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You know I’m born to lose, and gambling’s for fools,
But that’s the way I like it, I don’t wanna live forever

— Motörhead, Ace of Spades





A B S T R A C T / R É S U M É

english version

Mean Field Games provide a powerful theoretical framework to deal
with stochastic optimization problems involving a large number of
coupled subsystems. They can find application in several fields, be
it finance, economy, sociology, engineering ... However, this theory is
rather recent and still poses many challenges. Its constitutive equa-
tions, for example, are difficult to analyse and the set of behaviours
they highlight are ill-understood. While the large majority of contri-
butions to this discipline come from mathematicians, economists or
engineering scientists, physicist have only marginally be involved in
it. In this thesis I try an start bridging the gap between Physics and
Mean Field Games though the study of a specific class of models
dubbed "quadratic".

The first part constitutes a general introduction to theory of Mean
Field Games. The mathematical formalism is introduced heuristically
with an emphasis on quadratic Mean Field Games. Some parallels
with Physics are drawn, most notably through a mapping onto non-
linear Schrödinger equation and its associated hydrodynamic repre-
sentation. The second part is then divided in three chapters. The first
one investigates the integrability of some particular quadratic Mean
Field Games models: first in the weak noise limit by way of an anal-
ogy with electrostatics, then in the noisy regime by discussing the ap-
plicability of Inverse Scattering methods. The second chapter makes
use of previous results to study more generic games, toy-models of
sort, and construct approximation schemes. The third, and last, chap-
ter examines an alternative approach to deal with the weak noise limit
introduced two chapters before by accommodating semi-classical ap-
proximation to Mean Field Games.

Keywords: Mean Field Games, optimization, control, stochastic, par-
tial differential equations, non-linear Schrödinger, population dynam-
ics, toy-model.
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version française

La théorie des Jeux en Champ Moyen propose un ensemble d’outils
puissants lorsqu’il s’agit d’étudier des problèmes d’optimisation
stochastique impliquant un grand nombres de sous-systèmes couplés.
Cette théorie peut s’appliquer à une grande variété de domaines, de
la finance à l’économie, en passant par la sociologie ou l’ingénierie...
Cependant, cette dernière étant relativement récente, il reste de nom-
breux défis à relever. Les équations qui la sous-tendent, par exem-
ple, sont difficiles à analyser, et les comportements ainsi décrits sont
mal compris. Alors que la grande majorité des contribution à cette
nouvelle discipline provient de mathématiciens, d’économistes ou
d’ingénieurs, les physiciens ne s’y sont que peu intéressé. Avec cette
thèse, j’essaie de jeter un pont entre Physique et Jeux en Champ
Moyen à travers l’étude d’une classe spécifique de modèles qualifiés
de "quadratiques".

La première partie est une introduction générale à la théorie des
Jeux en Champ Moyen. Le formalisme mathématique y est présenté
de manière heuristique à travers le prisme des jeux quadratiques.
Des parallèles sont établis avec la Physique, notamment à travers un
changement de variable vers l’équation de Schrödinger non-linéaire
et la représentation hydrodynamique qui lui est associée. La deux-
ième partie est ensuite divisée en trois chapitres. Le premier étudie
l’intégrabilité de certains modèles particulier de Jeux en Champ
Moyen : d’abord dans la limite de faible bruit à l’aide d’une analo-
gie avec l’électrostatique, ensuite dans le régime bruité pour lequel
l’application de méthodes de diffusion inverse est examinée. Le deux-
ième chapitre utilise les résultats précédemment obtenus pour abor-
der des problèmes plus généraux, sortes de modèles jouets, et con-
struire des schémas d’approximation. Le troisième et dernier chapitre
propose une methode approcher alternative pour étudier la limite de
faible bruit, introduite deux chapitres plus tôt, en adaptant
l’approximation semi-classique aux Jeux en Champ Moyen.

Mots-clés : Jeux en Champ Moyen, optimisation, contrôle, stochas-
tique, équations aux dérivées partielles, Schrödinger non-linéaire, dy-
namique de population, modèle jouet.
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Part I

P R O L E G O M E N O N

This first part aims to instruct the reader on the basics of
Mean Field Games theory in a comprehensive, heuristic
fashion. It will provide a short contextualisation of my
work as a PhD student, and then introduce elements of

both control theory and game theory while trying to
relate those to similar notions in physics.





1
I N T R O D U C T I O N

This thesis aggregates the results of my work under the supervision
of Thierry Gobron and Denis Ullmo, respectively at the Laboratoire
de Physique Théorique et Modélisation (LPTM) and Laboratoire de
Physique Théorique et Modèles Statistiques (LPTMS), on models of
Mean Field Game theory.

Mean Field Games are a powerful framework introduced a little
more than ten years ago in the independent work of J.-M. Lasry and
P.-L. Lions [77–79] and of M. Huang, R. P. Malhamé and P. E. Caines
[59] to deal with problems of optimization involving an increasingly
large number of coupled subsystems. Such optimization problems are
traditionally called games by the mathematical community and may
quickly become technically intricate [67]. Inspired by the notion of This mean field

approach was
similarly introduced
at the end of the
19th century to
describe systems of
many interacting
components, for
which an exact
treatment is usually
unmanageable.

mean field developed by physicists [112], Mean Field Game paradigms
rely heavily on the assumption that the very complexity brought by a
large number of subsystems (traditionally called players or agents) al-
lows for a drastic simplification. In this highly complex configuration,
interactions between agents may average out and one may consider
that a given player is not really sensitive to the individual choices of
their competitors, but only to an averaged quantity representing the
decisions made by all the other participants to the game.

Applications of Mean Field Games are numerous, ranging from fi-
nance [27, 33, 72] to economy [2, 3, 55], sociology [4, 71, 73] or even
engineering [69, 70, 84]. The last few years have seen this new field
evolve rapidly, and particularly in two major directions correspond-
ing to two different (if not opposite) philosophies. On the more for-
mal side, many mathematicians have shown great interest for a rigor-
ous description of Mean Field Games, allowing for important results
on the existence and uniqueness of a solution to these problems [26,
50, 54], or on the differences and convergence of a many player game
to its mean field counterpart [15, 29, 30]. At the same time, signifi-
cant progress has been made towards developing effective numerical
schemes [1, 5, 52] granting the opportunity for more application ori-
ented studies. As such, important contributions largely come from
Mathematics, Engineering Sciences or, more recently, Economics.

