimum of the red curve along the individual variable of
C (horizontal axis). However, it is not sufficient to completely claim that we reach a Nash
equilibrium, as it requires to be at a global minimum along the individual variable of C.
For that purpose, we compute F (χN ) and check that F (χN ) = χN , meaning that we are
at a Nash equilibrium of the game. Whatever the method this last step of verification,
when it is possible and not too time consuming, should be used.

The scheme follows the pattern illustrated on Fig. 6.3. We provide an explicit example
below in Sec. 6.1.2.2 that will may make the gradient descent clearer.

6.1.2.2 Gradient descent for the SIR model with a social structure
In this MFG, we perform the gradient descent on the variable na(.) of the cost Ca at

t = 0 (see Eq. (2.28)) to reach the Nash equilibrium. We use the scheme Eq. (6.4)for each
age class α with representative individual a

n(k+1)
a (t) = n(k)

a (t)− h · ∇1Ca

(
n(k)
a (.), {n(k)

β (.)}, t
) ∣∣∣

n
(k)
a (.)=n

(k)
α (.)

, (6.8)

where ∇1 means that the gradient is taken on n
(k)
a (.) and h is the step of the gradient

descent, that we usually took independent of t. The dot in Eq. (6.4) indicates a scalar
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Figure 6.3: Illustration of the gradient descent scheme. The gradient descent follows the
red curve. When the Nash equilibrium is reached, the scheme is stopped by definition.
However, it can also be stopped in a point of the red line which presents a local minimum
along the vertical axis χ.

product, as h and ∇1 are vectors indexed by γ. In practice, h is usually chosen such that
the first steps of the descent are pointing toward a unique direction. This scheme gives
∇1Ca

(
n
(k)
a (.), {n(k)

β (.)}, t
)
= 0 when we reach the equilibrium.

In order to make the numerical computation of the gradient ∇1Ca less heavy and more
efficient, we first perform a few analytical steps. To avoid heavy notations, the cost at
t = 0 will be denoted as Ca (na, nβ). We have

Ca (na, nβ) ≡ Ca

(
nγ
a(·), {nγ

β(.)}, 0
)
=

∫ T

0
(fα (n

γ
a(s)) + λa(s) Iα(I(s))) (1− ϕa(s))ds .

(6.9)
The functional derivative of Ca with respect to its first variable na, in the direction h can
be written as

DhCa (na, nβ) =

∫ T

0
h(t) · ∇1Ca (na, nβ, t) dt , (6.10)

which explicitly written gives h(t) · ∇1Ca =
∑

γ h
γ(t) δCa

δnγ
a(t)

with δCa

δnγ
a(t)

the functional
derivative of the total cost Ca with respect to nγ

a(t). Since 1−ϕa(s) = exp
(
−
∫ s
0 λa(u)du

)
,

the cost (6.9) depends on na through the terms fα(na) and λa via Eq. (3.14); with λa is
linear in na. Using Eq. (6.5) we have at first order λa(na + ϵh) = λa(na) + ϵh · dλa

dna
(t) with

dλa
dna

(t) a vector indexed by γ, of components

dλa

dnγ
a
(t) ≡ µρ

ncl∑
β=1

nγ
β(t)M

γ(0)
αβ Iβ(t) . (6.11)

We then use the integral form Eq. (6.9) to expand Eq. (6.5) to lowest order in ϵ. One
of the terms involves a double integral; in order to put DhCa (na, nβ) under the form
Eq. (6.10), we invert integrants and change variables, namely

∫ T
0

[
f(t)

∫ t
0 g(s)ds

]
dt =∫ T

0

[
g(t)

∫ T
t f(s)ds

]
dt. Once the expression is of the form Eq. (6.10) we can read off the
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value of the gradient ∇1Ca (na, nβ):

∇1Ca(na, nβ, t) =

[
dfα
dna

(na(t)) +
dλa

dna
(t)Iα(I(t))

]
(1− ϕa(t))

− dλa

dna
(t)

∫ T

t
(fα (na(s)) + λa(s)Iα(I(s))) (1− ϕa(s))ds , (6.12)

with dfα
dna

the derivative of fα with respect to the variable nγ
a(t) (with a vector notation).

The straights d used here indicates usual derivatives, as f and λ are functions (and not
functional) of nγ

a(t). The gradient Eq. (6.12) is then computed numerically in order to
follow the scheme Eq. (6.8).

6.1.3 Gradient descent under constraints

Here, we focus on the case of a Nash equilibrium under constraints, similar to those
discussed in Sec. 3.3.4. More generally, we consider situations where the control parameter
χi(.) of player i evolves within a dynamic interval [fmin(χ−i(.)), fmax(χ−i(.))], where χ−i(.)

represents the set of strategies for all players except player i. This differs from the usual
constant interval [χmin, χmax]. In a standard gradient descent scheme, these constraints are
enforced at each step by adjusting the control parameter to the nearest boundary when-
ever it exceeds the allowed range. The interval may become time-dependent and reliant on
other players’ strategies, taking the form [fmin(χ−i(.)), fmax(χ−i(.))], as seen, for example,
in lockdown strategies that depend on I (and therefore on χ−i(.)). Additionally, the func-
tions f governing the temporal evolution of the constraints often exhibit discontinuities,
which complicates numerical resolution.

Furthermore, the strategy χ−i(.) evolves iteratively throughout the algorithm, at each
step and regardless of the method employed (either inductive sequence or gradient de-
scent). As a result, instead of progressing smoothly through the scheme Eq. (6.4), the
control parameter χ−i(.) may sometimes follow the imposed constraints, causing χ−i(.)

to shift abruptly from one step to another in response to the discontinuities in f when
new constraints are enforced. These sudden changes can disrupt the convergence of the
gradient method, potentially leading to limit cycles that prevent full convergence.

To overcome this challenge, we choose for the numerical simulations of Sec. 3.3.4 to
“freeze” the constraints at a certain step k and proceed with the gradient descent as outlined
in method 6.1.2.2. After a few iterations, the constraints are recalculated, and the process
continues until convergence is achieved.

In practice, we observed that the algorithm may be long to converge in presence of
constraints and is sometimes trapped in some little loops, whereas it was reasonable and
simpler for the free Nash equilibrium. To accelerate the algorithm and increase its conver-
gence probability, we implemented a dynamic step size h which can be adjusted at each
iteration but remains independent of t. The general idea is to select values of h that ensure
the gradient descent converges reasonably fast, while avoiding steps that are too large and
could lead to undesired regions or limit cycles. To achieve this, we employed two strategies,
illustrated here in the context of χ:

• Step counting in the descent direction: we track the number of consecutive
steps where the cost function C

(
χ(k)(.), χ̄(k)(.), t

)
decreases, i.e., C

(
χ(k+1)(.), χ̄(k+1)(.), t

)
≤

C
(
χ(k)(.), χ̄(k)(.), t

)
. After a set number of consecutive decreasing steps (e.g., 5), we

double the step size h, assuming the slope of C is relatively “smooth” in that region.
Conversely, if C

(
χ(k+1)(.), χ̄(k+1)(.), t

)
increases, we reduce h by half.
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• Slope ratio calculation: we calculate the ratio between the expected slope and
the actual observed change over two steps as follows:

r =
DδχC

(
χ(k), χ̄(k)

)
C
(
χ(k+1), χ̄(k+1)

)
− C

(
χ(k), χ̄(k)

) .

Here, the numerator represents the expected cost variation in the linear regime,
involving δχ(t) = χ(k+1)(t) − χ(k)(t) = h(t)∇1C

(
χ(k), χ̄(k), t

)
. The denominator

represents the actual change in the cost between steps k and k + 1. After a certain
number of consecutive decreasing steps (e.g., 5) such that r is sufficiently close to
1 (e.g 1.25 ≥ r ≥ 0.75), we double the step size h, since the linear approximation
regime is valid. Conversely, if r is outsides these bounds, we reduce h by half as the
linear approximation is no longer valid. This second strategy allows to avoid too
high steps in regions where the cost C varies a lot.

Despite these strategies, the process can be time-consuming and does not always guarantee
convergence, as it depends on the choice of constraints and the specific Mean-Field Game
model. Furthermore, convergence is influenced by algorithmic parameters such as the total
number of steps, the number of steps with frozen constraints, and the step size h.

However, a significant advantage of working with Nash equilibrium is that we can
always compute the functional F to verify whether the solution corresponds to a Nash
equilibrium. For Nash equilibrium with evolving constraints, more robust approaches such
as Markov Chain Monte Carlo (MCMC) methods [213] or machine learning algorithms
[214] may offer improved efficiency and should be further investigated.

6.2 Reaching the societal optimum

The social optimum presents a fundamentally different challenge compared to finding
a Nash equilibrium. The problem can be framed in a straightforward way, using a generic
control parameter χ (which may be a vector): find χSO such that

Cglob(χ
SO, t) = min

χ
Cglob(χ, t) . (6.13)

This means that, regardless of the chosen global cost function Cglob, the problem reduces
to finding the global minimum of a functional depending on a control parameter χ(.). Any
method capable of finding the zero of a functional can, in principle, be employed to reach
the societal optimum. In Sec. 6.2.1, we outline the general gradient descent method used,
and in Sec. 6.2.2, we illustrate its application with the gradient descent we applied in
Sec. 3.3.5.

6.2.1 Gradient descent

The method mimics the gradient descent of the Nash equilibrium. The scheme Eq. (6.4)
becomes

χ(k+1)(t) = χ(k)(t)− h · ∇Cglob

(
χ(k), t

)
. (6.14)

This method is generally more robust than in the Nash equilibrium case, as it avoids the
loops and cycles associated with reaching a Nash equilibrium, given that we are targeting a
global minimum. However, computing the gradient ∇Cglob can be numerically expensive.
This is because the variable now represents the behavior of all individuals, and the complex
macroscopic quantities that emerge from this collective behavior must be derived.

In most cases, an analytical expression of ∇Cglob is preferable as it will be faster than
a brute-force approach, where ∇Cglob is computed entirely numerically. As we will see
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below, the brute-force method requires recalculating the entire game at every time step t,
which can significantly increase computational time.

6.2.2 Application to the societal optimum for the SIR model with
a social structure

We can approach the optimal strategy in various ways. In this work, we choose to
perform a gradient descent on the global cost Cglob, although the Pontryagin maximum
principle would be also a viable method, at it will be discussed in Sec. 6.4.1. Our goal
is to optimize individual behavior to minimize the overall cost borne by the population,
expressed as

Cglob({nγ
β(.)}) =

∑
α

NαCα({nγ
β(.)}) , (6.15)

where the cost depends on all the functional {nγ
β} in an equal footing. For simplicity, we

will denote this global strategy over all classes and setting n. To minimize this global cost,
we apply the same gradient descent scheme as outlined in Eq. (6.14). We must compute
the gradient ∇Cglob(n, t), which only depends on the collective strategies n and the time
t at which the gradient is evaluated. For each age class α, we calculate the gradient

DhCα(n) ≡
∫ T

0
h(t) · ∇Cα(n, t)dt , (6.16)

to identify ∇Cα(n, t) as in Sec. 6.1.1, with ∇ now acting on the global strategy n and
having components along both γ and β (as does h). Additional terms emerge due to
the fact that quantities such as the proportion of infected individuals I(.) now depend n

(whereas it was independent of the individual strategy studied before).
Below, we outline the key steps involved in the calculation. The first step is deriving

the functional derivative of the gradient DhCα(n, t). Starting from the expression of Cα

in Eq. (2.28), we get

DhCα(n, t) = Dh

[∫ T

t
(fα (nα(s)) + λα(s) Iα(I(s))) (1− ϕα(s))ds

]
. (6.17)

Thus, we need to compute each functional derivative of the terms appearing in Eq. (6.17),
which give

Dhλα(t) = lim
ϵ−→0

1

ϵ

∑
γ

∑
β

ρMγ
αβ(n

γ
α(t) + ϵhγα(t))(n

γ
β(t) + ϵhγβ(t)) (Iβ(t) + ϵDhIβ(t))


(6.18)

Dhϕα(t) = (1− ϕα(t))

∫ t

0
Dhλα(s)ds (6.19)

DhIβ(t) =

∫ t

0

δIβ(t)

δn(s)
· h(s)ds (6.20)

Dhfα(nα(t)) = dnfα(nα(t)) · h(t) (6.21)

DhIα(I(t)) =
καrIqsat

Isat
DhI(t) exp

[
qsat

I(t)− Isat

Isat

]
, (6.22)

where the dots in Eqs. (6.18)-(6.20)-(6.21) indicate that h and n are indexed by β and γ and
indices are summed over. In Eq. (6.20), δIβ(t)/δn(s) indicates the functional derivative
of Iβ(t) with respect to the collective behavior n(s). This “time delayed” derivative is the
crucial term of the gradient for the societal optimum, one can perform a linearization of
Eqs. (3.10) to propagate linearly the elementary deformation of Iβ from time s to time t

to avoid several numerical computation of the whole epidemic. This linearization can be
performed as follows.
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Linearization method to compute δIβ(t)/δn(s).

We illustrate this approach on the SIR model; the generalization to the present
model is straightforward. We start from an epidemic given by some contact rate χ
(same individual and collective strategies for the societal optimum), and we aim to
compute the variation of I at time t0 for a small variation of χ at time s ≤ t0. We
will denote this slightly modified strategy χ̃ ≡ χ(t) + ϵδ(t− s)χ0 with ϵ small enough
to stay in the linear regime, with δ the Dirac function. We introduce

X(t) =

(
S0(t)
I0(t)

)
which is a time dependent vector representing the state of the epidemic with the
contact rate χ(.). The variation of this vector X upon a change of χ from χ to χ̃ is
denoted by X̃ with δX = X̃ − X. From t = 0 to t = s, δX = 0, as χ and χ̃ are
identical. Then, at t = s, Ẋ and ˙̃

X are explicitly different because χ(s) ̸= χ̃(s), which
leads to a kick ˙δX at t = s, given by

˙δX(s) = ϵχ0M(s) , (6.23)

where we used the monodromy matrix M of the fundamental function G (with respect
to χ) representing the SIR system: Ẋ(t) = GX. M(t) is therefore given by

M(t) =

(
−I0(t) −S0(t)
I0(t) S0(t)− γ .

)
(6.24)

Then, X̃(t) associated to the strategy χ̃ is propagated for any time t > s by

˙δX(u) = χ(u)M(u) · δX(u) , ∀u ∈ [s, t0] . (6.25)

The value δX(t), computed in t = t0 is equal to

δX(t0) = δX(s) +

∫ t0

s
χ(u)M(u) · δX(u)du , (6.26)

where we used a Dyson series as M(t) is a time dependent matrix which did not
commute with itself at two different times. We then perform this last step numerically
to obtain the second line of the vector δX(t0) that we divide by ϵ to get δI0(t0)/δχ(s).

As in Sec. 6.1.1 above, we use these expressions to explicitly compute Eq. (6.17) and
put it under the form Eq. (6.16), which gives the expression of ∇Cα(n, t). We can then
perform the gradient descent scheme Eq. (6.14) numerically and efficiently without several
computations of the whole epidemic at each time t.

6.3 Numerical Complexity

After deriving the methods used for our numerical analysis, we present a brief overview
of the complexity of the various algorithms. Our goal is not to offer a rigorous mathematical
treatment of numerical complexity but rather to provide practical insights into how these
algorithms behave and converge in real implementations. In Sec. 6.3.1, we present the
complexity associated with the Nash equilibra we solved for the MFG model presented in
Chapter 3, while in Sec. 6.3.2 corresponds to the societal optimum complexity. Finally in
Sec. 6.3.3 we rather focus on Chapter 4 and the numerical complexity associated to the
different methods.
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6.3.1 Complexity of the Nash equilibrium methods

For the inductive sequence method, the convergence toward the Nash equilibrium was
rather fast: it converges geometrically in a few number of steps, typically below 50. At
each step, the algorithm has to solve backward the HJB equation which is explicit in U

(the minimization has been performed numerically), and has to solve the SIR equations at
each step. The total time of the algorithm is given by

Tind seq ∼ O(nstep ncl nset nP ) , (6.27)

where the product ncl nset corresponds to the total number of control parameter in our
MFG (and will be contracted as nd for the dimensionality of the control parameters), nP is
the number of discretization points of the interval [0, T ] while nstep is the number of steps
of the algorithm. The convergence (or not) of the algorithm was reached after typically
10s on a classical recent computer.

For the gradient descent method, the convergence toward the Nash equilibrium was
slower but still reasonable: at each step of the gradient descent, we had to compute the
gradient of the cost with respect to each control parameter. The complexity was therefore
of the form

Tgrad ∼ O(n2
d n2

P ) , (6.28)

as computing the gradient at each time t for each control parameter requires to compute
an integral from t to T which also involves nd terms (cf Eq. (6.12)). While the computation
of the epidemic is linear in ndnP , we get for the total algorithm

Tgrad Nash ∼ O(nstep n2
d n2

P ) . (6.29)

with nstep typically between 100 and 300 if h was chosen appropriately (typically between
0.05 and 0.5). This led to a convergence time in practice of about few minutes (lower than
10 minutes). The gradient involved in the MFG resolution in Chapter 4 was about the
same order of magnitude, slightly slower due to the computation time of the epidemic on
heterogeneous networks which involves more than nP steps (see Sec. 6.3.3).

6.3.2 Complexity of the Societal Optimum

The convergence toward the Societal Optimum was clearly longer: at each step of the
gradient descent, we had to compute the gradient of the cost with respect to each control
parameter, but its complexity was given by the computation of Eq. (6.17) which involves
several subcalculations. The worse being Eq. (6.19) which involves three integrals with
respect to time in total, the total complexity scales like

Tgrad SO ∼ O(nstep n3
d n3

P ) . (6.30)

with nstep typically between 100 and 300 if h was chosen appropriately (typically between
0.05 and 0.5) and depending of the convergence precision we required. This led to a
convergence time in practice of about a few hours on our lab cluster. We usually took
nP ∼ 100 (while nd = 12), justifying why, with T = 40, we could observe discretization
effects on some simulations (as in Fig. 3.8).

6.3.3 Complexity of the approximations on networks

The different approximations presented in Sec. 4.2 were associated with different com-
putation times which may have an impact on whether we decide to use them in practice or
not. The quantities involved in the computation are the following: the number of points
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discretizing the time nP , the number of nodes nnodes and iterations nit when direct compu-
tation on stochastic networks was required, and kcl which is the number of degree classes,
typically equal to kmax without further approximation. In the order of the approximations
we presented in Sec. 4.2 we got:

The Pure Mean-Field approach

TPMF ∼ O(nP ) , (6.31)

as it is directly the SIR model, which is extremely fast to solve (with nP steps of time).

Heterogeneous Mean-Field approach

THMF ∼ O(kcl nP ) , (6.32)

as it is the SIR model with kcl classes, one for each degree. This method is still very fast
to solve.

Quench Mean-Field approach

TQMF ∼ O(nnodes nit nP ) , (6.33)

as it used the adjacency matrix and required to compute the infection probability of each
node of the network. The factor nit came from the average over many different networks.

Dynamical Message Passing approach

TDMP ∼ O(k2cl nP ) , (6.34)

similarly to the HMF approach, with a quadratic dependence kcl since we compute now θk
for each degree class, with θk which also involves the kcl terms coming from infection rates
of each class.

Degree Pairwise Approximation approach

TPA ∼ O(k4cl nP ) , (6.35)

since the computation involves a system of k2cl equations, with a complexity for each time
step scaling like k2cl (see Eq. (4.13) and Eq. (4.17)).

Markovian simulation
TMarkov ∼ O(nnodes n

2
it nP ) , (6.36)

since the computation now involves the stochasticity inherent to the epidemic, which leads
to nit iterations to make an average for each network with different initial seeds.

In practice, we were mainly limited by the computation of the Markovian simulation
and the Quench Mean-Field approach for the realization of Fig. 4.3. However, once we
turn to the Nash equilibrium with the Pairwise Approximation, the behavior in k4cl was
clearly limiting, at is was almost impossible to go beyond 25 to 30 classes. To address
this issue, we decided to batch the nodes of similar degree class together, to end up with
a limited number of batches, even for highly heterogeneous degree which have kmax ≃ 100

(we took 5 batches in our simulations).
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6.4 Other numerical techniques

Although we worked mainly with the methods detailed in the previous sections, we also
explored and briefly tested two additional techniques, without full implementation, that
appear promising. These are presented in this section. We first introduce the Maximum
Pontryagin Principle in Sec. 6.4.1, which serves as an efficient method to achieve the societal
optimum [160]. Then, in Sec. 6.4.2, we outline an alternative approach for reaching the
Nash equilibrium using genetic algorithms.

6.4.1 Maximum Pontryagin principle

The Pontryagin Maximum Principle originates from optimal control and can be em-
ployed to minimize a physical action under constraints [215]. In Sec. 6.4.1.1, we present
the general formalism to provide a brief overview of the principle’s foundation. Readers
interested in its application to epidemic models can refer directly to Sec. 6.4.1.2.

6.4.1.1 General description
We consider a classical dynamical system described by a state variable q(.) which is

determined by a control parameter u(.). The goal of the problem is to find an optimal
control u∗(.) minimizing a cost functional S which can be seen as the classical action (in the
Euler-Lagrange sense) of our system. We make the optimization between time t = 0 and
t = T fixed. We consider that the system must fulfill the general constraint q̇ = f(q, u, t).
Using a Lagrangian multiplier, the action can be written as follows

S[u(.)] =

∫ T

0
(L(q(t), u(t), t)− λ(t) [f(q(t), u(t), t)− q̇]) dt , (6.37)

for any real function λ(t) since we consider cases which fulfill the constraint q̇ = f(q(t), u(t), t).
Next, we introduce a small variation in the control parameter, ũ(t) = u(t) + δu(t),

which leads to a corresponding variation in the trajectory, q̃(t) = q(t)+δq(t). By imposing
that the variation in the action, δS, must be zero at the optimum —regardless of the values
of (δu(t), δq(t))— we obtain the Euler-Lagrange equations under the general constraint

Lq(q(t), u(t))− λ(t)fq(q(t), u(t), t)− λ̇(t) = 0

Lu(q(t), u(t))− λ(t)fu(q(t), u(t), t) = 0 ,

λ(T ) = 0

(6.38)

where we denote ∂L
∂q as Lq and similarly for u. Moving to the Hamiltonian formalism,

which is more suitable for dealing with constraints, we construct a control Hamiltonian as

H(λ, u, q, t) = λf(q, u, t)− L(q, u, t) . (6.39)

This allows to rewrite Euler-Lagrange equations Eq. (6.38)
λ̇ = −∂H

∂q
∂H
∂u

= 0 ,
(6.40)

which together with the constraint ∂H
∂λ = q̇ gives

dq

dt
=

∂H
∂λ

,
dλ

dt
= −∂H

∂q
,
∂H
∂u

= 0 . (6.41)
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In this context, λ serves a role analogous to p in the standard Hamiltonian equations.
Here, the constraint is seen as an additional equation independent of the two other, the
system becomes free and its resolution is ensured thanks to the presence of three distinct
variables (including λ). The quantity λ is referred to as the costate of the system and can
be physically interpreted as representing the sensitivity of the cost functional to changes in
the state of the system at time t. Additionally, we employ the Legendre condition, which
is described below.

The Legendre condition: Euler-Lagrange equations were derived from the station-
arity condition on the action S: δS = 0, which is a condition on the first variation of S
to be zero. We can go further to impose a minimum on the action, and thus impose the
second variation of S to be positive. It follows the second order necessary condition for a
minimum, found by Legendre [215]:

∂2L
∂q̇2

(q(t), q̇(t), t) ≥ 0 (6.42)

which in our notation, with a variable u instead of q̇ and the optimal control parameter
u∗(t) associated with q(t) at the minimum:

∂2L
∂u2

(q(t), u∗(t), t) ≥ 0 (6.43)

Thus, we get in addition to ∂H
∂u = 0:

∂2H
∂u2

(q(t), u∗(t), p(t), t) ≤ 0 ∀t , (6.44)

which means that a supplementary condition (after the EL equations) for a minimum of
S is that H(q(t), u(t), p(t), t) as a function of u must have a maximum in u∗(t) at each t.
Weierstrass showed [215] that this maximum is in fact a global one over all admissible u,
his derivation works for a general constraint q̇ = f(q, u, t).

Pontryagin Principle: we put together the latest statements to get a necessary
condition for a maximum.

If u∗(.) and the associated q∗(.) is are solution of the minimization of Eq. (6.37) with
a general constraint q̇ = f(q, u, t), then, there exists a function p(.) such that (for all t):

q̇(t) =
∂H
∂p

(q(t), u∗(t), p(t), t)

ṗ(t) = −∂H
∂q

(q(t), u∗(t), p(t), t)

H(q(t), u∗(t), p(t), t) = max
u

H(q(t), u, p(t), t) (6.45)

This is the Maximum Pontryagin Principle. Note that another convention for H would
lead to the minimum Pontryagin Principle. We applied below this principle to the simple
SIR model.

6.4.1.2 Application to the MFG version of the SIR model
We consider the simplest MFG version of the SIR model (considered in Sec. 2.3)

Ṡ = −χ̄(t)S(t)I(t)

İ = (χ̄(t)S(t)− ξ)I(t) ,

Ṙ = ξI(t)

(6.46)
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with χ̄ the strategy followed by all individuals. The total cost over the game is Eq. (2.29)

C(χ, χ̄) =

∫ T

0
[rIχ(t)I(t) + g(χ(t))] (1− ϕ(t))dt , (6.47)

with ϕ(t) = 1− exp
(
−
∫ t
0 χ(s)I(s)ds

)
and where rI is the cost of infection and g the cost

due to social contact reduction (denoted g for convenience). Here we aim to solve the
societal optimum, that is we consider that all individuals behave in the same way, which
implies χ̄ = χ and a central planner minimize C(χ, χ) over χ(.). Therefore, the problem
is the following:

Find χ∗(.) with (S(0), I(0)) = (S0, I0), such that{
Ṡ = −χ∗SI

İ = χ∗SI − ξI ,
(6.48)

and
C[χ∗(.)] = min

χ(.)
C[χ(.)] . (6.49)

We clearly have an equivalent problem as the one presented in Sec. 6.4.1.1 with q = (S, I)

a 2-vector (R is simply 1 − S − I), the action S Eq. (6.37) corresponds to the cost C

Eq. (6.47), and the constraint q̇ = f(q, u, t) are the rate equations (6.48). Finally the
control parameter u is χ and the Lagrangian is L = [rIχ(t)I(t) + g(χ(t))] (1− ϕ(t)) which
depends on S(t), I(t), χ(t).

Thus, we can introduce the control Hamiltonian for our problem by using the formalism
used before Eq. (6.39):

H(S, I, χ, λ, t) = λf(S, I, χ, t)− [rIχI + g(χ)] (1− ϕ) (6.50)

where f(S, I, χ, t) = (−χIS, χIS − γI) and we denote by λS , λI the components of
λ = (λS , λI).

Therefore, the Maximum Pontryagin Principle states that if χ∗(.) (and associated
(S, I,R)) is a solution of the minimization of Eq. (6.49) together with the constraints
Eq. (6.48), then there exist a couple (λS , λI) such that λS(T ) = 0; λI(T ) = 0 and for all t:

Ṡ =
∂H
∂λS

(S, I, χ∗, λS , λI , t) = −χ∗IS

İ =
∂H
∂λI

(S, I, χ∗, λS , λI , t) = χ∗IS − γI

−λ̇S =
∂H
∂S

= λIχ
∗I − λSχ

∗I − g − rIχ
∗I

−λ̇I =
∂H
∂I

= λI(χ
∗S − γ)− λSχ

∗S − rIχ
∗S

H(S, I, χ∗, λS , λI , t) = max
χ(.)

H(S, I, χ, λS , λI , t)

(6.51)

The last equation contains the stationarity condition for H:

∂H
∂χ

= λIIS − λSIS + rIIS + g′(χ∗)S = 0 . (6.52)

128



Therefore, one can compute ∂H
∂χ and apply the following simple scheme:

χ(k+1)(t) = χ(k)(t)− h
∂H
∂χ

(t) , (6.53)

which is actually much simpler than the scheme applied in Sec. 6.2.1, as it did not require
the knowledge of the societal gradient (6.17) which may be complicated to compute. The
addition of λS and λI allows to skip this computation, but it also required a certain pre-
liminary work. This method has been applied successfully and efficiently by Elie et al. in
[19] to compute the societal optimum of their game.

6.4.2 Genetic algorithm

Here, we explore genetic algorithms as an alternative route to solve the Nash equilib-
rium of a MFG. We first introduce the theoretical framework in Sec. 6.4.2.1 and we present
an application to a vaccination MFG in Sec. 6.4.2.2.

6.4.2.1 Theoretical framework
Genetic algorithms (GAs) are a class of optimization algorithms, we summarize here

the key concepts from [216]. GAs aim to solve optimization problems by identifying x⃗opt
such that Q(x⃗opt) = max

x⃗
(Q(x⃗)), where Q is the quality or “fitness” function. This ap-

proach can be particularly useful in Mean-Field Games where the Bellman equation is not
explicitly derivable, that is when the optimal strategy (e.g. Eq. (3.20)) cannot be deter-
mined analytically. A first objective of GAs applied to MFG is to perform the Bellman
minimization (2.3), that is solve general the problem χ∗ = min

χ(.)
C(χ, χ̄) for some collective

behavior χ̄. Thus, Q represents the cost function up to a negative sign.
Genetic algorithms, and evolutionary computing more generally, are based on the prin-

ciple of natural selection. The process follows these steps:

• Define the quality function Q(x⃗) to be maximized.

• Specify the search space, which may be either the parameter space of x⃗ or a repre-
sentation of x⃗.

• Initialize with a random distribution of individuals, where each individual represents
a “candidate” x⃗ to maximize Q.

• Apply a “natural” selection process: individuals with higher fitness (best Q values)
are more likely to survive. These survivors are referred to as “parents”.

• Generate offspring from the parents by combining their characteristics (crossover).
Additionally, introduce mutations by randomly altering certain parameters in the
offspring to ensure diversity and enhance space exploration.

• Repeat the process with the new generation to iteratively approach x⃗opt.

The generality of this algorithm allows flexibility in choosing the number of parents, off-
spring, and initial candidates. The process for generating offspring (how parental traits
are combined) and the mutation operator (which traits are changed and to what extent)
must also be defined. These factors directly affect the algorithm’s efficiency, and the pa-
rameters must be tailored to the specific problem. For instance, in a large search space, a
greater number of offspring relative to parents may be required for adequate exploration
(it is common, though not mandatory, to work with a fixed number of individuals per
generation for simplicity).
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The algorithm can terminate after a fixed number of iterations (generations), when it
is sufficiently close to the optimum of Q (if known), or via other stopping criteria.

Another promising route of these algorithms is to reach directly the Nash equilibrium
of the game. The main idea would be here to represent the players of our game by a large
set of different individual strategies. Then, compare their respective costs and define the
global strategy as the average over individual costs. Finally define a selection mechanism,
inspired by natural selection, that allows to select the best strategies and then generate a
new generation. When the Nash equilibrium would be reached, the best individual strategy
of players would be to follow the global strategy. This would lead to the convergence of
individual’s strategies to the same Nash strategy.

During this thesis, we have applied the first objective of such Genetic Algorithms, that
is we developed a GA to perform directly the minimization (2.3) on a specific MFG in
Sec. 6.4.2.2 that we present below.

6.4.2.2 Application to the SIR model with vaccination
As an application, we propose to recover the results of Laguzet et al. [152] with a

genetic algorithm. In brief, authors of [152] implement a MFG paradigm to model the
vaccination behavior of individuals in a SIRV model. They introduce a cost function J

which integrates two terms: one constant cost due to vaccination, and one infection cost
which depend on epidemic dynamics. The best individual vaccination rate, modeled as
λ∗(t) can be found analytically and ends with a “bang-bang” solution: the vaccination rate
is maximum at a certain interval, before the epidemic peak: λ∗(t) ∝ 1/S(t) ∈ [t∗1, t

∗
2] and

is zero elsewhere. The values of (t∗1, t∗2) can be found analytically. Then, the game converge
until a Nash equilibrium toward some values (tN1 , tN2 ).

The goal of our GA here is to find the optimized λ∗ for a given epidemic S, I,R. We
describe the general scheme of the GA applied to our problem:

• Our quality function is Q(λ) = −J(λ, u). We want maximize it for a certain global
strategy u.

• Our search space is: S = {0 ≤ λ(t) ≤ umax
S(t) , 0 ≤ t ≤ T} which corresponds to the

space of all possible individual strategies. After discretization of time, we obtain a
huge space with nP dimensions (nP is the number of discretization points)

• Our initial candidates are taken randomly. We take 200 candidates per generation.

• Selection procedure: as a first guess, we select simply the candidates with the best
quality function. We choose 10 to 50 parents. (and so 190 to 150 offspring).

• Offspring procedure: we choose two parents A and B randomly and for each t,
λ(t)off = λA(t)+λB(t)

2 + ϵumax
S(t) · random(−1, 1) for some small factor ϵ. We define in

this way both the offspring procedure and the mutation operator.

• We end up the process after a certain fix number of generations.

Because S is large with nP dimensions (we actually took nP = 4000 in our numerical
simulations), the quality function Q(λ) of initial candidates λ(t) randomly chosen is rather
bad, worse than “do nothing”: λ(t) = 0 ∀t. It grows very slowly at each generation because
a significant part of S is flat and is far from the peak of Q. Indeed, it corresponds to the
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region of the space where λ(t) is completely uncorrelated, whereas it has to be to find the
maximum of Q. To solve this issue, we propose to first take λ(t) = C = Cst on [0, T ]

and make an optimization on this C. When the best C is find, we divide the interval into
two smaller intervals [0, T2 ] and [T2 , T ] and we take λ(t) = Cst on each one. For the first
offspring generation with “two intervals”, we make mutations on each interval to get new
candidates with different values on [0, T2 ] and on [T2 , T ]. This method works because the
search space is considerably diminished (only one dimension for the first step, then two,
etc). When the algorithm converges with two intervals, we cut each interval in two equals
parts and we repeat the procedure. We define a threshold in order to know if we reached
the maximum of Q at a certain number of intervals: we go further and split in two each
interval when the quality function do not evolve during few generations. For instance,
we considered that we have reached the maximum for 8 intervals configuration when the
maximum of Q among the candidates does not evolve for 3 generations. Then, we move
to the 16 intervals configuration and so forth.

Figure 6.4: Results of the genetic algorithm after 200 generations (512 intervals). The
limit in orange is λmax(t) =

umax
S(t) . In green are the analytical expected result and in blue

the best candidate found by the GA.

We test our algorithm with the same parameters as the ones in [152] and we found the
results presented on Fig. 6.4. On Fig. 6.4, we can see that we recover perfectly the expected
results. Our algorithm is thus able to compute F (u) = λ∗ and thus to make the “Bellman
arrow” of Fig. 6.1. Then, we can use the inductive sequence to find the Nash equilibrium
of our problem (if the latter method converges).
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6.5 Discussion

The numerical work of this thesis represented a significant part to implement and test
effectively the models developed. The methods that we used to reach the Nash equilibrium
or the societal optimum in the different MFG we explored are not optimized or exhaus-
tive. As mentioned in this section, several other techniques already exist and ask to be
applied, while other are still under development such as the numerical resolution of the
Nash equilibrium through Machine learning approaches [217].

Among the different simulations we performed, the resolution of the Nash equilibrium
is probably the one which is the less understood and standardized today in the literature.
The Genetic Algorithms introduced in the previous section offer a promising approach to
solving the Nash equilibrium by exploring the solution space more broadly. Additionally,
the proposed framework is flexible enough to accommodate a wide variety of MFGs with
different cost landscapes. This type of algorithm can potentially avoid the formation of
loops that may occur with traditional methods, as the transitions between generations tend
to be relatively smooth. However, challenges may arise regarding the algorithm’s effective
convergence within a reasonable time frame, as well as issues related to space discretization
that may lead to other complications.

There is still a lack of a general algorithm which would be effective and efficient to find
the Nash equilibrium for whole classes of Mean-Field Games.
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7 - Conclusion

Modelling human spontaneous behavioral response is crucial if one wants to provide
reliable guidelines to policymakers who have to design restrictive measures against an
epidemic. As we have seen, a major limitation of current epidemiological models is their
failure to incorporate human behavior dynamically, often resulting in overestimated disease
impact predictions [17]. While these models now account for restrictions imposed by
authorities, they treat human response as an extrinsic factor, overlooking its influence on
disease transmission.

Over the past two decades, researchers have explored various models to incorporate
behavioral responses as intrinsic parameters. A promising approach is the Mean-Field
Games paradigm, which offers several advantages. Notably, it captures the “free rider”
effect observed in epidemics, where individuals are less incentivized to act when others
do not act. Additionally, the game theoretical framework models individuals as rational
agents (or at least partially rational), leading to more realistic and physically grounded
emerging behaviors. Pioneer work by Elie et al. [19] has introduced MFG into simple
models, they have been followed by other works recently [157].

The long-term goal of our work is to progressively bridge the gap between such the-
oretical models (epidemiological models based on a MFG paradigm) and their practical
applications, ultimately evaluating the potential for real-world implementation. To achieve
this, two main steps are important: first, incorporating the theoretical framework into
models already in use for practical purposes; second, assessing the framework’s capabilities
using realistic datasets. This work has several objectives:

• Theoretical advancements: First on a theoretical viewpoint, determining the
difficulties that can occur during the implementation, derivation or the numerical
implementation of the model, that may not have been anticipated a priori.

• Physical understanding: Second and on a more practical viewpoint, understand-
ing which realistic behaviors the model can capture effectively, while also recognizing
the dynamics and effects that remain beyond its scope.

• Key parameters: Third, recognizing the key parameters driving the theoretical
model, analyzing the associated model sensitivity to determine which ones are es-
sential to obtain from data.

• Range of possibilities: Fourth, assessing the potential value for real applications
based on the questions the model can effectively address.

From this analysis, we aim to provide data scientists with guidelines for the use of Mean-
Field Games in practice, from the parameters that should be extracted from data, along
with the range of questions of interest that can be addressed, paving the way for real-world
applications.

In this thesis, we developed the two mentioned steps (theoretical implementation and
assessing the framework’s capabilities) on two different sort of models. In a first part,
we implemented in Chapter 3 a MFG approach on a compartmental model with a social
structure. This model showed that MFG frameworks can incorporate a reasonable level of
complexity, including age-differentiated behavior, while remaining tractable theoretically.
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Then, based on realistic (but not real) parameters, we conducted a numerical experiment
of our model through realistic datasets. In a second part, we were interested in Chapter 4
to the implementation of a MFG approach inside a Network-based model. Using the
pairwise approximation, we developed a MFG model on top of the network structure to
study the resulting Nash equilibrium on both homogeneous and heterogeneous networks.
We explored the impact of the shape of the social cost f on the Nash equilibrium.

Finally, in a third part in Chapter 5 and as a benchmark for more complicated cases,
we left the MFG approach and to focus on the pairwise approximation on regular net-
works. We solved analytically the SIR-k model (SIR model on regular networks of degree
k), namely we got an explicit form for t(S) as a finite sum that we then studied extensively.
The k → ∞ limit of our model lead us to derive another formulation for the classical SIR
model where an integral form of t(S) is known. The formula we derived Eq. (5.25) allowed
us to extract useful approximations, especially for the epidemic peak time. We refer the
reader to the more complete conclusion presented in Sec. 5.3 for this part.

Coming back to the MFG models we explored, we got several conclusions regarding
our objectives:

Theoretical advancements: On the theoretical side, our work builds upon the con-
tributions by Elie et al.[19], by implementing the Mean-Field Game framework within
epidemiological models that can be utilized by authorities. Introducing structures in the
population (e.g., age or degree classes, different settings) slightly complicates the equations
and derivations, but does not fundamentally alter their nature. During the modeling pro-
cess, several choices must be made that will significantly impact the cost function, such
as the specific nature of interactions between individuals and the corresponding control
parameters. In particular, modelers should ensure that their MFG model is symmetric
between individuals if they assume symmetric contact patterns. On the numerical side,
the gradient descent method proposed in [19] seems appropriate for a variety of scenarios.
However, solving the functional equation F (χ̄) = χ∗ is essential to verify that the system
is indeed at a Nash equilibrium. While the Bellman equation provided a straightforward
solution in the cases we explored, other minimization techniques (such as Genetic Algo-
rithms) might be required in more complex scenarios. The choice of the number of agent
types and control parameters should be made carefully, as the numerical complexity of
solving the Nash equilibrium scales at least as O(ncl nset) (and O(n4

cl) on networks), where
ncl is the number of agent classes and nset the number of dynamic control parameters per
agent type. Thus, determining the right batching process —i.e., the number and type of
classes— becomes a crucial modeling step. However, future numerical advancements could
help overcome this limitation, allowing for larger sets of control parameters. Such batching
approaches could also be useful for Agent-Based Model implementations.

Physical understanding: The behaviors observed in our numerical simulations were
consistent with our physical understanding of the situation: individuals who perceive a
high risk of infection —either due to a high probability of infection or the significant
consequences of infection— tend to reduce their contact rate. This reduction in contact
rates depends on their sensitivity to the cost of contact reduction. The patterns of effort
were typically centered around the epidemic peak, displaying smooth U-shaped curves.
Additionally, several effects unique to the MFG approach were observed:

• Cost of Anarchy and the “Free Rider Effect”: The free rider effect, which results
in a divergence between individual optimization and societal optimum, presents an
opportunity for designing targeted measures based on individual types (e.g., cate-
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gorized by age or degree). For high-risk epidemics, the cost of anarchy increases,
along with the potential positive impact of external interventions. For lower-risk
epidemics, the gap between individual and societal optimization narrows, reducing
the margin for imposing constraints. This provides a possible quantitative approach
for an intuitive result.

• Anticipation: A key feature of the Nash equilibrium in MFG-based epidemic models
is the anticipatory behavior of individuals. In typical scenarios where herd immunity
is achieved, individuals tend to focus their efforts around the peak of the epidemic
when infection probability is high rather than taking preventive measures early.
However, the anticipation appears through the cross-anticipation between different
groups which plays a significant role. For instance, individuals such as retires or those
with lower connectivity adjust their behavior based on their expectations of how
others will act. They benefit from the herd immunity achieved in other groups (such
as young individuals or those with high connectivity), allowing them to go through
the epidemic without experiencing high infection rates within their own group and
finally get a better protection for themselves than in absence of the other groups.
Furthermore, we observed a “reverse-anticipation” effect among individuals who have
minimal efforts to make. These individuals concentrate their efforts slightly after the
epidemic peak, once herd immunity has been achieved, capitalizing on the residual
high infection level as the epidemic approaches its end. More intricate anticipatory
patterns also emerge when individuals implement containment strategies to achieve
the Nash equilibrium, strategically avoiding the attainment of herd immunity before
the end of their optimization period at time T .

Key parameters: Here we focus on the “cost function” parameters, while other pa-
rameters related to social structure or biological factors are well-established in the liter-
ature. At the macroscopic level, authorities must carefully select the time horizon T for
the epidemic’s end, as this choice will lead to different collective strategies: eradication,
containment, or achieving herd immunity. However, our work does not provide a specific
procedure for setting T , as it likely requires estimations based on factors such as vaccine
availability or the seasonality of the virus. The next key parameter is rI, which allows for a
comparison between the costs of infection and those of social contact reduction. Regarding
cost functions, while the cost of infection can be kept constant or based on relatively well-
known quantities (e.g., ICU bed availability), the cost of social contact reduction needs to
be determined prior to using the model, as it strongly influences the results (see Sec. 4.3).
Other quantities, such as mγ or n, are secondary for most applications but would still need
to be calibrated for full model integration.

Range of possibilities: Below are the three key questions we have identified to
address for the practical implementation of our work:

• Free Nash equilibrium guided by an authority: In practice, the Nash equilibrium
derived from the MFG framework cannot be expected to be naturally adopted by
individual agents. Unlike fields such as Pedestrian Dynamics, where individuals can
intuitively anticipate others’ behavior, this is not the case here (although similar
behaviors may emerge, such as people anticipating their purchases, leading to short-
ages). However, this Nash equilibrium could be communicated by a trusted health
authority, which could provide each individual with the optimal behavior to follow
for self-protection, potentially through a mobile application. This mechanism could
be loosely compared to road speed limits, where speeds were originally suggested to
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help drivers avoid excessive risk, and later formalized into mandatory limits.

• Design of Non Pharmaceutical Interventions (NPIs): As discussed earlier, the MFG
framework and its resulting Nash equilibrium offer a promising approach for de-
signing NPIs. It allows for consideration of the cost of anarchy, with NPIs aiming
to bring the population closer to the societal optimum. For instance, an authority
could precisely evaluate the cost of anarchy and decide to implement NPIs when it
exceeds a certain threshold, ensuring efficient intervention (also accounting for coor-
dination costs). This provides a more nuanced strategy compared to simply using the
“business as usual” scenario as a reference, which can lead to misleading conclusions.
Moreover, this framework allows interventions to be designed to different groups, and
calculating the societal optimum could serve as a quantitative guideline for designing
effective NPIs. Additionally, the chosen collective strategy (eradicating, containing
or reaching herd immunity) can be quantitatively realized and refined based on the
Nash equilibrium, offering a clearer and more realistic strategies for herd immunity
and containment.

• Get better predictions for epidemic modelling: By both informing individuals about
the Nash equilibrium and designing effective NPIs with anticipated impacts, this
work can lead to better predictions of epidemic dynamics. For example, revisit-
ing the work of Ferguson et al. [17] on Covid-19, the various scenarios presented
could be further refined, affecting epidemic dynamics (through R0), the range of
outcomes, and associated costs. Previously, costs were presented mainly in terms of
expected deaths, but non-lethal yet disabling diseases could have severe long-term
consequences that are important to consider. Ultimately, this approach could help
reduce discrepancies between observed epidemics and predicted outcomes, both in
terms of disease spread and associated societal costs.

Research perspectives

We stress out that the three possible routes for applications of MFG to epidemics
(namely provide Nash equilibrium to individuals, design NPIs, and get better predictions)
still need to be explored and further work is needed before practical applications. In
particular, the precise shape of each cost (and the possible costs that we did not use) need
to be further investigated. For that purpose, an interdisciplinary work, at the frontier with
social and health sciences is required. A promising direction is to follow the way in which
QALY and DALY measures have been developed, as they use notions such as utility of
a medical condition. Of course, even with such work, uncertainty sources will probably
remain important, as the complexity of human behaviors cannot be encapsulated in such
simple cost functions. However, it improves on the present status where this question is
only addressed is a qualitative way. We point out that this ambition of understanding
collective behavior at a macroscopic scale has already been developed in several fields
successfully, such as road traffic prediction, protest predictions, or energy consumption.

Beyond this call for practical applications, theoretical ways can be further explored to
enhance our comprehension of these Mean-Field Games. First, including a discount factor
inside the MFG framework could allow to cut the anticipation time of individuals which
may lead to interesting effects, to clearly identity which behaviors are due to anticipation.
This discount factor could also close the gap between a realistic individual response and the
one provided by the Nash equilibrium studied here, which was reached with a complete
information and anticipation for individuals. Other alternative models that may rather
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focus on the spontaneous behavior directly, that are closer to the Poletti model’s [98], but
keeping a “free rider effect”, could also be investigated to get fruitful insights. On another
perspective, the idea of Stackelberg games with corresponds to a N + 1 game between
individuals and an authority treated apart seems promising, notably to study the impact
and the equilibrium that can be formed between the rules imposed by the authorities and
the ones that individuals accept to follow.

I sincerely hope that the work made during my thesis will arouse new works and ideas
in the direction of human response modelization in epidemiological models.
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A - Choice of parameters in Chapter 3

We reproduce below the set of parameters used in the Tables 3.2-3.3 of Chapter 3 for
an easier reading of the parameters choice explanation.

The values of the “social structure” and “biological” parameters in Table A.1 do not
represent any particular real-life case, but are chosen to be representative of realistic situa-
tions, and therefore in the range typically found in the literature [40, 179, 38, 180, 181, 182].
We take ξ = 1.2 week−1, not too far from the values ξ = 7/6.5 = 1.1 week−1 from [179],
ξ = 7/6.6 = 1.05 week−1 from [182] and ξ = 7/4 = 1.75 week−1 from [40]. The conta-
giousness ρ is assumed to be 0.1, similar to the value mentioned in [40] for the Covid-19,
where it is slightly lower (about 0.08). Regarding µ, we choose µ = 0.2, of the same order
of magnitude as in [182]. Similarly, for the proportion of individuals in the population, the
distribution (25%, 50%, 25%) is closed to the one in [182], where it is 22% if you gather the
proportion of children and teenagers, 57% for adults, and 21% for seniors. The contact ma-
trices Mγ

αβ are inspired by [38] for their shape: almost all contacts in schools are between
children, an similarly inside workplaces for adults. In the community, all individuals have
the same probability of meeting other individuals, while in households the structure is a
bit more complex, with a strong child-adult link and senior-senior contacts. The absolute
value of contacts is then normalized so that the average total number of contacts is close
to the values presented in [40]. Finally, to ensure the consistency of our choices, we check
that all these collected quantities give a reproductive number R̃0 = 2.9 with the method
described in [38, 183] for calculating R̃0 at the beginning of epidemics in heterogeneous
populations. This value is consistent with the literature for viruses such as Covid-19 [16].
The choice of initial conditions (Iα(t=0)) is taken uniform among age classes, and since
we do not consider stochastic effects at the beginning of epidemics, we take a value of 1%
which has little effect on the simulation as long as it is small enough.

The values of the “cost function” parameters in Table A.2 were chosen in a somewhat
more arbitrary way with however the following reasoning. The parameters (Isat, qsat),
which govern the infection dynamics, were selected to ensure that Isat aligns with realistic

MS MW MC MH100 0 0
0 0 0
0 0 0

 0 0 0
0 75 0
0 0 0

 12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

  15 25 10
12.5 32.5 5
10 10 30


Nα ≡ N tot

α /Ntot Iα(0) (ξ, ρ, µ)
(0.25, 0.5, 0.25) (0.01, 0.01, 0.01) (1.2, 0.1, 0.2)

Table A.1: “Social structure” and “biological” parameters used in our simulations.
The matrix entries Mγ (0)

αβ correspond to the average frequency of contacts (per week)
between an individual of age class α and someone of age class β in the setting γ.
Nα = N tot

α /Ntot is the proportion of the population in each age class. Iα(0) are the
initial proportion of infected for each age class (we always assume Rα(0) = 0). ξ is
the recovery rate (per week), ρ the transmission rate per contact, and µ corresponds
to the proportion of asymptomatic individuals in the population. Finally, α = 1, 2, 3
for age class of young, adults and retired individuals, respectively.

139



(Isat, qsat) κα mγ nγ
min (Id, Il, s) T

(0.1, 0.1) (1,10,100) (2,2,1,3)
(
1
3
, 1
5
, 1
5
, 1
2

)
(0.12, 4.10−4, 0.35) 40

Table A.2: “Cost-function” parameters associated with the function Eq. (3.11) cho-
sen for our simulations. The cost of infection Iα Eq. (3.18) is characterized on the
one hand by its value under “normal circumstances” rI,α = rIκα, where we distinguish
a common coefficient rI that will take different values depending on the simulation,
and an age-dependent part κα, which we will keep fixed at the value given in this
table. On the other hand, Isat characterizes the fraction of infected individuals at
which the sanitary system starts to malfunction, and qsat the speed at which this
malfunction sets in. The cost of reducing once social contact is then parameterized
by nγ

min, the minimum contact willingness in each setting γ, and mγ, which weights
the cost of contact reduction in each setting. Id, Il are the thresholds for the best
lockdown and s its intensity level. T (in weeks) represents the total duration of the
optimization, which in this section is consistently much longer than the character-
istic timescale of the epidemic.

estimates from the literature. For instance, the probability of requiring critical care in an
ICU due to Covid-19 is estimated at around 0.1% to 1% of the population [17, 40]. In a
country like the UK, with a population of approximately 50 million and around 5,000 ICU
beds [17], this leads to a saturation threshold of Isat ≃ 0.1 at most, to Isat ≃ 0.01. Thus,
the choice of Isat = 0.1 was reasonable, though it represents an upper bound for diseases
like Covid-19 and a lower bound for less severe diseases. The epidemic peak observed in
the “Business as usual” scenario, reaching 0.2, further motivated this choice.

The parameter qsat was chosen in a more arbitrary manner. A value of qsat = 1 led
to abrupt and unrealistic behavior changes, while qsat = 0.01 produced more significant
and physically meaningful effects in the simulations. The parameter κα was set based on
ICU and mortality probabilities reported in [17, 40]. In [40], there is roughly a factor of
10 between ICU probabilities for different age groups, similar to the classification in Laura
Di Domenico’s PhD thesis [41], while [17] uses broader age classes.

Parameters mγ were chosen more intuitively to explore their impact on individuals’
behavior under different settings and the resulting interactions. For example, the weights
for school and work were both set to a power of 2 to account for contact reduction, while
community contact reduction was assigned a lower weight of 1 and household contacts a
higher weight of 3. Similarly, the minimum number of admissible contacts nγmin was chosen
based on the relative costs of contact reduction.

We note that these two parameters are not strictly necessary to implement the MFG
framework but were useful in exploring the theoretical possibilities of the model while re-
maining reasonably realistic. The values of (Id, Il, s) were not predetermined, but resulted
from the optimization process within the model’s constraints. Finally, before investigating
other scenarios, the value of T = 40 was chosen so that all simulated epidemics reached
herd immunity. The infection cost rI = 1 was initially selected to ensure a competitive
balance between the different terms of the cost function, but this value was modified in
some simulations to test different scenarios.
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B - Complements on the Pairwise Approximation

In this appendix we propose complements on the Chapter 4, we first propose an alter-
native and more formal derivation of the Pairwise Approximation in Sec. B.1. Then, in
Sec. B.2, we explain how the notation Gxy

kk′ we introduced can lead to intuitive and useful
quantities and we check that the degree-state balance condition is satisfied over time. Fi-
nally, in Sec. B.3 we provide a verification that our batching procedure used in Sec. 4.3.3
was still numerically accurate, compared to the averaged Markovian simulation over the
associated heterogeneous network.

B.1 Alternative derivation of Gxy
kk′ dynamics with a more

formal approach

We derive below a more formal derivation of the Pairwise Approximation. One first
remark is that there are two sources of randomness here:

1. The Poisson processes, associated with infection or recovery, are defined by rates.

2. The randomness associated with the network.

B.1.1 Notations

• Vertices will be labeled by Greek letters (α, β, · · · ), and the adjacency matrix will
be noted Aαβ (equal to one if there is a edge between α and β, zero otherwise).

• The class of a vertex α at time t will be denoted by ct(α) = x ∈ {s, i, r}.

• We will use \mathbb for sets. For instance Vα = {β /Aαβ = 1} is the set of all
neighbors of α. The degree dα of α is #Vα, where #E the cardinal of set E.

For instance

Dk = {α / dα=k} (set of vertices of degree k)

TDk = {(α, β) / α ∈ Dk & β ∈ Vα} (tangent fiber of vertices of degree k)

Ekk′ = {(α, β) / α ∈ Dk & β ∈ Dk′ & Aαβ=1} (set of edges between vertices of degree k and k′)

and in the same way

Xk = {α / α ∈ Dk & ct(α)=x} (vertices of degree k and class x (x ∈ {s, i, r})

We have Nk = #Dk and we define Xk ≡ #Xk/Nk (x ∈ {s, i, r}) (we note that if TDx
k =

{(α, β) / α ∈ Dk & ct(α)=x & β ∈ Vα}, then we just have #TDx
k = k#Xk = kNkXk).

B.1.1.1 Correlation matrix
We introduce the correlation matrix as

Gkk′
xy ≡ {(α, β) ∈ Ekk′ / ct(α, β) = (x, y)} (B.1)

Gkk′
xy ≡

#Gkk′
xy

#TDx
k

=
#Gkk′

xy

kNkXk
. (B.2)

NB: (#Gkk′
xy ) = (#Gk′k

yx ), and thus we recover the detailed balance condition kNkXkG
kk′
xy =

k′Nk′Yk′G
k′k
yx .
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B.1.1.2 Bare rates
Consider a fixed edge (α, β), the rate of transformation of the class of the vertices

c(α, β) into something else are given by the bare rates

Λx′y′
xy such that P

[
ct+dt(α, β)=(x′, y′) / ct(α, β)=(x, y)

]
= Λx′y′

xy dt , (B.3)

Λx′
x such that P

[
ct+dt(α)=x′ / ct(α)=x

]
= Λx′

x dt . (B.4)

In our case

Λx′y′
xy = λq[δxsδyi + δxiδys]δx′iδy′i , (B.5)

Λx′
x = ξδxiδyr . (B.6)

B.1.1.3 Dressed rates
The point of all the above is to think about sets than directly about probabilities. So

again we introduce the sets

Tkk′

(x,y;t) 7→(x′,y′;t+dt) ≡
{
(α, β) ∈ Ekk′ / ct(α, β)=(x, y)& ct+dt(α, β)=(x′, y′)

}
(B.7)

and we define the dressed rates T kk′

(x,y)7→(x′,y′) as(
#Tkk′

(x,y;t) 7→(x′,y′;t+dt)

)
=
(
#Gkk′

xy

)
T kk′

(x,y) 7→(x′,y′)dt . (B.8)

Then, once the vertices (α, β) are specified, one simply uses the bare rates (once the
class of two neighbors are fixed, the Poisson process of infection or recovery is completely
independent from the statistics of the network), and thus

• If (x ̸=x′) and (y ̸=y′)(
#Tkk′

(x,y;t)7→(x′,y′;t+dt)

)
=
(
#Gkk′

xy

)
Λx′y′
xy dt (B.9)

• If (x ̸=x′) and (y=y′)(
#Tkk′

(x,y;t)7→(x′,y;t+dt)

)
=
(
#Gkk′

xy

) [
Λx′y
xy + Λx′

x

]
dt+

∑
k′′zz′

(
#Gkk′k′′

xyz

)
Λx′z′
xz dt (B.10)

• If (x=x′) and (y ̸=y′)(
#Tkk′

(x,y;t) 7→(x,y′;t+dt)

)
=
(
#Gkk′

xy

) [
Λxy′
xy + Λy′

y

]
dt+

∑
k′′zz′

(
#Gk′kk′′

xyz

)
Λy′z′
yz dt ,

(B.11)

with

Gkk′k′′
xyz = {(α, β, γ) ∈ Wk→k′′

k→k′ / ct(α, β, γ) = (x, y, z)} , (B.12)

Wk→k′′
k→k′ = {(α;β, γ) ∈ Dk ×Dk′ ×Dk′′ / (β, γ) ∈ V 2

α } (set of wedges of degrees k, k′, k′′) ,
(B.13)

and where the last term in Eq. (B.10) comes from the vertices other that β to which α

is connected, and for Eq. (B.11) from the vertices other α that to which β is connected.
From the definition Eq. (B.8) of the dressed rate and Eqs. (B.10)-(B.11), we get

T kk′

(x,y) 7→(x′,y′) = Λx′y′
xy +δyy′

Λx′
x +

∑
k′′zz′

(
#Gkk′k′′

xyz

)
(
#Gkk′

xy

) Λx′z′
xz

+δxx′

Λy′
y +

∑
k′′zz′

(
#Gk′kk′′

yxz

)
(
#Gk′k

yx

) Λy′z′
yz

 .

(B.14)
In our case, we get for instance

T kk′

(si)7→(ii) = λq

1 +
∑
k′′

(
#Gkk′k′′

sii

)
(
#Gkk′

si

)
 . (B.15)
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B.1.2 The Pairwise Approximation

As always, we need the
(
#Gkk′

xy

)
to compute the evolution of the

(
#Gk

x

)
≡
(
#Xk

)
, but

we need the
(
#Gkk′k′′

xyz

)
to compute the evolution of the

(
#Gkk′

xy

)
. We can move forward

if we assume that the three-body correlations are negligible (which presumably make sens
if loops are rare). We define

Gkk′k′′
xyz = {(α, β, γ) / α ∈ Dk & (α, β) ∈ Gkk′

xy & (α, γ ̸= β) ∈ Gkk′′
xz } , (B.16)

which, assuming no correlation beyond the two body ones (Pairwise Approximation), leads
to write

(
#Gkk′k′′

xyz

)
= NkXk︸ ︷︷ ︸

# of α∈Dk

k︸︷︷︸
# of β

conditional proba︷︸︸︷
Gkk′

xy (k − 1)︸ ︷︷ ︸
# of γ

conditional proba︷ ︸︸ ︷
Gkk′′

xz , (B.17)

which, with Eq. (B.2) (ie #Gkk′
xy = Gkk′

xy kNkXk = k′Nk′Xk′G
k′k
yx ) gives

T kk′

(x,y) 7→(x′,y′) = Λx′y′
xy +δyy′

[
Λx′
x +

∑
k′′zz′

(k − 1)Gkk′′
xz Λx′z′

xz

]
+δxx′

[
Λy′
y +

∑
k′′zz′

(k′ − 1)Gk′k′′
yz Λy′z′

yz

]
.

(B.18)
In our case, we get for instance

T kk′

(si)7→(ii) = λq

(
1 + (k − 1)

∑
k′′

Gkk′′
si

)
, (B.19)

which corresponds to Eq. (4.15).

B.1.3 Getting to Eq. (4.16)

Once the dressed rate are settled, we can write:∫ t+dt

t

˙(
#Gkk′

xy

)
dt = −

∑
x′y′

(
#Tkk′

(x,y;t)7→(x′,y′;t+dt)

)
+
∑
x′y′

(
#Tkk′

(x′,y′;t)7→(x,y;t+dt)

)
and thus, removing the constant factor kNk which appears in all terms

˙(XkGkk′
xy ) = −Xk G

kk′
xy

∑
x′y′

T kk′

(x,y)7→(x′,y′) +
∑
x′y′

X ′
k G

kk′
x′y′ T

kk′

(x′,y′)7→(x,y) , (B.20)

which is nothing but Eq. (4.16) with slightly more general notations.

B.2 Normalization rules for Gxy
kk′

In our point of view, the interest of introducing Gxy
kk′ resides also in all the correlations

that can be accessed through it. This for point correlation matrix (two for states and
two other for degrees) allows to write in a very intuitive way three, two and one point
correlations. To remove the right hand side point, one only has to sum over the degree or
the state, while for the left hand side point one must add a weighting factor. The way of
reading these quantities is always the same: it is the probability for a neighbor of a vertex
characterized by the two left points (which can be empty) of the matrix (for instance a
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vertex of degree k and state x) to have be characterized by the two right point of the
matrix. Thus, three point correlations are given by

Gxy
k =

∑
k′

Gxy
kk′ = P (neighbor of state y | k of state x)

Gxy
k′ =

∑
k

kxkP (k)Gxy
kk′ = P (k′ of state y |vertex of state x) ,

(B.21)

and the scheme continue for the two points correlations, with for instance (among the 6
possibilities):

Gxy =
∑
k,k′

kxkP (k)Gxy
kk′ = P (vertex of state x | vertex of state y)

Gx
k′ =

∑
k,y

kxkP (k)Gxy
kk′ = P (k′|vertex of state x) .

(B.22)

Continuing this process, we can get the two and one point correlations which are some-
times normalized, together with the normalization which mush be satisfied. The time
independent relations are given by

Gk =
∑
k′

Gkk′ = 1

P (k)kGkk′ = P (k′)k′Gk′k ,

(B.23)

while other are time dependent:∑
y

Gxy
k =

∑
k′

Gx
kk′ = Gx

k = 1∑
x

xk = 1

xkP (k)kGxy
kk′ = yk′P (k′)k′Gyx

k′k .

(B.24)

All these relations should be satisfied at each time t. Using the expression Ġxy
kk′ that we

derived Eq. (4.17), together with these expressions at t, one can check that they remain
valid at time t+dt, confirming the consistency of the system. Besides, other normalization
relations are satisfied:

Gx
kk′ = Gkk′ (B.25)

G y
kk′ = yk′Gkk′ , (B.26)

where the first equation indicates that knowing the state of a starting vertex has no influ-
ence on the probability to find a neighbor of degree k′, as the networks we considered are
completely fixed over time. The second equations indicates that knowing only the degree
of a starting vertex will not bring any information about the state of the neighbor y, and
therefore the two probabilities (be of degree k′ and be of state y) must be independent.
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B.3 Validation of our batching procedure on the Pairwise
Approximation

In Fig. B.1, we demonstrate that the pairwise approximation, combined with the batch-
ing procedure applied in Sec. 4.3.3, provides a highly accurate representation of the network
dynamics we aimed to reproduce. The small discrepancies observed do not significantly
affect the general observations or the conclusions drawn regarding the Nash equilibrium
on such networks.

Figure B.1: Evolution of total infected proportion over time on an heterogeneous network.
Red line: Pairwise Approximation Eq. (4.13) applied on the heterogeneous network of
Sec. 4.3.3, together with the batching procedure describe in the section. Black line: average
Markov process over nit = 10 iterations, with N = 15000 nodes (to allow for the presence
of degrees around kmax ≃ 100)
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C - Social structure description of epidemic propa-
gation with a MFG paradigm
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As emphasized by the recent pandemic crisis, the design of coherent policies against epidemic propagation
is of major importance and required to model both epidemic quantities and individuals behavior because the
latter has a strong influence on the former. To address this issue, we consider the spread of infectious diseases
through a mean field game version of a SIR compartmental model with social structure, in which individuals
are grouped by their age class and interact together in different settings. In our game theoretical approach,
individuals can choose to limit their contacts if the epidemic is too virulent, but this effort comes with a social
cost. We further compare the Nash equilibrium obtained in this way with the societal optimum that would be
obtained if a benevolent central planner could decide on the strategy of each individual, as well as to the more
realistic situation where an approximation of this optimum is reached through social policies such as lockdown.

DOI: 10.1103/PhysRevE.106.L062301

As Covid-19 has made rather explicit in the last few years,
possessing good prediction tools for the dynamics of virus
infections is mandatory if one wishes to design public poli-
cies making it possible to effectively mitigate the negative
impact of an epidemic. Since the early twentieth century,
many models have been proposed to address this issue, one of
the simplest being the SIR (Susceptible-Infected-Recovered)
compartment model [1] and its variations [2], which has
been recently refined to take into account the structure of
social contacts [3,4] or spatial/geographic aspects of the
dynamics [5,6].

For virus epidemics like Covid-19, with very fast dy-
namics, one important difficulty met by epidemiologists can
already be illustrated on the SIR model. Noting S, I, and R the
relative proportion of agents in the three possible states (re-
spectively “Susceptible”, “Infected”, and “Recovered”), the
time dependence of these “state variables” follow the set of
equations

Ṡ = −χS(t )I (t ),

İ = (χS(t ) − ξ )I (t ), (1)

Ṙ = ξ I (t ),

which are characterized by two “extrinsic” parameters, (that
is, external parameters fixed outside of the model), the recov-
ery rate ξ, and the contact rate χ .

Given the height of the stakes posed by the control of the
Covid-19 epidemics in the last couple of years, both from
a public health and economic point of view, major efforts
have been invested by the epidemiologist community to ex-
tract these parameters, or their counterpart in more complex
models, from the actual data observed on the field. However,
if ξ is mainly fixed by biological considerations, and thus can
be considered as essentially constant in time, the contact rate
χ on the other hand depends a lot on the agent’s behavior (i.e.,

whether they actually meet or not) which has a dynamic of its
own. This dynamic is furthermore coupled to the dynamics
of the epidemic itself since people will limit or increase their
contacts depending on whether or not they feel at risk from
the epidemic. This implies that it is essentially impossible to
fit the time dependence of χ on past data. In models used
to advise public policies, this time dependence is thus either
simply ignored, or involves a lot of guesswork, leading to
predictions that can be trusted only for a rather short amount
of time (see nevertheless [7,8]). To avoid such a situation, it
is necessary to introduce models whose extrinsic parameters
have no time dependence (on the time scale of the epidemic),
and which can therefore be fitted in a reliable way on field
data. In other words, it is necessary to make intrinsic the
dynamics of parameters such as χ (i.e., to make them internal
parameters computed within the model). To achieve this, a
game theoretical approach is required, and the one that we will
follow here is provided by mean field game (MFG) theory.

Introduced by Lasry and Lions a decade ago [9–11] and in-
dependently by Huang, Malhamé, and Caines [12], mean field
games (MFG) focus on the derivation of a Nash equilibrium
within a population containing a larger number of individu-
als. Reader can look at [13–15] for a complete mathematical
description, and to [16,17] for an introduction designed for
physicists. Applications of MFG, include finance [18], eco-
nomics [19], and opinion dynamics [20] among others. The
introduction of MFG models to describe epidemic dynamics
has been pioneered by Turinici et al. to describe vaccination
strategies [21] or the dynamics of the parameter χ (t ) in the
simple SIR model [22].

The simple toy models addressed in [22] are, however,
presumably still too schematic to be relevant from a practical,
public policy point of view. The goals of this Letter are to
show that a good degree of complexity can be included in
these MFG models, and in particular that we can implement
a description of the social structure of society in which the
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epidemics develop. Furthermore, we shall see that with our
mean field game approach, question of direct practical im-
portance, such as defining the best government strategy with
respect to confinement and deconfinement policies, can be
addressed.

We therefore consider a SIR model with a structure of
social contacts proposed in [3,4] to get a more detailed de-
scription of the society at a mesoscopic scale. Following [3],
we make a differentiation between individuals according to
their age. Here we choose to introduce three age classes:
“young,” “adult,” and “retired” people but a more refined de-
scription could easily be implemented. Furthermore, we split
the society in four main settings where individuals have con-
tacts with others: the schools, the households, the community,
and the workplaces. Thus the dynamics of the epidemic may
differ for different age classes and the interactions between
individuals (of the same class or not) may differ in different
settings.

To model the interactions, following [3], we introduce the
parameters Mγ

αβ which measure the average frequency of con-
tacts with someone of age class β for an individual of age
class α in the setting γ . To enforce the sum rule imposed by
the fact that a contact between two agents involves both of
them in a symmetric way, we make a slight variation here
with respect to [3] and set Mγ

αβ = W γ

αβ · Kβ where W γ

αβ is a
symmetric matrix and Kβ is the proportion of individuals of
age class β in the population. Physically, W γ

αβ can be seen
as the “willingness of contact” between an individual of age
class α and another of age class β in the setting γ . We assume
here that this symmetric matrix is built as W γ

αβ = w
γ

αβ · w
γ

βα,

where w
γ

αβ is the “willingness” of an individual of age class α

to have contact with someone of age class β (in the setting γ ).
In our game theoretical approach, we assume that indi-

viduals of age class α control their “willingness of contact”
with other individuals in each setting. We therefore write
w

γ

αβ = w
γ (0)
αβ nγ

α (t ), where w
γ (0)
αβ denotes this “willingness” in

the absence of epidemic (similarly for W γ (0)
αβ and Mγ (0)

αβ ), and
nγ

α (t ) ∈ [nγ

α,min, 1] is a time dependent coefficient measuring
the effort made by the individual to limit contact because of
the epidemic situation, and which is assumed to vary between
a value nγ

α,min representing the maximum effort that can be
expected from the agent and one corresponding to the base
willingness in the absence of effort. Notice that, for simplicity,
we use nγ

α instead of nγ

αβ , that is individuals do not change
their behavior according to the age class of the contact β but
only according to the setting γ (a β dependence of n could
easily be implemented to this model and only slightly change
the equations).

Indexing by α the proportion of susceptible/infected/
recovered people of age class α, and denoting by q the prob-
ability of transmission (of the virus) per effective contact
(between a susceptible and an infected), the SIR equa-
tions (with n = 3 age classes) read [3]

Ṡα = − λ̄α (t )Sα (t ),

İα = + λ̄α (t )Sα (t ) − ξ Iα (t ), (2)

Ṙα =ξ Iα (t ),

where the “force of infection” λ̄α (t ) corresponds to q time, the
average number of infected people met by a susceptible agent
of age class α during dt , and is written as

λ̄α (t ) ≡ q

[
n∑

β=1

∑
γ

n̄γ
α (t ) n̄γ

β (t ) Mγ (0)
αβ Iβ (t )

]
, (3)

with n̄γ
α the average value of nγ

α over agents in the age class
α. In the following, we will denote λ (without bar above)
when we focus on the force of infection seen by a reference
individual, λα (t ) ≡ q[

∑n
β=1

∑
γ nγ

α (t )n̄γ

β (t )Mγ (0)
αβ Iβ (t )].

In our mean field game version of this model, the state
variable of an agent kα of age class α is her status xkα

∈
{sα =susceptible, iα = infected, rα = recovered}. The control
parameters of individuals of age class α are the contact will-
ingness nγ

α (t ), and each individual kα which is susceptible at
time t (i.e., xkα

= sα) will adjust the contact willingness to
minimize an inter-temporal cost that we take of the form

Cα ({nγ
α (·)}, t ) ≡

∫ T

t

[
λα (s)r̃I,α (I (s)) + fα

({
nγ

α (s)
})]

× (
1 − φI

α (s)
)
ds. (4)

In this equation

r̃I,α (I (s)) = rI,α + gα (I (s)) (5)

is the total cost of infection, which includes a base cost rI,α

(which we assume increases with the age class α, model-
ing that we suffer more from infection when we are older),
and an additional cost gα (I (s)) which models the saturation
of the sanitary system. fα ({nγ

α (s)}) measures the cost (both
psychological and financial) associated with the limitation of
social contacts (we assume this cost to be decreasing, with
a positive second derivative), and φI

α (t ) is the probability for
our reference individual of age class α to be infected before
t , so that an infection for this individual happens between t
and t + dt with a probability (1 − φI

α (t ))λα (t )dt . Note that in
principle one should also specifically model the behavior of
infected people, as this could vary from a completely egoistic
approach where they stop making any effort to a very altruistic
one where infected people completely isolate from the rest of
population. In epidemics like Covid-19, however, most of the
transmission is due to a small part of the infected people not
aware of their infectious status. Our model corresponds to the
limit where this proportion is extremely small, and for which
q, the probability of transmission of the virus, integrates this
probability.

To solve this optimization problem, we follow a standard
approach in this context [15], and introduce the value function

Uα (t ) = min
{nγ

α (·)}
Cα

({
nγ

α (·)}, t
)
, (6)

which is thus the minimal price (in stochastic average) that a
susceptible agent (at t) can pay between t and the end of the
game. Using the Bellman equation, which states that, for any
intermediate time ti, the optimal path between t and T can be
constructed as the concatenation of optimal paths between t
and ti and between ti and T followed by an optimization of the
state of the system at ti we get the Hamilton-Jacobi-Bellman
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equation of our mean field game

−dUα (t )

dt
= min

{nγ
α (t )}

[
λα (t )(r̃I,α (I (t )) − Uα (t )) + fα

({
nγ

α (t )
})]

.

(7)
Then, the optimal strategy nγ ∗

α (t ) is expressed as

{nγ ∗
α (t )} = argmin

{nγ
α (t )}

[
λα (t )(r̃I,α (I (t )) − Uα (t )) + fα

({nγ
α (t )

})]
.

(8)
We stress, however, that in Eq. (4), the dynamic of the

infection Eqs. (2) and (3) at time t , is fixed by the strategies
n̄γ

α (s < t ), followed (on average) by the total population of
agents, which is a priori distinct from the one nγ ∗

α followed
by the individual optimizing the cost Eq. (4). In all rigor, this
cost should be written as Cα ({n̄γ

α }, {nγ
α }, t ), and the situation

for which for all settings γ and all age classes α one has

nγ ∗
α = n̄γ

α (9)

corresponds to a Nash equilibrium, in the sense that an indi-
vidual agent has no interest in deviating to another strategy if
this strategy is followed by the rest of the agents. ‘solving”
our mean field game therefore amounts to: (i) Solve the rate
equations (2) assuming the general population strategy {n̄γ

α }
given. This in particular will determine epidemic quantities
such as Iα (t ), from which λα (s) and φI

α (t ) = 1 − e
∫ t

0 λα (s)ds can
be derived, making it possible to compute the cost Eq.(4) for a
given individual strategy {nγ

α (t )}; ( ii) Solve the optimization
problem for {nγ

α (t )} defined by the cost Eq. (4) and deduce
from it {nγ ∗

α }, the optimal {nγ
α } for a given individual; and

(iii) Impose the self consistent equation (9) that defines the
Nash equilibrium of our MFG. In practice, this third step (iii)
can be realized in different ways, either using a recursive
sequence until (9) is fulfilled or using a gradient descent,
slowly moving the general population strategy to reach the
same fixed point where nγ ∗

α = n̄γ
α . We use both methods in

our numerical simulations.
Since the time dependence of the {nγ

α } is now an outcome
of the description, our MFG model defined by the dynamics
Eqs. (2) and (3) and the cost function Eq. (4) clearly meet the
criterion that all the extrinsic parameters characterizing it are
time independent, and could in principle be fitted on field data.
The actual extraction of these parameters is, of course, well
beyond the scope of this work, and in the following, we illus-
trate the behavior of our MFG for a “reasonable choice” of this
parametrization (these quantities are rather generic, and the
observed behaviors are a priori typical, which was checked
by running many simulations with different parameters).

As mentioned above, we consider four settings (S =
schools, W = workplaces, C = community, and H = house-
holds) and three age classes (y = youth, a = adult, and r =
retired). For the cost of infection Eq. (5) we take

r̃I,α (I (t )) = κα

[
rI

(
exp

[
αsat

I (t ) − Isat

Isat

])]
, (10)

where the factors κα account for the fact that older agents are
more impacted by the infection, while rI and αsat are both
constant modeling, respectively, the usual cost of infection
and the impact of saturation on the cost. The additional cost
is exponential with a threshold when we reach the saturation
at I = Isat. Finally, for the cost of the contact willingness

FIG. 1. Evolution of the epidemic quantities and contact willing-
ness with rI = 1 (solid line) and rI = 5 (dashed line). Upper panel:
evolution of proportion of infected by age class. Lower panel (left
to right): evolution of contact willingness of individuals according to
their age class in community, households, schools (for the young),
and workplaces (for the adults).

reduction fα ({nγ
α }) we take a form inspired from [22]

fα ({nγ
α (t )}) =

∑
γ

[(
1

nγ
α (t )

)μγ

− 1

]
, (11)

where μγ models variability of the “attachment” to the setting
γ , as it is for example easier to reduce contacts at work rather
than inside families.