Then, one may ask, why should a thesis about Mean Field Games
be considered theoretical Physics rather than, for example, Mathe-
matics or Economics ? The answer lies in the way the problem is
approached. While the mean field assumption provides a substantial
simplification of more traditional games, the constitutive equations of
Mean Field Game models remain difficult to analyse, even in spite of

3



4 introduction

the recent developments. Few exact solutions exist, mainly in simpli-
fied settings [13, 34, 51, 60], and the numerical schemes, while quanti-
tatively accurate, do not necessarily yield a complete comprehension
of the underlying mechanisms at work. The lack of effective approx-
imation schemes arguably hinders the diffusion of these tools to a
significantly larger audience as well. Consequently, there is a need
for the discussion of toy-models, simple enough to be understood
thoroughly but representative of what Mean Field Games can be, in
order to develop a more qualitative understanding of the problem. A
physicist’s approach, through the evaluation of characteristic scales
and the analysis of various limiting regimes, would provide just that:
a good intuition of the qualitative behaviours coupled to robust and
accurate approximations.

On a larger scale, this work is symptomatic of a recent tendency for
physicists to branch out and study subjects that would not strictly be
considered Physics by the general public, subjects such as Biology [87,
110], Ecology [12, 17] or Social Sciences [22, 36, 49, 88]. Physics has
more or less always influenced (and been influenced) by other fields
of research, in particular Economics as highlighted by P. Mirowski
[86]. Neoclassical economist I. Fisher wrote his doctoral thesis un-
der the supervision of the physicist J. W. Gibbs [47], R. J. Aumann
owes to fluid mechanics for his idea of continuum of traders [8], while
T. C. Schelling’s approach to segregation from individual incentives
is reminiscent of statistical mechanics [97]. And if examples of this
interplay between Physics and others sciences were indeed numer-
ous already during the 20th century, this phenomenon has exploded
since the mid-90s. This stems from the will to apply proven methods
of statistical mechanics to domains that are not traditionally looked
at as Physics but fall under the definition of complex systems. These
methods aim for the extraction of macroscopic properties (system
wide quantities, correlations, fluctuations, response to perturbations
...) from microscopic characteristics (local interactions, individual
wants or needs ...) in systems that, as T. C. Schelling would say, "lead
to aggregate results that the individual neither intends nor needs to
be aware of, results that sometimes have no recognizable counterpart
at the level of the individual". Still, many challenges remain and oneP. Mirowski [86]

notably criticized
the use of methods

originating from
Hamiltonian
mechanics in

economic problems
where the required

assumptions for
those methods to

work, such as
conservation of the

utility function,
were not met.

has to be wary when looking at transposing techniques that were de-
veloped in a specific context to another: it should come as part of
a continuing process along with the existing literature... And Mean
Field Game theory seems to provide an appropriate framework for
physicists to discuss optimization problems in a general and rigorous
way.

This manuscript is divided in three parts. The first one, simply ti-
tled "Prolegomenon", presents the reader with the fundamentals of
Mean Field Game theory. It introduces notions of Optimal Control
and traditional Game Theory, as well as its mean field counterpart,
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in an heuristic fashion while drawing parallels with similar concepts
in Physics. This part should not be considered as a comprehensive,
highly rigorous discussion but rather as an overview of this grow-
ing field that is Mean Field Game theory, containing all the basic
elements needed to approach the following parts. The second part,
"Key Findings", showcases the main results of my work on a spe-
cific type of games dubbed quadratic. The first chapter of this part,
chapter 3, focuses on a particular type of quadratic Mean Field Game
models, the constitutive equations of which are characterized as in-
tegrable and can be solved analytically. These integrable models are
interesting in and of themselves as the analytical nature of their so-
lutions can bring a better understanding of what constitutes a Mean
Field Game, but those can also be interpreted as limiting regimes
of more complex games. Such (more) sophisticated games are then
examined in chapter 4, where I use the expertise and intuition devel-
oped in chapter 3 to build up various approximation schemes. These
approximation regimes are then coupled together to reconstruct the
complete solution. Chapter 5, while still dealing with quadratic Mean
Field Games, focuses more closely on one of their constitutive equa-
tions, namely Fokker-Planck equation, and investigates the applicabil-
ity of a Wentzel-Kramers-Brillouin approximation to such problems.
Finally, chapter 6 contains a summary of the most important results
along with some concluding remarks. The third and last part, "Ap-
pendix", addresses a few technical aspects (such as details concerning
numerical schemes, computations or known mathematical methods)
for the sake of self-containedness.





2
E L E M E N T S O F M E A N F I E L D G A M E S T H E O RY

As part of a broader Game Theory, Mean Field Games (MFG) deal with
problems of strategic optimization but focus on the limit where the
number of agents, or players, becomes large. Players optimize strate-
gically in the sense that the outcome of their optimization depends,
inter allia, on the choices (or strategies) adopted by other players.

Such problems of strategic optimization with a large number of
players appear naturally when addressing any type of socio-economic
conundrum [82]. For example, the notion of utility, as coined by utili-
tarian philosophers J. S. Mill and J. Bentham during the 19th century
[85], was introduced in Ethics as a way for a moral agent to decide
between two actions: one should make the decision that maximizes
the total happiness of the world. A more recent acceptation of util-
ity can be found in microeconomics, where the now quantified utility
function is frequently adopted to quantitatively represent consumers’
preferences, who, in turn, try to maximize their utility (be it happi-
ness, comfort, etc.) by choosing how to spend money within a given
budget. In the same way, one can consider industries aim to maximize
their profits by adjusting factors of production. Presented strictly in
this way the previous examples do not allow for strategic thinking
per se, these are plain optimization problems based on some environ-
mental constraints such as prices, wages or production costs ... These An economic model

in which two
companies compete
for profit, knowing
that the end prices
depend on the
overall production
[82].

problems however become games when one factors in the potential
interactions between multiple players and how it can impact their de-
cision making, as highlighted for example through the well-known
Cournot duopoly.

Naturally these kinds of model become increasingly more complex
as the number of players grows. Not only does one need to solve
a greater number of individual optimization problems but keeping
track of all the interactions between each and every player quickly
becomes unmanageable. The idea behind MFG theory is that, in the
limit where the number of players goes to infinity, one can assume
the interactions average out and each individual only reacts to the
overall density of players. Because of this simplifying hypothesis, one
may forego the idea of monitoring the behaviour of each player in-
dividually in favour of looking at the evolution of their continuous,
deterministic distribution.

This chapter aims to provide a general introduction to MFG theory
from the basic notions that underlie its formalism to the derivation
of its constitutive equations. Important mathematical results integral

7



8 elements of mean field games theory

to further discussions will then be addressed before discussing some
alternative formulations of the MFG problem.

2.1 optimal control

Optimal Control is
largely due to the

work of L.
Pontryagin and R.
Bellman in the 50s

[25].

Optimal Control is the branch of applied mathematics which deals
with dynamical systems that can be controlled in order to optimize
an objective function. It many ways, it can be seen as a rather recent
extension of the Calculus of Variations well-known to physicists. Be-
cause of the strong link between optimization and Game Theory it is
only natural that Optimal Control serves as the foundations of MFG

theory.

2.1.1 Optimal Control in Physics : principle of least action

To bridge the gap between Physics and Optimal Control I will recast
a typical model of Physics in the language of optimization.

I shall consider a classical point particle of mass m, and generalised
coordinate ~q(t), that goes from ~q1 to ~q2 between time t1 and t2, in a
potential V(~q, t). Examples of the possible trajectories of this particle
are illustrated Figure (1). Naturally, as any physicist may know, one
can deduce the particle’s dynamics using Newton’s second law

~̈q = −~∇V . (2.1)

However this equation can also be seen as deriving from the more
general principle of least action which reads [90]:

"The path taken by the system between times t1 and t2 and con-
figurations~q1 and~q2 is the one for which the action is stationary
(no change) to first order."

The action S is, then, an abstract physical quantity that needs to be
extremized in order to obtain the dynamics of the considered system
(here a point particle). It is usually defined as the integral over time
of another quantity called Lagrangian and denoted L

S[~q, t1, t2] =
∫ t2

t1

L(~q,~̇q, t)dt . (2.2)

The Lagrangian is constructed so that the dynamics follows a set of
rules or physical principles. For example, in the case of a classical
particle in a potential:

• The motion of the particle should be fully defined once ~q and ~̇q
are known.

• The dynamics should respect Galileo’s principle.
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Figure 1: There are infinite possibilities for the system to reach state ~q2 start-
ing from ~q1, however the chosen path (red) is the one that mini-
mizes the action.

• Going through a region where the potential is greater should
be penalized.

As discussed by L. D. Landau and E. M. Lifshitz [75], those con-
straints impose the Lagrangian of classical mechanics to read

L =
1
2

m||~̇q||2 −V , (2.3)

and the mathematical expression of the principle of least action

δS

δ~q
=

d
dt
~∇q̇L− ~∇qL = 0 , (2.4)

also known as Euler-Lagrange equation, is perfectly equivalent to
equation (2.1). The control

parameter is the
variable over which
one has to optimise
the cost function. In
Physics it usually
takes the form of the
position, while in
Optimal Control, by
convention, one
chooses rather to
control velocity.

In this way, through the principle of least action, it is possible to
reformulate a problem of classical mechanics as a problem of opti-
mization. In Physics the action plays a role equivalent to that of the
utility function in Economics or the cost function in Optimal Control.
Conversely, the Lagrangian is equivalent to a running cost and both
are constructed with the same goal in mind. Finally, what is known
in the Optimal Control jargon as control parameter simply corresponds
to the position ~q, and optimizing the cost function (action) yields the
optimal solution (dynamics).
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2.1.2 Dynamic programming and Hamilton-Jacobi-Bellman equation

While Euler-Lagrange equations can be seen used in the Optimal Con-
trol literature, there exists another approach which yields similar re-
sults but is better suited to deal with stochastic problems.

Let us consider a system specified by its state variable ~X ∈ Rd

which evolves according to Langevin dynamics

d~Xt =~atdt + σd~Wt (2.5)

where ~a is the control parameter, σ a constant and ~W a Gaussian
white noise of variance one. We want to control (i. e. find the proper
dynamics for~a) so that the following cost function is minimized

c[~a](~X, t) = E

[∫ T

t

(µ

2
(~aτ)

2 −V(~Xτ)
)

dτ + cT(~XT)

]
. (2.6)

Here T is the time at which the game ends, µ is a constant, V can be
seen as an environmental gain and cT a terminal cost, that is to say a
cost to end the control process in a certain configuration.

In order to find the Optimal Control parameter~a∗, let us first intro-
duce the value function u as the optimal cost function

u(~X, t) ≡ inf
~a

c[~a](~X, t) . (2.7)

To compute u, and ultimately relate the result to ~a∗, we turn to the
notion of dynamic programming and more precisely to Bellman’s op-
timality principle [14]

"An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from
the first decision."

This means the computation of u can be simplified by discretizing the
problem and optimizing on infinitesimally small time frames. On the
interval [t, t + dt] we then have the relation

u(~X, t) = inf
~a

E

[∫ t+dt

t

(µ

2
(~aτ)

2 −V(~Xτ)
)

dτ

]
+ u(~X + d~X, t + dt) ,

(2.8)

which is called Bellman equation. The dynamics of ~X being defined
through Langevin equation, u(~X+ d~X, t+ dt) can be expanded to first
order in dt using Itô’s Lemma [48]

E
[
u(~X + d~X, t + dt)

]
= u(~X, t)

+

[
∂tu(~X, t) +~a.~∇u(~X, t) +

σ2

2
∆u(~X, t)

]
dt

,
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(2.9)

which, combined with Bellman equation (2.8) yields Hamilton-Jacobi-
Bellman (HJB) equation

∂tu +
σ2

2
∆u + inf

~a

[µ

2
(~a)2 +~a.~∇u

]
= V , (2.10)

that constitutes an alternative to Euler-Lagrange equation (2.4). The
optimization of the third term in HJB equation imposes the relation
~a∗ = − ~∇u

µ and the equation can be rewritten as

∂tu +
σ2

2
∆u− 1

2µ
||~∇u||2 = V . (2.11)

Before going forward, it should be noted that this equation is con-
structed backward in time, as is hinted by the sign in front of the
diffusive term. By definition the boundary condition for the value
function is given at time T, the end of the optimization

u(~X, T) = cT(~X) , (2.12)

and solution to HJB equation is then constructed step by step from
there.