Figure 1 shows the dynamics of the epidemic together with
the choices made by individuals for their contact willingness
for both a relatively moderate cost for the infection (rI = 1)
and a much stronger one (rI = 5), with the choice of param-
eters given in Table I. The simulations have been obtained
using a gradient descent on the variable {nγ

α } of the cost C to
reach the Nash equilibrium. In the case rI = 1, we see in this
figure that there are significant efforts made by individuals
when I (t ) exceed the threshold Isat. More precisely, retired
people significantly reduce their contacts because the cost
associated with the infection is for them very high and this
reduction is done, in particular in the community setting, be-
cause this is the easiest place to reduce one’s contacts. On the
other hand, young people, who take no significant risk with
the disease, barely modify their behavior, while the adults are
in an intermediate situation. For rI = 5, the cost of infection
is sufficiently high so that one does not reach the saturation
Isat, the epidemic is lower and slower.

In the previous equilibrium analysis, each agent performs
a personal, eventually egoistic, optimization. A “benevolent
global planner”, i.e., a well meaning government with full
empowerment, would, on the other hand, attempt to reach a
“societal optimum” [22–24], i.e., to optimize the global cost
of the entire society, which would amount to solve :

min
{n̄γ }

Cglob
({

n̄γ
α

}) ≡ min
{n̄γ }

∑
α

[
Kα × Cα

({
n̄γ

α

}
,
{
n̄γ

α

})]
.

(12)
The difference between this new minimization and the Nash
equilibrium discussed above is referred to as “the cost of
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TABLE I. Table of parameters used in our simulations. The matrix entries Mγ

αβ correspond to the average frequency of contacts (per week)
between an individual of age class α and someone of age class β in the setting γ . κα is the coefficient appearing in r̃I,α . Kα is the proportion of
the population in each age class. nγ

min is the minimum contact willingness in each setting γ , while μγ weighs the cost of contact reduction in
each setting. (Sα (0), Iα (0)) are the initial conditions for each age class. ξ is the recovery rate (per week), q the transmission rate per contact.
Il , Id are the thresholds for the optimal lockdown and σ its level.

MS MW MC MH κα Kα nγ

min μγ⎛
⎝100 0 0

0 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 75 0
0 0 0

⎞
⎠

⎛
⎝12.5 25 12.5

12.5 25 12.5
12.5 25 12.5

⎞
⎠

⎛
⎝ 15 25 10

12.5 32.5 5
10 10 30

⎞
⎠ (1,10,100) (0.25, 0.5, 0.25) ( 1

3 , 1
5 , 1

5 , 1
2 ) (2,2,1,3)

Sα (0) Iα (0) (Isat , αsat ) ξ q Il Id σ

(0.99, 0.99, 0.99) (0.01, 0.01, 0.01) (0.01,0.01) 1.2 0.02 0.1 4 × 10−4 0.39

anarchy”, because there is no cooperation between individuals
in the Nash equilibrium contrary to the societal optimum case.
We compute it with a gradient descent on the cost Cglob, and
we plot the dynamics on Fig. 2.

In practice however, it is largely impossible for a gov-
ernment to control the detailed behavior of each individual,
especially in democratic countries, and even if this was techni-
cally feasible, it would involve an important coordination cost
that would have to be included in the epidemic cost Eq. (4).
Government will therefore use median mode of actions, such
as lockdown, to approach the societal optimum at a reason-
able coordination (and democratic) cost. We now address the
question of how the lockdown policy can be used to approach
as well as possible the societal optimum.

We therefore assume that above a certain threshold of
infection, Il , a global planner imposes a reduction of the
maximum contact willingness nγ

αl , that we assume of the form
nγ

αl = σnγ

α,min + (1 − σ ), (σ ∈ [0, 1]) in each setting for each
individual. As the proportion of infected decreases we assume
the lockdown is lifted when I (t ) goes below a value Id < Il ,
which is assumed lower than Il to avoid unrealistic oscillations
around Il . For a given value of the thresholds and of the

FIG. 2. Evolution of the epidemic quantities and contact willing-
ness for the societal optimum (dashed line) and the optimal lockdown
policy (solid line). Upper panel: evolution of proportion of infected
by age class (main panel) and on average (inset). Lower panel (left to
right): evolution of contacts willingness of individuals according to
their age class in community, households, schools, and workplaces.

nγ

αl we can compute the Nash equilibrium as in our original
approach, and we can then perform a gradient descent on
these parameters (σ, Id , Il ) to reach their optimal value, i.e.,
the optimal lockdown policy.

We show in Fig. 2 the numerical simulation for the societal
optimum and for the optimal lockdown policy, with the same
parameters as Fig. 1 and rI = 1, giving for the optimal lock-
down policy Il = 0.1 = Isat , Id = 4 × 10−4, and σ = 0.39.
For the societal optimum the cooperation appears clearly: at
the epidemic peak there is a mutual action of all individuals
to simultaneously limit their contacts, especially in the com-
munity and households where adults and young people make
efforts in order to limit the number of infected retired people,
even if the efforts in households are costly. On the other hand,
less efforts are made in schools or in workplaces because this
affects retired people less. These combinations of efforts lead
to a very low cost for the entire society.

For the Nash equilibrium under optimal constraints, we see
in Fig. 2 that adults and young people essentially follow the
constraints imposed by the lockdown in each setting (this is
the straight solid lines). On the other hand, to achieve better
protection for themselves, retired people go beyond the lock-
down in the community and households, actually following
a strategy very similar to the one of the societal optimum.
This lockdown has a strong effect on the epidemic but lacks
the coordination of the optimum societal case. This leads to a
number of infected adults and young which is lower than the
“societal optimum” while it is higher for retired people.

To conclude, it might be useful to introduce a “figure of
merite” of a given policy P

M(P ) = Cglob(P ) − Cglob(societal optima)

Cglob(business as usual) − Cglob(societal optima)
,

(13)

which is thus such that M(P ) is zero if P is the societal optima
and one if P is the “business as usual” strategy for which no
adjustment is made to the contact between agents. From our
simulations with rI = 1, for which Cglob(business as usual) =
266 and Cglob(societal optima) = 101, we get M(P ) = 0.12
for the unconstrained Nash equilibrium and 0.06 for the
optimal lockdown policy. However, nonoptimal lockdown
policies are, most of the time, less effective than the uncon-
strained Nash, and can typically have a M which ranges from
values of the order of (or in the best case scenario slightly
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below) the unconstrained Nash value (when the thresholds are
such that they do not affect the epidemics dynamics much) to
values of order one, or even slightly higher.

Although these numbers apply obviously only to the spe-
cific model and to the specific set of parameters we have used
as an illustration here, we have no doubt that the qualitative
features observed are very general in nature. Namely, the Nash
equilibrium is already a very significant improvement with
respect to the “business as usual approach”, and if, on the
one hand, an optimized lockdown strategy can further close
the gap toward the societal optimum, sub-optimal lockdown
strategies can actually “degrade” the situation with respect to
the basic Nash equilibrium.

As a final remark, we stress that it should not be assumed,
and we certainly do not imply here, that the Nash equilibrium

is the “natural outcome” of the epidemic process that would be
reached in the absence of any public policy. Indeed, our model
assumes that the agents possess both perfect information and
the technical resources to compute the Nash equilibrium,
which we cannot expect them to have in practice. On the
other hand, gathering this information and developing the
technical tools to compute the Nash equilibrium appears like a
reachable goal for a centralized public agency. If enough trust
is built between the government and the individual agents,
making that information public can be enough to coordinate
the ensemble of agents around the Nash equilibrium. This,
as well as the optimization of lockdown or similar policies
improving on the basic Nash equilibrium requires developing
the necessary conceptual tools. We hope this work provides a
useful step in that direction.
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The design of coherent and efficient policies to address infectious diseases and their consequences requires
modeling not only epidemics dynamics but also individual behaviors, as the latter has a strong influence on the
former. In our work, we provide a theoretical model for this problem, taking into account the social structure
of a population. This model is based on a mean-field-game version of a SIR compartmental model, in which
individuals are grouped by their age class and interact together in different settings. This social heterogeneity
allows us to reproduce realistic situations while remaining usable in practice. In our game theoretical approach,
individuals can choose to limit their contacts by making a trade-off between the risks incurred by infection
and the cost of being confined. The aggregation of all these individual choices and optimizations forms a Nash
equilibrium through a system of coupled equations that we derive and solve numerically. The global cost born by
the population within this scenario is then compared to its societal optimum counterpart (i.e., the cost associated
with the optimal set of strategies from the point of view of the society as a whole), and we investigate how the gap
between these two costs can be partially bridged within a constrained Nash equilibrium for which a governmental
institution would, under specific conditions, impose “partial lockdowns” such as the ones that were imposed
during the COVID-19 pandemic. Finally, we consider the consequences of the finiteness of the population size
Ntot , or of a time T at which an external event (e.g., a vaccine) would end the epidemic, and show that the
variation of these parameters could lead to first-order phase transitions in the choice of optimal strategies. In this
paper, all the strategies considered to mitigate epidemics correspond to nonpharmaceutical interventions, and we
provide here a theoretical framework within which guidelines for public policies depending on the characteristics
of an epidemic and on the cost of restrictions on the society could be assessed.

DOI: 10.1103/PhysRevE.110.064301

I. INTRODUCTION

As our history with COVID-19 has made rather explicit,
modeling as precisely as possible the dynamics of epidemics
is crucial if one wishes to design public policies able to
mitigate effectively their negative impact. One major diffi-
culty encountered toward this goal is that, most often, the
parameters one would naturally choose to build such models
have significant, and sometimes very fast, variations. This is
illustrated, for instance, by the graph plotted in Fig. 1, which
shows the time dependence of Reff, the average number of
people to which the virus is transmitted by a sick individual,
for the COVID-19 pandemic in France.

The figure reveals that there are huge variations of Reff

over time. Some of them can easily be associated with known
events (lockdown, new variant, etc.) but some other remain
unexplained. Indeed, Reff is impacted by many phenomena,
such as natural immunity, vaccination, but also by behavioral
changes that have important consequences on the spreading of
the disease. While data such as immunity or vaccination rate
are taken into account in even the most basic models, this is
not the case for the evolution of social interactions.

*Contact author: louis.bremaud@hotmail.fr

However, these modifications of social behavior, either
under governmental influence or because people change their
individual habits, significantly affect epidemics dynamics.
These individual or collective strategies against the virus
sometimes prevented a health disaster [1] by significantly
decreasing the total number of infected people and the time
at which the peak occurs [1,2]. As a counterpart, they had
significant worldwide negative impact, for the economy [3],
or in terms of health (as medical acts had to be postponed),
time, money, social interactions, psychological pressure [4]
(domestic violence, depression), etc., which in turn could
increase the stress on the sanitary system [2]. In such a con-
text, any policy or any individual decision must consider the
trade-off between the cost of reducing social interaction and
the cost of the epidemic; see, for instance, Refs. [5–7], where
realistic impacts and constraints on the quarantine and iso-
lation strategies have been considered, and Refs. [8,9] where
the individual behavioral response to isolation policy has been
investigated. This individual response is of course greatly
influenced by cultural habits together with social, economic,
religious needs of the population.

In models currently used to describe the propagation of
epidemics, social interactions are often described by constant
parameters, or at best by time-dependent parameters which are
extrinsic, in the sense that their time evolution is not predicted
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FIG. 1. Evolution of Reff in France during the COVID-19 pandemic between June 2020 and June 2023. Reff corresponds to the effective
reproduction number of the virus, that is, the average number of people to which the virus is transmitted by a sick individual. If Reff > 1, then
the epidemic grows, and it decreases if Reff < 1. We see that there are very significant variations of Reff which range from 0.6 to 2. We marked
on the figure some peaks and valleys that have clearly identified origins (data from “Santé Publique France,” by Guillaume Rozier [10].)

by the model itself, but ideally obtained from epidemic data
[1,11]. However, given the amplitude and timescale of these
variations, and in spite of the large amounts of data used,
exploiting these data involves a lot of guesswork and lead to
predictions [12,13] which could be inaccurate, especially on
long timescales.

To overcome these difficulties, one needs to introduce
models for which the extrinsic parameters have no time de-
pendence (at least on the timescale of the epidemic), and
which can therefore be fitted in a reliable way on field data.
However, all time-dependent parameters, and in particular the
ones modeling social interactions, should be intrinsic, in the
sense that their dynamics should be predicted by the model.
This naturally calls for a game theoretical approach (for a
review, see Ref. [14]). Here we will follow an approach known
as mean-field-game theory.

Introduced by Lasry and Lions almost two decades ago
[15–17] and independently by Huang, Malhamé and Caines
[18], mean-field games (MFG) focus on the derivation of
a Nash equilibrium within a population containing a large
number of individuals. Readers may refer to Refs. [19–21]
for a complete mathematical description, and to Refs. [22,23]
for an introduction aimed at physicists. Applications of MFG
include finance [24], economics [25], crowd modeling [26],
and opinion dynamics [27], among many others.

The introduction of MFG models to describe epidemics
dynamics has been first used a decade ago by Reluga et al.
[28] about social distancing. Mean-field games have been then
used to describe vaccination rates, which appears to be an
extrinsic parameter with a dynamics mainly influenced by
individuals choices. Pioneers on this matter are Laguzet et al.
[29] (see also Refs. [29–31]). Recently, a similar approach has
been proposed by Elie et al. in Ref. [32] to study the impact of
individual decisions regarding distancing and isolation, that is,
to study human impact on the dynamics of the epidemic (see
Refs. [33,34] for a mathematical perspective). An extensive

review of recent progresses in this new field can be found in
Ref. [35].

The significant advances made in Ref. [32] establish how
the mean-field-game concepts can be implemented to describe
the dynamics of social distancing in a simple epidemic model.
The goal of this paper is to go one step further toward the im-
plementation of MFG in realistic situation by demonstrating
that enough degree of complexity can be introduced within a
MFG framework to address questions of practical importance
for public institutions, in the context of what is refereed to,
in the literature, as the nonpharmaceutical interventions (NPI)
strategies.

To achieve this goal, this paper is divided in two rather
distinct parts. In the first part, Secs. II and III, we introduce
at a rather general level the class of models we are interested
in, describe the corresponding mathematical framework, and
derive the associated dynamical equations. More specifically,
Sec. II introduces the SIR model with a social structure on
which we base our discussion and Sec. III implements the
corresponding MFG paradigm, that is, presents the individ-
ual optimization scheme and its consequences at the society
scale and formulates the corresponding Nash equilibrium. The
central results of this part are Eqs. (2.11) and (2.12) and
Eqs. (3.14)–(3.16), and its main content is summarized in
the header of Sec. IV, so that readers less interested in the
mathematical formalism can go directly to this section.

We then turn, in Secs. IV and V, to the second part of
the paper, where we illustrate on a particular example the
kind of problematic that can be addressed, and the kind of
questions that can be asked, within our formalism. We stress
that our goal here is not to analyze a specific epidemics in
a specific geographic location, as, on the one hand, the id-
iosyncrasies of any specific real case would obscure our main
message, and since, on the other hand, the specification of the
parameters of our model based on real data is clearly beyond
the scope of this work. Rather, we will consider a particular
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implementation/set of parameters which can be considered as
rather typical (we will argue why). In Sec. IV we will discuss,
on that example, how the Nash equilibrium differ from, on the
one hand, a “business as usual” approach where the agents
do not modify their behavior during the epidemics, and, on
the other hand, a “societal optima” where each individual is
assumed to follow a completely altruistic behavior, focusing
in particular on how these different scenario may affect in a
rather different way the different age classes. We shall also
address in that section the effectiveness of possible lock-
downs, and the risk they represent. In Sec. V, we then broaden
the discussion and consider the various strategies that public
institutions can put in place to mitigate an epidemics through
nonpharmaceutical interventions and show in particular the
existence of a first-order phase transition as some parameters,
such as the duration of the epidemics or the risk due to an in-
fection, are varied. Finally, concluding remarks are assembled
in Sec. VI. Some mathematical and numerical details, as well
as a more general exploration of the parameter space of our
model, are gathered in the Appendix.

II. SOCIAL-STRUCTURE MODELING
OF THE EPIDEMICS DYNAMICS

In this section, we introduce and analyze in detail the
dynamics of the SIR model with social structure which forms
the basis of this work. We start by reviewing briefly the plain-
vanilla SIR model.

A. SIR model

Since the early 20th Century, many models have been
proposed to model epidemic dynamics, one of the simplest
being the susceptible-infected-recovered (SIR) compartment
model [36] and its variations [37]. Recently, this model has
been refined to take into account the structure of social con-
tacts [38,39], as well as spatial or geographic aspects of the
dynamics [40,41].

The SIR model is defined as follows. Individuals can be
in three possible states x = s, i, or r, with s = “susceptible,”
i = “infected,” and r = “recovered.” Starting from some initial
configuration at t = 0, one then assumes that the evolution
of the system is Markovian. Between times t and t + dt ,
individuals can switch from one state to another with a certain
probability, which depends on their contact rate with the rest
of the population and of the status of people they meet. In a
population composed of Ntot individuals, the probability for an
individual k to have contact with another individual l during
the interval [t, t + dt[ is 1

Ntot
χ (t )dt , with χ (t ) a (possibly

time-dependent) given parameter corresponding to the total
contact rate of the individual k. We make the assumption that
all individuals can be met by k with equal probability (in other
words, the population considered from the point of view of k
is homogeneous). If individual l is infected and k susceptible,
then there is a probability ρ that the disease be transmitted
from l to k upon contact. Last, infected individuals have a
probability ξdt to recover from their illness during the interval
[t, t + dt[, after which they are immune to the disease.

Noting S(t ), I (t ), and R(t ), respectively, the relative pro-
portion of susceptible, infected, and recovered individuals

at time t [thus S(t ) + I (t ) + R(t ) = 1], the evolution of the
epidemic is governed by the system of equations [36]

Ṡ = −ρχ (t )S(t )I (t ),

İ = ρχ (t )S(t )I (t ) − ξ I (t ), (2.1)

Ṙ = ξ I (t ).

This system of equations is almost a century old [36]; we
derive it for completeness in Appendix A to prepare for the
slightly more involved situation that we are going to consider
in this paper. Let us highlight here the two main underlying
hypotheses of the derivation of Eq. (2.1): (i) the total contact
rate of individual k, χ (t ), is independent on the individual
k; and (ii) Ntot is large enough to consider the states of two
randomly chosen individuals k and l as independent. We shall
keep both these hypotheses to derive dynamical equations for
our model introduced in Sec. II B; while hypothesis (ii) is
rather harmless in practice where Ntot is large, hypothesis (i) is
an important assumption which can be discussed in practice.

Figure 2 summarizes the process that drives an individual
from state s to i to r. The system of equations (2.1) only
involves average quantities S, I , and R, which are determined
as solutions of the system. Furthermore, it is characterized by
two extrinsic parameters, the recovery rate ξ and the product
of the contact rate χ (t ) by the probability ρ of transmitting
the disease, which must be obtained from observation data
[13]. For virus epidemics like COVID-19, with a very fast
dynamics, this is a challenging task. Major efforts have been
invested by the epidemiologist community to extract these pa-
rameters, or their counterpart in more complex models, from
the actual data observed on the field. While ξ is mainly fixed
by biological considerations, and considered constant in time
in the present model, the contact rate χ (t ), however, depends
a lot on the agent’s behavior, that is, how social they are (or
are allowed to be); that behavior may vary strongly with time,
and in a way that may depend on the dynamics of the epidemic
itself. A consequence of this retroaction is that it is essentially
impossible to fit the time dependence of χ (t ) on past data. In
models used to advise public policies, this time dependence
is thus either simply ignored, or involves a lot of guesswork
[12], leading to predictions that can be trusted only for a rather
short amount of time [13] (see, nevertheless, Refs. [1,42]).

What we discussed above is the simplest version of the SIR
model. A number of variations can be found in the literature,
that aim to gain in precision. The most common ones are the
SIRD model (D for deceased [43]), SIRV (V for vaccination
[44]), MSIR (M for maternally derived immunity [37]), SIRC
(C for carrier but asymptomatic [45]), or SEIR models (E for
exposed class [46]), to name a few—see Ref. [37] for a more
detailed literature on the subject of compartmental models.
However, there are two essential limitations of these models:
they assume that the population is entirely uniform, and they
take parameters such as the contact rates as extrinsic.

Let us expand slightly on these two issues. The first limita-
tion is that these models assume a homogeneous population:
all individuals are expected to act in the same way, have the
same contact rate with all other individuals (in a given com-
partment), and behave similarly with respect to the epidemic.
Of course, this is not true, and social heterogeneity has an
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FIG. 2. Illustration of the Markov process for the classic SIR model with the transition rates to move from one state to another between
time t and t + dt . An individual susceptible at t has a probability ρχ (t )I (t )dt to become infected. If this individual is already infected at t ,
then she will have a constant probability ξdt to recover from the disease.

important impact on epidemics modeling. As an example,
epidemics inside schools have a different and faster dynamics
than can be expected from the SIR model, because children
have a lot of contacts with each other and they live together
during a long part of the day. To address this issue, SIR models
with a structure of social contacts were proposed in Refs. [38]
and [39] to get a more detailed description of the society at
a mesoscopic scale. We will address that limitation by intro-
ducing a refined model in Sec. II B. The second limitation of
SIR models, already discussed in the introduction, is that the
contact rates are extrinsic parameters, fixed at the beginning
of the dynamical process. A more realistic approach is to
consider that people change their behavior as the epidemic
unfolds, so that contact rates should be updated according
to the dynamics of the epidemic. We shall circumvent this
issue by taking a MFG approach to our model with a social
structure in Sec. III, where contact rates will become intrinsic
parameters, co-evolving with the epidemic.

B. SIR model with social structure

1. Social structure and contact rates

We now introduce a SIR model with a social structure, in
the spirit of Ref. [38]. In this model, rather than taking society
as monolithic, we consider a refined description of social
contacts. Namely, we introduce three age classes: young, adult
and retired, and we assume that individuals have contacts with
one another in four different settings: schools, households,
community and workplaces; of course a larger number of
age classes and settings could easily be implemented. The

structure of the population is illustrated in Fig. 3. We assume
the total size of the population, Ntot, to be large.

In our model, following Ref. [38], interactions between
individuals depend on two factors: the setting γ ∈ {school,
workplace, community, household} in which they meet, and
their age class α ∈ {young, adult, retired}. We denote by N tot

α

the total number of individuals in class α. We first consider
the simple case of a single setting where interactions only
depend on age class, which will be labeled by the Greek
letters α or β; extension to the case of multiple settings is then
straightforward.

For two given age classes α and β we define Wαβdt as
the probability for a pair of individuals a ∈ α, b ∈ β drawn at
random to be in contact during a time interval dt . This means
that among all possible N tot

α N tot
β pairs, only WαβN tot

α N tot
β dt

encounters occur during dt . This is illustrated by the graph
of Fig. 4; it is similar to Erdös-Renyi graphs, where each
potential edge is realized with some probability. In the present
case, all potential edges between vertices from one class to the
other are realized with some probability that depends on the
two classes they connect. A given individual a ∈ α encounters
on average a number WαβN tot

β dt of individuals of class β

during dt .
A natural assumption, in the spirit of compartmental mod-

els, is that behavior of individuals toward different age classes
is differentiated, but that a given age class is considered ho-
mogeneous from the point of view of an individual. That
is, an individual a ∈ α can decide whether she chooses to
encounter members of class β or not, but does not decide
which individuals she may encounter in that class. In other
words, any individual a ∈ α willing to meet someone from

FIG. 3. Graphical illustration of the social structure we implemented. A reference individual (a, b, and c for each age class) will have
(symmetric) contacts in each setting, with different type of individuals (more adults at workplaces, more children at school, etc.). The precise
structure of interactions is detailed in the following section.
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FIG. 4. Graphical illustration of the interactions in our model.
Two age classes α and β are represented, here with N tot

α = 3 in-
dividuals of age class α and N tot

β = 4 of class β. Each vertex is
either “active” (in red) if the corresponding individual is willing
to have contact with the other class, or “inactive” (in blue). The
N tot

α N tot
β possible contacts are represented in dashed black lines, and

effective contacts between pairs of active individuals are red solid
lines. Here we have wαβN tot

α = 1 active individual of age class α and
wβαN tot

β = 2 active individuals of age class β, which gives wαβ = 1
3

and wβα = 1
2 . The probability for a randomly chosen pair to be in

contact is Wαβ = wαβwβα = 1
6 . The average number of contacts with

β for an individual a ∈ α is WαβN tot
β = 2

3 . Similarly, the average
number of contacts with α for an individual b ∈ β is WβαN tot

α = 1
2 .

The total number of contacts between the two classes, corresponding
to the number of red links in the graph, is given by N tot

β N tot
α Wβα = 2.

class β will possibly meet all individuals from class β who
themselves are willing to meet individuals from class α. At
each time, an individual a ∈ α can decide whether she is
open or close to interactions with class β. Let us denote by
wαβ ∈ [0, 1] the fraction of individuals a ∈ α open to meet
people from class β. The willingness wαβ thus indicates the
probability of an individual a taken at random in α to be
open to contacts with class β. There are wαβN tot

α individu-
als a ∈ α willing to meet people with class β, and wβαN tot

β

individuals b ∈ β willing to meet people from class α. A
contact becomes effective (i.e., occurs with probability dt in
the interval [t, t + dt[) only if both individuals are willing,
and therefore among all N tot

α N tot
β possible links between α

and β, only wαβN tot
α × wβαN tot

β dt are realized during dt . As
mentioned above, the number of pairs effectively realized can
also be expressed as WαβN tot

α N tot
β dt , hence Wαβ = wαβwβα

(and Wαβ is a symmetric array, as it should be).
In “normal times,” that is in the absence of epidemic

threats, the contact willingness of an individual of class α with
class β is a constant w

(0)
αβ . During an epidemics, however, the

agent will adapt her behavior to mitigate the risk of infection,
and we assume the contact willingness to take the form

wαβ (t ) = nα (t )w(0)
αβ , (2.2)

that is, her initial willingness is modulated by a time-
dependent coefficient nα (t ) which measures the effort made
by agents in the class α to limit their contacts with others. For
simplicity we suppose that this effort is independent of β, but
a β dependence can easily be implemented to this model and
only slightly changes the equations. We additionally assume
that nα (t ) ∈ [nα,min, 1], with nα,min the maximum effort that
can be expected from an agent in class α; the upper bound

TABLE I. Biological parameters and parameters defining the
structure of the society. The number of parameters implied by this list
is significant, since in particular the array Wγ (0)

αβ has 3×3×4 = 36
entries. However, the methodology to get these parameters in any
specific implementation is relatively well established (see, e.g., dis-
cussion in Appendix B).

Parameter Definition

ρ Probability of transmission per contact
μ Proportion of asymptomatic individuals in

the population
ξ Recovery rate
N tot

α Number of individuals of age class α

Wγ (0)
αβ = w

γ (0)
αβ w

γ (0)
βα Willingness of contacts between two age

classes α and β (symmetric in α ↔ β)

1 corresponds to the natural assumption that the epidemic
situation can only reduce the initial willingness.

2. Asymptomatic individuals

Interactions between individuals may vary with time, but
also differ between different age classes and in different
settings. As a result, the dynamics of the epidemic will be
different in each subcategory. This turns out to be particularly
relevant for susceptible agents, and we will go back to this
in more details in the next subsection. But the issue could be
raised also for infected individuals whose behavior may range
from a completely egoistic one, in which they stop limiting
their contacts since they are not worried any more about being
infected, to being completely altruistic and isolate themselves
from the rest of population. To make things more concrete,
we assume this latter option, but also assume that a fraction μ

of the population is asymptomatic (they do not know if they
are infected or not) and hence behave as susceptible, while the
other fraction 1 − μ is symptomatic and stay home to protect
others. This additional status (symptomatic or asymptomatic)
is random in the population and is fixed at the beginning
of the epidemic. Therefore, the epidemic is only spread by
individuals who are both asymptomatic and infected. They
represent a fraction μI (t ) of the population. We summarize
our model in Fig. 5.

The parameters defining our SIR model with social struc-
ture can thus be divided in two groups. On the one hand,
we have three “biological” parameters: the probability ρ of
transmission of the virus per effective contact between a
susceptible and an infected individual, the fraction μ of the
infected population which is asymptomatic, and the recovery
rate ξ . On the other hand, the social structure is defined by the
number of individuals N tot

α in the age classe α and by the coef-
ficients Wγ (0)

αβ ≡ w
γ (0)
αβ w

γ (0)
βα determining the structure of our

society, i.e., the contact rates in the absence of the epidemics.
Table I summarizes this information.

For a given epidemic in a given geographic location,
determining the parameters of Table I follows a priori a well-
defined, though not necessarily straightforward, path, both for
the “biologic parameters” (ρ,μ, ξ ) typically encountered in
traditional SIR-like models [47], but also for the ones associ-
ated with the social structure [39]. Much less straightforward
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FIG. 5. Graphical illustration of the particular SIR model we use. An individual infected at time t has a probability μ to be asymptomatic
and 1 − μ to be symptomatic. The force of infection λα is derived in Sec. II B 3 and drives the probability of infection λαdt . Then, all individuals
have a constant recovery rate ξ to recover from the disease.

is the determination of the time dependence of the “effort
parameters” nα (t ) introduced in Eq. (2.2). For the rest of
Sec. II B, we assume these nα (t ) known, and we will discuss
how their dynamics can be analyzed in Sec. III.

3. Time evolution equations

We now derive the time evolution equations of the epi-
demic quantities for this model. The fraction of susceptible
(respectively, infected, recovered) individuals in class α is
Sα (respectively, Iα, Rα), with Sα + Iα + Rα = 1. To establish
the mean-field equations, we single out a reference individual
a ∈ α who is susceptible at time t and has status xa(t ) = s, i or
r at subsequent times. We furthermore here lift the hypothesis
that all individuals of a given age class behave in exactly
the same way, and we assume that the reference individual
has her own time-dependent strategy na(t ) and willingness
waβ (t ) = na(t )w(0)

αβ , with, however, the understanding that nα

is the average over susceptible individuals of na, which we
express as

nα = 1

SαNtot

∑
a

naδxa,s. (2.3)

Let b ∈ β be an individual of class β, whose willing-
ness to meet class α is wbα (t ) = nb(t )w(0)

βα . For a to be
contaminated by b during [t, t + dt[, b must be infected
and asymptomatic, and a and b must meet; contamination
then occurs with probability ρ. Distinguishing within the i =
“infected” status between ia = “asymptomatic infected” and
is = “symptomatic infected”, the probability that a become
infected by b during [t, t + dt[ is therefore

Pab(t )dt = ρna(t )nb(t )W (0)
αβ δxb(t ),ia dt, (2.4)

where we used the fact that w
(0)
αβw

(0)
βα = W (0)

αβ (see Table I).
Taking the sum over all b ∈ β and all age classes β we get the
total probability that an individual a susceptible at time t is
infected between t and t + dt

Pa(t )dt := P[xa(t + dt ) = i | xa(t ) = s] =
∑

β

∑
b∈β

Pab(t )dt,

(2.5)

with P[e] the probability of the event e.
We then follow the same reasoning as in the SIR case

[see Eq. (A3)]. Averaging over all individuals a ∈ α and over
realizations of the Markov process, and summing over age

classes β, we obtain

dSα (t )

dt
= − 1

N tot
α

N tot
α∑

a=1

δxa(t ),sPa(t ) (2.6)

= −ρ
∑

β

W (0)
αβ

⎛⎝ 1

N tot
α

N tot
α∑

a=1

na(t )δxa (t ),s

⎞⎠
×

⎛⎝ N tot
β∑

b=1

nb(t )μδxb(t ),i

⎞⎠ (2.7)

= −ρ
∑

β

W (0)
αβ

(Sαnα )
(
μN tot

β Iβnβ

)
. (2.8)

To get this last expression, Eq. (2.3) was used, together with
the assumption that asymptomatic infected individuals re-
sponsible for contamination behave on average in the same
way as susceptible individuals, so that we have also for all age
classes

nβ (t ) = 1

μIβN tot
β

∑
b∈β

nb(t )δxb(t ),ia . (2.9)

Equation (2.8) can then be written as

dSα

dt
= −λα (t )Sα (t ), (2.10)

where, performing the straightforward generalization to in-
clude different settings γ ,

λα (t ) ≡ μρ

ncl∑
β=1

N tot
β

nset∑
γ=1

nγ
α (t )nγ

β (t )Wγ (0)
αβ Iβ (t ), (2.11)

with ncl and nset, respectively, the number of classes and set-
tings in the social structure. Equation (2.10) is the analog of
the SIR Eq. (A5) but in the case of a population with social
structure. The two other equations analogous to the system
(2.1) are derived in the same way. The system of coupled
differential equations for the SIR model with social structure
finally reads

Ṡα = −λα (t )Sα (t ),

İα = λα (t )Sα (t ) − ξ Iα (t ), (2.12)

Ṙα = ξ Iα (t ).
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These equations are the main equations of our SIR model with
a social structure. Once the “interaction strategies” nγ

α (.) are
fixed for each age class α and each setting γ , one can solve
Eq. (2.12) and obtain the dynamic of the relative proportion
of susceptible, infected and recovered in each class. However,
for rational agents interaction strategies should depend on the
evolution of the epidemic. To address this interplay, we need
the machinery of mean-field games, which we now introduce.

III. MEAN-FIELD-GAME APPROACH:
INDIVIDUAL OPTIMIZATION

To address the dynamics of the willingness w
γ

αβ (t ) requires
a game theoretical approach, which implies a control param-
eter that the agents can choose a will, and a cost function
that they try to optimize. In our model, the control parameter
defining the “strategy” of a given agent a is quite naturally the
function nγ

a (t ), which reflects her desire to have contact with
someone in each setting γ .

Turning now to the cost function, consider a fixed individ-
ual a ∈ α. If a has no symptoms at time t , then she estimates
the cost she will incur because of the the epidemic as the sum
of two terms: one due to the cost of infection if it happens, and
one associated with the cost of efforts to avoid the infection.
If a becomes infected at some time τ > t , then the total cost
paid between t and the end of the optimization process at T is

Ca
(
nγ

a (·), {nγ

β (.)
}
, t, τ

)
≡ Iα (I (τ ))1τ<T +

∫ min(τ,T )

t
fα

(
nγ

a (t ′)
)
dt ′. (3.1)

This cost is an explicit function of τ the time of infec-
tion, and of the strategies nγ

a (·) of a in each setting and at
each time between t and min(τ, T ). It also depends implic-
itly, through the (average) proportion of infected at time τ ,
I (τ ) ≡ 1

Ntot

∑
α N tot

α Iα (τ ), on all the strategies {nγ

β (.)} for all
age classes β (including α) and settings γ in the same time
interval. The first term in Eq. (3.1) is the total cost of infection
Iα (I (τ )) paid by the agent once she is infected. This cost can
include financial cost, as the loss of income incurred by not
working, the costs of medical treatment or hospitalization, but
also moral and psychological costs associated with the pain
of going through the illness, permanent health damage, or
death. We assume that this cost of infection depends on the
age class and on the (average) proportion I (τ ) of infected,
reflecting the pressure on the sanitary system. In the second
term, fα (nγ

a (s)) measures the cost (both psychological and
financial) associated with the limitation of social contacts
(incurred, for instance, by the inability of doing business);
this cost can be different according to the age class of the
individual, and depends on the behavior of the individual only.
At each time s between t and τ (the time of infection) or
T (if the agent is never infected) the agent will pay a cost
fα (nγ

a (s))ds; for s > τ we have fα = 0, as the individual is
either infected (in which case the social cost is included in the
term Iα) or recovered (as there is no possible new infection in
our model).

We now derive the optimization made by the agents, fol-
lowing in the spirit the work of Turinici et al. in Ref. [32].

A. Calculation of the expected cost Ca

We assume here μ � 1. As shown in Appendix C, con-
sidering a finite μ makes notations slightly heavier without
changing qualitatively the dynamics of the epidemics. There-
fore in the rest of the paper we shall restrict ourselves to the
regime μ � 1.

In that case, almost all infected individuals are symp-
tomatic, and thus individuals with no symptoms can estimate
their future cost neglecting the probability that they might be
infected. Note however that contamination still occurs via the
few infected asymptomatic individuals.

Consider a fixed individual a ∈ α, who incurs the cost
Eq. (3.1) as a function of the time of infection τ and of
her strategy (for all setups γ and all times t) nγ

α (t ). From
the perspective of agent a at time t , and since the epidemic
propagation is a stochastic process, the time of infection τ is
a random variable that changes from one realization of the
epidemic to the other. We denote

P̃a(τ )dτ = P[xa(τ + dτ ) = i & xa(τ ) = s] (3.2)

as the probability that the individual a is infected during the
time interval [τ, τ + dτ [. Note this probability is a functional
of nγ

a (t ′), t ′ ∈ [t, τ ], and of the strategies {nγ

β (t ′)}, t ′ ∈ [t, τ ]
since these latter will determine the Iβ (τ ), and thus the prob-
ability that an individual met at time τ is or not infected. P̃a is
also a function of t since the agent has acquired information
about whether or not she has been infected in the interval
[0, t]. The cost in Eq. (3.1) is thus also a stochastic variable,
and at each time t , a rational agent should choose her future
strategies in each setting nγ

a (t ′), t ′ > t , as the ones that mini-
mize the average value of Ca over random realizations,

Ca
(
nγ

a (·), {nγ

β (.)
}
, t

) ≡
∫ ∞

t
dτ P̃a(τ ) Ca

(
nγ

a (·), {nγ

β (.)
}
, t, τ

)
,

(3.3)

where formally we understand τ > T as an absence of in-
fection (so that we can normalize

∫ ∞
t P̃a(τ )dτ = 1, and

Ca(nγ
a (·), {nγ

β (.)}, t, τ > T ) = ∫ T
t fα (nγ

a (t ′))dt ′).
We now need to evaluate the probability P̃a(τ ) for an agent

a who is assumed to follow a specific strategy nγ
a (·). Let

φa(τ ) be the corresponding cumulative probability, that is,
the probability for a to be infected before time τ (the prob-
ability that a is susceptible at some arbitrary time t is is thus
P[xa(t ) = sα] = 1 − φa(t )). The probability that the infection
time for a is between τ and τ + dτ is

φ′
a(τ )dτ = P̃a(τ )dτ = P[xa(τ + dτ ) = iα|xa(τ ) = sα]

× P[xa(τ ) = sα], (3.4)

where the first term of the right-hand side is obtained from
Eqs. (2.5) and (2.9), giving

P[xa(τ + dτ ) = iα | xa(τ ) = sα] = λa(τ )dτ, (3.5)

with

λa(t ) ≡ μρ

ncl∑
β=1

N tot
β

nset∑
γ=1

nγ
a (t )nγ

β (t )Wγ (0)
αβ Iβ (t ) (3.6)

as the force of infection seen by individual a. This individual
force of infection differs from the collective one Eq. (2.11)
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only by the replacement of the collective behavior nγ
α by

the individual strategy nγ
a (for all settings γ ). Equation (3.4)

thus leads to φ′
a(τ ) = λa(τ )(1 − φa(τ )), which together with

φa(t ) = 0 gives

φa(τ ) = 1 − exp

(
−

∫ τ

t
λa(s)ds

)
. (3.7)

The average cost (3.3) then reads

Ca
(
nγ

a (·), {nγ

β (.)
}
, t

) =
∫ T

t
dτ P̃a(τ )Iα (I (τ ))

+
∫ ∞

t
dτ P̃a(τ )

∫ min(τ,T )

t
ds fα

(
nγ

a (s)
)

=
∫ T

t
dt ′ P̃a(t ′)Iα (I (t ′))

+
∫ T

t
dt ′ fα

(
nγ

a (t ′)
) ∫ ∞

t ′
dτ P̃a(τ ).