This concludes my discussion on Optimal Control. In this section
I chose to focus on cost functions that only depend on the square of
the control parameter, characteristic of the so called quadratic games, as
those are the ones I will be dealing with in the rest of this manuscript.
Of course, the derivation of HJB equation can be easily generalized
to more complicated cost functions, I refer you to monograph [18] in
this regard. In the next section I will address Game Theory, another
important (as the name suggests) aspect of MFG.

2.2 game theory

The emergence of
Game Theory as a
specific field of
research is largely
due to J. von
Neumann’s seminal
work [111].

Game Theory is a modern label for strategic optimization, "strategic"
in the sense that each agent (or player) tries to solve an optimization
problem which depends on the others’ behaviour (or strategy). Ob-
viously, as interactions are added, complexity escalates quickly, and
the need for a new, proper definition of what can be considered a
solution of the optimization problem arises.

2.2.1 A canonical example

To illustrate what is traditionally called a game and how the notion
of solution has to be reinterpreted, we shall consider the seminal Pris-
oner’s dilemma as formalized by A. Tucker in 1950 [94].

Imagine two members, A and B, of a same gang are arrested and
put in solitary confinement with no means of communicating with
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one another. Both are to be convicted for robbery but are also sus-
pected of murder with lack of sufficient evidence. Imagine now that
the prosecutors offer both prisoners a bargain based on their suspi-
cion. Here are the possible outcomes of this bargain, as illustrated in
Table (1):

• A and B both betray the other and serve 10 years in prison each
(convicted for murder with plea bargaining in exchange of a
more lenient punishment).

• A betrays B but B stays silent (or vice versa), A is set free and B
serves 15 years.

• Both A and B stay silent and serve 4 years (convicted for rob-
bery).

prisoners b betrays b stays silent

a betrays 10/10 0/15

a stays silent 15/0 4/4

Table 1: Prisoner’s dilemma pay-off matrix

It is assumed that neither player is loyal to the other and both un-
derstand the nature of this game. The dilemma in this situation comes
from the fact that mutual betrayal results in a worse outcome than
mutual cooperation (20 combined years versus 8) but cooperating is
irrational from a self-interested perspective. Framed in this way, be-
traying always yields better pay-off than staying silent, regardless of
what the other decides. If B betrays A, then A should betray B be-
cause being convicted for 10 years is better than 15. And if B stays
silent, A should still betray B as going free is better than serving 4

years ... Because of this, betraying is called a dominant strategy and the
situation where both prisoner betray the other is referred to as a Nash
Equilibrium (see section 2.2.3).

This model is very simplistic and does not aim to describe reality
accurately. For example it leaves aside the systematic bias towards
cooperative behaviour or the fear of retribution. Its main interest,
though, is that it provides a good illustration of what constitutes a
game and the issues that come with it, namely the questions of ratio-
nality and solution (global vs individual optimum).

2.2.2 Zoology

Because Game Theory is so broad of a discipline, we have to narrow
down our field of study before addressing mathematical aspects of
the formalism. This section will provide a brief overview of the main
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game types and allow me to emphasize what kind of rules I will use
to construct the games I will be interested in.

cooperation : A game is considered cooperative if players can form
externally enforced (e. g. through contract law) binding agree-
ments in order to ensure the group will take actions resulting
in a collective pay-off. In a non-cooperative game, alliances can
still form but are self-enforcing and while a collective greater
good can be sought within this framework, it still focuses pri-
marily on individual gains.

time dependance : In simultaneous games, players decide on a
strategy at the beginning of the game and cannot change it. In
sequential however, they are able to modify their strategy, for
example in reaction to others’ behaviour.

information : An important aspect in decision making is the
amount of information the players have access to before defin-
ing their strategy. Do they have perfect information as in chess ?
Do they have imperfect information as in poker ? Do they have
complete information, i. e. do they know all the rules and possi-
ble pay-offs ? And finally, is there some uncertainty resulting in
non-deterministic strategies ?

rationality : In Game Theory players are considered rational if
they are able to solve optimization problems and follow their
strategy without psychological bias. Obviously this assumption
is generally not realistic but can still be pertinent in some spe-
cific cases where it can yield interesting results. Some of the
shortcomings of this approach can be accounted for by mod-
ifying the players’ utility function. For example it could con-
tain a bias towards altruistic behaviours or a penalty towards
marginal strategies to represent peer pressure. One of the main
difficulties then becomes how to define a proper utility function.
The notion of limited rationality, where players are not necessar-
ily able or far-sighted enough to solve their problems, is also
the subject of extensive research, particularly in the field of Evo-
lutionary Game Theory [102].

For the rest of this thesis, I will be focusing on non-cooperative,
sequential games with rational but uncertain players, which are typi-
cally studied through the lens of Nash Equilibrium.

2.2.3 Nash Equilibrium

In Game Theory, are called solutions predictions that describe which
strategies players will adopt and, hence, the result of the game. Obvi-
ously, depending on how rational (in the game theoretical sense) play-
ers are, the result of the game may vary and this led to the emergence
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of the notion of solution concepts, the most commonly used being theSolution concepts
are formal rules for

predicting how a
game will be played

[104].

Nash Equilibrium concept. This concept assumes that players will
choose their strategies so as to reach a state called Nash Equilibrium.

Consider a non-cooperative game with N rational players. Let si
be a strategy adopted by player i from a compact metric space Si in
order to optimize a cost function ci, continuous and real valued on
∏N

j=1 Sj. A Nash Equilibrium is then a N-tuple (s̄1, ..., s̄N) ∈ ∏N
j=1 Sj

such that, for any i = 1, ..., N

ci(s̄1, ..., s̄N) ≤ ci(si, (s̄j)j 6=i) ∀si ∈ Si . (2.13)

Nash Equilibrium is a state in which for any player i to deviate from
their strategy s̄i would mean to pay a higher cost. Going back to
the example of the prisoner’s dilemma, the situation where A and
B betray each other is a Nash Equilibrium because if either A or B
chooses to change strategy (stay silent) it would result in a worst
outcome for them (15 years of prison rather than 10).

This solution concept is limited in the sense that even with rational
agents a game may not have a Nash Equilibrium or may have several,
but is convenient enough (and general enough) that it is a reasonable
way to address most games. In the following we will assume the
games considered have at least one Nash Equilibrium.

2.2.4 Differential games

Differential games constitute a "gamification" of the optimization
problem presented in section 2.1.2. In N-players differential game,
the state of player i (assumed rational) is represented by a vector
~Xi

t ∈ Rn and their strategy ai
t is dynamically adjusted as the game

progresses. Assuming some uncertainty in the player’s decision, one
may represent their behaviour through Langevin dynamics

d~Xi
t =~ai

tdt + σid~W i
t , (2.14)

where, as in section 2.1.2, ~W i
t is a Gaussian white noise, independent

of ~W j 6=i and of amplitude 1. Each player, through the determination
of their strategy, aims to optimize a cost functional ci

t that depends
on the behaviour of every other player

ci
t[~a

1, ...,~aN ](~X1
t , ..., ~XN

t ) = E

[∫ T

t

(
µi

2
(~ai

τ)
2 −Vi(~X1

τ, ..., ~XN
τ )

)
dτ

+ci
T(~X

1
T, ..., ~XN

T )
] ,

(2.15)

if we postulate all players have quadratic running cost as mentioned
at the end of Section 2.1.2. Because we consider rational players, we
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look for a Nash Equilibrium (~a1∗, ...,~aN∗) as solution of this optimiza-
tion problem

ci[~a1∗, ...,~aN∗] ≤ ci[~a1∗, ...,~ai, ...,~aN∗] ∀i = 1, ..., N and ∀~ai . (2.16)

In this context, the value function ui
t may be defined as the optimal

cost of player i if every other player follows their optimal strategy

ui
t(~X

1
t , ..., ~XN

t ) = inf
ai

E

[∫ T

t

(
µi

2
(~ai

τ)
2 −Vi(~X1

τ, ..., ~Xi
τ, ..., ~XN

τ )

)
dτ

+ci
T(~X

1
T, ..., ~Xi

T, ..., ~XN
T )
] ,

(2.17)

and evolves according to HJB equation in the following way [78]

∂tui +
σ2

i
2

N

∑
j=1

∆xj ui−∑
j 6=i

1
µj (

~∇xj uj).(~∇xj ui)− 1
2µi ||~∇xi ui||2 = V , (2.18)

with terminal condition

ui
T(~X

1
T, ..., ~XN

T ) = ci
T(~X

1
T, ..., ~XN

T ) . (2.19)

When the number of players increases, differential games become
quickly intractable (as the number of coupled stochastic equations
increases accordingly) and the need for a new, more adequate, frame-
work, along with its simplifying assumptions, arises.

2.3 mean field approach

Non-atomic games
involve only "small"
players, such that
any set of players of
zero measure has no
effect on the game
(e. g. customers in
an economic system)
[9].

Mean Field Games were introduced by P.-L. Lions and J.-M. Lasry
[77–79], as well as M. Huang, R. P. Malhamé and P. E. Caines [59],
to deal with non-atomic differential games involving a large number
of identical players. Inspired by the notion of mean field developed in
Physics [44], they provide a significant simplification when consider-
ing that agents are not sensitive to the individual choices of the others
but to an averaged quantity aggregating decisions from all players.

2.3.1 Mean Field Games equations

In the last few years, many different approaches to MFG have seen
the light of day. In this manuscript I will focus on the deterministic
Partial Differential Equation (PDE) formulation originally introduced
by P.-L. Lions and J.-M. Lasry, but another particular approach of note
is the probabilistic view of R. Carmona and F. Delarue [30] that has
been an important focus of the mathematical community recently. I
refer the interested reader to the following monographs [31, 32] for a
more in-depth review.
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To construct MFG equations one should start by implementing the
aforementioned assumptions in the framework of differential games
described section 2.2.4. We consider several identical players, {∀i =
1...N, σi = σ, µi = µ, Vi = V, ci

T = cT}, that only differ by their
initial state Xi

0 and choice of strategy ai
t. We also choose the potential

V and the terminal cost cT felt by a given player i to depend on the
others’ behaviour only through the empirical density

m̃(x, t) =
1
N

N

∑
j=1

δ(x− X j
t) , (2.20)

hence V(~X1
t , ..., ~XN

t ) ≈ V[m̃](Xi
t) and cT(~X1

T, ..., ~XN
T ) ≈ cT[m̃](Xi

T). As
such, in the limit of a large number of players, if we can safely neglect
the fluctuations of m̃ (mean field approximation), we may introduce
a mean field m(x, t) = 〈m̃(x, t)〉, average of the empirical density over
all realisations of the noise, and define the value function for a given
player as [26]

u(x, t) = inf
~a

E

[∫ T

t

(µ

2
(~ai

τ)
2 −Vi[m](~Xi

τ)
)

dτ + ci
T[m](~Xi

T)

]
, (2.21)

where the average is taken over the realisations of the noise to which
this player is subjected. This allows to recast the differential game
presented in section 2.2.4 into a one-body optimization problem as
described in section 2.1.2 while the agents essentially decouple. The
value function then verifies HJB equation∂tu +

σ2

2
∆u− 1

2µ
||~∇u||2 = V[m]

u(x, T) = cT[m](x)
, (2.22)

which is the same equation (2.11) of section 2.2.4 except that the po-
tential V now depends on the mean field m.