(3.8)

We then use the fact that φ′
a(τ ) = P̃a(τ ) = λa(τ )(1 − φa(τ ))

to get

Ca
(
nγ

a (·), {nγ

β (.)
}
, t

)
=

∫ T

t

[
λa(s) Iα (I (s)) + fα

(
nγ

a (s)
)]

(1 − φa(s))ds. (3.9)

In the following, we will often use Ca(nγ
a , t ) for simplicity, but

the cost still depends implicitly on all the nγ

β (·).

B. Hamilton-Jacobi-Bellman equations

The expected cost at time t for agent a is a function of her
own strategy na and of the epidemic functions S(.), I (.), R(.).
The next step is to solve the optimization problem, that is, find
the optimal strategy n∗

a for a given epidemic S(.), I (.), R(.).
Following a standard approach in this context [20], we intro-
duce the value function

Ua(t ) =
{

min
nγ

a (·)
Ca

(
nγ

a (·), t
)
, a susceptible at t,

0, a infected at t .
(3.10)

This corresponds to the minimal cost that an agent has to pay
between t and the end of the game (averaged over random
realizations of the game, and assuming that all other players
follow some given strategies nγ

β ). Note that in Eq. (3.1) we
assumed that the total cost of infection is paid right after
infection, so that individuals do not incur any additional cost
at later times. The Markov process of the game is described
by the following equations, illustrated in Fig. 5:

P̃a(xa(t + dt ) = iα|xa(t ) = sα ) = λa(t )dt,

P̃a(xa(t + dt ) = sα|xa(t ) = sα ) = 1 − λa(t )dt, (3.11)

P̃a(xa(t + dt ) = rα|xa(t ) = iα ) = ξ dt .

We use a standard Bellman argument to find the evolution of
Ua: the lowest possible cost at time t is given by adding two
quantities: the lowest possible cost at time t + dt , and the cost
incurred in the interval [t, t + dt[ associated with the optimal

strategy at t . Assuming a status xa(t ) = sα at time t , this can
be expressed as

Ua(t ) = min
nγ

a (t )
Exa (t+dt )[Ua(t + dt ) + ca(t )], (3.12)

with ca(t ) the cost paid in the interval [t, t + dt[. At time t +
dt , the agent either is still susceptible, or becomes infected. If
xa(t + dt ) = sα , then the only cost at t is ca(t ) = fα (nγ

a (t ))dt ,
whereas if xa(t + dt ) = iα then a has to bear the costs due to
infection, and thus ca(t ) = Iα (I (t )). Following Eq. (3.10), if a
is susceptible at t + dt , then the quantity Ua(t + dt ) involves
the average cost Ca(nγ

a (·), t + dt ), which is an average over
all random realizations of the epidemic at times t ′ > t + dt ; if
a is infected at t + dt , then Ua(t + dt ) = 0. The expectation
value in Eq. (3.12) is therefore taken over random realizations
of the status xa(t + dt ).

Writing explicitly the expectation in Eq. (3.12) and using
the probabilities given by Eq. (3.11) we get

Ua(t ) = min
nγ

a (t )

[
Iα (I (t ))λa(t )dt + (1 − λa(t )dt )

(
Ua(t + dt )

+ fα
(
nγ

a (t )
)
dt

)]
. (3.13)

At first order in dt , this gives the Hamilton-Jacobi-Bellman
(HJB) equation of our mean-field game

−dUa(t )

dt
= min

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

,

(3.14)

and the optimal strategy nγ ∗
α (t ) at time t is given by

nγ ∗
a (t ) = argmin

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

,

(3.15)

where the optimization is now performed for a given, fixed,
time. By taking a particular form for fα , one can compute
nγ ∗

a (t ) by setting to zero the derivative of the right-hand side
with respect to n. Thus, for a given epidemic, we can obtain
the optimal individual behavior backward in time by solving
HJB Eq. (3.14). More details will be given in Sec. IV D.

C. Nash equilibrium

The outcome of Secs. II B and III B can now be summa-
rized as follows. Assuming the global (or average) strategies
nγ

α (·) known, the time evolution of the epidemics variables
Sα (t ), Iα (t ), Rα (t ) are derived from Eqs. (2.11) and (2.12).
From the knowledge of these epidemic variables, an individ-
uals a of age class α can perform an individual optimization
leading to the optimal strategy nγ ∗

a (t ) given by Eq. (3.15).
A (symmetric) Nash equilibrium corresponds to the situa-

tion in which this individual optimization actually coincides
with the global strategy of class α, which leads to the self-
consistent equation

nγ ∗
a (·) = nγ

α (·) (3.16)

for all age classes α and all settings γ . Under this self-
consistent condition an agent can indeed assume that the other
individuals will follow the strategies nγ

α (·) as this will indeed
correspond for them to an individual optimum, as it does for
her. “Solving” our mean-field game will therefore amount to

064301-8



MEAN-FIELD-GAME APPROACH TO NONPHARMACEUTICAL … PHYSICAL REVIEW E 110, 064301 (2024)

solve the (forward) rate equations Eqs. (2.11) and (2.12) to-
gether with the (backward) HJB equation Eq. (3.14) and with
the self-consistent (Nash equilibrium) condition Eq. (3.16).

IV. EPIDEMICS DYNAMICS

In Secs. II and III we described the formalism of our MFG
theory of SIR-models with social structure; in the present sec-
tion we implement the corresponding equations, discuss the
resulting epidemics dynamics and analyze the different types
of optimal strategies. We shall choose a particular setting to
best illustrate what kind of problems can be addressed and
what kind of questions can be asked within this framework.
Once again, we stress that we do not aim at describing a
specific epidemic breakout in a given geographic area with
parameters extracted from real data: this would clearly be
beyond the reach of this work. Our choice in the present
section is to consider a rather “typical” configuration and
discuss the kind of information that could be extracted from
our model, and how it could be used by public institutions;
a more thorough exploration of the model’s parameter space
will be performed in Appendix G. We start by giving a brief
summary of our MFG formalism in Sec. IV A. In Sec. IV B we
introduce the specific form of the cost function and the choice
of parameters that we will discuss, and in Sec. IV C we in-
troduce different scenarios, corresponding to different choices
or constraints on the contact willingness, and summarize the
results obtained from solving the equations. These different
scenarios are defined in more detail in the subsequent sub-
sections: unconstrained Nash equilibrium in Sec. IV D, Nash
equilibrium with constraints (e.g., partial lockdown imposed
by a centralized authority) in Sec. IV E, societal optimum
(where a global planner controls perfectly the behavior of
each agent to minimize the total costs borne by the society)
in Sec. IV F. Finally, in Sec. IV G 1 we compare the different
scenarios.

A. Summary of Secs. II and III

Before we dive into a detailed analysis of the kind of
behavior that may emerge within our MFG model, let us
summarize briefly the content of the two previous sec-
tions. We have first introduced in Sec. II B a SIR model
with social structure in which we distinguish three age
classes α ∈ {young, adult, retired} and different settings γ ∈
{schools, household, communities, workplace}. In addition to
the time-dependent variables nγ

α (t ) ∈ [nγ

min, 1] corresponding
to the effort made by individuals in the setting γ to avoid
infection, the model is characterized by three “biological pa-
rameters” (the probability ρ of transmission of the disease
per contact, the proportion μ of asymptotic individuals in
the infected population, and the recover rate ξ ), and a set of
“social-structure parameters” (the number of individuals N tot

α

in each age class, and the array Wγ (0)
αβ specifying the contact

rate of the agents in the absence of epidemics); cf Table I.
One remark is in order here. The N tot

α and (the inverse
of) Wγ (0)

αβ are extensive quantities: as Ntot → ∞, so does the

N tot
α , and the Wγ (0)

αβ have to go to zero to maintain a finite
rate of infection for a given individual. While the formal
developments of Secs. II and III were better performed using

theses variables, we shall from now on use related intensive
parameters, which are well-defined in the limit Ntot → ∞
and easier to relate to observable data. We thus introduce
Nα = N tot

α /Ntot, the proportion of agents in age class α, and
the array

Mγ (0)
αβ := Wγ (0)

αβ N tot
β , (4.1)

which corresponds to the average number of contacts with β

for an individual a ∈ α. The requirement that Wγ (0)
αβ is a sym-

metric matrix implies the constraint NαMγ (0)
αβ = NβMγ (0)

βα ,
for all age class pairs (α, β ) and all settings γ .

In terms of these parameters, the dynamics of the epidemic
variables given by Eqs. (2.11) and (2.12) takes the form

Ṡα = −λα (t )Sα (t ),

İα = λα (t )Sα (t ) − ξ Iα (t ), (4.2)

Ṙα = ξ Iα (t ).

λα (t ) ≡ μρ

ncl∑
β=1

nset∑
γ=1

nγ
α (t )nγ

β (t )Mγ (0)
αβ Iβ (t ). (4.3)

Within our mean-field-game approach, the dynamics of
the variables nγ

α (·) is determined by an optimization of the
intertemporal cost Eq. (3.1) which is characterized, for each
age class α, by two functions. The first one Iα (I ) measures the
damage caused by infection, and has a dependence in the total
proportion of infected individual I = ∑

α NαIα to include the
consequence of the saturation of the sanitary systems once
the epidemics goes beyond a certain level. The second one
fα (nγ

a ) measure the instantaneous cost for an individual a of
class α due to the limitation of her contact, and depends one
the “effort” nγ

a made in each setting γ . Using Bellman linear
programming, the optimal effort is given by Eq. (3.15),

nγ ∗
a (t ) = argmin

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

,

(4.4)

where the individual force of infection λa Eq. (3.6) is the
analog of the global one λα Eq. (4.3) with the substitution
nγ

α ↔ nγ
a , and in which appears the value function Ua(t ),

Eq. (3.10) determined by the HJB equation (3.14),

−dUa(t )

dt
= min

nγ
a (t )

[
λa(t )(Iα (I (t )) − Ua(t )) + fα

(
nγ

a (t )
)]

.

(4.5)

Finally, homogeneity of the population among each class
leads to the additional requirement that one reaches a Nash
equilibrium, i.e., that the optimal strategy of an individual a
of class α corresponds to the global choice made on average
by the class α lead to the self-consistent condition Eq. (3.16),

nγ ∗
a (·) = nγ

α (·). (4.6)

Equations (4.2)–(4.6) form the system of equations that need
to solve to find the Nash equilibrium of our MFG problem.

B. Cost function and choice of the parameters

We turn now to the specific choice of parameters we will
use in most of the following to illustrate the properties and
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TABLE II. “Social-structure” and “biological” parameters used in our simulations. The matrix entries Mγ (0)
αβ correspond to the average

frequency of contacts (per week) between an individual of age class α and someone of age class β in the setting γ . Nα = N tot
α /Ntot is the

proportion of the population in each age class. Iα (0) are the initial proportion of infected for each age class [we always assume Rα (0) = 0].
ξ is the recovery rate (per week), ρ the transmission rate per contact, and μ corresponds to the proportion of asymptomatic individuals in
the population. Finally, α = 1, 2, 3 for age class of young, adults, and retired individuals, respectively. The way these parameters have been
chosen is discussed in detail in Appendix B.

WS WW WC WH⎛⎝100 0 0
0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 75 0
0 0 0

⎞⎠ ⎛⎝12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

⎞⎠ ⎛⎝ 15 25 10
12.5 32.5 5
10 10 30

⎞⎠
Nα := N tot

α /Ntot Iα (0) (ξ, ρ, μ)

(0.25, 0.5, 0.25) (0.01, 0.01, 0.01) (1.2, 0.1, 0.2)

operational properties of our MFG model. In practice we
need essentially to make a choice, on the one hand, for the
“social-structure” and “biological” parameters of Table I (or
their rescaled version introduced in Sec. IV A), and, on the
other hand, for the functions Iα (I ) and the fα (nγ

a ) of the cost
(3.1), and the associated “cost-function” parameters.

For the former set of parameters, there is a fairly large
scientific literature devoted to their evaluation from field data
in specific, real-world situations. However, as noted above,
our goal is not to model a particular instance of epidemic
dynamics, but rather to illustrate the kinds of questions that
can be addressed and the kinds of behaviors that can typically
be obtained within our formalism. We have therefore chosen
parameter values that we consider “generic,” relying on a
number of studies [1,38,47–50] that analyze real epidemiolog-
ical datasets. This approach makes it possible to evaluate the
performance of the model under conditions that closely reflect
practical scenarios, and allows us to expect that our model
will produce comparable results in realistic applications. The
exact way the “social-structure” and “biological” parameters
were chosen is detailed in Appendix B, and their values is
summarized in Table II.

Turning now to the cost (3.1), we take, for the cost of
infection,

Iα (I (t )) = rI,α exp

[
qsat

I (t ) − Isat

Isat

]
. (4.7)

This function includes the effect of a possible saturation of
health services, and we assume an exponential increase of
the strain on human and material resources as the saturation
threshold Isat is approached, with a slope qsat corresponding to
the impact of saturation on the cost. As I � Isat, or qsat → 0,
Iα approaches an (age-class-dependent) constant rI,α which
implements the possibility that retired individual might be
put significantly more at risk by the infection that younger
ones. In practice we shall write these constants as rI,α = rIκα ,
and keep the age-class-dependent part κα fixed for all our
simulations, while in some instance exploring the changes due
to the variations of rI.

Turning now to fα (nγ
a ), the cost of modifying social con-

tacts, we choose to follow the same form as Turinici et al.
in Ref. [32], namely,

fα
(
nγ

a (t )
) =

∑
γ

(
nγ

a (t )−mγ − 1
)
, (4.8)

where mγ models the degree of “attachment” to the setting
γ : for example it is usually easier to reduce contacts at work
than inside families. Moreover, f is decreasing with a positive
second derivative, meaning that the more one decreases once
social contacts, the higher the price to pay.

The set of values chosen in this section for the parameters
characterizing the functions Iα (I ) and fα (nγ

a ) is summarized
in Table III. Finally, the parameter T denotes the time at which
agents end their optimization process. This corresponds, for
instance, to the time where herd immunity is reached, or it can
depend on other circumstances such as the expected produc-
tion of a vaccine, the seasonality of the virus, among others.
In Sec. IV C, our simulations are performed on a duration of
T = 40 weeks to focus on scenarios where collective immu-
nity is reached and to avoid short end-time effects. Scenarios
for which, due to short end-time, collective immunity is not
reached at the end of the optimization period will be studied
more specifically in Sec. V B. Since the main wave of the
epidemic appears in the first 10 weeks, we often present the
results on a duration of 15 weeks.

C. Epidemics dynamics

Solving the MFG equations of Sec. IV A for the set of
parameters defined in Tables II and III yields the dynam-
ics of S, I , and R. Technical detail about the numerical

TABLE III. “Cost-function” parameters associated with the
function Eq. (3.1) chosen for our simulations. The cost of infection
Iα Eq. (4.7) is characterized, on the one hand, by its value under
“normal circumstances” rI,α = rIκα , where we distinguish a common
coefficient rI that will take different values depending on the simu-
lation, and an age-dependent part κα , which we will keep fixed at
the value given in this table. On the other hand, Isat characterizes the
fraction of infected individuals at which the sanitary system starts to
malfunction, and qsat the speed at which this malfunction sets in. The
cost of reducing once social contact is then parameterized by nγ

min,
the minimum contact willingness in each setting γ , and mγ , which
weights the cost of contact reduction in each setting. Id, Il are the
thresholds for the best lockdown and s its intensity level.

(Isat, qsat ) κα mγ nγ

min (Id, Il, s)

(0.1, 0.1) (1,10,100) (2,2,1,3)
(

1
3 , 1

5 , 1
5 , 1

2

)
(0.12, 4.10−4, 0.35)
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implementation is given in Appendix D. The corresponding
curves are displayed at the second line of Fig. 6.

The characteristic features of the Nash equilibrium are
better revealed if one compares the corresponding epidemic
dynamics with other scenarios. We shall consider the follow-
ing options, which will be discussed in greater detail in the
following subsections. We shall refer to the Nash equilibrium
presented in Sec. IV D as the unconstrained Nash equilibrium.
By contrast, the second scenario (see Sec. IV E) is a “con-
strained” Nash equilibrium, where individuals have to deal
with global constraints imposed by an authority, for instance,
a temporary lockdown which limits the agent’s strategy free-
dom, which translates into bounds on na. This second scenario
divides into two subscenarios, depending on whether these
constraints are naive or optimally chosen. A third scenario,
discussed in Sec. IV F, is that of a the societal optimum, which
is the idealistic case where everybody strives to optimize the
global cost and chooses their strategy na accordingly. We
call the “null” scenario business as usual: the agents do not
adapt their behavior to the epidemics, so that no modification
of the contact parameter is done, namely, na is fixed to 1.
In each of these cases, the epidemic dynamics is driven by
Eqs. (4.2)–(4.6), but with different {nγ

α (.)}, and thus different
forces of infection {λα}.

Solving the MFG equations in these different contexts
leads to different dynamics for S, I , and R. The dynamics for
each of the above scenarios is summarized in Fig. 6; the pre-
cise description of the scenarios is the object of the following
subsections. As Fig. 6 shows, there are notable similarities be-
tween the different “optimized” scenarios (Nash, constrained
Nash and societal optimum) and the business as usual one. For
instance, the number of susceptible individuals at the end of
the epidemic is S∞ 
 0.4 in all cases but for the business as
usual scenario, where it is significantly below (first row). This
is due to the fact that in all circumstances one needs to reach
herd immunity to escape from the disease, and the fact that
S∞ is much below this required value is a clear indication of
the business as usual suboptimal character. In the same way,
for all optimized scenarios there is a significant difference
between the height of the infection wave for the different age
class, as retired individuals and adults are more impacted by
the disease than the youths, and therefore protect themselves.
In the business as usual scenario the difference is much less
significant, and only due to the relative proportion of contacts
in each age class. However, the constrained Nash equilibrium
with “naive” constraints differs from all the others because
of the existence of two epidemic waves, which can be under-
stood as originating from an excessive limitation of contacts
that prevents the society from reaching herd immunity. Other
differences, which are mainly quantitative, also exist between
these different scenarios, and will be discussed in more details
in Sec. IV G. We now turn to the detailed description of each
scenario.

D. (Unconstrained) Nash equilibrium

Let us first consider the (unconstrained) Nash equilibrium.
We have seen that it is described by two sets of differential
equations. The first one is the rate equation of the epidemic,
Eq. (4.2) (also known as the Kolmogorov equation in this

context), which is forward in time, that is, starting from initial
conditions Sα (0), Iα (0), Rα (0), populations at later time t in
age class α are obtained by solving Eq. (4.2) with λα (t ) given
by Eq. (4.3). The second set of equations corresponds to the
Hamilton-Jacobi-Bellman equation (4.5), with one reference
individual a for each age class α. As only the terminal condi-
tion on U is fixed, namely, Ua(T ) = 0, Eq. (4.5) is backward
in time. At equilibrium, all individuals will follow their own
optimal strategy; but as all agents in a given age class are
equivalent, this optimal strategy should be the same for all
agents a of age class α. Thus we have the additional self-
consistency condition Eq. (4.6), which imposes that if all
other agents follow the strategy solution of the self-consistent
system Eqs. (4.2), (4.5), and (4.6), deviating from that strategy
implies a higher cost. The solution of the MFG equation thus
corresponds to a Nash equilibrium.

The two equations (4.2) and (4.5), together with the
self-consistency condition (4.6), form a system of equa-
tions coupling all epidemic rates S(.), I (.), R(.) and all
age-class strategies nγ

α via the individual optimal strategies
nγ ∗

a . Indeed, the epidemic rates in Eq. (4.2) depend on λα (t )
given in Eq. (4.3), which depend on the global strategies nγ

β .
In turn, the optimal strategy nγ ∗

a for a reference individual a
is a solution of HJB equation (4.5). With the precise form of
the costs Iα (I (s)) and fα (nγ

a (t )) chosen in Sec. IV B, it can be
computed explicitly and reads

nγ ∗
a (t )=

⎛⎝μρ

mγ

[Iα (I (t )) − Ua(t )]
ncl∑

β=1

nγ

β (t )Mγ (0)
αβ Iβ (t )

⎞⎠− 1
mγ +1

,

(4.9)

which depends on the global strategies nγ

β (.) explicitly, and
implicitly through the epidemic rate I (.). One obtains in this
way an initial-terminal value problem, which can be solved
numerically in different ways; we present some of them
briefly in Appendix D 1.

The solutions of the MFG system (4.2)–(4.6) are displayed
in the second row of Fig. 6 for the set of epidemics quantities
Sα (.), Iα (.), Rα (.), and in Fig. 7 for the set of optimal strategies
nγ

α (.). For our choice of parameters, young individuals do
not modify at all their behavior, when retired people reach
maximal effort for significant amount of time in both commu-
nity and household settings, and adults do some efforts, but
without ever reaching the maximum one.

E. Nash equilibrium under constraints

In the Nash equilibrium considered above, each agent opti-
mises for herself, and the resulting Nash equilibrium can lead
to a global cost for the society,

Cglob({nβ}) ≡
∑

α

NαCα (na = nα, {nβ}), (4.10)

which is suboptimal. In Eq. (4.10), {nβ} is the set of strategies
followed by each age class, na = nα means that any given
individual a of class α follows the strategy nα assigned to
age class α, and the cost for each age class is weighted by
the proportion Nα of individuals in that class. A question
that naturally arises from a public policy point of view is to
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FIG. 6. Time evolution of the epidemic quantities with rI = 1 and parameters of Tables II and III. From top to bottom: Business as usual
(no efforts), (unconstrained) Nash equilibrium, Nash equilibrium under optimal constraints, Nash equilibrium with naive constraints, societal
optimum. Left: Time evolution of the proportion of susceptible S (cyan), infected I (red), and recovered R (yellow) in the population. Right:
Time evolution of the proportion of infected in each age class Iα , retired people are in blue, adults in orange, and youth in green.
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FIG. 7. Time evolution of the contact willingness nγ
α (t ) with rI = 1 at the Nash equilibrium. We plot nγ

α (t ) for each type of individual
according to their age class (retired people in blue, adults in orange and youth in green) in community (upper left), households (upper right),
schools (lower left, for the young) and workplaces (lower right, for the adults). The dotted gray horizontal lines correspond to the minimum
contact willingness allowed (maximum effort).

know whether one could improve the global wellbeing of the
population by driving the position of the Nash equilibrium
through constraints on the population. This is, in some sense,
what has been attempted in many countries during COVID-19
pandemic. The restrictions taken then, however, involved a lot
of guesswork, both about the precise decisions to take, and
about their potential effects on society (individuals behavioral
response, impact on economic, health, etc.).

Here we present a possible quantitative approach to study
such restriction policies, which aim at reducing the soci-
etal cost by constraining the behavior of individuals. Again,
we remain here at the level of a “proof of concept,” as
practical implementations of our formalism would require
determining realistic forms of the cost functions and of
the constraints, which is clearly beyond the scope of our
work.

With the free (i.e., unconstrained) Nash equilibrium, in-
dividuals choose their contact willingness nγ

α (t ) in the range
[nγ

α,min, 1], where the maximum 1 correspond to the situation
without epidemic. We now add a constraint similar to a partial
lockdown, by setting this maximum to nγ

α,l < 1 when some
epidemic level is reached. In that way, everyone is required
to make a minimal amount of efforts to preserve the sanitary
system and reduce the societal cost (4.10). This “lockdown”
is implemented when the proportion of infected I (t ) reaches
a certain threshold Id, and, as the proportion of infected
decreases we assume the lockdown is lifted when I (t ) goes
below a value Il < Id (which is assumed lower than Id to
avoid unrealistic oscillations around Id). The lockdown has
thus a hysteresis form, and is implemented in the following
way (with L a Boolean variable which is 1 if the lockdown is
active and 0 otherwise):

if I (t ) < Il : nγ
α (t ) ∈ [

nγ

α,min, 1
]

& L �→ 0 no constraints,

if I (t ) > Id : nγ
α (t ) ∈ [

nγ

α,min, nγ

α,l

]
& L �→ 1 active constraints,

if Il < I (t ) < Id and L = 0 : nγ
α (t ) ∈ [

nγ

α,min, 1
]

no constraints,

if Il < I (t ) < Id and L = 1 : nγ
α (t ) ∈ [

nγ

α,min, nγ

α,l

]
active constraints. (4.11)

In Eq. (4.11), we choose nγ

α,l = s nγ

α,min + (1 − s), with s ∈
[0, 1] a variable measuring the intensity of the lockdown:
s = 0 corresponds to the free situation without any constraint,
while s = 1 corresponds to a strict lockdown with no free-
dom, as nγ

α (t ) is fixed to nγ

α,min. Therefore, the lockdown is
described by a set of three variables (s,Id,Il): the intensity
s, the first threshold Id, and the second threshold Il. The
numerical implementation of this set of equations is briefly
discussed in Appendix D 2.

In Fig. 6 (third row) we show the evolution of the epidemic
quantities for the choice of parameters (s = 0.35,Id =

0.12,Il = 4.10−4). As shown in Appendix E this choice cor-
responds to an optimal value in the sense that these parameters
minimise the global cost Eq. (4.10) among all possible con-
straints in the parameter space (s,Id,Il). In Fig. 8 we display
the corresponding strategies chosen by individuals under these
constraints. The constraints are enforced after 2 or 3 weeks
into the epidemic, and are raised after almost 14 weeks (over
40 for the total epidemic time) when the proportion of infected
is low and there is no risk of any epidemic rebound. The values
of the constraints appear as straight lines followed by youth
individuals, whose behavior is not dictated by their own
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FIG. 8. Time evolution of the contact willingness nγ
α (t ) with rI = 1 for the Nash equilibrium under optimal constraints (s = 0.35,

Id = 0.12, Il = 4.10−4). We plot nγ
α (t ) for each type of individual according to their age class (retired people in blue, adults in orange and

youth in green) in community (upper left), households (upper right), schools (lower left, for the young) and workplaces (lower right, for the
adults). The dotted gray horizontal lines correspond to the minimum contact willingness allowed.

“egoistic” optimisation but by the fact they are forced to
respect the lockdown as soon as it is imposed. Retired people,
however, choose most of the time to limit their contact even
more than required by the constraints; adults most of the time
just follow the lockdown, but sometimes limit their contacts
further.

As we shall discuss in Sec. IV G this optimal lockdown,
despite the fact that it depends on only three parameters, can
improve on the free Nash equilibrium, in the sense that the
societal cost Eq. (4.10) is lower. However, public policies ex-
ecutives have to be careful about their choice as it can generate
situations which are clearly worse than the free Nash equilib-
rium. We illustrate this situation in Figs. 6 (fourth row) and 9
with parameters (s = 0.8,Id = 0.06,Il = 0.01): in that case

one imposes a very strong but short lockdown. Since we con-
sider here a long end-time configuration with T = 40 weeks,
for which collective immunity is required to end the epidemic,
this leads to epidemic rebounds and increases significantly
the epidemic cost. Indeed, all drastic efforts that are made
while the epidemic is low, and before collective immunity is
obtained, are essentially useless, and just add to the global
cost endured by the population. In what follows we shall thus
distinguish Nash under optimal constraints (NOC) and Nash
under “naive” (uncarefully chosen) constraints (NNC).

F. Societal optimum

In the previous two scenarios, each agent performs
a personal, possibly constrained, but essentially egoistic,

FIG. 9. Time evolution of the contact willingness nγ
α (t ) with rI = 1 for the Nash equilibrium under naive constraints (s = 0.8,

Id = 0.06, Il = 0.01). We plot nγ
α (t ) for each type of individual according to their age class (retired people in blue, adults in orange and

youth in green) in community (upper left), households (upper right), schools (lower left, for the young), and workplaces (lower right, for the
adults). The dotted gray horizontal lines correspond to the minimum contact willingness allowed.
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FIG. 10. Time evolution of the contact willingness nγ
α (t ) with rI = 1 for the societal optimum. We plot nγ

α (t ) for each type of individual
according to their age class (retired people in blue, adults in orange and youth in green) in community (upper left), households (upper right),
schools (lower left, for the young), and workplaces (lower right, for the adults). The dotted gray horizontal lines correspond to the minimum
contact willingness allowed.

optimization. To set the scale of what is the cost associated
with these egoistic approaches, it may be useful to compare
them with the “societal optimum” that could be imposed by a
“benevolent global planner,” i.e., a well-meaning government
with full empowerment. Considering the global cost, seen at
the society level, as the addition of all individual costs, this
amounts to finding the minima of the cost Eq. (4.10). There is
already a rich literature on topics related to societal optimiza-
tion (see, for example, Refs. [6,7,32,51–57]) on various types
of models, as this problem is reduced to a single global op-
timization. The difference between this minimization and the
Nash equilibrium discussed above is referred to as “the cost of
anarchy”: while there is no cooperation between individuals in
the Nash equilibrium, the societal optimum case corresponds
to “the best” (from a societal cost point of view) that one can
obtain for Cglob among all possible strategies.

The numerical construction of this societal optimum is
briefly discussed in Appendix D 3. In Fig. 6 (fifth row) we
show the epidemic quantities associated with the societal op-
timum. However, the total number of infected individuals is
not the lowest possible, as infection within the youths does
not carry the same cost as within the retired agents. The total
amount of infected at the end of the epidemic is still relatively
high, because in our framework, one has to reach collective
immunity to definitely escape from the disease. Also, the
epidemic peak is still at a rather high level, as it is efficient to
allow an epidemic spread while keeping the epidemic under
control to reach quickly herd immunity. However, the precise
distribution of infected proportion in each age class is differ-
ent from the free Nash equilibrium.

In Fig. 10 we show the corresponding optimal contact
willingnesses. They do not correspond to individual optimum;
rather, there is a cooperation between individuals in different
age classes to get an epidemic which will make lower damage
with a reasonable amount of efforts. In the community set-
ting and in households, we observe that all individuals make
significant efforts during the epidemic peak to avoid a global

infection peak that would saturate the sanitary system: they
do it in particular in those two settings to avoid a too strong
diffusion to retired people. However, efforts are done with less
intensity in schools and workplaces. Once the epidemic peak
is reached, we see that the epidemic continues to spread, in
particular in young and adults classes, so that collective im-
munity can be reached and in this way protect retired people.
Thus, the efforts in schools and workplaces are here to smooth
sufficiently the epidemic, avoid any rebound, and get a relative
collective immunity as fast as possible, making it possible to
lift the efforts in communities and households.

G. Comparison between the different scenarios

1. Comparison of global costs

To compare quantitatively the scenarios presented above,
we normalize the costs with respect to the total cost of the
societal optimum, which we set equal to 100.

In Fig. 11 we show, for the choice of parameters given in
Tables II and III, the global costs obtained with the different
kinds of scenarios considered above. As expected, the societal
optimum (SO) is the best strategy at society level, followed
quite closely by the NOC, which itself is better than the free
Nash equilibrium (N). As the imposition of societal-optimal
scenarios implies a lack of freedom for the individual, as well
as a coordination cost which may be significant and which is
not included in Eq. (4.10), we argue that the constrained Nash
equilibrium presumably forms in practice a good compromise
between effectiveness and practicability. One should bear in
mind, however, that with a naive choice for the constraints,
such as for the NNC strategy of Fig. 11, one could easily
obtain a result worse than for the free Nash equilibrium.

The color bars in Fig. 11 illustrate the relative importance
of each age class in the total cost paid by the society. This
shows that, to reach a global optimum, the key point is to
reduce as much as possible the cost for retired people whose
contribution is large. This contribution is actually larger than
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FIG. 11. Comparison of costs for the different scenarios studied:
SO (societal optimum), NOC (Nash under optimal constraints), N
(free Nash equilibrium), NNC (Nash under naive constraints), BU
(business as usual). The costs are represented on a base of 100 for
SO; the color bars represent the total cost of each age class. Thus,
the level of each bar comes from the cost per individual multiplied
by the proportion Nα of his age class.

that of adults, despite the latter representing twice as many
people as retired individuals in our population choice. Note
that, from the point of view of adults or young people, the
free Nash equilibrium is the best strategy, as they do not have
to make efforts for others. We can also notice that making a
wrong choice for the constraints will not lead to the same “ex-
tra cost” for everyone. Indeed, for the NNC scenario, the cost
for retired people is still relatively low because the epidemic
is maintained at a low level, but the cost of social restrictions
becomes very high for adults and young individuals. This has
to be contrasted with the business as usual scenario where the
extra cost is borne almost exclusively by retired people.

2. Comparison of contact willingness for the two best scenarios

In Fig. 12, we show the comparison between the contact
willingness obtained with the societal optimum (dashed line)

and the Nash equilibrium under optimal constraints (solid
line). We see that for the Nash equilibrium under constraints
we get constraints which start at almost the same time as the
ones of the societal optimum (after typically 2 weeks); but
since it is a Nash equilibrium, these constraints are raised
after a long time, around 14 weeks, so that even without
individual efforts from adults and youth the epidemic is kept
under control. At a global level, these constraints are not too
strong compared to the ones of the societal optimum, but since
they are less localized, both spatially (in the good settings)
and temporally (during the epidemic peak with a progressive
release afterwards), they are less effective to protect retired
people who suffer from a higher epidemic with a larger total
number of infected people at the end of the epidemic.

These two scenarios, the societal optimum and the Nash
equilibrium under constraints, suggest interesting guidelines
for public health executives to mitigate an epidemic through
collective immunity. First, quite naturally, sufficiently strong
constraints should be imposed at the epidemic peak to avoid
saturation of the sanitary system; and the constraints need
to protect people at risk, which implies to limit contact
both among these people as well as between the rest of the
society and these individuals. However, in a perhaps less in-
tuitive way, constraints on people who are not at risk should
be relatively light. Indeed, the epidemic needs to spread on
the population, in a controlled way, to reach as fast as possible
the collective immunity. After the epidemic peak, one can lift
progressively the constraints, until the collective immunity is
reached. At this point, the epidemic will be back at a low
level and will stay low while the constraints can be com-
pletely lifted. The precise characteristics of the constraints,
such as their intensity or their timing, will depend on the
characteristics of the population and of the disease under
consideration. However, scenarios that induce epidemic re-
bound, like the Nash scenario with naive constraints described
above, are quite ineffective in such a context, because the
time span between the peaks does not help reaching collective

FIG. 12. Comparison of contact willingness for the societal optimum (dashed line) and the Nash equilibrium under optimal constraints
(solid line). We plot nγ

α (t ) for each type of individual according to their age class (retired people in blue, adults in orange and youth in green)
in community (upper left), households (upper right), schools (lower left, for the young) and workplaces (lower right, for the adults). The dotted
gray horizontal lines correspond to the minimum contact willingness allowed.
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immunity and is very costly in terms of constraints on the
society.

V. OPTIMAL STRATEGIES FOR DEALING
WITH AN EPIDEMIC FROM THE HEALTH

AUTHORITY POINT OF VIEW

Up to this point, we have only considered dynamics with
a very long end-time T , and a large number of agents Ntot, so
that the only option to terminate the epidemic is to reach herd
immunity. However there are many circumstances (expected
production of a vaccine, seasonality of the virus which is
expected to disappear in the summer, etc.) where the finiteness
of T plays a role, and others (isolated geographic configura-
tion such as islands, strict control of borders, etc.) where the
finiteness of Ntot does. This opens the way to other possible
strategies, from the point of view of the centralized health
authority, to control the epidemics. We review them in this
section.

A. Threefold way of controlling an epidemic

Based on these considerations, we can identify three possi-
ble ways to deal with an epidemic: reach collective immunity
(typically for T, N large), contain the epidemic (for T small),
or eradicate the epidemic (for Ntot small). We characterize
these three ways as follows.

1. Strategy No. 1: Reach collective immunity

This is the strategy that was implicitly used in the previ-
ous sections since we assumed both T and Ntot very large.
More formally, we consider that collective immunity has been
reached at time t if the proportion of infected individuals is
a decreasing function of time for t ′ > t even in the absence
of efforts after t . For the basic SIR model Eq. (2.1) with
constant χ , let Reff (t ) = S(t )R0 be the effective reproduction
number at time t , that is, the average number of secondary
infected caused by a single infected agent, with R0 = ρχ/ξ

the initial value of Reff when S = 1. For this model we have
İ (t ) = ξ I (Reff (t ) − 1). In this case, collective immunity is
reached as soon as Reff (t ) < 1 since S is decreasing. In a
similar way, for our compartmental model we introduce

Rα (t ) = μρ

ξ

∑
β,γ

nγ
α (t )nγ

β (t )Mγ

αβSβ (t ), (5.1)

the average number of secondary infected caused by a single
infected agent of age class α. We stress that Rα < 1 does not
imply İα < 0, since the number of infected in the age class
α involves the Rβ of all classes, and some of them may be
greater than 1. However, if all the Rα are less than one, then
the average proportion of infected individuals, I ≡ ∑

α NαIα
can be easily shown to be a decreasing function. Indeed, from
Eq. (2.12), we have İ = ∑

α NαSαλα − ξ I , and∑
α

NαSαλα = μρ
∑
β,γ ,α

NαSαnγ
α (t )nγ

β (t )Mγ

αβ Iβ

= ξ
∑

β

NβIβRβ, (5.2)

where we used the sum rule MαβNα = MβαNβ enforced by
the symmetric nature of contacts. We therefore have

İ = ξ
∑

α

NαIα (Rα − 1). (5.3)

In the absence of effort, the rates Rα (t ) become R(0)
α (t ) =

μρ

ξ

∑
β,γ Mγ

αβSβ (t ), and Eq. (5.3) becomes

İ (0) = ξ
∑

α

NαIα
(
R(0)

α − 1
)
, (5.4)

where the superscript denotes the absence of effort. Since the
R(0)

α are obviously decreasing functions of time, the constraint
that R(0)

α (t ) < 1 for all age classes α is a sufficient, but not
necessary, condition to have reached herd immunity. This
constraint is, however, too strong, and is actually not met in
our simulations, even when herd immunity is achieved. We
thus find more effective to replace it by a heuristic condition
obtained by assuming the Iβ to be not very different from the
average I (as can be seen for example in Fig. 6 towards the end
of the epidemics). Using Eq. (5.4), we get İ (0) 
 ξ I (R(0) − 1),
with

R(0) ≡
∑

α

NαR(0)
α . (5.5)

R(0) is also a decreasing function of time, and the heuristic
criterion R(0)(t ) < 1 indicates that herd immunity has been
reached at t . This empirical condition does not guarantee
mathematically the absence of an epidemic rebound once
R(0)(t ) < 1 (heterogeneous Iα could allow İ (0) > 0). Never-
theless, we will check below numerically that for the cases
we considered it does actually correspond to herd immunity
[58]. This strategy, where S needs to be low at the end of
the epidemics, is often used for moderate epidemics and for
epidemics where no other strategy is available.