Now, as is the case in Physics, the use of a mean field allows for
a decoupling of the players’ dynamics but one still needs to observe
self-consistency. This can be ensured by using the fact that, for a largeFokker-Planck

equation is obtained
by truncating the

Kramers-Moyal
expansion of the

master equation to
second order [95].

enough number of players following Langevin dynamics (2.14), the
density of players m (which also constitutes the mean field) can be
accurately described by Fokker-Planck (FP) equation

∂tm + ~∇. [m~a∗]−
σ2

2
∆m = 0 , (2.23)
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where ~a∗ = − 1
µ
~∇u is the optimal control parameter according to HJB

equation. Considering an initial distribution of players m0(x) the MFG

problem reduces to a system of coupled (deterministic) PDEs

∂tu +
σ2

2
∆u− 1

2µ
||~∇u||2 = V[m]

u(~x, t = T) = cT[m](~x)

∂tm−
1
µ
~∇.
[
m~∇u

]
− σ2

2
∆m = 0

m(~x, t = 0) = m0(~x)

, (2.24)

where the unknowns are not the individual strategies anymore but
the mean field m(x, t) and the value function u(x, t). One impor-
tant feature of this system is its unusual forward-backward structure,
given that HJB equation is constructed from the terminal cost at the
end of the game while FP equation describes the evolution of the dis-
tribution of players starting from its configuration at the beginning.
These mixed initial-final boundary conditions lead to new challenges
when trying to characterize, either analytically or numerically, solu-
tions to MFG equations as they tend to bring forward dynamics that
are atypical for physicists.

2.3.2 Long optimization time and ergodic state

For a long enough game, one can imagine that there exists a time,
far from both the beginning and the end of the game, at which the
solutions of the MFG equations (2.24) completely decorrelate from the
initial and final conditions. It is easy to think of a game where, at
one point, players do not (need to) remember their initial state and
do (or should) not yet care about the endgame but can still devise an
optimal, sometimes stationary, strategy. In this vein P. Cardaliaguet et
al. [28] showed that in the limit T → ∞, if the potential V[m](x) has The existence of an

ergodic state
actually requires a
few other conditions
to be met. I leave
those aside as they
will not be the
subject of discussion
in this manuscript.

no explicit time dependence (as we have and will always consider in
this manuscript) and if the system is in some way confined (either
through V or because of a geometry with fixed spatial extension),
there exists an ergodic state such that∣∣∣∣∣m(~x, t) ' m(~x)

u(~x, t) ' u(~x) + λt
(for 0� t� T) , (2.25)

with λ a constant that can be determined through the normalisation
of m. This result is of paramount importance to get a general overview
of how a game will play, even if one is not able to properly solve the
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system of forward-backward equations (2.24), as it further simplifies
the problem by getting rid of the time dependence

λ +
σ2

2
∆ū− 1

2µ
||~∇ū||2 = V[m]

1
µ
~∇.
[
m̄~∇ū

]
+

σ2

2
∆m̄ = 0

. (2.26)

An example of ergodic state can be observed on Figure (2) where, for
a large portion of the game, the distribution of players is stationary.
This notion will be a relevant subject of discussion in chapter 3 and
see extensive use in chapter 4.

Figure 2: Evolution of the density of players with time. Initially the density
is localized around x = 0 and then spreads up to the point when
the system reaches the ergodic state where it remains for most of
the game. Towards the end, players gather once again not to pay
too high of a terminal cost. For this simulation we chose a potential
featuring repulsive interactions between players and a (confining)
environmental gain V[m] = −2m − 0.1x2, with T = 10, µ = 1
and σ = 0.4. The terminal cost cT = 10x2 is also confining to en-
sure players effectively gather at the end. All numerical solutions
of system (2.24) are obtained using a C++ algorithm described in
appendix A.

2.4 changes of variables

While the system of MFG equations (2.24) represents a powerful sim-
plification over the differential games presented section 2.2.4 when
the number of player is large, solving it still constitutes a challenge.
Even if the forward-backward nature of those equations constitute the
main difficulty of MFG, the coupling of FP equation with HJB equation
is not something physicists are particularly used to dealing with and
brings its own set of complications. In the particular case of quadratic
MFG, however, there exists ways to recast the problem into something
more familiar to physicists [19, 53, 109]. I shall now discuss these
alternative forms of the MFG equations (2.24).
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2.4.1 Non-linear Schrödinger formalism

This change of variable was initially introduced by O. Guéant as a
way to build a monotonous discretization scheme [53], and then dis-
cussed at length, by D. Ullmo, I. Swiecicki and T. Gobron [109], as a
gateway into MFG for physicists.

Proceeding as in [109], one can make use of the classic Cole-Hopf
transform on HJB equation to obtain a standard heat equation [58]µσ2∂tΦ = −µσ4

2
∆Φ−V[m]Φ

u = −µσ2 log Φ
, (2.27)

where this equation is constructed backward in time, similarly to HJB

equation, with terminal condition Φ(x, t = T) = exp
[
−cT(x)/µσ2].

One can then perform an "hermitization" of equations (2.24)µσ2∂tΓ =
µσ4

2
∆Γ + V[m]Γ

m = ΦΓ
, (2.28)

this one being forward in time with initial condition Γ(x, t = 0) =

m0(x)/Φ(x, 0). Through these transformations the system of MFG

equations (2.24) exhibits a mapping onto the Non-linear Schrödinger
(NLS) equation

ih̄∂tΨ = − h̄2

2µ
∆Ψ−V[ρ]Ψ

ih̄∂tΨ∗ =
h̄2

2µ
∆Ψ∗ + V[ρ]Ψ∗

, (2.29)

under the formal correspondence µσ2 → h̄, Φ(x, t) → Ψ(x, it), In this case, as will
be for the rest of this
thesis, A∗ refers to
the complex
conjugate of A.