2. Strategy No. 2: Contain the epidemic

If an external event (e.g., vaccine) is expected to end the
epidemic within a relatively short time, then another possi-
bility to deal with an epidemic is to contain it during the
period of optimization T , keeping the epidemic at a low level,
and end at T with a number of susceptible far above the
collective immunity threshold. In practice, we are in this phase
if R(0)(T ) > 1. This is the strategy adopted by most countries
during the COVID-19 pandemic: hold on and contain the
epidemic until a vaccine is available.

3. Strategy No. 3: Eradicate the epidemic

A final possibility is to act on the epidemic sufficiently
early and sufficiently intensely, that one will be able to
eradicate it before it spreads to the general population. To
implement such an idea, we need to assume a finite size
Ntot of the population, and state that below a certain rate of
infected, of order 1/Ntot , the epidemic vanishes or is at least
under control so that there is no propagation anymore. Of
course in practice, one would need to know precisely who is
infected and insulate them from the rest of the population (by
keeping them in quarantine at hospital, for instance), which
would induce an extra cost of coordination which is not taken
into account here. Discussing this strategy requires to add
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FIG. 13. (a) Comparison of the evolution of the global cost Cglob(n, T ) for the three template strategies nim (blue line), nera (red lines), ncont

(green line) which are well defined for any value of t (from 0 to ∞). For the global cost associated to the eradication strategy nera (in red) we
take, respectively, Ithr = 1.10−5 (respectively, Ithr = 1.10−3) for the solid line (respectively, dotted line). Regarding the strategy nim, T = ∞
is approximated here by T = 100. Finally, in orange, we plot the true societal optimum cost at T (with Ithr = 1.10−5, solid line parameters).
(b) Evolution of the global cost of the societal optimum (orange solid line) close to the transition time Tc (see text). Dotted blue (respectively,
green) line: evolution of the global cost with a continuous change of the strategy n for the herd immunity scenario (respectively, containment
scenario). Details of the computation are explained in the main text.

one parameter, Ithr, which corresponds to the threshold at
witch we consider that the epidemic vanishes, with a value
for Ithr of order 1/Ntot . This approach is in practice possible
only during the early stages of the epidemic, otherwise it will
induce a considerable cost. This strategy has been used many
times in China and some insular countries during COVID-19
pandemic, with strong restrictions at the early stages of the
epidemic to avoid a massive spreading.

B. Template strategies

The above scenarios can be classified according to whether
İ (0)(t ) < 0, ∀t > T (herd immunity), and if this is not the
case, whether I (T ) > Ithr (containment) or I (T ) < Ithr (eradi-
cation). Thus, any set of strategies n(.) ≡ {nγ

β (.)} (i.e., defined
for each age class, in each setting, and all times t) belongs
to one and only one of these classes. We can, however, do a
little bit more than this formal classification, and introduce
for each of these scenarios what we will call a “template
strategy,” that is, a set of strategies n(.) which provides a good
approximation to the optimal one within a given scenario.
These “templates” can be defined as follows:

(1) Reach collective immunity nim: Our template for the
herd immunity scenario is defined as the optimal strategy
defined in Sec. IV F taken in the limit T → ∞ (with Ithr ≡ 0),
namely,

nim(.) = argmin
n(.)

[Cglob(n(.), T −→ ∞)]. (5.6)

Indeed, we can expect that when the best approach is to use
herd immunity, there is little end-time effect and the optimal
strategy for a finite T will be quite close to the one cor-
responding to T → ∞. As seen in Fig. 13, the global cost
associated with nim rises quite significantly at the beginning
of the epidemic, as a significant number of agents assume
the cost of infection, but once herd immunity is reached this
cost flattens out since infection decreases while no effort is re-
quired anymore. It can be noted furthermore that nim does not

depend much on rI, as it minimizes the cost due to social con-
tacts (which is independent from rI), while reaching collective
immunity. This leads in first approximation to a constant
number of agents who have been infected at the end time
T , as the collective immunity threshold is unchanged for any
value of rI. Therefore, the associated final cost of this strategy
nim grows with a form Cglob(nim) 
 Ftot(nim) + (S0 − S∞)rI,
where Ftot is the total amount of efforts made by agents for
a strategy n(.), which is (almost) independent of rI, and the
second term grows linearly with rI.

(2) Contain epidemic ncont: We define the reproduction
factor R as the R(0) which was introduced in Eq. (5.5), with
here arbitrary value for n(t ) instead of 1. One can easily claim
that a sufficient condition to strictly contain the epidemic in
a homogeneous infected population is to keep R(t ) = 1. With
that condition, one will enforce I (t ) to stay as the same level
or below the initial condition I (0) with a priori the lowest
possible cost from the social point of view [to keep R(t ) < 1
will be more expensive]. We can therefore define the template
strategy of the containment scenario as the one coming from
the optimization

ncont(t ) = argmin
n(.)

[Ftot (n(.)) such that R(t ) = 1] ∀t, (5.7)

where we furthermore assume that for all age classes Sα (t ) 

Sα (0) 
 1, so that ncont is actually time-independent. Since the
social cost only involves current time t , the problem reduces
to a simple, local in time, optimization problem, where n(t )
becomes a constant n which must respect R = 1 and minimize
f (n). The result of this optimization, obtained numerically
through a gradient descent under constraints, is illustrated in
Fig. 13. Note that this (constant) strategy ncont is independent
of rI, and the associated global cost Cglob(ncont) 
 T f (ncont) is
essentially independent of rI and grows linearly with T .

(3) Eradicate epidemic nera: For this case, it can be
shown (see Appendix F) that, for the parameters we consider,
the optimal eradication strategy is always obtained by an
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application of the maximal effort until the time tthr corre-
sponding to the eradication of the epidemics, I (tthr ) ≡ Ithr.
This strategy, will be taken as our template eradication strat-
egy. The associated final cost is therefore expected to be
of the form Cglob(nera) 
 T fmax if T < tthr, the cost grows
linearly with T , and Cglob(nera) 
 fmaxtthr if T > tthr, where
fmax denotes the social cost (rate) associated with a maximum
amount of efforts and tthr mainly depends on Ithr.

C. Phase transition

For these three scenarios, we show on Fig. 13(a) the evolu-
tion of the global cost with the optimization time T , for rI = 1
and the parameters of Tables II and III. As expected, all costs
increase with T , but in different ways. In blue, the collective
immunity cost grows rapidly at the beginning of the epidemic,
so that collective immunity is reached as soon as possible
without saturating the sanitary system, after which the cost
levels up. For the containment strategy ncont (green), we see
that the corresponding cost increases almost perfectly linearly,
as the amount of effort due to contact reduction is constant.
As S(0) = 0.99 < 1, there is in this scenario a small spread
of the infection at the beginning of the epidemic (and thus a
small additional infection cost), before it vanishes completely.
Finally, the cost of the eradication strategy (red curve) starts
with a strong linear increase (the slope of the curve here
is clearly higher than the one of the containment strategy
since the maximal effort is applied), and then saturates at a
level which depends on the threshold Ithr. Figure 13(a) also
shows the societal optimum cost (orange curve), which always
closely follows one of the templates. At low T , it is a bit below
the cost of the containment strategy ncont, taking advantages
of end-time effects (as illustrated in Fig. 14) to slightly reduce
the cost. For large T , it follows, again from below, the collec-
tive immunity template. For the societal optimum cost, there
is a transition around 20 weeks for our choice of parameters,
from a “containment” cost to a “collective immunity” cost.
For Ithr = 10−3 (dotted line in Fig. 13), the transition would
go from “containement” to “eradication”.

This transition between different scenarios’ costs strongly
suggests that the associated strategies will follow the same
pattern, with a transition form the neighborhood of ncont to the
neighborhood of nim. To assess this, we compare in Fig. 14
the optimal strategy found from the societal optimum scenario
with the template strategies. We observe that the small gap
between template costs and societal optimum cost which was
observed on Fig. 13(a) corresponds to a small difference be-
tween the corresponding strategies. For strategy 1 (rows 1 and
2) we observe a finite-T effect: an additional amount of efforts
around 10 to 25 weeks appears to be profitable to limit the
number of infected, even though the epidemic is almost over.
The structure of the two strategies is nevertheless very similar.
Regarding the “containment” strategy (rows 3 and 4), in each
setting the contact willingness of each age class of agents is
the same (thereby, only one constant dotted line per setting
is plotted). The societal optimum is very close to the strat-
egy ncont, but two effects make it deviate from the idealistic
strategy ncont. First, as S(0) is not strictly equal to one (here
0.99), there is some moderate spreading of the epidemics,
which induces a small increase of effort from retired people,

as well as a small increase of infection cost. Second, there is
a clear end-time effect, meaning here that individuals who are
not at risk reduce their efforts just before T since epidemic
will not have time to propagate massively until T (one can
think of a vaccination campaign where individuals will start
increasing their contacts before the campaign is completed).
Note however that as T gets close, since the epidemic begins
to grow, retired individuals protect themselves and actually
further limit their contacts. Last, for the eradication strategy,
the societal optimum is the same as our template strategy nera

(see Appendix F for more details).
Figures 13(a) and 14 indicate that our template strategies

provide an accurate approximation of the societal optimum at
small and large T . One question we may ask now is whether
the transition we see at Tc 
 20 from one scenario to another
can be understood as a true phase transition, or is rather of a
crossover type. To address this question, in Fig. 13(b) we com-
pare the societal optimum near Tc, i.e., the absolute minimum
of the global societal cost, with the result of a gradient descent
obtained in the following way: starting from above Tc (blue)
or below (green), we change T by small steps δT , and use as a
starting point for the gradient descent at T + δT the result of
the calculation at T . What we observe is that doing this proce-
dure, our algorithm finds, for a significant range of T values
around Tc a local minimum which follows the herd-immunity
template below Tc (dotted blue) or the containment template
above Tc (dotted green). This local minimum corresponds
either to the true minimum when the blue or green curves
match the orange one, and to a metastable state when they do
not. Note that both local minima eventually fall to the global
minimum (in orange) when they are sufficiently far from Tc,
ending in a hysteresis cycle.

There is therefore a discontinuous change of the optimal
strategy at Tc, which is the signature of a first-order phase
transition. In this analogy with thermodynamics, the cost Cglob

represents the free energy, and T some macroscopic parameter
such as temperature. The Ehrenfest classification, which de-
fines a first-order phase transition as a discontinuity of the first
derivative of Cglob with respect to T at Tc, is clearly observed
in Fig. 13(b). We expect this phase transition to exist for a
large range of parameters of our model, and we have verified
its existence numerically on a number of cases. In particular,
we have checked that the transition between “containment”
phase and “eradication” phase is also first-order.

We therefore end up with three distinct phases for the
societal optimum, which exhibit first-order phase transitions
between them, and which are well-approximated by template
strategies defined above. Since these template strategies pro-
vide good approximations of the societal optimum one, we use
them in Fig. 15 to show the “phase diagram” of the optimal
scenarios as a function of the optimization time T and the
infection cost rI. Of course, the optimal strategy will depend
on all the parameters that we have introduced until now, but
some of them (matrix of contacts M, capacity of the sanitary
system qsat, proportion of agents in each age class Nα) may be
assumed to be quite similar for different epidemics affecting
the same population, while T and rI depend a lot on the
virus under consideration and have a major impact on the best
strategy. The three different scenarios appear to be optimal
in distinct well-defined areas of the phase diagram. When T
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FIG. 14. Contacts willingness for the three template strategies defined in Sec. V (dotted lines) and the (finite-T ) societal optimum for the
corresponding parameters (solid lines). Rows 1 and 2: collective immunity (T → ∞, computed in practice with T = 100 and rI = 1, dotted
line) and societal optimum (computed with T = 30, rI = 1, Ithr = 0, solid line). Rows 3 and 4: contained strategy (dotted) and societal optimum
(solid) for T = 10, rI = 1. Rows 5 and 6: eradication strategy (dotted) and societal optimum (solid) for T = 30, rI = 1, Ithr = 1.10−5—the two
strategies match perfectly. Subpanels and legends are the same as in Fig. 7.
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FIG. 15. Phase diagram showing the best type of strategy to
follow among “reach collective immunity” (blue), “contain” (green),
and “eradicate” (red) with the parameters of Tables II and III and
Ithr = 1.10−7 for the eradication strategy (it is more realistic, as it
means Ntot 
 107). Change Ithr or the initial conditions will naturally
change the transition lines (between immunity and eradication areas).

is small (below 20 weeks), the containment strategy is opti-
mal whatever rI. Then, there is a transient regime, where the
optimal strategy can be any of the three scenarios, collective
immunity, containment, or eradication according to rI. Finally,
after T 
 80 weeks, containing the epidemic is no longer an
option, as the linear increase of the cost becomes prohibitive,
and the best choice is either to reach collective immunity or to
eradicate the epidemic. Since we use template strategies, the
first-order phase transitions are represented by linear lines on
the graph.

VI. CONCLUSION

In the present work we developed, following Ref. [38],
an epidemic model based on the well-known SIR compart-
mental model supplemented by a social structure. This social
structure relies on the idea that contacts are heterogeneous in
society, both because individuals socialize in different con-
texts, and because they react in various ways to the disease
(different perception of risk). Therefore, one can divide soci-
ety into classes of agents which differ by their behavior, by the
risk that the disease represents for them, and by the settings in
which socialisation takes place. Here we used an age differ-
entiation, but other kinds of classification (e.g., based on the
immune status or on the presence of comorbidity) could easily
be implemented within the same formalism. In the same way,
one can easily add more compartments and more classes or
settings to the model, without changing the global framework.
The description of social structures obtained in this way is
clearly less refined than one that would take into account the
heterogeneity of social behaviors at an individual level, but
it probably represents a good balance between precision and
ease of application when trying to understand the dynamics of
an epidemic and take appropriate, targeted action against it.

To this compartmental epidemic model with social struc-
ture, we have, following the approach of Turinici et al. [32],
added a mean-field-game description of the dynamics: Agents
may change their individual behavior depending whether they
feel at risk of infection or not. After deriving the mean-
field-game equations, we computed numerically the Nash

equilibrium, where each individual seeks to optimize his or
her own interests. In this paradigm, individuals make a per-
fectly rational optimization, and are assumed to be able to
performed the corresponding calculations which is something
that we cannot expect from people in practice. The assumption
here is thus rather than some central authority will solve
the system (4.2)–(4.5) and provide to individuals their “best
individual behavior” nγ

α which will be followed by agents if
they sufficiently trust the institution.

As discussed in Sec. IV B, the choice of parameters we
used for our simulations does not aim to describe a specific
real-world configuration, but nevertheless corresponds to a
rather generic situation, and the qualitative behavior we ob-
tained is most likely rather typical of what would be observed
in a realistic case. For this set of parameters, the Nash equilib-
rium obtained within the mean-field-game framework reduces
significantly the costs associated with the epidemic when
compared to the “business as usual” approach where social
contacts are kept unchanged. However, there is usually still a
gap between the MFG cost and the one that would correspond
to the societal optimal policy, which represents the minimal
global cost that can be borne by the society. To approach this
optimal policy, we introduce the notion of “constrained Nash
equilibrium,” in which we assume that under some conditions,
the central authority can impose some constraints, analog to
the partial lockdowns that we have seen during the COVID-19
epidemic, under simple rules which are known to the agents.
In our work, we used a simple restrictive policy with three
parameters (s,Id,Il) and we optimized this policy (i.e., we
find the optimal set [s∗,I∗

d, I∗
d ]) to get the lowest possible

societal cost, and in this way close as much as possible the gap
between the free Nash equilibrium and the societal optimum
(see Figs. 8 and 11).

In our discussion of the Nash equilibrium and of the “con-
strained Nash” approach to the societal optimum, we have
implicitly limited ourself to a regime of very long optimiza-
tion time T , and of large population Ntot , for which the societal
optimum policy necessary implies in some way to reach herd
immunity. In Sec. V, we go back in more details to the analysis
of the societal optimum, in particular lifting these constraints
on T and Ntot . Depending (mainly) on the values of T , Ntot ,
and rI, we can identify three phases that we label as “reach
collective immunity” (the one implicitly assumed in the pre-
vious sections), “contain the epidemic” or “eradicate it” (see
Fig. 15 showing which scenario is optimal depending on the
parameters T and rI). The transition between any two of these
phases can by understood as a first-order phase transition, in
the sense that the associated strategies present discontinuities
and are different from one phase to another. An important
consequence of this discontinuity is that it is primordial for
an authority to clearly identify the appropriate scenario, as a
wrong choice could lead to significant additional costs.

Among these three scenarios, “reach collective immunity”
is the one for which the time dependence of the agent strate-
gies {nγ

α (.)} are the more complex, and an authority will
probably not be able to impose such exact strategy for all
individuals. For this scenario, an approach through a mean-
field-game paradigm under constraints as the one presented
in this work is probably more relevant to approach the so-
cietal optimum cost, which would slightly shift the phases
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boundaries in Fig. 15. However, the “containment strategy”
appears to be easier to design for an authority, as it consists in
adjusting in real time the constraints, depending on whether
the epidemic is growing or not, to follow R(t ) 
 1. Never-
theless, to find the best set of constraints to hold R(t ) 
 1
still involves some complexity, as one should still adapt the
strategy to the response of individuals. Advantage of this
scenario is that this can be performed “on the fly,” and does
not really imply any anticipation. Finally, in the “eradication
strategy,” authority has to impose the maximum admissible
constraints, which is conceptually rather simple. We stress,
however, that, contrarily to the “herd immunity” strategy, the
societal optimum obtained with strategy “contain” and “erad-
icate” are very far from any Nash equilibrium, even under
“reasonable” constraints. The restrictions imposed with the
two latters scenarios lead to epidemics which stay at low
levels. In this context, the best individual strategy is to do
essentially no effort, as there is almost no risk of infection.
The social optimum strategy in this case is thus extremely
far from the Nash equilibrium. This emphasizes a profound
difference in nature between “herd immunity,” where indi-
vidual optimization is closed to the societal optimum, and
the two others where the gap is much more important. This
would need to be considered by institutions when they will
built collective strategies, as it is presumably very difficult
to convince a population to follow on its own will a strategy
which is far from a Nash equilibrium, and the required degree
of coercion would significantly vary between the two cases.

The aim of this paper is to contribute to the construction of
a theoretical framework on which authorities can rely to build
appropriate policies against future epidemics. In particular,
it showed that a relatively simple epidemic model including
a differentiated behavior of rational agents can describe a
number of different scenarios and is versatile to describe the
outcome of various political choices. Our work emphasized
both the challenge of this task and the extensive research
which remains to be done. Indeed, our model still involves
a number of parameters. While some of them (as the matrix
M) are known or could be relatively easily extracted from
field data, some others (as rI or the shape of f ) are harder
to apprehend, although they are crucial if one wants to use
such type of models in an appropriate way. The model can be
furthermore made more accurate with the addition of some
extra cost such as the one associated with coordination in
the case of restrictive policies. The question of evaluating
quantities such as the risk induced by a possible epidemic is of
course not specific to our model, and is is actually one major
task of epidemiologists. Here however we hope to provide a
more formal framework from which possible course of action
can be decided from that information.

From a theoretical perspective, further research could also
be performed to improve the framework. First, one may want
to integrate the spatio-temporal character of the dynamics
taking into account heterogeneity of populations and regions
around the world. Second, one could include, in the impact of
constraints on individuals behavior, the feedback of the latter
with respect to the imposed constraints. This is referred as
Stackelberg games [59], which involve a set of agents (small
players) and a principal player corresponding to authorities.
This sort of games should reveal the importance of getting the

agreement of the population or not, depending of the choice
of constraints. Third, we did not incorporate explicitly in our
model the possible presence of a vaccine. Vaccination cam-
paign also involve individuals behaviors and could be studied
from a mean-field game point of view [29]. It can be added
to the model but will rather concern another part of the epi-
demic, once vaccine is available, to optimize the vaccination
campaign. A final active research domain is to infer accurately
epidemic quantities with limited data sets, which it is almost
always the case at the beginning of epidemics where limited
number of tests are available.

Even without these improvements, the theoretical frame-
work presented here should already be sufficiently flexible and
realistic to be helpful in practice, as one could replace f or the
generalized infection cost Iα by the precise forms that would
be obtained by field data, and then pursue the same analysis.
We hope that authorities and institutions in charge of design
policies against epidemics could use our work to improve
accuracy of epidemics prediction as well as the efficiency of
nonpharmaceutical interventions.
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APPENDIX A: DERIVATION OF THE SIR EQUATIONS

To prepare for the somewhat more involved discussion
of Sec. II B, and to make the underlying hypotheses more
explicit, we provide here a brief formal derivation of the SIR
equations (2.1).

Let xk (t ) ∈ {s, i, r} be the state of individual k at time t .
The relative proportions of susceptible, infected, and recov-
ered in a population of size Ntot can be written as

S(t ) = 1

Ntot

Ntot∑
k=1

δxk (t ),s,

I (t ) = 1

Ntot

Ntot∑
k=1

δxk (t ),i, (A1)

R(t ) = 1

Ntot

Ntot∑
k=1

δxk (t ),r,

with δa,b as the Kronecker symbol.
Furthermore, an important property of the SIR model asso-

ciated with the homogeneity of the population (all agents are
connected with every other agent with a uniform probability)
is that, in the Ntot → ∞ limit, the system is ergodic, in the
sense that averages over realizations of the Markov process
and averages over individuals should correspond, i.e.,

(∀k) lim
Ntot→∞

〈 fk〉 = lim
Ntot→∞

1

Ntot

Ntot∑
k′=1

fk′ (A2)

(where 〈 fk〉 is the average over Markov realisations of the
quantity f associated with a given individual k, and where
the right-hand side is taken for an arbitrary (but single) real-
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isation of this Markov process). Note that for this ergodicity
to apply, not only Ntot should be large, but also the number
of agents within each class and in particular the number of
infected NtotI , so that at the very beginning of the epidemic
nonergodic behavior may exist if I0 < 1/Ntot . In the Ntot → ∞
limit that we consider here, however, we may and will write
(〈S〉, 〈I〉, 〈R〉) = (S, I, R).

Let us consider an individual k which is susceptible at time
t (i.e., δxk (t ),s = 1). To become infected at time t + dt , this
individual must meet an infected individual l in the time inter-
val [t, t + dt[, and this encounter must lead to a transmission
of the disease. Thus the proportion of individuals which are
susceptible at time t and infected at time t + dt is given, for a
given realisation of the Markov process, by

S(t + dt ) − S(t ) = − 1

Ntot

Ntot∑
k=1

Ntot∑
l=1

Ckl (t ) δxk (t ),sδxl (t ),i, (A3)

with Ckl (t ) the stochastic variable which take value 1 if k and
l met during the interval [t, t + dt[ with a possible infection
for k (if k is susceptible and l is infected), and 0 otherwise.
This stochastic variable has an average value (over random
realizations of the Markov process) which is the product of
the probability of contact during dt , 1

Ntot
χ (t )dt , by the trans-

mission rate ρ since both events are independent. Note that
since the population is assumed homogeneous, the probability
of contact as well as the transmission rate are constant across
the population (although the stochastic variables Ckl are not).

We then take the average over realizations assuming the
independence of the three stochastic variables δxk (t ),s, δxl (t ),i,
and Ckl , which amounts to assume that the events “individual
k is susceptible at t ,” “individual l is infected at t ,” and “the
pair of individuals (l, k) meet,” are independent because Ntot

is large and the population is homogeneous. We get

d〈S(t )〉
dt

= − 1

N2
tot

Ntot∑
k=1

Ntot∑
l=1

ρχ (t )
〈
δxk (t ),s

〉〈
δxl (t ),i

〉
= −ρχ (t )〈S(t )〉〈I (t )〉. (A4)

Using the identification between ensemble and population
average, Eq. (A4) reduces to

dS(t )

dt
= −ρχ (t )S(t )I (t ). (A5)

The other SIR equations in Eq. (2.1) are obtained in the same
way.

APPENDIX B: PARAMETERS OF THE MODEL

The values of the “social-structure” and “biological”
parameters in Table II do not represent any particular
real-life case, but are chosen to be representative of realistic
situations, and therefore in the range typically found in
the literature [1,38,47–50]. We take ξ = 1.2 week−1,
not too far from the values ξ = 7/6.5 = 1.1 week−1

from Ref. [1], ξ = 7/6.6 = 1.05 week−1 from Ref. [50] and
ξ = 7/4 = 1.75 week−1 from Ref. [47]. The contagiousness
ρ is assumed to be 0.1, similar to the value mentioned
in Ref. [47] for the COVID-19, where it is slightly lower
(about 0.08). Regarding μ, we choose μ = 0.2, of the
same order of magnitude as in Ref. [50]. Similarly, for the
proportion of individuals in the population, the distribution

(25%, 50%, 25%) is closed to the one in Ref. [50], where it
is 22% if you gather the proportion of children and teenagers,
57% for adults, and 21% for seniors. The contact matrices
Mγ

αβ are inspired by Ref. [38] for their shape: Almost all
contacts in schools are between children, an similarly inside
workplaces for adults. In the community, all individuals have
the same probability of meeting other individuals, while in
households the structure is a bit more complex, with a strong
child-adult link and senior-senior contacts. The absolute
value of contacts is then normalized so that the average total
number of contacts is close to the values presented in Ref.
[47]. Finally, to ensure the consistency of our choices, we
check that all these collected quantities give a reproductive
number R̃0 = 2.9 with the method described in Refs.
[38,60] for calculating R̃0 at the beginning of epidemics
in heterogeneous populations. This value is consistent with
the literature for viruses such as COVID-19 [13]. The choice
of initial conditions (Iα (t = 0)) is taken uniform among age
classes, and since we do not consider stochastic effects at the
beginning of epidemics, we take a value of 1% which has
little effect on the simulation as long as it is small enough.

APPENDIX C: ARBITRARY ASYMPTOMATICITY

In this Appendix, we generalize the discussion of Sec. III A
to arbitrary values of the asymptomaticity parameter μ ∈
[0, 1]. In that case the equations change only slightly. As be-
fore, only asymptomatic infected individuals participate to the
propagation of the disease. Asymptomatic individuals ignore
their status, and if infected feel no harm; as a consequence,
they will not change their behavior upon contamination at
time τ (thus the integral in Eq. (3.1) will extend up to T ),
nor bear the health costs [thus the second term in Eq. (3.1)
will be zero for them]. The cost for asymptomatic individuals
thus reads

Ca
(
nγ

a (·), {nγ

β (.)
}
, t, τ

) ≡
∫ T

t
fα

(
nγ

a (t ′)
)
dt ′. (C1)

Since the agent ignores whether she is asymptomatic or not,
the average cost she anticipates is with probability (1 − μ)
the estimated cost (3.9) and with probability μ the cost (C1)
(which is independent of τ ); therefore,

Cμ
a

(
nγ

a (·), t
) = (1 − μ)

∫ T

t

(
fα

(
nγ

a (t ′)
) + λa(t ′) Iα (I (t ′))

)
× (1 − φa(t ′))dt ′ + μ

∫ T

t
fα

(
nγ

a (t ′)
)
dt ′

=
∫ T

t

[
(1 − μ)λa(t ′)Iα (I (t ′))(1 − φa(t ′))

+ fα
(
nγ

a (t ′)
)
(1 − (1 − μ)φa(t ′))

]
dt ′. (C2)

The term (1 − μ)φa(t ′) can be interpreted as the probability
for an individual of age class α to be infected and symptomatic
before t ′, since the two events “have been infected before t ′”
and “be symptomatic” are independent. In the limit of μ � 1,
we recover the cost derived before in Eq. (3.9); note that to
allow an epidemic growth in this limit we assume that μρ and
thus λa are of the same order in μ as ξ (the recovery rate), that
is, of order 0 in μ.
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FIG. 16. Global scheme used for the inductive sequence.

APPENDIX D: NUMERICAL IMPLEMENTATION

1. Numerical resolution of the Nash equilibrium

We describe here two numerical methods we have imple-
mented to reach the Nash equilibrium: an inductive sequence
method and a gradient descent. Again, we omit the superscript
γ to lighten the notations.

a. First method: Inductive sequence

The first method is the most natural one. The idea is the
following. We start with an initial global strategy n(0)

α (.) (the
brackets (.) indicate that this initial strategy is given at all
times), and we compute the associated epidemic quantities
(S(0)(.), I (0)(.), R(0)(.)) with Eq. (4.2) for these given initial
conditions. Then, using Eq. (4.9), we compute the best in-
dividual response to this epidemics dynamics, n∗

a
(0). Since

the latter should be followed by all individuals, we obtain a
new global strategy n(1)

α = n∗
a

(0). We repeat the process until
we reach the Nash equilibrium condition n(k)

α 
 n∗
a

(k) for a
sufficiently large k.

To summarize, the global scheme of this method is the
following, performed simultaneously for all age classes α:
Each step is quite straightforward numerically since we only
deal with classical partial differential equations. Figure 16
corresponds to an inductive sequence n(k+1)

α = F (n(k)
α ) where

the functional F is defined as F (n(k)
α ) = n∗(k)

α . However, this
inductive sequence will not always converge to a fixed point
of F , which is why we consider a second approach below.

In practice, we discretized the interval [0, T ] with T = 40
weeks using ∼150 time steps; typically the number of itera-
tions to reach the fixed points is ∼10.

b. Second method: Gradient descent

To deal with cases where the inductive sequence does not
converge, we use a gradient descent on the variable na(.) of the
cost Ca [see Eq. (3.9)] to reach the Nash equilibrium. We use
the following scheme for each age class α with representative
individual a

n(k+1)
a (t ) = n(k)

a (t ) − h · ∇1Ca
(
n(k)

a (.),
{
n(k)

β (.)
}
, t

)∣∣
n(k)

a (.)=n(k)
α (.),

(D1)

where ∇1 means that the gradient is taken on n(k)
a (.). The dot

in Eq. (D1) indicates a scalar product, h and ∇1 are vectors
indexed by γ . This scheme gives ∇1Ca(n(k)

a (.), {n(k)
β (.)}, t ) =

0 when we reach the equilibrium. That is, we are at a local
minimum of the cost Ca with respect to the first variable na(.).
We can then check numerically that we are indeed at the true
Nash equilibrium, that is, at a global minimum for the variable

na(.) (for each age class α), by checking that F (nNash) = nNash

for a given Nash candidate nNash.
To make the numerical computation of the gradient ∇1Ca

less heavy and more efficient, we first perform a few analytical
steps. To avoid heavy notations, the cost at t = 0 will be
denoted as Ca(na, nβ ). We have

Ca(na, nβ ) ≡ Ca
(
nγ

a (·), {nγ

β (.)
}
, 0

)
=

∫ T

0

(
fα

(
nγ

a (s)
) + λa(s) Iα (I (s))

)
(1 − φa(s))ds.

(D2)

To compute the gradient of the cost with respect to the first
variable, we introduce the functional derivative of Ca with
respect to its first variable na, in the direction h (with h a
function, usually a Dirac delta). By definition,

DhCa(na, nβ ) ≡ lim
ε−→0

1

ε
(Ca(na + εh, nβ ) − Ca(na, nβ )).

(D3)

Using the definition of the gradient, this functional derivative
can be reexpressed as

DhCa(na, nβ ) =
∫ T

0
h(t ) · ∇1Ca(na, nβ, t ))dt . (D4)

which explicitly written gives h(t ) · ∇1Ca = ∑
γ hγ (t ) δCa

δnγ
a (t )

with δCa

δnγ
a (t ) the functional derivative of the total cost Ca with

respect to nγ
a (t ). Since 1 − φa(s) = exp(− ∫ s

0 λa(u)du), the
cost (D2) depends on na through the terms fα (na) and λa via
(3.6); with λa is linear in na. Using Eq. (D3) we have at first
order λa(na + εh) = λa(na) + εh · dλa

dna
(t ) with dλa

dna
(t ) a vector

indexed by γ , of components

dλa

dnγ
a

(t ) ≡ μρ

ncl∑
β=1

nγ

β (t )Mγ (0)
αβ Iβ (t ). (D5)

We then use the integral form (D2) to expand Eq. (D3) to
lowest order in ε. One of the terms involves a double integral;
to put DhCa(na, nβ ) under the form (D4), we invert inte-
grants and change variables, namely

∫ T
0 [ f (t )

∫ t
0 g(s)ds]dt =∫ T

0 [g(t )
∫ T

t f (s)ds]dt . Once the expression is of the form (D4)
we can read off the value of the gradient ∇1Ca(na, nβ ):

∇1Ca(na, nβ, t ) =
[

dfα
dna

(na(t ))+dλa

dna
(t )Iα (I (t ))

]
(1 − φa(t ))

− dλa

dna
(t )

∫ T

t
( fα (na(s)) + λa(s)Iα (I (s)))

× (1 − φa(s))ds, (D6)
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with dfα
dna

the derivative of fα with respect to the variable nγ
a (t )

(with a vector notation). The straights d used here indicates
usual derivatives, as f and λ are functions (and not functional)
of nγ

a (t ). The gradient (D6) is then computed numerically to
follow the scheme (D1).

2. Numerical resolution of the constrained Nash equilibrium

For the constrained Nash equilibrium, the strategies nk
a(t )

in Eq. (D1) additionally must fulfill constraints such as
Eq. (4.11). Since these constraints are active or not depending
on the value of I (t ), at each step k one must check that the
strategies respect the constraints defined by the values of the
epidemic rate at step k. Each step of the gradient descent
therefore comprises two parts. In the first part, we perform
the same gradient descent as the one described for the Nash
equilibrium Appendix D 1 b, but now we check that the new
strategies {nk+1

a (.)} respect the constraints defined by the I (.)
from step k; if they do not, we enforce them by correcting
accordingly the {nk+1

a (.)}. In the second part, we compute
the new epidemic rates and find the corresponding new con-
straints.

An issue appears when we approach the Nash equilibrium.
The variation of the constraints and of the strategy {nk+1

a (.)}
can form some cycles which impede convergence. To bypass
this difficulty, we choose to freeze the constraints at some
step k and continue the gradient descent process as in the
method Appendix D 1 b; after some steps, we recompute the
constraints and we continue the process until the convergence.

3. Numerical resolution of the societal optimum

We can reach the optimal strategy through different ways.
Here we choose to make a gradient descent on the cost Cglob,
but one can also use the Pontryagin maximum principle [51].
We optimize the behavior of individuals to minimize the total
cost paid by the population

Cglob
({

nγ

β (.)
}) =

∑
α

NαCα ({nβ (.)}), (D7)

where the cost depends on all the functional {nγ

β } in an equal
footing. For simplicity, we will denote this global strategy
over all classes and setting n. To do this minimization, we
will follow the same scheme as described in Eq. (D1). We
thus have to compute ∇Cglob(n, t ), which only involves all the
collective strategies n and the time t at which the gradient is
evaluated. For each age class α, we calculate the gradient

DhCα (n) ≡
∫ T

0
h(t ) · ∇Cα (n, t )dt, (D8)

to identify ∇Cα (n, t ) as in Appendix D 1 b, with ∇ is now on
the global strategy n and having components along γ and β

(as does h). New terms appear because quantities such as the
proportion of infected individuals I (.) now depend on all nβ .
Below, we outline the key steps involved in the calculation.
The first step is deriving the functional derivative of the gradi-
ent DhCα (n, t ). Starting from the expression of Cα in Eq. (3.9),

we get

DhCα (nβ, t )

= Dh

[∫ T

t
( fα (nα (s)) + λα (s) Iα (I (s)))(1 − φα (s))ds

]
.

(D9)

Thus, we need to compute each functional derivative of the
terms appearing in Eq. (D9), which gives

Dhλα (t ) = lim
ε−→0

1

ε

[ ∑
γ

∑
β

ρMγ

αβ

(
nγ

α (t ) + εhγ
α (t )

)(
nγ

β (t )

+ εhγ

β (t )
)
(Iβ (t ) + εDhIβ (t ))

]
, (D10)

Dhφα (t ) = (1 − φα (t ))
∫ t

0
Dhλα (s)ds, (D11)

DhIβ (t ) =
∫ t

0

δIβ (t )

δn(s)
· h(s)ds, (D12)

Dh fα (nα (t )) = dn fα (nα (t )) · h(t ), (D13)

DhIα (I (t )) = καrIqsat

Isat
DhI (t ) exp

[
qsat

I (t ) − Isat

Isat

]
, (D14)

where the dots in Eqs. (D10), (D12), and (D13) indicate that
h and n are indexed by β and γ and indices are summed over.
In Eq. (D12), δIβ (t )/δn(s) indicates the functional derivative
of Iβ (t ) with respect to the collective behavior n(s). This
“time delayed” derivative is the crucial term of the gradient
for the societal optimum, one can perform a linearization of
Eqs. (2.12) to propagate linearly the elementary deformation
of Iβ from time s to time t to avoid several numerical com-
putation of the whole epidemic. As in Appendix D 1 above,
we use these expressions to compute explicitly Eq. (D9) and
put it under the form Eq. (D8), which gives the expression of
∇Cα (n, t ). We can then perform the gradient descent scheme
Eq. (D1) numerically and efficiently without several compu-
tations of the whole epidemic at each time t .

APPENDIX E: COMPARISON OF GLOBAL COST FOR THE
NASH EQUILIBRIUM UNDER DIFFERENT CONSTRAINTS

In this Appendix, we study how the global cost for the
Nash equilibrium under constraints changes with the three
parameters of the constraint; results are displayed in Fig. 17.
The parameters used in Fig. 8 correspond to the minimum
found here.

At s = 0 we recover the free Nash equilibrium, with the
same global cost, around Cglob = 120. When the intensity
s is increased, society carries a lower cost than in the free
Nash equilibrium, because all individuals are forced to make
some efforts. But at a certain intensity, a minimum is reached;
the location of this minimum is mainly influenced by rI,
and corresponds here to the region around s = 0.3–0.4. In
this interval, we find the optimal lockdown configuration that
we presented above with s = 0.35,Id = 0.12,Il = 4.10−4.
Among the three parameters (s,Id,Il ) characterizing the par-
tial lockdown, the one which has the most impact on the global
cost is s, as there are no significant variations between the
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FIG. 17. Comparison of global cost for different parameters
of the constraints. The x axis corresponds to the intensity of
the lockdown s, which could vary from 0 (no constraints) to 1
(maximal constraints). The different curves correspond to different
choices for the two threshold parameters Id and Il. We choose
Id = (0.12, 0.08, 0.04), a too low Id will clearly deteriorate the
situation as it will impose a duration of the constraints which
is too long to reach collective immunity. A higher Id is, how-
ever, not effective, as typically the maximum effort with the free
Nash equilibrium is around 0.15 for our choice of parameters, and
thus the threshold would never be reached. For Il we took Il =
(1.10−2, 4.10−4, 1.10−5). Il will have a major impact on the duration
�t of constraints, with a log relation of the form �t 
 −log(Il ).
Increasing Il will decrease the extent of lockdowns and conversely.
A too high Il will lead to epidemic rebounds (the constraints is
lifted too early), and a too low Il will impose useless extra so-
cial cost to the population. Blue curve (Id, Il ) = (0.08, 4.10−4),
red (0.12, 4.10−4), green (0.04, 4.10−4), magenta (0.08, 1.10−2), and
cyan (0.08, 1.10−5). Dotted gray horizontal lines from top to bottom
correspond, respectively, to business as usual cost, free Nash equilib-
rium, and societal optimum.

different curves of Fig. 17. For s > 0.5, the constraints be-
come too strong with respect to the epidemic threat for all
choices of thresholds, but especially for low Id and Il, be-
cause this imposes long constraints which become very costly
as s increases. When s approaches 1 we even reach a point
above the business as usual scenario (which had Cglob = 266),
as we enter a regime characterized by a succession of lock-
downs followed by epidemic rebounds which are suppressed
by the next lockdown before herd immunity can be reached.

APPENDIX F: ERADICATION STRATEGY

In this Appendix, we show that the optimal eradication
strategy is to hold the maximum amount of efforts in the
interval [0, tthr] until the eradication of the epidemic when
I (tthr ) = Ithr, and then completely release the efforts. This
strategy is sometimes referred in the literature as a bang-bang
strategy [35]. To show that this strategy is optimal, we have
to show that any small reduction of efforts δn made during δt
in the interval [0, tthr] will increase tthr so that the total cost
paid by individuals will be higher. Without loss of generality,
we consider that time 0 corresponds to the time at which we

start the efforts. We refer to this slightly different strategy as
the deviating strategy, and the associated epidemic is denoted
Ĩ . However, tthr will increase by a time δτ , as the time at
which epidemic vanish will be greater. We are left with a
competition between two costs: dn f (nmin)δtδn which is the
(negative) cost caused by the reduction of efforts (this is a gain
from the individual point of view), and δτ f (nmin) which is the
extra (positive) cost that individuals will pay to eradicate the
epidemic. To compare these costs, we need to evaluate δτ in
terms of δt and δn.

At tthr, one has I (tthr ) = 0. For the deviating strategy, one
has Ĩ (tthr + δτ ) = 0, where Ĩ (t ) ≡ I (t ) + δI (t ), with δI (t ) the
small difference amount of infected between the two strate-
gies. We get

(I + δI )(tthr + δτ ) = I (tthr ),

İ (tthr )δτ + δI (tthr ) = 0, (F1)

δτ = −δI (tthr )

İ (tthr )
,

which allows us to evaluate δτ . Indeed, at time tthr we
have İ (tthr ) 
 −ξ Ithr, as the number of new infected is com-
pletely negligible at this point. A priori, since there is a
little spread of the epidemic in the population we will have
δI (tthr ) > δI (0) exp(−ξ tthr ), and close to this value if I (0) is
small enough. Therefore, we get δτ > δI (0)

ξ Ithr
exp(−ξ tthr ). At

this stage, we need to give an order of magnitude for tthr. We
use that I (tthr ) 
 I (0)exp(−ξ tthr ) = Ithr and thus δτ > δI (0)

ξ I (0) .
One can then easily show that δI (0) ∝ δnδt where the pro-
portionality coefficient can by written in a formal way as
∂λ
∂n (nmin)S(0) where we omit age class notations (generaliza-
tion is straightforward). Finally, we get the extra cost δC paid
by individuals,

δC = dn f (nmin)δtδn + δτ f (nmin)

> δtδn

[
dn f (nmin) + f (nmin)

∂λ

∂n
(nmin)S(0)

]
> 0. (F2)

For any positive δt, δn, one can check that [dn f (nmin) +
f (nmin) ∂λ

∂n (nmin)S(0)] > 0, where ∂λ
∂n ∝ I (0) with I (0) � Ithr.

The extra cost paid by individuals for the deviating strategy is
always positive, it is therefore worse than the initial one. The
initial strategy presented at the beginning of this Appendix is
the optimal one in this sense. One can also argue that this
local minimum is the true minimum among all eradicating
strategies, as the above reasoning will be a priori true for
higher values of n, considering the shape of f .

APPENDIX G: EXPLORATION
OF THE PARAMETER SPACE

We present below the Nash equilibrium results (first for
epidemic quantities in Fig. 18 and then for contact willing-
ness in Fig 19) where we change at each time one of the
parameters presented in Tables II and III. We see in Fig. 18
that the general behaviors observed with the original set of
parameters (unicity of the peak, reach collective immunity)
are quite robust to many different changes. As expected, con-
tacts between classes allow an epidemic spreading even in
classes where no one is infected at t = 0 (first row). Then,
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FIG. 18. Comparison of Nash equilibrium epidemics for the set of parameters of Tables II and III with one (arbitrary but realistic) parameter
change for each row (solid lines correspond to baseline parameters). Color legend is the same as in Fig. 6. First row: initial conditions change
with (S0(0), S1(0), S2(0)) = (0.99, 0.99, 0.99) for solid line, dashed (0.95, 1, 1) and dotted (0.9, 0.95, 0.99). In each case, Iα (0) = 1 − Sα (0)
and Rα (0) = 0. Second row: three different rI with rI = 1 (solid), rI = 3 (dashed), and rI = 5 (dotted). Third row: three different proportions
in the population, (N0, N1,N2) = (0.25, 0.5, 0.25) for solid line, (0.6, 0.2, 0.2) for dashed lines, and (0.2, 0.2, 0.6) for dotted lines. Fourth
row: three different matrices M1(solid), M2(dashed), and M3(dotted) defined in Table IV.

064301-27



BREMAUD, GIRAUD, AND ULLMO PHYSICAL REVIEW E 110, 064301 (2024)

FIG. 19. Comparison of Nash equilibrium contact willingness for the different set of parameters used in Fig. 18 and the same legend for
solid, dashed, and dotted lines. We keep the legend of Fig. 7 regarding colors.
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TABLE IV. Table of matrices M1, M2, and M3 (given with the form Mγ ) used for the fourth row of Fig. 18. The first one corresponds
to the one we took in our previous simulations (Tables II and III), while the two others are chosen to explore two behaviors: Matrix M2

corresponds to a society with important heterogeneous contacts, especially in households; while matrix M3 is a society which is more
homogeneous with a lot of contacts in community. Matrix elements are contact rates (per week) in our model.

MS
1 MW

1 MC
1 MH

1⎛⎝100 0 0
0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 75 0
0 0 0

⎞⎠ ⎛⎝12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

⎞⎠ ⎛⎝ 15 25 10
12.5 32.5 5
10 10 30

⎞⎠
MS

2 MW
2 MC

2 MH
2⎛⎝100 0 0

0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 75 0
0 0 0

⎞⎠ ⎛⎝12.5 15 5
7.5 25 5
5 10 12.5

⎞⎠ ⎛⎝12.5 15 20
7.5 30 17.5
20 35 12.5

⎞⎠
MS

3 MW
3 MC

3 MH
3⎛⎝75 0 0

0 0 0
0 0 0

⎞⎠ ⎛⎝0 0 0
0 50 0
0 0 0

⎞⎠ ⎛⎝25 50 25
25 50 25
25 50 25

⎞⎠ ⎛⎝12.5 25 12.5
12.5 25 12.5
12.5 25 12.5

⎞⎠
in second row regarding different rI, we see that epidemic
peak occurs at a lower level as rI increases, since individuals
do more efforts to protect themselves. In third row, we see
that the different proportion of age classes in the population
will have a huge impact on the epidemic. Indeed, it will
affect both the matrix of effective contacts (which are higher
between young people) and the risk due to infection (which

is lower for young). Hence, the observed behavior results in
a high and quick epidemic for a young population, while it is
significantly lower and slower for an old population. Finally,
in the fourth row, the precise matrix of contacts M affects
the epidemic in each class, but in a relatively moderate way
regarding the global evolution of infected proportion in the
population.
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The ability to actually implement epidemic models is a crucial stake for public institutions, as they may be
overtaken by the increasing complexity of current models and sometimes tend to revert to less elaborate models
such as the susceptible-infected-recovered (SIR) model. In our work, we study a simple epidemic propagation
model, called SIR-k, which is based on a homogeneous network of degree k, where each individual has the same
number k of neighbors. This model represents a refined version of the basic SIR which assumes a completely
homogeneous population. We show that nevertheless, analytical expressions, simpler and richer than the ones
existing for the SIR model, can be derived for this SIR-k model. In particular, we obtain an exact implicit
analytical solution for any k, from which quantities such as the epidemic threshold or the total number of agents
infected during the epidemic can be obtained. We furthermore obtain simple exact explicit solutions for small
ks, and in the large k limit we find a new formulation of the analytical solution of the basic SIR model, which
comes with new insights.

DOI: 10.1103/PhysRevE.110.044307

I. INTRODUCTION

Understanding the dynamics of epidemics is of primary
importance to allow public policies to mitigate their negative
impact [1,2]. Models of epidemic propagation have therefore
been introduced as early as one century ago, in 1927, in par-
ticular, the seminal paper of Kermack and McKendrick [3]. In
this paper, they introduce the susceptible-infected-recovered
(SIR) model, which, despite its simplicity, is still a basis of
work in many studies [4–6]. This model divides a population
into susceptible, infected, and recovered individuals, and two
parameters characterize the evolution: the transmission rate β

and the recovery rate γ . In the simplest version of the model, β
and γ are assumed to be constant on the epidemic time scale.
The time evolution of the fractions (S, I, R) of susceptible,
infected, and recovered agents is then given [5,7] by

Ṡ = −βSI,

İ = βSI − γ I,

Ṙ = γ I.

(1)

This system of differential equations was studied in detail
during the past century [5,7,8]; in particular, explicit solutions
describing the beginning of epidemics [3], and complete im-
plicit solutions [9–11], have been derived.

Even though the basic SIR model has been successful,
it can be considered too simplistic. This is why more accu-
rate variants [12–16] and a number of more complex models
[7,17–20] have since been introduced. Among these models,
compartment models on networks provide a good balance
between simplicity, physical understanding, and improved ac-
curacy [16,21–28]. This approach benefited both from the
wealth of activity in network theory in the past two decades
and from the increased availability of large amounts of data

[29] about contact networks (see [30,31] for a complete re-
view on the subject). This has resulted in a steady increase
of papers published on the subject of epidemics on networks
since the year 2000 [32].

Despite their success in extending the basic SIR model,
these network models so far lack one important feature,
which is the existence of analytical solutions for the models’
equations. The importance and usefulness of these analytical
results should not be underrated, as they provide a much
deeper understanding of the mechanisms at work than can
be achieved numerically. Moreover, they constitute a bench-
mark for more complex models where no analytical solution
is available. Our goal here is to provide such analytical re-
sults in the case of random homogeneous networks, which
are characterized by their constant connectivity k. For any
given value of k we obtain analytic expressions analogous
to (and in some circumstances stronger than) the ones ex-
isting for the SIR model (1); when k = 2 or 3 we obtain
simple explicit expressions, while in the limit k → ∞ we
recover the basic SIR, leading to some new physical insights
as well as some useful approximations of this well-known
model.

The article is organized as follows. In Sec. II, we present
the SIR model on a random homogeneous network with k
neighbors, called the SIR-k model, and its dynamic equa-
tions. In Sec. III, we derive the (implicit) analytical solution
of these equations. We then study the impact of our results
on the epidemic threshold, and the case of a small number
of neighbors, which provides more explicit expressions. In
Sec. IV, we focus on the limiting case k → ∞ to derive
the exact solution of the SIR model. We then derive some
significant approximations with simpler expressions and study
the consequences of our results on the epidemic’s peak time.
Finally, concluding remarks are gathered in Sec. V.
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II. SIR MODEL ON A RANDOM HOMOGENEOUS
NETWORK WITH k NEIGHBORS

We consider a population of N individuals who can be in
one of the three possible states (susceptible, infected, recov-
ered). Each agent is in contact with k fixed neighbors only.
These neighbors are chosen randomly among the population.
The standard SIR model, where everyone is in contact with
everyone, corresponds to the large-k limit of this model. The
population can be represented by a random homogeneous net-
work with fixed connectivity k, where each node corresponds
to an individual and edges connect neighboring individuals.
Associated with each of these edges is a probability λdt that
an infected individual will infect a (susceptible) neighbor dur-
ing the time interval [t, t + dt[. As in the basic SIR model,
infected individuals may also recover from the disease during
that time interval with a probability γ dt . The epidemic then
spreads through the network following a standard Markovian
process (see [33] for a detailed procedure), and dynamic quan-
tities are averaged over realizations of the network and of the
Markovian process.

The time evolution of the average fractions S(t ), I (t ), and
R(t ) of susceptible, infected, and recovered individuals re-
quires taking into account correlations between the states of
two neighbors, which are very strong in a network. For a SIR
model on a k-homogeneous network we obtain the system of
equations

Ṡ = −λkGsiS, (2a)

İ = λkGsiS − γ I, (2b)

Ṙ = γ I, (2c)

with S(t ) + I (t ) + R(t ) = 1. Here, Gsi(t ) corresponds to the
probability that a neighbor of a given susceptible individual is
itself infected; thus kGsi(t ) is the average number of infected
individuals in the neighborhood of a susceptible individual.
Introducing Gss(t ) and Gsr (t ) in a similar way, with Gss(t ) +
Gsi(t ) + Gsr (t ) = 1, the time dependence of these two-point
correlators is given by

˙[SGss] = −2SGss(k − 1)Gsiλ, (3a)
˙[SGsi] = SGss(k−1)Gsiλ,−SGsi[(k−1)Gsi + 1]λ − γ SGsi

(3b)

˙[SGsr] = γ SGsi − SGsr (k − 1)Gsiλ. (3c)

To derive (3) we made the degree pairwise approximation
[34], that is, we neglected three-point correlations (and be-
yond) which should appear in the evolution of Gsi. Within
this approximation, the derivation can be sketched as follows.
We note first that XGxy(t ) corresponds to the probability for a
given edge (here, considered oriented, with the starting vertex
being in state x and the arrival vertex being in state y) to be
in the state x—y at t . Consider first the case x = y = s and a
given edge s—s. For an agent located at one end of this edge to
be infected, it is necessary that one of its (k − 1) other neigh-
bors be infected and transmit the disease. If we neglect the
three-point correlations (between the initial node, its neighbor,
and the second neighbors), each of the other neighbors has a
probability Gsi to be infected, and in that case, a probability
λdt to transmit the disease. Thus, the time evolution of SGss

FIG. 1. Main panel: Time delay �t = t (S) − tSIR(S) with tSIR

obtained by numerically solving (1). Solid thick dark blue: analytical
expression (26), corresponding to the limit case SIR-∞, yielding 0
as expected. Purple (k = 50) and magenta (k = 20) plots: numerical
resolution of the SIR-k model (2) (solid lines) and corresponding
analytical solution (11) (dots). Right inset: proportion of susceptible
S(t ) for the same configurations. The gray horizontal dotted lines
indicate the range of S values taken for the main panel. Left inset:
proportion of infected I (t ) for k = 5. Red dotted line: numerical res-
olution of the SIR-5 model Eqs. (2) and (3); green solid line: average
over 100 realizations of the Markovian process of an epidemic on a
large homogeneous network of degree k = 5, with N = 3000 nodes
(with random initial infected nodes); black dashed line: basic SIR
model with β = λk. Parameters are μ = 0.25, S0 = 0.99.

is given, at order dt , by Eq. (3a) (the factor 2 accounts for the
two ends of edge s—s). Equation (3b) can be explained in a
similar way; SGsi corresponds now to the number of edges,
starting from a susceptible node to an infected one. See [35]
for a more detailed derivation. This approximation has been
for example used in [31] to derive equations for the SI model
on a generic network.

In the case of homogeneous networks with a large num-
ber of nodes N → ∞, as we consider here, the fraction of
loops with arbitrary finite size vanishes [36–38]. Therefore,
the correlations beyond two-point ones can be neglected and
the degree pairwise approximation becomes exact in this limit
[39]. Equations (2) and (3) form what we will call the “SIR-k
model” in the following. In Fig. 1 (left inset), we demonstrate
the accuracy of our approximation by comparing a numerical
solution of Eqs. (2) and (3) with a Markovian evolution of a
population according to the same dynamics. The parameters
of our problem are S0 the initial proportion of susceptible
agents, k the number of neighbors, β = λk the contagious-
ness and γ the recovery rate, which leads to a dimensionless
quantity μ = γ /β driving the epidemic, while β only changes
the time scale (see for example [10]).

III. ANALYTICAL SOLUTION OF THE SIR-k EQUATIONS

A. General expression

From Eqs. (2) and (3), we can obtain an ordinary differ-
ential equation involving only S(t ). Inserting Gsi = −Ṡ/(βS),
which we get from Eq. (2a), into Eq. (3a), we have

˙[SGss]

SGss
= 2

k − 1

k

Ṡ

S
. (4)
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At t = 0, S(0) = S0 = Gss(0) if we assume that there are no
correlations at time 0 (i.e., the neighborhood of infected and
susceptible individuals is the same), then Eq. (4) can be inte-

grated as Gss = S
2
k
0 S1− 2

k . Using Eq. (2a) and this expression
for Gss, Eq. (3b) yields

S̈ = λS
2
k
0 S1− 2

k (k − 1)Ṡ + k − 1

k

Ṡ

S
− (γ + λ)Ṡ. (5)

This is a second-order differential equation in S that we need
to integrate twice. A first integration is obtained by dividing
(5) by Ṡ and introducing ϕ(S) = Ṡ, which verifies

dϕ(S)

dS
= λS

2
k
0 S1− 2

k (k − 1) + k − 1

k

ϕ(S)

S
− (γ + λ). (6)

Equation (6) can be integrated as an equation in the variable S
to give

ϕ(S) = kS2/k
0 λS2(1− 1

k ) − k(λ + γ )S + C1S1− 1
k , (7)

where C1 is given by the initial conditions: C1 =
Ṡ(0)S−1+1/k

0 − λkS1+1/k
0 + k(λ + γ )S1/k

0 . Using Ṡ(0) =
−λkS0(1 − S0), this constant reduces to C1 = kγ S1/k

0 .
Changing to the variable z ≡ (S/S0)

1
k , and using μ = γ /β,

we obtain

ż = λP(z), P(z) = S0zk−1 − (kμ + 1)z + kμ. (8)

Separating the variables z and t and using the partial frac-
tion decomposition of 1/P(z) in terms of the roots z j ( j =
0, . . . , k−2) of P(z), the integral of Eq. (8) becomes∫ z

1

dz′

P(z′)
=

k−2∑
j=0

∫ z

1

Aj

z′ − z j
dz′ = λt, (9)

with

Aj = 1

P′(z j )
= 1∏

l �= j (z j − zl )
. (10)

Equation (9) readily gives an explicit expression for t as a
function of S as

t (S) = 1

λ

k−2∑
j=0

Aj ln

(
(S/S0)1/k − z j

1 − z j

)
. (11)

Note that the complex roots z j are pairwise complex conjugate
so that the whole sum is real, as it should be. One then gets
a parametric solution for the number of infected individuals
under the form (t (S), I (S)) by integrating Eq. (2b). Indeed,
since S(t ) is monotonous, Eq. (2b) can be rewritten as

dI

dS
= −1 − γ I

dt

dS
, (12)

which upon integration yields

I (S) =
(

1 − S0 −
∫ S

S0

eγ t (s′ )ds′
)

e−γ t (S). (13)

The maximum of I corresponds to the value of S where
dI/dS = 0, that is,

I (S)
dt

dS
= − 1

γ
, (14)

FIG. 2. (a) Orange squares (resp. black diamonds): location, in
the complex plane, of the roots of the polynomial P(z) Eq. (8) for
k = 50 (resp. k = 20) with S0 = 0.8 and μ = 0.25. (b) Blow-up
showing, in the complex plane, the limit as k → ∞ of the α j de-
fined by z j = 1 + α j/k. The complex z j (and thus the complex α j)
come in conjugate pairs. (c) Zoom on the complex plane close to 1
with z(t ) = (S(t )/S0)1/k traveling the green line from z1 = z(−∞)
to z0 = z(∞) and passing through z(0) = 1. (d) Blue line (resp. red
line): illustration, for k = 20, of the variation with μ of the roots
z0(μ) (resp. z1(μ)) for S0 = 0.99 (solid line) and S0 = 1 (dashed
line). The value μ∗

k such that z0(μ∗
k ) = z1(μ∗

k ) = 1 is the epidemic
threshold.

with t (S) explicitly given by (11), while the calculation of I (S)
involves a single numerical integral over S.

We checked for many different values of the parameters
(S0, μ, k) that the analytical solution (11) perfectly repro-
duces the numerical resolution of (2) and (3), and we illustrate
it for one example in Fig. 1. Note that a similar approach
allows us to address the SI model, which corresponds to the
limit μ → 0; in that case we get

S(t ) = S
− 2

k−2
0

(
1 − S0

S0
eλ(k−2)t + 1

)− k
k−2

, (15)

which in the limit k → ∞ coincides with the known solution
of the SI model [7].

B. Epidemic threshold

We now comment on the consequences of Eq. (11). Poly-
nomials such as P(z) in Eq. (8) have a long history, dating
back to Lambert [40,41] and Euler [42]. In particular, one
can explicitly express all the roots z j as an infinite series (see
[43,44]). As illustrated in Fig. 2(a), for k > 2 there are two
real positive roots, z0 ∈ [0, 1] and z1 ∈ [1,∞[. Since S/S0 ∈
[0, 1], the only possible divergence of t in (11) corresponds
to the root z0, and we thus get that S∞ ≡ limt→∞S(t ) = S0zk

0.
A useful quantity for public agencies in charge of controlling
the epidemic (see [8] for the basic SIR model) is the fraction
of the population that will be infected during the course of
the epidemic; it can be expressed as I (k)

tot = S0 − S∞ = S0(1 −
zk

0 ). The second positive real root z1 can then be interpreted as
the nonphysical limit to which S would tend if one follows the
SIR-k equations for negative times, S−∞ ≡ limt→−∞S(t ) =
S0zk

1 > 1. As illustrated in Fig. 2(c), the associated quantity
z(t ) = (S(t )/S0)1/k decreases from 1 to z0 for t ∈ [0,+∞[,
and from z1 to 1 for the non-physical part t ∈] − ∞, 0].
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Whatever the value of μ and k, P(1) = S0 − 1. Thus, as
illustrated in Fig. 2(d), z = 1 cannot be a root of P(z) for
S0 < 1, but always is for S0 = 1. In the latter case, two situa-
tions can occur. The first one would be that z1 = 1 and z0 < 1,
in which case an epidemic starting with S0 = 1 (i.e., with an
infinitesimal fraction of infected individuals) would eventu-
ally propagate into the network and infect a finite fraction of
the population. Introducing the time t0 corresponding to the
constant term in Eq. (11), namely

t0 = −1

λ

k−2∑
j=0

Aj ln |z j − 1| ∼
S0→1

ln(1 − S0)

λ(2 + k(μ − 1))
, (16)

we see that limS0→1 t0 = ∞. This expresses the fact that the
beginning of the epidemic takes an infinite amount of time
as the initial proportion of infected individuals goes to zero.
The other possibility, z0 = 1 and z1 � 1, corresponds to S∞ =
1: an epidemic starting with S0 = 1 does not propagate. The
value μ∗

k of the parameter μ corresponding to the transition
between these two regimes is the threshold beyond which, for
S0 = 1, the epidemic does not spread. At the threshold, z = 1
is a double root of P(z) and thus μ∗

k = (k − 2)/k.1 As k → ∞
we get μ∗

k → 1, which coincides with the result of Kermack
and McKendrick [3] for the original SIR model.

C. Small number of neighbors

It is possible to invert the expression (11) for k = 2 and
3. First, consider the case k = 2. A random network of size
N then corresponds to a set of disconnected loops of differ-
ent sizes. In the N → ∞ limit, however, all but a negligible
proportion of agents would belong to a large loop, and the
average quantities we consider here, for example in Eqs. (2)
and (3), behave in the same way within a random network or
within a single connected loop. Furthermore, there is only one
root z0 = 2μ/(I0 + 2μ), with I0 = 1 − S0 the initial fraction
of infected individuals. We can therefore write (11) as

t (S) = 1

λ
A0 ln

(
(S/S0)1/2 − z0

1 − z0

)
, (17)

with A0 = −1/(I0 + 2μ) < 0. Inverting Eq. (17) we get

S(t ) = S0

[
1 + I0(e−t/τ − 1)

I0 + 2μ

]2

, τ = 1

λ(2μ + I0)
. (18)

S(t ) thus follows an exponential decay with rate τ and con-
verges to S∞ = S0z2

0, as expected. We get I (2)
tot = S0(1 −

(1 − I0/(2μ))−2), which varies from S0 for strong epidemic
I0/μ 
 1 to 0 with I0/μ � 1. In particular, limS0→1 I (2)

tot = 0
for any positive value of μ, which can also be seen from the
fact that μ∗

2 = (k − 2)/k = 0. This is unique to the k = 2 case
because of its essentially 1d geometry, which implies that the
number of infected agents caused by a single patient zero is
necessarily finite.

1This expression for the threshold can be derived also from the
results in Sec. III C of [28]

For the case k = 3, we get P(z) = S0z2 − (3μ + 1)z + 3μ,
which has two (real positive) roots,

z0,1 = 1

2S0
[(3μ + 1) ±

√
(3μ + 1)2 − 12μS0], (19)

yielding

t (S) = A0

λ
ln

[
((S/S0)1/3 − z0)(1 − z1)

((S/S0)1/3 − z1)(1 − z0)

]
, (20)

where we have used that A1 = −A0 = 1/(z1 − z0). We can
invert Eq. (20) to get

S(t ) = S0

(
z0 − z1Beλ(z0−z1 )t

1 − Beλ(z0−z1 )t

)3

, B = 1 − z0

1 − z1
. (21)

As expected, this expression verifies that S(0) = S0 and
S∞ = S0z3

0. The explicit expression for I (3)
tot is S0 − 1

8S2
0
[(3μ +

1) +
√

(3μ + 1)2 − 12μS0]3. For S0 = 1, the roots simplify
to z0 = min(1, 3μ), z1 = max(1, 3μ), and we recover μ∗

3 =
1
3 ; for μ < μ∗

3, I (3)
tot = 1 − (3μ)3, while for μ � μ∗

3 the epi-
demic does not propagate as S∞ = 1.

Finally, we consider the case k = 4, but limiting our-
selves for simplicity to the limit S0 → 1 and the regime μ <

μ∗
4 = 1/2. In that case, P(z) has three roots, which, intro-

ducing κ = √
1/4 + 4μ, can be written as z0 = κ − 1

2 , z1 =
1, z2 = −κ − 1

2 with furthermore A0 = [κ (2κ + 3)]−1, A1 =
[2 − 4μ]−1, A2 = [κ (2κ − 3)]−1. The epidemics propagate
only if z0 < 1, that is if μ < μ∗

4 = 1/2, in which case, scal-
ing out the time t0 introduced in Eq. (16), the dynamics is
described by

t − t0 = 1

κλ

∑
ε=±1

(
1

2κ + 3ε
ln

∣∣∣∣∣S1/k + εκ + 1
2

S1/k − 1

∣∣∣∣∣
)

, (22)

and I (4)
tot = (−16μ2 − 8μ + 1/2) + (1 + 8μ)

√
4μ + 1/4

(which is indeed such that I (4)
tot (μ∗

4 ) = 0).

IV. LARGE − k LIMIT OF THE SIR − k MODEL

A. Exact expression

Another interesting limit of the SIR-k model is k → ∞,
through which we recover the original SIR model, but with a
new point of view. As illustrated in Fig. 2, z0 and z1 converge
to 1 (from below and from above, respectively) and all the
other roots converge to the unit circle in the complex plane.
This can be understood from their series expansion in [43,44].
Using that z j is a root of P(z), we can write the factor Aj

defined in Eq. (10) as

Aj =
[

(k − 1)kμ
z j − 1

z j
− k(μ − 1) − 2

]−1

. (23)

For most roots of P(z), z j − 1 = O(k0) (we refer to them as
“far from one”) and thus Aj = O(k−2). It is only for the roots
close to one, and more precisely such that z j − 1 = O(k−1),
that Aj = O(k−1). In the same way, the logarithm factors are
O(k−1) for the roots far from one and O(k0) for the roots close
to one. In Eq. (11), noting that λ−1 = kβ−1, we see that the
sum over roots far from one involves O(k) terms of order
O(k−2) and has therefore a negligible O(k−1) contribution,
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whereas each root close to one has an O(k0) contribution. We
can thus write all relevant roots as z j = 1 + α j/k where α j

reaches a constant value as k → ∞. Writing that z j is a root
of P(z) thus reads

S0

(
1 + α j

k

)k−1
= kμ

[(
1 + 1

kμ

)(
1 + α j

k

)
− 1

]
, (24)

which, taking the limit k → ∞ on both sides (with α j now
corresponding to that limit), gives exp(α j ) = (μ/S0)(1/μ +
α j ). Defining now γ j = α j + 1/μ and χ = (S0/μ)e−1/μ, we
get

χ = γ j exp(−γ j ). (25)

Equation (25) can be rewritten in terms of the Euler T func-
tion (see [41] for mathematical details) as γ j = T (χ ). The T
function has two real branches T0 and T−1 which correspond
to the two positive real roots of P(z), and an infinite number of
complex branches corresponding to the complex numbers γ j .
In particular, we get for the first root limk→∞ S∞ = μT0(χ ),
which is equivalent to the well-known self-consistent equa-
tion S∞ = 1 + μ ln(S∞/S0) given, for instance, in [4]. Taking
the large-k limit in Eqs. (23) and (11), together with β = λk
and the expression of the relevant z j = 1 + α j

k , leads to

β t (S) = 1

μ

∞∑
j=−∞

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)
,

α j = T− j (χ ) − 1/μ, (26)

where the complex quantities α j are pairwise complex conju-
gate (T−2 is conjugate with T1, T−3 with T2, etc.) so that the
whole sum is real. In Fig. 1, we check the accuracy of this
expression.

B. Approximate expression for t (S)

An implicit analytical solution t (S) for the SIR model (1)
is known in the literature and takes the form of an integral
(see, for instance, [9]). Our formula (26) is an alternative ex-
pression for t (S) and comes with interesting new insights, as it
depends on quantities α j , which have an explicit expression.
In Fig. 2, we show the first terms of the sequence. We see
that α0 < 0 and α1 > 0 are indeed the two unique real values,
while the subsequent α j are purely complex; the latter are well
approximated by α j  2π i j for large (possibly negative) j as
the roots z j converge to the unit circle exp( 2π i j

k−2 ). Therefore,
for m sufficiently large, the contributions of the terms j � m
of Eq. (26) can be approximated by

2

μ
�

⎡
⎣ ∞∑

j=m

ln
(
1 − 1

α j
ln(S/S0)

)
α j + 1/μ − 1

⎤
⎦

 −2 ln (S/S0)

(2π )2μ

∫ ∞

m

1

α2
j

d j  2 ln (S/S0)

(2π )2μ

1

m
, (27)

in which we use that α j + 1/μ − 1  α j which is valid as
long as 2π j 
 1/μ, and which becomes quickly negligible
as m increases if μ is not too small.

Further understanding of the qualitative behavior of the
sum Eq. (26) can be obtained, noting that the effective re-
production number Reff = S/μ has to be larger than 1 for the

FIG. 3. Comparison of exact S (solid lines) with approximation
Eq. (28) at first and second order in δμ = (1 − μ) (dotted and dashed
lines respectively). S0 = 0.99 is fixed and μ evolve from 0.1 to 0.9 :
(μ = 0.1, red), (μ = 0.3, brown), (μ = 0.5, magenta), (μ = 0.7,
green), (μ = 0.9, blue). Although Eq. (28) is formally an expansion
near μ = 1, we see that its validity extends in practice in the whole
range of μ, except in the neighborhood of 0.

epidemic to propagate. One can therefore assume μ ∈ [0, 1]
and S0 in the interval [μ, 1]. Thus, for μ not too far from
1 and using δμ = (1 − μ) as a small parameter, we can in
any case assume δS0 = (1 − S0) < δμ. In practice, however,
we think of the initial time t = 0 as a situation where most
agents are susceptible, only a very small fraction is infected,
and nobody has recovered yet. In most of the concrete cases,
and for essentially all the illustrations, we shall consider below
δS0 � δμ, and we shall assume that at worse δS0 = O(δμ2).
In that case, one can show (see Appendix A 3) that at all
times δS = (1 − S) = O(δμ), implying also that ln(S0/S) =
O(δμ).

Noting (cf. Appendix A) that at α0(μ=1) = α1(μ=1) =
0, when for j � 2 α0

j := α j (μ=1) �= 0, this means that the
contribution of the two first terms j = 0, 1 are O(δμ0), when
all the higher j contributions are O(δμ). We thus have

βt (S) = 1

μ

⎡
⎣ ∑

j=0,1

ln
(
1 + 1

α j
ln(S0/S)

)
α j + 1/μ − 1

− 2K(0) ln(S0/S) + O(δμ2)

⎤
⎦, (28)

with K(0) := �(
∑∞

j=2(α0
j )−2)  −0.028 a, fairly small, pure

number. As illustrated in Fig. 3, the approximation Eq. (28)
is actually very accurate on a significant portion of the range
[0, 1], and this range can be even further extended by comput-
ing the O(δμ2) correction to Eq. (28) (cf. Appendix A).

C. Epidemic peak time

As mentioned, an important quantity in the context of an
epidemic breakout is the epidemic peak time, which, using
the fact that, for SIR, the epidemic peak dI/dt = 0 implies
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S = μ, can be obtained as tpeak = t (S =μ), and for which even
a leading order approximation is presumably useful.

For μ sufficiently close to 1, this can be obtained starting
from Eq. (28), neglecting the −2K(0) ln(S0/S) correction, and
evaluating α0 and α1 to leading order in δμ. This calculation
is performed in Appendix B, leading to Eq. (B1). From this
we get

βtpeak  1

p

[
ln

(
1 − ln(S0/μ)

δμ − p

)
− ln

(
1 − ln(S0/μ)

δμ + p

)]
,

(29)

with p =
√

2δS0 + δμ2, valid for δμ = (1 − μ) small (δS0 =
(1 − S0) < δμ, and possibly � δμ).

For μ a bit further away from 1, where this approximation
starts to degrade, it turns out that a better approximation of
tpeak can be obtained following the same approach but using
the μ → 0 expansion of α0 and α1. We get (see Appendix B2)

βtpeak  1

μ

[
ln

(
1 − ln(μ/S0 )

χ+χ2−1/μ

)
χ + χ2 − 1

+
ln

(
1 − ln(μ/S0 )

(1−S0 )/(S0−μ)

)
(1 − S0)/(S0 − μ) + 1/μ − 1

]
,

χ = (S0/μ)e−1/μ. (30)

An expansion for μ � 1 can finally be obtained from
the integral form of t (S) given in [9], and leads to (cf.
Appendix B1)

βtpeak  ln

(
S0

1 − S0

)
− ln μ

−μ

(
1 + ln(1 − S0) − 1

2
ln2 S0

μ
− Li2(S0)

)
, (31)

with Lin the polylogarithm function.
In Fig. 4, we compare the predictions in Eqs. (29), (30),

and (31) with the exact βtpeak, demonstrating that, with
S0 � 0.999, the full range of μ ∈ [0, 1] is covered with these
three regimes.

Equations (29), (30), and (31), corresponding respectively
to large, intermediate, and small μ, provide explicit expres-
sions and physical indications of how one can delay the
epidemic peak in practice. Let us assume that the parameter
γ which characterizes the rate of recovery from the illness
is given by biological factors, and thus fixed, but that the
transmission rate β can be modified by nonpharmaceutical in-
terventions such as wearing masks or limiting contact between
people. We thus assume that μ can be modified, but that this
is done with βμ = γ constant.

First, we see in Fig. 4 that the curve βtpeak(μ) is rather
flat in the range μ ∈ [0.05, 0.5], implying that tpeak is es-
sentially proportional to 1/β for μ < 0.5. Then, different
kinds of corrections appear in the different regimes. The most
useful formula is presumably Eq. (30), which provides a
compact and explicit analytical result (with only two terms),
in a regime that corresponds to most of the practical use
(2 � R0 � 5).

As a practical example, starting with S0 = 0.99 and ap-
plying restrictive measures to change μ = 0.25 to μ = 0.5

FIG. 4. Comparison of the exact βtpeak(μ) (blue solid line) with
different approximations, for a fixed S0 = 0.999 and μ ∈ [0.05, 1].
Cyan dotted line: approx. (31) which works at small μ. Red dashed
line: approx. (30) which is rather valid for small and intermediate
μ. Orange dashed line: approx. (29) for μ close to 1 and also for
intermediate μ. Dotted green line: approximation obtained from
Eq. (28) with S = μ, which match the exact tpeak(μ) extremely well
except for very small μ’s. The regimes of validity of the different
approximations improve as S0 → 1, and would somewhat degrade
as δS0 increases.

(which means changing R0 from 4 to 2) would allow reducing
tpeak by a factor of 2.25 according to Eq. (30), while the exact
reduction factor is 2.18, with very similar absolute values. For
S0 = 0.9, this factor is only 1.61, according to Eq. (30), while
the exact value is 1.57. We therefore have a precise indication
about tpeak from a very simple expression, which does not
require any knowledge of the Lambert function and does not
involve the computation of an integral. This makes it possible
to analyze qualitatively why early detection of the epidemic
is important, as restrictive measures to delay the peak will
be significantly less efficient for an epidemic that has already
spread significantly in the population.

V. CONCLUSION

In this work, we have derived Eqs. (2) and (3) for the SIR-k
model, and obtained an exact implicit expression of t (S) (11),
valid for arbitrary k, as a finite sum over the roots z j of the
polynomial P(z) (8).

It turns out that the main qualitative properties of the epi-
demic dynamics are governed by its two positive real roots
(z0, z1). In particular, the proportion of agents infected during
the total duration of the epidemic is given by I (k)

tot = S0(1 −
zk

0 ), for which we have an explicit formula both for small
and very large k. Taking S0 = 1, i.e., assuming a negligibly
small initial proportion of infected agents (for easier read-
ing), we got I (3)

tot = 1 − (3μ)3 for k = 3, while for the SIR
model limit, we obtained I (∞)

tot = 1 − μT0(χ )  1 − μχ =
1 − e−1/μ. Thus, for small μ (contagious diseases), the larger
k, the more virulent the epidemic, as I (∞)

tot will converge faster
to 0 with μ → 0 than I (k)

tot .
The values of the real roots (z0, z1) also affect the threshold

value of μ for which, even for an infinitely small initial pro-
portion of infected individuals, an epidemic starts to propagate
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and affect a finite proportion of the agents. This thresh-
old is given by the condition z0(μ∗

k ) = z1(μ∗
k ) = 1, leading

to μ∗
k = (k − 2)/k. This value is lower than its counterpart

for the basic SIR model μ∗
SIR = μ∗

∞ = 1, which indicates
that the propagation of epidemics is more difficult in the
SIR-k model than in the basic SIR one, in agreement with
the final epidemic size, which is also lower for the SIR-k
model. This is in contrast with heterogeneous networks, for
which an epidemic spreads more easily than in the SIR
model.

In the cases k = 2 and k = 3 we got exact explicit ex-
pressions for S(t ). In the limit k → ∞, we obtained new
exact expressions for the original SIR model, which pro-
vides a new point a view, together with useful approximate
results for this well-known problem. In particular, Eq. (28)
and Fig. 3 demonstrate that for all values of μ except
near 0, keeping only the contributions of the real α j’s, i.e.,
j = 0, 1, provide an excellent approximation of t (S). Fur-
ther approximation for the epidemic peak time Eqs. (29),
(30), and (31) are shown in Fig. 4 to work extremely well
numerically.