Γ(x, t) → [Ψ(x, it)]∗ and ρ ≡ ||Ψ||2 → m ≡ ΦΓ. The system of equa-
tions constituted by (2.27) and (2.28) differ from NLS equation in a few
ways. Obviously it retains the forward-backward structure character-
istic of MFGs, and, because of how they are constructed, the functional
space of which its solutions Φ and Γ are elements is also different
than the one we, as physicists, are used to. Because of how they are
constructed, Φ and Γ are actually defined as non-periodic, positive
functions, while Ψ would be complex valued. Those differences are
significant, and their extent will be discussed in chapters 3 and 4, but
they are not important enough to undermine the value of this map-
ping. NLS equation has been studied for decades in the various fields
of non-linear optics [66], Bose-Einstein condensation [93] or fluid dy-
namics [68]. Several methods have been developed along the years to
deal with this equation and most can be adapted to MFG models as
was already highlighted in [109].
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2.4.2 Hydrodynamic representation

Starting from the NLS representation of MFG equations it is possible,
through a Madelung-like substitution as described in [92], to make
use of the "hermitized" nature of the previous transformations and
make yet another change of variables

Φ(t, x) =
√

m(t, x)eK(t,x)

Γ(t, x) =
√

m(t, x)e−K(t,x)
, (2.30)

reformulating the problem into a more transparent one. If we define
a velocity ~v as

~v = σ2~∇K = σ2 Γ~∇Φ−Φ~∇Γ
2m

= −
~∇u
µ
− σ2

~∇m
2m

, (2.31)

it is easy, from equations (2.27) and (2.28), to obtain a continuity equa-
tion along with its associated Euler equation

∂tm + ~∇.(m~v) = 0

∂t~v + ~∇
[

σ4

2
√

m
∆
√

m +
||~v||2

2
+

V[m]

µ

]
= 0

, (2.32)

reminiscent of hydrodynamics. This system closely resembles the orig-
inal MFG equations (2.24) but can prove to be more convenient when
performing some approximations (small noise limit) or applying some
specific methods of resolution.

2.4.3 Action, and conserved quantities

One of the more immediate benefits of those alternative representa-
tions is that they enable, in a fairly direct fashion, the introduction
of various methods and notions originally developed to study and
characterise problems of physics. Most notably, it brings forward the
concepts of action and energy to the context of MFG.

The system of equations (2.27)-(2.28) can be seen as deriving from
an action S defined as

S[Γ, Φ] ≡
∫ T

0
dt
∫

R
dx
[

µσ2

2
(Γ∂tΦ−Φ∂tΓ)

−µσ4

2
∇Γ.∇Φ + U[m]

] , (2.33)

where U[m] represents the functional anti-derivative of V[m], so that
its minimisation yields the Schrödinger representation of MFG equa-
tions 

δS
δΦ

= 0

δS
δΓ

= 0
⇔


µσ2∂tΦ = −µσ4

2
∆Φ−V[m]Φ

µσ2∂tΓ =
µσ4

2
∆Γ + V[m]Γ

. (2.34)
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The existence of an action underlying the dynamics has two major
consequences. First, as will be argued in chapter 4, such an action
can serve as the basis of a variational approach. Second, because MFG

equations (2.24) are time translation invariant, this implies by way of
Noether theorem that there exists a corresponding conserved quan-
tity that, by analogy with physical systems, we shall call energy.

Depending on the specifics of the considered problem, either the
Schrödinger or hydrodynamic representation may prove to be more
convenient. As such, I provide the reader with two alternative expres-
sions for the energy of the game

E =
∫

R
dx
[
−µσ4

2
∇Γ.∇Φ + U[m]

]
=
∫

R
dx
[

µσ2

2

(
m
( v

σ

)2
− σ2 (∇m)2

4m

)
+ U[m]

] . (2.35)

Continuing on with the analogy with physical systems, the first, σ de-
pendent, term of each integrand can be interpreted as a kinetic energy,
while the U term would correspond to potential energy. Naturally, the
way those quantities have to be (concretely) understood, with respect
to either social or engineering sciences, differs from the traditional
physical interpretation. Those should, above all, be considered ab-
stract quantities: while they can prove useful to formally characterise
a problem, as will be shown in chapters 3 and 4, their factual signifi-
cation (if there is one) depends on the context.

With this I conclude my brief introduction on MFG theory. This
chapter should provide the reader with everything they need to know
about both optimization and Game Theory as far as this manuscript
is concerned. A MFG paradigm of population dynamics along with its
constitutive equations have been addressed as well as some interest-
ing changes of variables that will become useful in further develop-
ments. The upcoming chapters will deal more closely with my work
during my PhD, focusing specifically on one dimensional quadratic
games with potential

V[m](x) = gm + U0(x) , (2.36)

where g is a constant and U0 an external gain. Potential of this type
probably constitute the simplest non-trivial example of explicit (lo-
cal) interactions between players and, as such, is interesting from the
point of view of developing an intuition of the qualitative behaviours
one can expect from MFG theory.





Part II

K E Y F I N D I N G S

This part showcases the main results of my work as a
PhD student. Relying heavily on the Schrödinger
representation of Mean Field Games I was able to

accommodate methods originating from Physics to study
models of Mean Field Games.





3
I N T E G R A B I L I T Y O F Q U A D R AT I C M E A N F I E L D
G A M E S

Most of my PhD was dedicated to the (ongoing) study of a class
of so-called integrable quadratic Mean Field Games that can be solved
entirely analytically. The main motivation behind this is to make use
of the deep connection between NLS equation (integrable under some
conditions) and quadratic MFG in order to develop a formal approach
to the forward-backward system of equations (2.24). These integrable
games are too specific to be considered toy-models, but, as I shall
argue in chapter 4, can be seen as limiting regimes of more general
problems. Very few realistic situations can accurately be described by
this type of games, but it may serve as a good starting point for more
involved discussions.

By integrable quadratic Mean Field Games I specifically refer to games
described by the system of MFG equations (2.24) in 1+1 dimensions,
with potential (2.36) where the external gain is considered zero every-
where

∂tu +
σ2

2
∂xxu− 1

2µ
(∂xu)2 = gm

u(x, t = T) = cT[m](x)

∂tm−
1
µ

∂x [m∂xu]− σ2

2
∂xxm = 0

m(x, t = 0) = m0(x)

, (3.1)

along with its alternative representations. This can be seen as a partic- In this case, x can
obviously represent
the agents’ physical
position but may
also refer to beliefs,
political views etc...

ular, admittedly very simple, case of the population dynamics model
introduced by O. Guéant in 2010 [55], in which players have no prefer-
ences whatsoever for a given state x, but only care about the amount
of other players in their close vicinity. The sign of the constant g mon-
itors the type of interactions we are interested in. A positive g would
correspond to attractive interactions (herding effect, peer pressure,
etc.) while negative g would describe repulsive interactions (collective
exploration, anti-conformism, etc.). Because the instance of attractive
interactions has been the subject of extensive discussions from my
predecessor [105, 106, 109] (albeit not through the lens of integrabil-
ity) I will focus mostly on negative g.