The SIR-k model on homogeneous networks presumably
provides a good balance between an increase in complexity
and an increase in effectiveness. It is characterized by only
three parameters (S0, μ, k) which, compared with the basic
SIR, only adds the parameter k corresponding to the average
number of possible contacts of individuals, a relatively acces-
sible quantity in practice. Our SIR-k model is almost as simple
as the basic SIR model. Indeed, it benefits from a simpler ex-
act solution than the SIR, while numerical resolution remains
fast and tractable (six equations instead of three). We therefore
hope that our work will encourage institutions to consider
using the SIR-k model in practice, instead of the basic SIR,
especially as the two produce significantly different results
when the number of neighbors is low, as shown in Fig. 1. Our
results pave the way for the analytical study of more realistic
social networks, such as heterogeneous networks with the
small-world property [21,45].

APPENDIX A: THE μ → 1 REGIME FOR t (S)

We start by rewriting Eq. (26) as

β t (S) = 1

μ

∑
j=0,1

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)

+ 2�
⎡
⎣1

μ

∞∑
j=2

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)⎤
⎦.

(A1)

1. Contribution of the j � 2 to Eq. (A1)

Noting δμ = (1 − μ) � 1 and δS0 = (1 − S0) < δμ, one
can show that for j � 2,

α j = −1 + τ j + τ j

τ j − 1
δS0 − δμ + O(δμ2), (A2)

with τ j := T− j (1/e) �= 1,∀ j � 2.

Therefore, for j � 2, ln(S0/S)/α j = O(δμ), and in
Eq. (A1), we can expand the log as

ln

[
1 + ln(S0/S)

α j

]
= ln(S0/S)

α j
− 1

2

ln(S0/S)2

α2
j

.

Together with Eq. (A2), this leads, for the contribution of the
j � 2 to Eq. (A1), to

2

μ
�

∞∑
j=2

1

α j + 1/μ − 1
ln

(
1 + ln(S0/S)

α j

)

= 2 ln(S0/S)

μ
[K0 + δμKμ − δS0KS0

− ln(S0/S)Kln + O(δμ3)], (A3)

with

K0 = �
∑
j�2

1

(τ j − 1)2
 −2.8 × 10−3, (A4)

Kμ = �
∑
j�2

[
1

(τ j − 1)2
+ 1

(τ j − 1)3

]
 −3.0 × 10−3, (A5)

KS0 = �
∑
j�2

2τ j

(τ j − 1)4
 −3.8 × 10−3, (A6)

Kln = �
∑
j�2

1

2(τ j − 1)4
 7.7 × 10−5. (A7)

These dimensionless numbers are actually rather small, which
explains the quality of the approximation (28) in a large range
of δμ. This is illustrated in Fig. 5.

2. Expansion for α0 and α1

For z → 1, we have [41]

T0(z) = 1 − p + O(p2), (A8)

T−1(z) = 1 + p + O(p2), (A9)

with p := √
2(1 − ez) and z < 1/e. With z = χ =

(S0/μ) exp(−1/μ) (implying z < 1/e since S0 < 1 and
the function 1

μ
e−1/μ increases over [0, 1] from 0 to 1/e), we

have ez  1 − δS0 − δμ2/2, and thus

p 
√

2δS0 + δμ2. (A10)

With α0,1 = T0,−1(χ ) − 1/μ, we eventually obtain

α0 = −p − δμ, α1 = +p − δμ. (A11)

3. Range of variation of S(t )

As t goes from O to ∞, S decreases monotonously from
S0 to S∞ = μT0(χ ), which following the same reasoning as
above, behaves for μ close to one as

S∞  1 − p − δμ. (A12)

If δS0 and δμ are of similar magnitude, i.e., if δS0 = O(δμ),
this implies δS∞ = O(

√
δμ), which makes the discussion of

the size of the neglected terms in Eqs. (28) and (29) somewhat
more involved, without changing the main qualitative content
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FIG. 5. Main panel: Time delay �t = t (S) − tSIR(S) with tSIR

obtained through analytical expression (26) which has been shown to
be exact. Purple solid line: exact expression (26) as a reference. Ma-
genta (Resp. pink) dotted (Resp. dashed) lines: first (Resp. second)
order of Eq. (28). Violet solid line: expression (26) with the exact
expression of the two real roots only. The gap between this last curve
to the first (Resp. second) order curve shows the corresponding cor-
rection of these orders. Inset: proportion of susceptible S for the same
configurations. The gray horizontal dotted lines indicate the range of
S values taken for the main panel comparison (with corresponding
vertical lines). Parameters are μ = 0.5, S0 = 0.99, corresponding to
the third value of Fig. 3 which is near the standard values (R0  2).
The discrepancy between the exact curve and the approximation (28)
is at most of 0.5%, much lower than the uncertainty that one can
expect from μ in practice.

of these equations. On the other hand, if one assumes, as is
most of the time the case in practice, δS0 significantly smaller
than δμ, and more specifically δS0 � O(δμ2), Eq. (A12) im-
plies that δS∞ = O(δμ), and thus ln(S0/S) = O(δμ) for all
times. We have worked under this assumption in Secs. IV B
and IV C and in the Appendixes A1 and B1.

APPENDIX B: EXPLICIT EXPRESSIONS FOR t (S)

1. Expansion near μ = 1

With Eq. (A11), the leading order contribution to t (S) as
μ → 1 reads

βt (S) = 1

p

[
ln

(
1 − ln(S0/S)

δμ − p

)
− ln

(
1 − ln(S0/S)

δμ + p

)]
.

(B1)

2. Expansion for intermediate μ

From Fig. 3, and from the discussion in Appendix A1, we
see that even if this is formally justified from an expansion

near μ = 1, neglecting the contributions of the complex α js
( j � 2) is actually a rather accurate approximation in the
whole range of μ except in a small neighborhood of 0. For
reasonably small μ, the contribution of the two (remaining)
real roots is then rather well described using the Taylor ex-
pansion of T0(χ ) (valid for χ → 0, thus μ → 0) given in [41].
We obtain α0  χ + χ2 − 1/μ and α1  (1 − S0)/(S0 − μ),
from which we get an explicit approximation of t (S)

βt (S)  1

μ

[
ln

(
1 − ln(S/S0 )

χ+χ2−1/μ

)
χ + χ2 − 1

+
ln

(
1 − ln(S/S0 )

(1−S0 )/(S0−μ)

)
(1 − S0)/(S0 − μ) + 1/μ − 1

]
,

χ = (S0/μ)e−1/μ. (B2)

Equation (B2), which has been derived assuming μ small
(once the contribution of the α j, j � 2 are neglected), is nu-
merically accurate even for larger values of μ, as illustrated in
Fig. 4 for S0 = 0.999 and μ ∈ [0.2, 0.55].

3. Small μ expansion

For completeness, we provide here also the small μ expan-
sion of tpeak. Starting from the expression in [10], Eq. (10.22),
the time tpeak for SIR is given (see the discussion below
Eq. (10.37) and the one about time rescaling below Eq. (10.6))
by

tpeak = μ

γ

∫ ln μ/S0

0

du

S0eu − μu − 1
. (B3)

Changing variables to v = eu/μ and expanding the integral
gives

tpeak = μ

γ

∫ μ/S0

1

dv

v

1

S0v − 1 − μ ln v

= μ

γ

∫ μ/S0

1

dv

v

(
1

S0v − 1
+ μ ln v

(S0v − 1)2
+ O(μ2)

)
,

(B4)

which upon integration gives at lowest order

βtpeak =
[

ln

(
S0

1 − S0

)
− ln μ

−μ

(
1 + ln(1 − S0) − 1

2
ln2 S0

μ
− Li2(S0)

)]
,

(B5)

with Lin the polylogarithm function.
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We investigate an SIR model of epidemic propagation on networks in the context of mean-field
games. In a real epidemic, individuals adjust their behavior depending on the epidemic level and the
impact it might have on them in the future. These individual behaviors in turn affect the epidemic
dynamics. Mean-field games are a framework in which these retroaction effects can be captured. We
derive dynamical equations for the epidemic quantities in terms of individual contact rates, and via
mean-field approximations we obtain the Nash equilibrium associated with the minimization of a
certain cost function. We first consider homogeneous networks, where all individuals have the same
number of neighbors, and discuss how the individual behaviors are modified when that number is
varied. We then investigate the case of a realistic heterogeneous network based on real data from a
social contact network. Our results allow to assess the potential of such an approach for epidemic
mitigation in real-world implementations.

Introduction

The lack of integration of dynamic human behavior
into epidemic modeling remains a major limitation of
contemporary epidemiological models [1–3] . Indeed, in-
dividual behavior creates a time-dependent feedback on
the transmission rate that is often out of reach for epi-
demiologists. Relevant human behavioral dynamics can
be separated into two primary categories. The first cor-
responds to behaviors independent of epidemics, driven
by routine patterns such as day/night cycles, weekdays
versus weekends, holidays, and other habitual activities.
The second category includes adaptive responses trig-
gered by the epidemic itself, where individuals adopt
precautionary behaviors such as using masks, avoiding
handshakes, or reducing contact to lower infection risks
[4]. These adaptive behaviors may arise spontaneously
or be prompted by specific non-pharmaceutical interven-
tions, creating a feedback loop that can significantly in-
fluence the epidemic’s trajectory. Despite evidence of its
importance [5, 6], particularly highlighted by the Covid-
19 pandemic [7], this “human-in-the-loop” factor is often
not considered in predictive models, where the dynam-
ics of human behavior is treated instead as an external
parameter [2, 8] acting on the transmission rate.

To address this limitation, theoretical approaches have
been developed, including models that incorporate par-
allel information spread [9, 10] or utilize payoff-based
frameworks, as in Poletti’s work [11]. In this study,
we will focus on a recent and impactful approach: the
Mean Field Game (MFG) paradigm. In short, MFGs
are tools derived from game theory that enable to incor-
porate strategic interactions within systems involving a
large number of agents. This game-theoretic framework
makes it possible to account for anticipation effects aris-
ing from individuals optimizing intertemporal costs, and
to describe “free-rider” behaviors, where individual op-

timization deviates from the collective societal optimum
[4]. The solution associated with the MFG is referred
to as a Nash equilibrium, meaning that no individual
would benefit from modifying her strategy — that is, her
behavior over the course of the epidemic — if the strate-
gies of others remain unchanged. For a comprehensive
mathematical introduction to MFG, see [12], and for ap-
plications of MFG to epidemiological modeling, see [13],
and [8] for a recent review.

In this Letter we consider the propagation of an epi-
demic where contacts between individuals can be de-
scribed by a network. In such an instance, the struc-
ture of the underlying contact network, including fac-
tors such as contact heterogeneity, correlations, cluster-
ing, and other forms of network organization, has been
demonstrated to have an important influence on epidemic
dynamics [14–19]. For instance, heterogeneity is known
to significantly reduce the epidemic threshold on net-
works and to increase the propagation of the virus com-
pared to a homogeneous network of the same average
degree [16, 20]. Correlations between degrees, reflected
by the assortativity [21] of the network and the clustering
level [22], have also been shown to play a significant role
in the propagation of epidemics.

On top of this network structure we implement a
MFG framework. In the MFG approach, individuals
are grouped into relevant classes to facilitate a mean-
field treatment, requiring the identification of key factors
driving individual behavioral responses. For instance in
[23] the age-based social structure is considered, along
with the contact location (e.g. schools, households, work-
places), recognizing that age significantly influences the
risk of infection in many diseases, while different loca-
tions lead to distinct contact patterns. For epidemics on
networks, we will make the basic assumption that indi-
viduals with the same number of neighbors behave in the
same way.
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The objective of this paper is to examine how individu-
als’ spontaneous behavioral responses are shaped by net-
work structure within a Susceptible-Infected-Recovered
(SIR) model on networks. We begin by presenting a
model that is grounded in the MFG approach. We then
analyze the impact of network degree by examining Nash
equilibrium outcomes on homogeneous networks. Finally,
we demonstrate how heterogeneity and network correla-
tions give rise to specific effects on realistic networks.

The MFG framework on networks

We consider a population of N individuals (N large),
represented by nodes of a network. The possible con-
tacts of an individual are the neighboring nodes on the
network. The number of these contacts is called the de-
gree of the individual, denoted k. The degree distribution
is denoted by P (k), and the two-point degree correlation
matrix is represented by Gkk′ = P (k′|k), which is the
conditional probability for a given node of degree k of
having a neighbor of degree k′. Here we consider Marko-
vian networks, defined by the fact that they are fully
characterized by P (k) and Gkk′ [24].

Each individual, or node of the network, can be in one
of three possible states x = s, i, r for, respectively, suscep-
tible, infected and recovered. Contamination occurs via
edges connecting a susceptible individual to an infected
individual. The dynamics follows a standard Markov pro-
cess : during the time interval [t, t+dt[, an edge between
a susceptible and an infected individual transmits the dis-
ease with probability λ(t)dt. As in the basic SIR model,
infected individuals recover from the disease during that
time interval with probability γdt. In view of the mean-
field treatment of the problem, we assume that nodes of
a given degree and state are equivalent, which allows us
to characterize the dynamics by the average quantities
Sk, Ik, Rk giving the relative proportion of individuals of
degree k in the state susceptible, infected or recovered at
time t. Moreover, we make the degree pairwise approx-
imation [25, 26], which posits that only correlations of
degree and state between nearest neighbors on the net-
work play a role in the dynamics. We thus introduce
the conditional probability Gxy

kk′ for a given node to be of
state y and degree k′, knowing that this node has a neigh-
bor of state x and degree k, a quantity which accounts
for all pairwise correlations inside the network.

On top of the above SIR model, we implement a MFG
setting in which individuals control their own contact
rate via a control variable n(t) which they can adjust.
We assume that the transmission rate between individ-
uals a and b is symmetric and given by λ(0)na(t)nb(t),
where λ(0) represents the baseline rate in the absence of
an epidemic. We make the assumption (see [23] for dis-
cussion) that those infected individuals who are responsi-
ble for contamination are asymptomatic (otherwise they

would isolate themselves after becoming ill), and there-
fore behave as susceptible. Therefore, only the control
variable of susceptible (or infected asymptomatic) indi-
viduals matters, since the others are taken out of the
game. Physically, na(t), which we call the “effort param-
eter”, represents the willingness of individual a to engage
in risky interactions with her neighbors. In the absence of
effort we have na(t) = 1, while the maximum effort cor-
responds to some fixed value na(t) = nmin. In our mean-
field framework, at the Nash equilibrium, the behavior of
the agents only depends on their degree k, and one defines
one control variable nk(t) for each degree. The effective
transmission rate between individuals of degree k and k′

is then given by λ(0)nk(t)nk′(t). Note that nk is assumed
to be independent of the neighbor’s degree k′. While this
assumption may overlook some practical circumstances,
it simplifies both the analytical and numerical resolution
of the model.

Epidemic dynamics. Considering now the dynamical
equations describing our system, we introduce the follow-
ing transition rates. We denote by T k

x→zdt the probability
for the state x of a node of degree k to change to state z
in the time interval dt, and by T kk′

(x,y)→(x′,y′)dt the prob-
ability for an edge of type (x, y) and degrees (k, k′) to
become of type (x′, y′). As shown in the Supplemental
Material [27], the only non-zero rates are

T k
i→r = γ (1a)

T k
s→i = λ(0)nk(t) k

∑

k′

nk′(t)Gsi
kk′(t) (1b)

T kk′
(s,x)→(i,x) ≃ λ(0)nk(t)

[
nk′(t)δx,i+ (1c)

(k − 1)
∑

k′′

nk′′(t)Gsi
kk′′(t)

]
,

where in Eq. (1c) we have used the pairwise approx-
imation [25, 26]. The two terms in Eq. (1c) reflect
the fact that contamination of a susceptible node along
a susceptible-infected edge can come from the infected
neighbor (Kronecker delta) or from the (k − 1) other
neighbors of the susceptible node.

With these notations, the SIR system for each degree
can be expressed as

Ṡk(t) = −Sk(t)T
k
s→i (2a)

İk(t) = Sk(t)T
k
s→i − Ik(t)T

k
i→r (2b)

Ṙk(t) = Ik(t)T
k
i→r . (2c)

Within the pairwise approximation [25, 26], that is,
neglecting three-point correlations (and beyond) which
should appear in its evolution, the dynamics of Gsi

kk′ is
given (see Supplemental Material [27]) by the coupled
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equations

d

dt
(XkG

xy
kk′) =

∑

x′y′

X ′
k G

x′y′

kk′ T kk′
(x′,y′)→(x,y)

−Xk G
xy
kk′

∑

x′y′

T kk′
(x,y)→(x′,y′) ,

(3)

where Xk denotes the relative proportion of agents of
state x in the class k. The pairwise approximation has
been shown to be very accurate on Markovian networks
[28].

The system (1)–(3) forms the Kolmogorov system of
our MFG. Given the set S = {nk(·)}k of all collective
strategies of degree-k individuals at all times, this
system describes the evolution of all epidemic rates.

Individual optimization In the MFG setting, the
nk(t) are given as the result of individual optimization
of agents and depend themselves on the epidemic rates.
In order to obtain the nk(t), we assume that individuals
of degree k are sensitive to an intertemporal mean-field
cost between the time t at which the optimization is per-
formed and the end of the game at time T (assumed
large). At time t, a representative susceptible individual
a of degree k wishes to optimize the average cost [23, 29]

C (na(·),S, t) =
∫ T

t

[λa(τ) rI + fk (na(τ))]Pa(τ |t)dτ ,
(4)

in which we have introduced the force of infection per-
ceived by individual a,

λa(τ) = λ(0)na(τ)k
∑

k′

nk′(τ)Gsi
kk′(τ) , (5)

obtained in the same way as Eq. (1b), and Pa(τ |t) ≡
exp

[
−
∫ τ

t
λa(u)du

]
the probability for individual a of still

being susceptible at time τ > t, knowing that she is sus-
ceptible at time t. In (4), the cost function is the sum
of a cost rI , incurred in case of an infection, and a social
cost fk. Here we make the assumption that the infection
cost rI is independent of k (all individuals are equally
affected by the disease), while the social cost of being de-
prived of contacts is likely to depend on the degree and
hence is a function of k.

From an individual’s perspective, the best strategy at
time t is to tune her effort parameter na(τ), τ > t, in or-
der to minimize her own foreseeable cost (4). Introducing
the value function

Ua(t) =

{
min
na(·)

C (na(·),S, t) , a susceptible at t

0, a infected/recovered at t,
(6)

one can show, following the same reasoning as in [23],
that

−dUa

dt
= min

na(t)
[λa(t) (rI − Ua(t)) + fk(na(t))] . (7)

(S0, I0, R0) = (0.995, 0.005, 0), γ = 1, λ(0)⟨k⟩ = 4
rI = 50, nmin = 0.1

TABLE I. Table of parameters used in our simulations. λ(0) =
4/⟨k⟩ allows to compare appropriately epidemics on different
networks by rescaling the infection rate and keep a constant
infection probability λ(0)⟨k⟩ on average.

This is a differential equation for which the final condition
Ua(T ) = 0 is fixed; it is known as the Hamilton-Jacobi-
Bellman equation of the game. Finally, the MFG setting
requires a consistency condition to be at a Nash equi-
librium, namely that the optimal strategy n∗

a(t) which
minimizes the right-hand side of (7) should be the same
as the one entering into the Kolmogorov system of equa-
tions (1)–(3) for individuals with the same degree. For
any individual a of degree k one thus has

n∗
a(t) = nk(t) . (8)

Equations (1)–(3), together with Eqs. (7) and (8), form
the MFG system of our game. We solve it numerically
using a gradient descent approach (for details see [30]).

For all our simulations, the parameters characterizing
the epidemics are the ones given in Table I. For the social
cost function, we chose the specific form

f ϵ
k(n(t)) = kϵ

(
1

n(t)
− 1

)
, ϵ = 0, 1 , (9)

which allows us to explore different regimes of social de-
pendence to neighbors. Physically, the choice ϵ = 1 im-
plies that a constant social cost of ( 1

na(t)
− 1) is assigned

to each neighbor, which means that for a fixed fraction
of contacts lost, an individual with a higher number of
neighbors is more impacted than an individual with fewer
neighbors. In the case ϵ = 0 the social cost is the same
for all individuals, whatever their degree.

Homogeneous networks

We first consider the simplest case of homogeneous net-
works (or regular graphs), where each node has the same
number k of neighbors. After numerically solving the
system of equations discussed above and reaching a Nash
equilibrium, we obtain the epidemic rates and associated
effort parameters. They are displayed in Fig. 1 for the
two different possibilities f0,1

k . Several observations can
be made.

First, we observe in Fig. 1 that while individuals re-
duce their contact rate predominantly during the epi-
demic peak, their maximal effort occurs slightly after the
peak is reached (see, for instance, the case k = 4 on the
first row), and they maintain their effort well beyond the
peak. This suggests that individuals engage in a form of
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FIG. 1. Left column: Dynamics of infected individuals, cor-
responding to the Nash equilibrium, with the parameters of
Table I for different homogeneous networks, with k = 4 (blue),
6 (orange), 8 (green), 12 (red), 20 (purple) and classical SIR
model (black dashed); the social cost function is f ϵ

k with ϵ = 1
(top) and ϵ = 0 (bottom). Inset: dynamics of the probability
ϕ(t) = 1− P (t|0) to be infected before t. Right column: Dy-
namics of the corresponding individual effort parameter, with
the same parameters and color code as for the left column.

“reverse anticipation”. More precisely, it is not the an-
ticipation of the incoming epidemic that motivates their
behavior, but the compound effect of the actual (present
time) intensity of the epidemic and of the anticipation of
its end. Indeed, at the onset of the epidemic, the prospect
of maintaining a significant effort for the whole duration
of the epidemic, while the latter is still growing slowly
and individuals anticipate that collective immunity will
not be reached anytime soon, appears more costly (with
our choice of parameters) than paying the “one time” cost
of infection. However, as collective immunity is in sight,
shortly before the epidemic peak and for some time after,
it becomes advantageous to make efforts to avoid infec-
tion, since the epidemic is still severe, and the remaining
time before the epidemics is over is reasonably short. It
then becomes advantageous for susceptible individuals to
make significant efforts, as they have a good chance of
avoiding infection forever if they protect themselves for
a relatively short period.

While the mechanism described above is rather
generic, the precise range and intensity at which it is
at play of course depends on the choice of parameters.
In particular, epidemics on random homogeneous net-
works progress faster and are more intense as k increases
[29]. For constant fk (ϵ = 0, second row of Fig. 1), the
ratios between social effort and infection cost remain es-
sentially constant across degrees, and are fairly low for
our choice of parameters. This leads to effort patterns
that are similar across degrees, with individuals tending
to protect themselves by “flattening” the infection curve
ϕ(t), thereby minimizing their probability of infection.
The only difference between classes is that individuals
with higher degrees face more intense epidemics, requir-
ing greater and more prolonged effort while maintaining
the same overall pattern. On the other hand, when the

Intervals [k̃i, k̃i+1[= [2, 5[, [5, 7[, [7, 10[, [10, 19[, [19, 100]
Average Ki = (3.2, 5.4, 7.8, 12.5, 31.2)

Distribution P̃ (K) = (0.26, 0.25, 0.22, 0.20, 0.07)

GKK′ =




0.76 0.03 0.04 0.06 0.11
0.02 0.78 0.04 0.06 0.10
0.02 0.03 0.79 0.06 0.10
0.02 0.03 0.04 0.80 0.11
0.03 0.06 0.07 0.11 0.72




TABLE II. Parameters characterizing the realistic heteroge-
neous network used for Fig. 2: the 5 batches [k̃i, k̃i+1[, the
average degree Ki of the nodes in each interval, and the cor-
responding degree distribution P̃ (K) and correlation matrix
GKK′ .

social cost fk increases with k (ϵ = 1, first row of Fig. 1),
this increasing social cost may compete with the one of
the infection. As Fig. 1 shows, these two factors essen-
tially balance each other around a critical value k∗ ≃ 6,
leading there to a significant intensity of efforts. How-
ever, below this threshold, the epidemic is not sufficiently
virulent, and above k∗ efforts becomes too costly to jus-
tify a strong reduction of social contact. As k → ∞,
individual behavior converges to the effortless parameter
n(t) = 1, and the infection curve approaches that of the
classical SIR model (see dashed curve in Fig. 1).

Heterogeneous networks

We now investigate the more realistic case of a hetero-
geneous network. SIR model on such networks is usually
studied by considering a scale-free distribution P (k) [20].
As the correlation matrix Gkk′ plays a crucial role in the
MFG equations, we choose to investigate a realistic net-
work constructed in the following way: We build P (k)
based on the work of Eubank et al. [31] and Béraud et
al. [32]. We define it as a piecewise power-law distribu-
tion P (k) ∝ kη(k) with η(k) = 1 for k ∈ [2, 5],−1.5 for
k ∈ [5, 10],−3 for k ∈ [10, 100], which gives a maximum
of around 5 contacts per day. We chose the above expo-
nents η(k) and intervals for k in such a way that the range
of k, average, standard deviation and maximum of that
distribution are consistent with [32]. In order to perform
the numerical simulations in a reasonable time, we split
our distribution P (k) into batches containing approxi-
mately the same number of nodes. Namely, we consider
that all nodes with degree k ∈ [k̃i, k̃i+1[ can be treated
as nodes with degree Ki, with Ki the average degree of
the nodes in that interval. Our choice for the batches is
given in Table II. The quality of this approximation is
demonstrated in Section II of the Supplemental Material
[27].

For a given correlation matrix Gkk′ , one can introduce
an assortativity coefficient r ∈ [−1, 1], defined precisely
in [21]. A positive r intuitively means that high-degree
individuals will tend to have contacts with high-degree
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individuals, and similarly for low-degree individuals. So-
cial contact networks are known to be assortative, and
here we choose r approximately equal to 0.3, compati-
ble with the kind of networks described in [21]. Using
the Newman rewiring algorithm [33], we obtain a ma-
trix Gkk′ averaged over 10 networks of 20000 nodes with
r ≃ 0.3.

The dynamics of the epidemics and the associated ef-
fort parameters at the Nash equilibrium are obtained
by solving Eqs. (1)–(8). We assume that Gxy

kk′(0) =
Xk(0)Gkk′ , which indicates that there is no correlation
between states and degrees at time t = 0. The results are
displayed in Fig. 2 for the two different choices of f ϵ

k. The
specific impact of a realistic distribution, together with
the interactions between classes (heterogeneity), can be
captured. In all cases, we observe that, contrary to what
might be expected, the spread, as a function of k, of
the total number of infected at T (inset panel) increases
compared to the homogeneous case. This is related to the
collective immunity that is now achieved at the network
level (and not for each degree class as in the homogeneous
case). This essentially means that very high-degree in-
dividuals cannot really avoid the disease, since they are
infected before all other classes. For them, applying a
strong social distancing would only delay the infection
peak, but would not lead to heard immunity. Then, the
epidemic continues to spread in the network even though
all high-degree individuals have been infected, since they
represent a very small fraction of all nodes. On the other
hand, low degree individuals take advantage of this situ-
ation and reach a collective immunity with a rate Ik be-
low that required in the homogeneous case. In fact, more
than the proportion of infected individuals among high-
degree individuals, the average degree of the remaining
susceptible nodes decreases rapidly, which helps achieve
herd immunity.

Differences in infection rates result in infection curves
that strongly depend on the degree. For ϵ = 1 (Fig. 2,
upper right panel), interactions between classes influence
the competition between costs in a complex manner: the
curve tails shorten with increasing degree, while effort
levels decrease non-monotonically. In contrast, for ϵ = 0
(Fig. 2, lower right panel), effort patterns become degree-
specific in a more understandable way: high-degree indi-
viduals protect themselves, while low-degree individuals
benefit from the collective immunity achieved by others
more rapidly.

Conclusion

In the present Letter we studied the problem of epi-
demic propagation on networks from the point of view
of mean-field games. This allowed us to analyze how
individual behavior may affect the outcome of an epi-
demic when that behavior itself is modified at each time

FIG. 2. Left panels: Dynamics of infected individuals at Nash
equilibrium for different batches, with the parameters of Ta-
bles I and II. Inset: dynamics of the probability ϕ(t) to be in-
fected before t. Right panels: Dynamics of the corresponding
individual effort parameter. Colored solid lines corresponds
to the dynamics (for infected and effort parameter) associated
with each batch of the network: K = 3.4 (blue), 5.4 (orange),
7.8 (green), 12.5 (red), 31.2 (purple). Each row represents a
specific choice of f ϵ

k: ϵ = 1, 0 for the first and second row,
respectively.

by the epidemic. In our model, individuals can tune
the intensity of the contacts they are willing to have
with others (effort parameter) in order to optimize the
cost that this choice will make them incur in the fu-
ture. We showed that this interplay can be described
by a Hamilton-Jacobi-Bellman system of equations for
the individual costs and effort parameters, coupled with
a set of Kolmogorov equations describing the epidemic
dynamics.

Our MFG approach to networks highlights the “reverse
anticipation” effect, where individuals adjust their behav-
ior in anticipation of the end of the epidemic - a phe-
nomenon likely to be observed in contexts other than
networks. This anticipation can be brief, as in the case
of increasing social costs with k, or have a long tail, as
in the case of constant social costs, when efforts effec-
tively reduce the probability of infection without being
too costly. In the homogeneous case with ϵ = 1, the
model shows a balance between the increasing social cost
with k and the higher epidemic costs experienced by in-
dividuals with high degrees, while a more homogeneous
behavior is observed at ϵ = 0. The introduction of het-
erogeneity and assortativity in a realistic network leads
to differentiated collective immunity at the node level:
low-degree individuals benefit from the fast spreading of
the epidemic among high-degree individuals, which re-
duces the effective connectivity of the remaining suscep-
tible network. Contrary to expectations, heterogeneity
reduces costs for low-degree individuals, while positive
assortativity weakens this protection, as it tends to re-
duce heterogeneity between classes.

In both cases, the role of the social cost f on the be-
havior of individuals is crucial, even though the only vari-
ations of f we considered were the ones associated with
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its degree k. Our work underlines that a precise descrip-
tion of the behavior of f is a key element to go further in
the practical implementation of MFG frameworks. This
endeavor should benefit from the fact that the social cost
properties should show little variation across epidemics,
allowing large surveys to obtain the dependencies of f .
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Supplemental Material:
Mean-field game approach to epidemic propagation on networks

Louis Bremaud, Olivier Giraud, and Denis Ullmo

DERIVATION OF EQ. (1)-(3): DYNAMICS WITHIN THE PAIRWISE APPROXIMATION

Setting and definitions

In this Section, we provide a derivation of Eqs.(1)-(3) of the main text. Nodes are labeled with Greek letters
(α, β, · · · ), and states {s, i, r} with Roman letters (x, y, x, · · · ). We denote by dα the degree of node α, and by Aαβ

the adjacency matrix (Aαβ = 1 if there is an edge between α and β, and 0 otherwise). The state x ∈ {s, i, r} of the
node α at time t is denoted ct(α); more generally ct(α1, α2, ...) = (x1, x2, ...) denotes the states xi of nodes αi at time
t.

We introduce various sets characterizing the network:

Symbol Definition Description
Dk {α / dα=k} Nodes of degree k
Vα {β / Aαβ=1} Neighbors of node α
TDk {(α, β) / α ∈ Dk & β ∈ Vα} Oriented edges starting from a node of degree k
TDx

k {(α, β) / α ∈ Dk & β ∈ Vα} Oriented edges starting from a node of degree k
and state x

Ekk′ {(α, β) / α ∈ Dk & β ∈ Dk′ & Aαβ=1} Oriented edges between nodes of degree k and k′

W(k
k′

k′′
) {(α, β, γ) ∈ Dk × Dk′ × Dk′′ / β, γ ∈ Vα} Oriented wedges of degrees (k, k′, k′′)

Note that in the definition of W(k
k′

k′′
), the two edges are oriented but also the wedge itself, i.e. the ordering of the

two edges matters.
We furthermore introduce sets that characterize the epidemic status of nodes on the network:

Symbol Definition Description
Gx

k {α ∈ Dk / ct(α)=x} Nodes of degree k and state x
Gxy

kk′ {(α, β) ∈ Ekk′ / ct(α, β) = (x, y)} Oriented edges linking a node of degree k
and state x to a node of degree k′ and state y

Gxyz
kk′k′′ {(α, β, γ) ∈ W(k

k′

k′′
) / ct(α, β, γ) = (x, y, z)} Wedges with given status and degree

The number of elements of a set S will be denoted by #S. In particular, we have #Dk = Nk, #TDk = kNk, and
#TDx

k = kNkXk.

Correlation matrices and transition rates

One-point, two-point and three-point correlators

With the above notation, the relative proportions Xk = Sk, Ik, Rk of individuals of degree k in the state susceptible,
infected or recovered is given by

Xk =
#Gx

k

Nk
, (1)

which is a one-point correlator.
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In the same way the two-point correlations between adjacent nodes are given by

Gxy
kk′ ≡

#Gxy
kk′

#TDx
k

=
#Gxy

kk′

kNkXk
. (2)

By symmetry (#Gxy
kk′) = (#Gyx

k′k), and thus we recover the detailed balance condition kNkXkG
xy
kk′ = k′Nk′Yk′Gyx

k′k.
Finally, the three points correlation matrix can be derived from the number of elements of the set Gxyz

kk′k′′ , which
we shall discuss in Section below.

Bare transition rates

The two processes that can lead to a transition between states on the network are processes transforming nodes and
processes transforming edges. In the SIR model, during a time interval [t, t+ dt[, a node has some probability to go
from state i to r, and an edge connecting a node s and a node i has some probability to become an edge connecting
i to i.

Consider a node α in the state x. We note Λx′
x the rate of transformation of α at time t from state x to state x′

which is not due to any interaction with its neighbors. For the SIR model, the only such bare process corresponds to
the recovery process, where a node i transforms into r, and thus the only nonzero rate is

Λr
i = γ . (3)

Similarly, consider an undirected edge between node α of state x and degree k and node β of state y and degree k′.
We denote Λx′y′

xy the rate of transformation at time t from state xy to state x′y′ which is due only to the interaction
between α and β. For the SIR model, the only such bare process corresponds to an edge si transforming into ii. In
the case of the SIR on networks considered in the main text, the only non-zero rate reads

Λii
si = λkk′(t) = λ(0)nknk′ . (4)

There is an important distinction to make between directed and undirected edges. The sets defined in Section count
directed edges; this accounts for the fact that a node whose state is modified by the transformation of an edge can
potentially sit at either ends of that edge. However, the above rates apply to undirected edges. Note also that the
above rates depend on k and k′; to ease the reading we have omitted this dependency in the notation.

Dressed transition rate for the one-point correlators

In order to determine the time evolution of the correlators, we need to calculate their rate of change taking into
account all possible processes (single-node events, events involving nearest neighbors, and so on), which we call dressed
transition rates.

Let Tk
(x;t)→(x′;t+dt) = {α ∈ Dk / ct(α)=(x)& ct+dt(α)=(x′)} be the set of nodes of degree k that change their state

from x to x′ during the time interval [t, t+ dt[. The corresponding transition rate T k
x→x′ , defined by

#Tk
(x;t)→(x′;t+dt) = (#Gx

k)T
k
x→x′dt , (5)

gives the transition probability of a node of degree k from x to x′ during dt. Neglecting contributions of order (dt)2

(i.e. the probability of two independent events happening during the interval dt), a node is modified either by a
single-node event (for SIR, the node transition i → r), or by the transition of an indicent edge (for SIR, the edge
transition si → ii). Summing the corresponding probabilities, we have

(
#Tk

(x;t)→(x′;t+dt)

)
= (#Gx

k) Λ
x′
x dt+

∑

k′;y,y′

(#Gxy
kk′) Λ

x′y′
xy dt , (6)

Dividing both sides of (6) by (#Gx
k)dt and using Eq. (2), we get

T k
x→x′ = Λx′

x + k
∑

k′;y,y′

Gxy
kk′Λ

x′y′
xy . (7)

For our SIR model on networks, this reduces to T k
i→r = Λr

i = γ, and T k
s→i = k

∑
k′ λkk′(t)Gsi

kk′ , which is exactly
Eqs. (1a)–(1b) of the main text.



3

Dressed transition rates for the two-point correlator

To describe the time evolution of the Gxy
kk′ , we need to additionally take into account the probability that an edge

between two nodes α and β change due to processes that involves nodes other than α or β, but to which α or β are
linked. We thus introduce the sets of directed edges going from state xy to state x′y′ between t and t+ dt,

Tkk′
(x,y;t)→(x′,y′;t+dt) ≡ {(α, β) ∈ Ekk′ / ct(α, β)=(x, y)& ct+dt(α, β)=(x′, y′)} (8)

and we define the corresponding dressed transition rates T kk′
(x,y)→(x′,y′) as

(
#Tkk′

(x,y;t)→(x′,y′;t+dt)

)
= (#Gxy

kk′)T
kk′
(x,y)→(x′,y′)dt . (9)

Neglecting again terms of order (dt)2 (i.e. the probability of two independent simultaneous processes), we get the
following contributions:

1. (x ̸=x′) and (y ̸=y′). The only process transforming two connected nodes is the process transforming the edge
that connects them:

(
#Tkk′

(x,y;t)→(x′,y′;t+dt)

)
= (#Gxy

kk′) Λ
x′y′
xy dt. (10)

2. (x ̸=x′) and (y= y′). The processes involved are the transformation of the edge α − β or of the node α alone,
as well as the transformation of an edge connecting α with any of its other neighbors:

(
#Tkk′

(x,y;t)→(x′,y;t+dt)

)
= (#Gxy

kk′)
[
Λx′y
xy + Λx′

x

]
dt+

∑

k′′zz′

(#Gxyz
kk′k′′) Λ

x′z′
xz dt (11)

3. (x=x′) and (y ̸=y′). Symmetrically, as in (11) we have
(
#Tkk′

(x,y;t)→(x,y′;t+dt)

)
= (#Gxy

kk′)
[
Λxy′
xy + Λy′

y

]
dt+

∑

k′′zz′

(#Gyxz
k′kk′′) Λ

y′z′
yz dt . (12)

Summing up all these contributions, we get

T kk′
(x,y)→(x′,y′) = Λx′y′

xy + δyy′

[
Λx′
x +

∑

k′′zz′

(#Gxyz
kk′k′′)

(#Gxy
kk′)

Λx′z′
xz

]
+ δxx′

[
Λy′
y +

∑

k′′zz′

(#Gyxz
k′kk′′)

(#Gyx
k′k)

Λy′z′
yz

]
. (13)

For our SIR model on networks, this leads for instance to

T kk′
(s,i)→(i,i) = λkk′(t) +

∑

k′′

λkk′′(t)

(
#Gsii

kk′k′′
)

(
#Gsi

kk′
) . (14)

The Pairwise Approximation

As always, we need the (#Gxy
kk′) to compute the evolution of the (#Gx

k), but we need the (#Gxyz
kk′k′′) to compute

the evolution of the (#Gxy
kk′). We can move forward if we assume that the three-body correlations are negligible.

For Markovian networks, loops are rare, in the sense that the probability that a given node α belongs to a loop
of (fixed) finite length L goes to zero as the size of the network goes to infinity, and therefore this is a very good
approximation. Within this (pairwise) approximation, given a node α, the degree and state of two of its neighbors β
and γ are uncorrelated, so that the joint probability of having β of degree k′ and state y and γ of degree k′′ and state
z is essentially the product of the two probabilities Gxy

kk′ and Gxz
kk′′ . More precisely, we get

(#Gxyz
kk′k′′) ≃ NkXk︸ ︷︷ ︸

#Gx
k

k︸︷︷︸
# of β

conditional proba︷︸︸︷
Gxy

kk′ (k − 1)︸ ︷︷ ︸
# of γ

conditional proba︷ ︸︸ ︷
Gxz

kk′′ , (15)
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The coefficient k(k− 1) in (15) corresponds to the choice of the two neighbors of node α, taking into account the fact
that not only the edges but also the wedges are oriented (see Section ). From Eq. (2) we have #Gxy

kk′ = Gxy
kk′kNkXk =

k′Nk′Xk′Gyx
k′k, hence

T kk′
(x,y)→(x′,y′) = Λx′y′

xy + δyy′

[
Λx′
x +

∑

k′′zz′

(k − 1)Gxz
kk′′Λx′z′

xz

]
+ δxx′

[
Λy′
y +

∑

k′′zz′

(k′ − 1)Gyz
k′k′′Λ

y′z′
yz

]
. (16)

For our SIR model on networks, this gives in particular

T kk′
(s,x)→(i,x) = λkk′ δx,i + (k − 1)

∑

k′′

λkk′′Gsi
kk′′ , (17)

which is Eq. (1c) of the main text.

Getting to Eqs. (2)–(3) of the main text

Equations (2) of the main text are a direct consequence of the definition of the one-point dressed rates T k
x→x′ .

Indeed,

(#Gx
k)(t+ dt)− (#Gx

k)(t) =
∑

x′ ̸=x

Tk
(x′;t)→(x;t+dt) −

∑

x′ ̸=x

Tk
(x;t)→(x′;t+dt) , (18)

which dividing both sides by Nkdt gives

Ẋk =
∑

x′

(
X ′

kT
k
x′→x −XkT

k
x→x′

)
. (19)

Since for the SIR model the only non-zero one-point dressed rate are T k
s→i and T k

i→r, this readily gives Eq. (2).
In the same way,

˙(#Gxy
kk′)dt =

∑

(x′y′) ̸=(x,y)

(
#Tkk′

(x′,y′;t)→(x,y;t+dt) −#Tkk′
(x,y;t)→(x′,y′;t+dt)

)

and thus, removing the constant factor kNkdt which appears on both sides, we get

d

dt
(XkG

xy
kk′) =

∑

(x′y′) ̸=(x,y)

(
X ′

k G
x′y′

kk′ T kk′
(x′,y′)→(x,y) −Xk G

xy
kk′T

kk′
(x,y)→(x′,y′)

)
, (20)

which is Eq. (3) of the main text.

VALIDITY OF OUR BATCHING PROCEDURE WITH THE PAIRWISE APPROXIMATION

The pairwise approximation described above, combined with the batching procedure applied with 5 bins in the main
text, provides a highly accurate representation of the network dynamics we aim to reproduce. This is illustrated in
Fig. 1. The small discrepancies observed do not significantly affect the general observations or the conclusions drawn
regarding the Nash equilibrium on such networks.
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FIG. 1. Evolution of total infected proportion over time on a heterogeneous network. Red line: results provided by the pairwise
approximation (PA) and batching procedure (5 batches) applied to the realistic heterogeneous network utilized in the second
part of the main text. Black line: average Markovian process over nit = 10 iterations, with N = 15 000 nodes. Parameters of
the epidemic are β = 4, γ = 1, I0 = 5.10−3.



G - Synthèse en Français

Le facteur humain est un paramètre significatif des propagations d’épidémie, à la fois
à travers les réponses spontanées des individus face à l’épidémie et les mesures restrictives
mises en place par les autorités. Ces effets comportementaux créent une boucle de rétroac-
tion qui influence à son tour l’évolution de l’épidémie. Cependant, la plupart des modèles
actuels utilisés pour les prévisions épidémiques ne prennent pas en compte ce facteur hu-
main dans la boucle, le traitant plutôt comme un paramètre externe. Dans cette thèse,
nous étudions le paradigme des jeux à champ moyen (Mean-Field Game, MFG), qui offre
un cadre prometteur pour intégrer le comportement humain dans les modèles épidémiques.
Notre objectif est de progressivement combler l’écart entre cette approche théorique et de
potentielles utilisations pratiques. Concrètement, cela consiste en deux étapes : implé-
menter le cadre des MFG dans des modèles épidémiologiques utilisés aujourd’hui, et éval-
uer la pertinence d’une éventuelle application pratique : les comportements prédits par
le modèle sont-ils cohérents avec ceux attendus ? Quels types de questions pouvons-nous
adresser en pratique ? Quels sont les paramètres clés qu’il s’agira d’évaluer correctement ?

G.1 Introduction aux modèles épidémiologiques

Le Chapitre 1 présente une introduction aux modèles épidémiologiques. Nous com-
mençons par construire pas à pas le célèbre modèle SIR (susceptible-infected-recover) pour
susceptible-infecté-rétabli introduit par Kermack et McKendrick il y a environ 100 ans en
1927 [175]. Ce modèle intègre un nombre de paramètres minimal pour modéliser l’évolution
temporelle des épidémies : les individus sont classés dans un des 3 états possibles mention-
nés (S pour susceptible, I pour infecté, R pour rétabli). La transition de l’état susceptible
à l’état infecté est donné par un taux de transmission, qui va correspondre phyiquement
à la propention du virus à se propager rapidement entre les personnes, incluant donc la
contagiosité de chaque contact et la fréquence de ces derniers, tandis que la transition
de l’état infecté à l’état rétabli se fait via un taux de guérison. Ce modèle très simple a
connu un grand succès au cours du 20ème sciècle et a permis de démontrer la notion de
taux de reproduction R0 de l’épidémie : l’épidémie s’accroît lorsque R0 est supérieur à 1
et diminue sinon. Cependant, le modèle SIR adopte de nombreuses approximations qui
limitent son utilisation en pratique. Les épidémiologistes actuels se sont donc dirigés vers
des modèles plus complexes. Trois grandes familles de modèles ont émergé : les modèles
compartimentaux, similaires au modèle SIR, qui intègrent à présent tout une structure so-
ciale : les individus sont catégorisés selon leur âge et éventuellement leur ville de résidence,
et leur état est caractérisé de façon bien plus précise avec de nombreux compartiments
(vaccinés, asymptomatiques, etc). Ces modèles utilisent les bases de données actuelles sur
les populations pour fournir des prédictions les plus précises possibles. Le modèle spatio-
temporel d’Alex Arenas et al. [40] pour le Covid-19 en Espagne est présenté en illustration.
Le second type de modèle concerne les modèles sur réseaux qui décrivent les individus au
niveau individuel en les modélisant comme des noeuds du réseau, tandis que les liens cor-
respondent aux contacts possibles. Différents type de réseaux ont été introduits, d’abord
homogènes avec les réseaux d’Erdos-Rényi [63] en 1960, puis hétérogènes avec les réseaux
dits sans échelle (scale-free) de Albert et Barabsi [67] et les “petits-mondes” (small-worlds)
par Watts et Strogatz [42]. Ces réseaux sont de plus en plus utilisés et étudiés avec l’arrivée
de large base de données, notamment dans l’objectif de prédire en pratique l’évolution des
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épidémies, alors qu’ils ont longtemps été principalement l’objet d’études théoriques. Enfin,
les modèles dits à “base agent” permettent de simuler au niveau microscopique une pop-
ulation synthétique composée d’un grand nombre d’agents. Les actions et les contacts de
ces derniers sont modélisés par des règles simples, et le calcul de leur état à chaque instant
permet de faire émerger l’épidémie au niveau de la société. Ces modèles à base agent
ont connu un fort essort récemment avec l’arrivée d’ordinateurs plus puissants permettant
des simulations plus importantes, ils ont notamment été utilisés pendant le Covid-19 par
Ferguson et son équipe en Angleterre [17].

Cependant, ces différents types de modèles prennent rarement en compte l’évolution
du comportement humain en dans leurs simulations. Plus précisément, ce dernier influ-
ence l’épidémie de deux façons différentes. Premièrement, une partie de cette évolution
est prévisible et est dû aux variations temporelles habituelles (semaine versus week-end,
vacances), elle a été très étudiée et est parfois prise en compte. La seconde concerne la
réaction des individus à l’épidémie, c’est à dire le fait qu’ils vont adapter leur comporte-
ment si celle-ci présente un danger : réduire certaines activités, ne plus se serrer la main,
porter le masque, appliquer la distanciation sociale ou encore se faire vacciner. Si une par-
tie de ce comportement peut être induit par les authorités, il s’agit aussi surtout d’actions
personnelles que chacun appliquera plus ou moins, alors que cela peut avoir une impor-
tance significative sur l’épidémie [93, 94, 102]. Plusieurs modèles différents ont été proposé
récemment pour inclure ces comportements dans les modèles épidémiques [98, 108, 115],
avec comme objectif de rendre ce facteur humain intrinsèque au modèle : l’idée est que ce
comportement (dépendant de l’épidémie et donc du temps) puisse être estimé théorique-
ment à partir de paramètres fixes comme le risque associé à une infection. Cela permet
d’éviter d’avoir à utiliser ou à estimer des paramètres comme celui-ci de façon extrinsèque
au modèle à partir de base de données réelles. Il est en effet très difficile d’estimer des
paramètres qui sont dépendants du temps comme le taux de transmission sans réaliser une
anticipation particulière sur l’épidemie ou le comportement des individus.

Dans cette thèse, nous nous concentrerons sur un type de modélisation permettant
de prendre en compte le facteur humain : les jeux à champ moyen (Mean-Field Games,
MFG). Par rapport aux autres, les MFG permettent aux individus de réaliser leur propre
optimisation à partir du coût qu’ils considèrent par rapport à l’épidémie (risque d’infection
versus coût de réduction des contacts). Cette optimisation sera différente selon les individus
et permettra de faire émerger une dynamique globale. En particulier, les MFG permettent
de prendre en compte l’anticipation des individus, qui optimisent leur coût sur le long
terme (l’anticipation peut être modulée). Les MFG permettent surtout de faire apparaître
la différence intrinsèque entre optimisation individuelle et collective : si tous les individus
restent chez eux, alors n’importe quel individu aura intérêt à sortir de chez lui, étant donné
qu’il n’y aura plus de risque lié à l’infection. Ce phénomène que l’on retrouve dans de
nombreux aspects de notre société est particulièrement à l’oeuvre ici et explique pourquoi
des contraintes collectives sont parfois nécessaires pour venir à bout de l’épidemie.

G.2 Introduction aux jeux à champ moyen

Le Chapitre 2 est dédié à la mise en place du cadre mathématique de la théorie des jeux
puis des jeux à champ moyen. Nous utilisons l’exemple connu du dilemme du prisonnier
pour illustrer le type de comportement que nous souhaitons modéliser, cette situation ce
décrit de la façon suivante. Deux individus A et B sont poursuivis pour avoir commis un
délit. Ils sont intérrogés séparémments et ont le choix de trahir leur collègue ou de rester
silencieux. Suivant les choix effectués par A et B, différentes issues du jeu sont possibles,
elles sont présentées dans la figure G.1. Le raisonnement tenu par A est le suivant : si B
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Figure G.1: Issues possibles du dilemme du prisonnier. Chaque individu à deux choix :
trahir (betray) ou rester silencieux (stay silent). La situation est symmétique pour A et B
et ils ne peuvent pas communiquer ou connaître le choix de l’autre avant de prendre leur
décision.

choisi de me trahir, alors j’ai intérêt à trahir également pour limiter ma peine à 2 ans (au
lieu d’en avoir 3 en restant silencieux). Si B choisi de rester silencieux, alors j’ai également
intérêt à trahir, et cette fois je serai directement libre, plutôt que d’avoir une peine d’un
an. Quelque soit le choix de B, A a intérêt à trahir B s’il agit pour son propre intérêt, et
B arrive à la même conclusion de façon symmétrique. Ainsi, l’équilibre de Nash résultant
du jeu est une situation où les deux joueurs trahissent l’autre. Cet équilibre est dit “de
Nash” si aucun des joueurs n’a intérêt à changer de stratégie une fois qu’il connaît la
stratégie des autres joueurs (c’est pourquoi nous parlons d’équilibre), et c’est le cas ici.
Cette situation peut paraître contre-intuitive, car les deux joueurs auraient visiblement
un intérêt personnel à rester silencieux tous les deux, ce qui permettrait de réduire leur
peine par deux. Cette stratégie qui optimise le coût payé par l’ensemble des joueurs est
appelée “optimum sociétal”. Ici, ce sont les mécanismes liés à l’optimisation individuelle
(et égoïste) qui empêche d’arriver à une solution qui serait pourtant souhaitable pour tous.

Une fois introduit de façon heuristique, les concepts d’équilibre de Nash et d’optimum
sociétal sont décrits mathématiquement, puis les jeux à champ moyen (MFG) sont présen-
tés. Cette méthode développée notamment par les mathématiciens JM Lasy et PL Lion il
y a une vingtaine d’années [140, 142] permet de résoudre le problème d’optimisation des
individus lorsque leur nombre devient très élevé. L’idée est de dire que chaque individu sera
sensible au comportement moyen des autres, et non au comportement individuel de chacun,
comme l’individu A peut l’être par rapport à celui de B dans le dilemme du Prisonnier.
Cette hypothèse, en réalité assez naturelle dans le contexte des épidémies (cela revient à
considérer que les individus sont sensibles au nombre total d’infectés dans la population),
permet de considérablement réduire le nombre d’équations complées à résoudre et d’obtenir
un système numériquement résoluble composée de deux équations couplées : l’équation
d’Hamilton Jacobi Bellaman (HJB) décrivant l’optimisation des individus, et l’équation
dite de Fokker-Plank qui décrit l’évolution du système. Pour terminer ce chapitre, nous
présentons l’application des MFG au modèle SIR qui a été proposée par Elie et al. [19]
récemment. Leur idée est que chaque agent considère deux coûts : un coût fixe lorsque
celui-ci est infecté, et un coût variable dépendant de son taux d’effort pour réduire son
taux de transmission, et donc sa probabilité d’être infecté. Toutefois, si ce modèle des
MFG sur le modèle SIR permet de faire une preuve de concept au niveau théorique, il ne
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permet pas encore d’envisager des applications pratiques.

G.3 Une approche basée sur les jeux à champ moyen pour
évaluer et construire les interventions non pharmaceu-
tiques dans un modèle SIR muni d’une structure so-
ciale.

Pour évaluer la possibilité d’appliquer en pratique les MFG, nous étendons ce travail à
un modèle compartimental plus structuré et bien plus proche des modèles utilisés actuelle-
ment dans le Chapitre 3. La structure sociale que nous utilisons est présenté dans la
figure G.2 : nous considérons différentes classes d’âges (nous en prenons 3 pour l’exemple
étudié) et les individus ont des contacts qui vont différer selon les lieux de contact : à
l’école les enfants auront des contacts entre eux, au travail les adultes seront entre eux,
tandis qu’il y aura plus de mixité entre les différentes classes d’âge au sein des foyers ou
lors d’activités sociales. De plus, nous proposons une certaine façon de modéliser le con-
tact entre les individus, présentée dans la figure G.3. Celle-ci est basée sur l’idée que le
contact doit être symmétrique et dépendre de la “volonté de contact” de chaque individu.
Cette volonté, propre à chaque individu, permet de moduler les contacts entre les classes
d’âges qui seront décrits à la base (sans épidémie) par une matrice de contacts (décrivant
les fréquences de contacts de chaque classe dans chaque lieu). Ainsi lors de l’épidémie les
volontés de contacts (comprises entre 0 et 1) sont ajoutées en facteur de cette matrice. La
première partie de ce chapitre se conclut par l’implémentation mathématique de la partie
MFG qui est ajoutée en sur la structure sociale : chaque individu va pouvoir choisir son
taux de contact dans chaque lieu. A l’équilibre, nous aurons besoin de considérer que
les individus de chaque classe se comporteront de façon très similaire, d’où l’importance
d’avoir différentes classes pour tenir compte de l’hétérogénité des comportements au sein
de la population. En effet, notamment parce que toutes les catégories sociales n’ont pas les
mêmes contacts mais surtout parce qu’elles n’ont pas le même coût associé à une infection
(nous augmentons ce coût avec l’âge ici), les individus de chaque classe vont réaliser une
optimisation différente.

Dans la seconde partie du chapitre, nous réalisons une expérience numérique pour

Figure G.2: Illustration de la structure sociale implémentée. Un individu de réféérence
pour chaque classe d’âge est pris (a, b et c), ils ont des contacts symmétriques dans chacun
de slieux possibles avec différents type de contact à chaque fois (contacts entre adultes sur
les lieux de travail, entre enfants à l’école, etc).
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observer le comportement de notre modèle. Les paramètres liés à la structure sociale
(population dans chaque classe, nombre de contacts,...) ou à la biologie de l’épidémie
(contagiosité, taux de guérison,...) sont déterminés à partir de plusieurs travaux [17, 40,
41] afin de les rendre réalistes. Les paramètres liés à la fonction de coût optimisée par
les individus sont eux choisis de façon plus intuitive et seront modifiés au cours de nos
simulations pour observeur leurs effets sur les comportements des individus. L’idée de
cette approche est d’observer les comportements qui pourraient être prédits par le modèle
dans une application pratique, afin de vérifier leur cohérence. Cela permet également
de pouvoir travailler sur les différents équilibres résultants en addressant des questions
qui ne seront pas spécifiques à un cas particulier du modèle mais qui auront une portée
plus générale et propre au cadre proposé. Nous étudions ainsi différents scénarios : la
situation où personne ne fait d’effort, l’équipe de Nash libre, l’optimum sociétal mais
également un équilibre de Nash contraint. Avec ce dernier, nous expliquons comment des
interventions non pharmaceutiques (NPIs), c’est à dire des contraintes sur les taux de
contacts des individus, peuvent être construites et imposées à la population pour obtenir
une meilleure solution sociétale que l’équilibre de Nash libre qui résulte de l’optimisation
égoïste des individus. Ainsi, nous proposons un modèle pour ces contraintes, composé de
3 paramètres, que nous optimisons pour arriver à un nouvel équilibre de Nash, illustré sur
la figure G.4, dont le coût sociétal sera plus bas (mais toujours plus élevé que l’optimum
sociétal). Sur cette figure, nous observons que les contraintes (lignes droites) sont respectées
par les jeunes mais que les adultes et surtout les personnes agées sont parfois amenées à
faire plus d’efforts que ceux qui sont requis. Nous comparons cette solution à l’optimum
sociétal qui est obtenu lorsque tous les individus sont coordonnés par une entité dont le
but est d’optimiser le coût sociétal, qui correspond ici à la somme des coût individuels. Cet
optimum sociétal nous permet de nous rendre compte de la coopération qui apparaît entre
les classes, avec des jeunes qui font des efforts pendant le pic épidémique, afin de réduire
le risque pour les personnes âgées, alors qu’eux n’ont pas d’intérêt à le faire. Ce scénario

Figure G.3: Illustration des interactions au sein de notre modèle. Deux classes d’âge α et
β sont reprentées avec respectivement 3 et 4 individus. Chaque individu (ou noeud) est
actif (en rouge) s’il souhaite avoir des contacts avec l’autre classe. Ce souhait correspondra
en fait à la volonté de contact de l’individu : si sa volonté est au maximum (1), alors il
sera toujours activé, mais si celle-ci est de 0.5 il sera activié la moitié du temps. Les
individus en bleus sont inactifs. Tous les contacts possibles sont indiquées par les traits en
pointillés, mais les seuls contacts effectifs se font entre les pairs d’individus actifs, où les
traits sont marqués en traint plein rouge. Ici, nous avons un individu actif de la classe α
et 2 de la classe β, ce qui conduit à 2 contacts parmi les 12 possibles. Cette modélisation
permet ensuite d’obtenir facilement les bonnes quantités dont nous aurons besoin dans nos
équations.
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Figure G.4: Evolution des quantités épidémiques et des volontés de contact pour l’optimum
sociétal (ligne pointillée) et l’équilibre de Nash avec des contraintes optimales (ligne en trait
plein). Panel haut : évolution de la proportion d’infectés par classe d’age (panel principal)
et en moyenne (insert). Panels du bas de gauche à droite : évolution de la volonté de
contact pour chacune des classes d’âge dans la communauté, les foyers, dans les écoles
et les lieux de travail. Les lignes pointillées correspondent à la période où les services
sanitaires sont saturés ce qui fait augmenter le coût lié à l’épidémie.

correspond à une situation idéaliste qui ne peut pas être atteinte en pratique, car elle ne
donne aucune liberté aux individus, mais elle permet de comprendre comment construire
les contraintes pour s’en rapprocher.

Dans la dernière partie de ce chapitre, nous étendons l’étude de la stratégie collective à
la possibilité pour une autorité (typiquement étatique) d’avoir recours à d’autres stratégies
collectives gloables que celle étudiée jusqu’ici où la population n’avait pas d’autre choix
que d’atteindre l’immunité collective pour sortir de l’épidémie. Cette immunité collec-
tive correspond au point où la population n’a plus assez d’individus “sains”, susceptbiles
d’être infectés, pour que l’épidémie puisse se propager. Ainsi, les stratégies qui consis-
tent à contenir ou à éradiquer l’épidemie n’étaient pas envisageables, nous les intègrons ici
dans notre discussion. Nous montrons sur la figure G.5 que différents régimes apparais-
sent entre ces différentes stratégies collectives, avec en réalité des transition discountinues
(dites du premier ordre) concernant les comportements optimaux suivis par les individus.
Ces différents régimes dépendent du temps d’optimisation choisi, c’est à dire de la fin at-
tendue de l’épidémie et du coût lié à l’infection. Ce temps final ancitipé a un effet très
important que nous pouvons comprendre intuitivement : si une épidémie virulente ap-
paraît mais que des vaccins seront disponibles après 6 mois de façon quasi certaine (ou
qu’il s’agit d’un virus saisonnier), alors il peut devenir intéressant de contenir l’épidémie
pendant cette période, plutôt que de la laisser atteindre une large partie de la population.
La stratégie d’éradication, quant à elle, demande des efforts bien plus importants et de-
mande un déclenchement des contraintes tôt dans l’épidémie pour que ces efforts ne durent
pas trop longtemps avant que l’épidémie ne disparaisse. Elle devient intéressante lorsque
l’épidémie est à la fois dangereuse et qu’aucune fin à court terme ne semble envisageable.
Ainsi, l’approche que nous proposons permet de quantifier ces différents aspects. De plus,
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Figure G.5: Diagramme de phase montrant le meilleur choix de stratégie collective parmi :
“atteindre l’immunité collective” (en bleu), “contenir l’épidémie” (en vert), et “éradiquer
l’épidémie” (en rouge) avec les paramètres des tables 3.2-3.3 ainsi que ceux défini dans la
figure originale 3.14.

l’équilibre de Nash proposé semble être une stratégie pertinente pour évaluer le coût réel
associé à l’immunité collective, là où le coût lié à l’épidémie serait sûrestimé en gardant la
stratégie “de ne pas faire d’effort” et sous estimé avec l’optimum sociétal. Cette dernière
partie conclut ce premier projet qui a conduit à la publication d’une lettre (article court)
dans PRE et à la rédaction d’un article plus long (soumis).

G.4 Propagation des épidémies sur réseaux avec une ap-
proche de jeux à champ moyen

Après avoir exploré l’implémentation des MFG dans un modèle compartimental avec
une structure sociale, nous nous intéressons dans le Chapitre 4 à l’implémentation de ces
derniers dans les modèles sur réseaux. Nous nous intéressons à des réseaux qui peuvent être
hétérogènes (et plus précisément sans-échelle), c’est à dire qu’un certain nombre d’individus
auront beaucoup plus de contacts que les autres, permettant ainsi l’apparition de “super-
contaminateurs” qui accélèrent la propagation sur le réseau. Sur ce dernier, l’épidémie est
simulée à l’aide d’un processus de Markov, c’est à dire que chaque individu a une certaine
probabilité d’être infecté qui dépend de l’état de ses voisins. Hors, pour des réseaux de
grande taille et dont on ne connait pas la stucture exacte, il devient rapidement très
difficile de réaliser de telles simulations de l’épidémie, d’autant plus si nous souhaitons
implémenter le paradigme des MFG qui nécessitera des calculs supplémentaires. Ainsi, la
première partie du chapitre est dédiée aux différentes approximations que l’on peut faire sur
les réseaux, en se basant sur la littérature existante [72]. Nous partons de l’approximation
de champ moyen “pur”, correspondant au modèle SIR, puis nous levons progressivement
certaines hypothèses. Ainsi, le champ moyen “hétérogène” est proposé, en classant les
noeuds du réseau suivant leur degré, c’est à dire leur nombre de voisins. Nous arrivons à
l’approximation dite “par paire”, dont nous dérivons les équations d’évolution associées à
l’aide d’une autre approche que celle traditionnellement utilisée dans la littérature [196,
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194]. Cette approximation prend en compte les correlations existantes entre deux voisins
sur le réseau. Par corrélation, on entend ici le fait que la probabilité pour un individu
d’avoir un voisin infecté va dépendre à la fois de son nombre de voisins (son degré), mais
également de son état (susceptible ou infecté). De façon plus intuitive, et c’est ce que
prend en compte cette approximation par rapport aux autres, la probabilité d’avoir un
voisin infecté pour un individu susceptible à un instant donné sera plus faible que la
moyenne, car cela signifiera que ce voisin ne doit pas lui avoir transmis la maladie jusqu’à
cet instant. A l’inverse, si l’individu est infecté, cette probabilité sera plus élevé car ce
voisin aura une plus grande probabilité d’avoir soit transmis la maladie à l’individu infecté,
soit d’avoir été lui même infecté par l’individu en question. Ces correlations affectent la
dynamique de l’épidémie sur le réseau et doivent être prises en compte dans les calculs
permettant d’évaluer l’évolution du nombre total d’infectés sur le réseau. Les simulations

Figure G.6: Comparaison des différentes approximations avec la “vraie” courbe simulée
(ligne noire) à l’aide d’un processus de Markov sur un réseau hétérogène aléatoire, avec
une moyenne sur de nombreuses réalisations de l’épidémie. Nous avons pris un réseau de
3000 noeuds et 200 itérations différentes pour faire la simulation. Les approches PMF
(Pure Mean Field), QMF (Quench Mean Field) et HMF (Heterogeneous Mean Field)
respectivement en orange bleu et violet surestiment clairement le nombre d’infectés, car
elles considèrent qu’un voisin d’un individu susecptible a une probabilité I(t) d’être infecté
(la moyenne), alors qu’elle est en réalité plus faible à cause des corrélations. L’approche
DMP (Dynamical Message Passing) en vert permet d’avoir une meilleure approximation
car elle prend en compte que l’individu susceptible ne peut pas avoir infecté son propre
voisin. Finalement la Pairwise Approximation (apprximation par paires, PA) a une très
bonne précision. Les autres paramètres utilisés sont précisés dans la figure 4.3.

de ces différentes approximations sur un réseau sans échelle hétérogène sont présentées sur
la figure G.6, où l’approximation par paire (notée PA, courbe rouge) est clairement celle
qui est la plus proche des observations simulées (courbe noire).

Dans une seconde partie, nous implémentons la méthode des MFG en proposant une
approche possible sur réseau, avec une fonction coût et une description des contacts simi-
laires au Chapitre 3. En revanche ici nous allons faire varier le coût lié à la réduction des
contacts plutôt que le coût lié à l’infection, pour observer les comportements induits par ce
type de modèle. Nous réalisons nos simulations à l’aide d’un réseau de contacts hétérogène
réaliste, inspiré d’études récentes [181, 197].
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Figure G.7: Figure de gauche : évolution de la proportion d’infectés à l’équilibre de Nash
solution du jeu à champ moyen. Figure insérée : évolution de la probabilitié cumulée
d’être infecté avant l’instant considéré. Figure de droite : taux d’efforts correspondant
des individus, avec un coût lié à la réduction des contacts qui augmente avec le nombre
de contacts k. La ligne noire en pointillée (à gauche) montre l’évolution globale de la
proportion d’individus infectés sur le réseau, tandis que les lignes colorées correspondent
aux dynamiques (des infectés et des taux d’efforts) associées à des classes regroupant
les degrés du réseau. La légende précise est idniquée sur la figure. Par exmple, K = 5.4
correspond aux individus dont le nombre de contacts k se situe entre 4 et 6. Une description
plus détaillée de la figure est donnée sous la figure ??, avec les tables des paramèters utilisés
pour réaliser ces simulations.

Nous montrons sur la figure G.7 un exemple de ce que nous pouvons obtenir, avec à
gauche l’évolution de l’épidémie et à droite l’évolution des taux d’efforts des différentes
classes d’individus. Ici, nous avons regroupé les individus de différents degrés des classes
plus larges (ainsi K = 12.5 correspondra aux individus dont le degré se situe typiquement
entre 11 et 14 par exemple, en nombre de contacts par jour), afin d’améliorer la lisibilité et
surtout pour permettre la réalisation des simulations numériques en un temps raisonnable.
Dans la figure G.7, les efforts nécessaires à un individu pour réduire son taux de contact
sont linéaires avec son nombre de contacts : cela correspond à la situation où un contact
se vaut, quelque soit notre nombre total de contacts. Dit autrement, cela concerne les
personnes très attachées à leurs contacts sociaux et pour qui une réduction de ces derniers
demandera un effort important. Bien sûr, en réalité et contrairement à notre modélisation,
l’effort demandé variera beaucoup suivant le type de contact à réduire (s’il s’agit d’un
membre de sa famille ou d’un collègue de travail que l’on apprécie moyennement). Les
individus avec un degré élevé sont donc moins enclins à faire des efforts et préfèrent accepter
le risque, bien que l’épidémie soit plus virulente chez eux. De l’autre côté, les individus
avec un degré faible ont peu de risque lié à l’épidémie et sont donc moins enclins aux
efforts, mais comme ces derniers sont bien moins coûteux et plus rentables en termes de
protection. C’est pour cela qu’ils apparaissent comme étant ceux qui se protègent le plus,
alors que c’est l’inverse dès lors que la réduction du taux de contact devient constante et
indépendante du nombre de voisins : les individus avec un faible degré sont moins exposés
et ont donc moins d’intérêt à se protéger que les individus ayant un degré elevé. Ainsi,
dans ce chapitre, nous avons étudié comment le degré, c’est à dire le nombre de contacts
d’un individu pouvait influencer son comportement : à la fois car cela modifie son risque
associé à l’infection, mais également par la forme du coût lié à la réduction des contacts
qui l’incitera ou non à se protéger. Un phénomène intéressant révélé par notre analyse
est que lorsque les individus décident de se protéger pour une courte période, ils le font
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généralement un peu après le pic épidémique, lorsque l’épidémie présente encore des risques
importants mais que la fin de celle-ci est proche. Cela permet aux individus qui ont eu
la chance de ne pas avoir été infecté d’avoir une bonne probabilité de ne pas l’être avant
la fin de l’épidémie, car l’immunité collective a été atteinte. Cela conclut le 2e projet de
cette thèse (le 3e chronologiquement).

G.5 Résultats analytiques sur les réseaux homogènes

Le 3e et dernier projet de cette thèse est présenté dans le Chapitre 5, il ne concerne
pas les jeux à champ moyen mais la résolution analytique des équations du modèle SIR
sur réseau. Plus précisément, nous nous intéressons aux equations de l’approximation par
paires sur un réseau homogène aléatoire (degré constant). Nous dérivons une solution
implicite, c’est à dire que nous trouvons l’expression du temps en fonction du nombre de
susceptible, là où une expression explicite nous aurait fournit l’opposé. Une fois dérivée et
vérifiée numériquement, nous analysons la forme et le comportement de la solution trouvée,
en explorant les différents cas limites. Nous expliquons notamment pourquoi l’épidémie se
propage moins vite sur un réseau homogène (que sur un réseau hétérogène) et que ceci est
d’autant plus vrai à mesure que le nombre de voisins diminue, même lorsque la fréquence
des contacts est constante. Nous démontrons notamment que le seuil épidémique au deça
duquel l’épidémie ne peut se déclencher est plus faible que dans les modèles hétérogènes
ou le modèle SIR.

Dans la figure G.8, nous nous intéressons plus particulièrement à la nature et à l’expression
des racines qui décrivent notre solution implicite. Ces dernières sont complexes et conver-
gent vers le cercle unité d’une façon particulière que nous décrivons précisément. Cela nous
permet ensuite de passer à la limite d’un nombre infini de voisins, correspondant au modèle
SIR, et de dériver une nouvelle forme analytique implicite à l’aide de ces racines, alors que
celle existante dans la littérature reposait sur un calcul d’intégrale. Cette nouvelle formule
nous permet d’étabir un certain nombre de nouvelles approximations permettant d’obtenir
des expressions plus simples et intuitives, notamment pour l’instant du pic épidémique. Ces
résultats permettent d’étendre le champ des connaissances sur les résultats analytiques des
épidémies sur réseau, qui sont souvent limités en ce qui concerne l’épidémie à large échelle
(et pas seulement au déclenchement de celle-ci). Bien qu’ayant une portée pratique limitée
ici étant donné qu’il s’agit de réseaux homogènes, cela permet d’envisager des résolutions
de modèles plus complexes, éventuellement hétérogènes, avec des méthodes analogues. De
plus, les résultats analytiques permettent bien souvent de comprendre des concepts sur
les modèles étudiés que ne permettront pas, ou dans une moindre mesure, les simulations
numériques (comme la dépendance explicite des solutions dans certains paramètres du
problème). Ce travail a conduit à la publication d’un article qui a été accepté récemment
(PRE).

216



Figure G.8: A. Carrés oranges (respectivement. losanges noirs) : localisation dans le plan
complexes des racines de notre solution pour un réseau de homogène de degrés 50 et
20 respectivement.B Vue éclatée dans le plan complexe de la manière dont les racines
convergent vers le cercle unité, elle adopte une structure particulière autour de l’axe des
réels positifs, suivant la fonction T de Lambert, nous le montrons dans le chapitre. C Zoom
sur le plan complexe proche de 1 montrant comment le nombre de susceptible renoarmlisé
passe de la racine Z1 en moins l’infini (après une continuation analytique) à la racine Z0 en
plus l’infini. D Ligne bleue (respectivement rouge) : illustration pour un réseau homogène
de degré 20 de la variation de la racine réelle inférieure à 1 notée Z0 (respectivement réelle
supérieure à 1 notée Z1). Le paramètre mu correspond à l’inverse du taux de reproduction
de l’épidémie. La valeur indiquée µ∗

k correspond au seuil épidémique pour ce réseau qui se
trouve être inférieur à 1 : cela signifie qu’il faut que le R0 soit supérieur à l’inverse de 0.9
pour que l’épidémie puisse se propager sur le réseau. Les paramètres non indiqués ici le
sont dans la figure 5.2.

G.6 Techniques numériques

Le Chapitre 6 est quant à lui consacré aux techniques numériques qui ont été util-
isées tout au long de cette thèse. Nous présentons tout d’abord les librairies et méthodes
générales utilisées, avant de détailler les algorihmes qui ont servi à résoudre l’équilibre de
Nash ainsi que l’optimum sociétal. Pour l’équilibre de Nash, nous présentons une pre-
mière méthode basée sur une suite récurrente qui s’avère très efficace dans les cas où cette
dernière converge. Nous l’utilisons en complément d’une méthode plus classique qui repose
sur une descente de gradient pour nous permettre de nous assurer que nous avons bien at-
teint l’équilibre de Nash quand nous pensons l’avoir atteint (pour confirmer la convergence
de l’algorithme). La résolution de l’optimum sociétal repose également sur une descente
de gradient, un peu plus sophistiquée car impliquant plus de termes. Nous présentons
comment ces méthodes générales ont été appliquées au cas concret du Chapitre 3. Dans
une seconde partie de ce chapitre, nous évoquons la complexité (temps de calcul) des al-
gorithmes utilisés, et la dépendance de ces temps dans les paramètres clés des problèmes
étudiés. Il apparaît que le calcul de l’optimum sociétal est le plus contraignant avec une
complexité cubique dans le nombre de points de discrétisations utilisés et le nombre de
classes de notre jeu à champ moyens. Enfin, une dernière partie de ce chapitre est con-
sacrée à la présentation de deux méthodes prometteuses qui ont été étudiées mais peu ou
partiellement implementées pendant cette thèse : la principe du maximum de Pontryagin
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pour la résolution de l’optimum sociétal et l’utilisation d’algorithmes génétique pour la
résolution de l’équilibre de Nash.

G.7 Conclusion

Nous concluons ce travail dans le Chapitre 7 où nous reprenons les différents points
clés de nos objectifs et notre démarche. Nous décrivons les principaux enseignements de
ce travail de recherche. Sur le plan théorique, les modèles MFG enrichissent les modèles
épidémiologiques existants en tenant compte des comportements individuels de différentes
classes d’agents (par âge, par type d’interaction, etc.). La modélisation du contact per-
mettant l’implémentation des MFG doit se faire de façon attentive et normalement sym-
métrique, cela peut avoir une influence sur les résultats obtenus. Du point de vue physique,
les simulations montrent que les individus réduisent leurs contacts lorsqu’ils perçoivent un
risque élevé d’infection, concentrant leurs efforts autour du pic de l’épidémie. L’effet du à
l’optimisation égoïste révèlent des écarts entre l’optimisation individuelle et collective, per-
mettant ainsi d’imaginer la mise en place et l’optimisation d’interventions extérieures pour
rapprocher ces deux optima. Concernant les paramètres clés, il semble essentiel de bien
choisir l’horizon temporel de l’épidémie, car cela affecte les stratégies collectives (éradica-
tion, immunité de groupe, etc.). Les coûts liés à l’infection et à la réduction des contacts
sociaux doivent également être soigneusement calibrés car ils vont beaucoup influer sur
le comportement des individus. En termes de perspectives pratiques, trois axes ont été
identifiés et mériteront d’être développés dans des recherches ultérieures : premièrement
informer les individus de l’équilibre de Nash pour guider leurs comportements, car nous
ne pouvons pas attendre d’eux qu’ils réalisent ce calcul d’optimisation. Cette information
pourrait être transmise via une application mobile par exemple. Deuxièmement, concevoir
des interventions non pharmaceutiques (NPIs) plus efficaces et plus adpatées aux pop-
ulations concernées. Troisièmement, améliorer les prévisions épidémiologiques en tenant
compte des comportements anticipés. Enfin, des collaborations interdisciplinaires seront
nécessaires pour des applications concrètes des MFG, afin d’affiner la modélisation des
coûts et des comportements. Du point de vue théorique, l’exploration de jeux de Stack-
elberg, qui analysent les interactions entre les autorités et les individus, semble une piste
prometteuse.

J’espère que cette thèse permettra d’ouvrir la voie vers des applications concrètes in-
tégrant les comportements humains dans les modélisations d’épidemies.
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