Those games are (completely) integrable in the Liouville sense [81].
By that I mean they can be seen as Hamiltonian systems, albeit of in-
finite dimensionality, for which one can construct an infinite number
of Poisson commuting invariants. Those conserved quantities are said
to be in involution and are know as first integrals of motion. Another,

25
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more geometrical, way of saying this is that there exists a regular foli-Note that the
invariants are not

referred to as
"constants of

motion" to signify
that they are not

explicitly defined as
functions of time.

For example, looking
at an object of

position x moving at
constant velocity v,
the quantity x− vt

is a constant of
motion but not an
integral of motion.

[16]

ation of the phase space by invariant manifolds, such that the Hamil-
tonian vector fields associated to the invariants of the foliation span
the tangent distribution. According to Liouville-Arnold theorem [7],
for such systems there exists a canonical transformation (as in pre-
serving Hamilton’s equations) to action-angle variables. In this system
of coordinates, the Hamiltonian only depends upon the action vari-
ables (which are equivalent to the first integrals of motion), while the
dynamics of angle variables is simply linear. If this canonical trans-
form is explicitly known, one can then solve the system in quadra-
ture, which is what I meant earlier when saying that those games can
be "solved entirely analytically".

In this chapter (and in particular in section 3.2), I will argue the
existence of those first integrals of motion, the most obvious example
of which is the energy (or Hamiltonian) E, as defined by equation
(2.35). Two other relevant conserved quantities with a clear physical
meaning are the (normalized) number of players

N =
∫

R
mdx = 1 , (3.2)

and the momentum

P =
∫

R
(m∂xu− u∂xm)dx , (3.3)

which is also the generator for space translation

m(x, t)→ m(x + x′, t) u(x, t)→ u(x + x′, t) , (3.4)

under which the system of MFG equations (3.1) is invariant. The other
conserved quantities exhibit more complicated expressions and their
signification is usually more abstract, this is why I will mostly discuss
the first three: N, P and E. I will then try and propose methods to
exploit these conserved quantities, either by constructing variational
ansätze or by introducing a canonical linearising transform to action-
angle variables.

I will start by examining a yet again simplified version of this MFG

paradigm where interactions dominate and the effects of noise can
be neglected. This allows me to relate the game (3.1) to problems
typically found in physics and introduce the notion of integrability
in a fairly transparent way. I will then consider the complete problem
using quintessential methods of classical integrable systems (namely
zero curvature representation and Hamiltonian formalism) and argue
the main difficulties (as well as my shortcomings) when trying to
adapt these to MFG.

3.1 integrable mean field games in the weak noise limit

While this section mostly aims to introduce integrability in the realm
of MFG theory, it will also provide a good example of what the alter-
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native representations described in section 2.4 can bring to the table.
Moreover, it should be noted that most of the upcoming discussions
can serve as supplementary material to our 2019 letter [19].

3.1.1 Definition and relevance of the weak noise limit

In order to get to why we might be interested in the weak noise
limit specifically, we need to take a closer look at the hydrodynamic
representation (2.32) which, under the assumptions mentioned earlier
that the game is integrable quadratic, reads

∂tm + ∂x(mv) = 0

∂tv + ∂x

[
σ4

2
√

m
∂xx
√

m +
v2

2
+

g
µ

m
]
= 0

. (3.5)

Because the first equation is a simple continuity equation, the meat
of the dynamics is contained in the second. Along with the obviously
necessary time derivative, the v2 term is actually mandatory as it is a
signature of the quadratic nature of the game we consider (and that is
why it does not depend on any parameters). As such, of the 4 terms
in the Euler equation we can only fiddle with two: the diffusion term
on the one hand and the interaction term on the other. It is precisely
the competition of those two effects that dictate the behaviour of the
solution.

As was briefly mentioned in section 2.4, this hydrodynamic repre-
sentation of NLS equation was initially introduced by physicists in-
terested in the expansion of Bose-Einstein condensates [92]. In this
context, and to make the investigation of this problem simpler, they
were able to make out two limiting regimes by introducing the no-
tion of healing length [41]. The healing length, the MFG counterpart of
which is ν =

∣∣µσ2/g
∣∣, is the typical length scale on which the interac-

tion energy balances quantum pressure (or diffusion in our case). It
is named this way because it is the minimum distance over which the
wave function can tend to its bulk value (i.e. "heal") when subjected
to a local perturbation. As a corollary, this means that for condensates
wider than their healing length, the quantum pressure term can be ne-
glected in the Euler equation, while we may neglect the interactions
if the condensate is smaller. This naturally also applies to MFG, and Noticeably a similar

procedure can be
found in study of
non-linear waves to
decide whether
dispersion can be
neglected or not [45,
56, 74].

because we are interested in repulsive interactions (g < 0) it is fair to
assume that, at one point, the player distribution will have expanded
enough past ν that the diffusion term can be neglected. Hence the
interest for the small noise limit. Because of this I will now, and for
the rest of section 3.1, only focus on a simplified version of Eqs (3.5)


∂tm + ∂x(mv) = 0

∂tv + ∂x

[
v2

2
+

g
µ

m
]
= 0

. (3.6)
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3.1.2 Preliminary simulations

In order for the game to be integrable we need the external gain U0

to be zero everywhere. If we allow the players to spread indefinitely
(infinite box) the system is in no way confined and the notion of
ergodic state should not apply. Then we may ask ourselves whether
there maybe exists a limiting regime that can play a similar role as the
ergodic state, even in this particular non confined configuration. This
question is of crucial importance as a negative answer would imply
that approximation schemes which are completely independent of the
initial and final conditions cannot be constructed. To try and answer
this question, as well as get a better feeling of the situation, we first
turned to numerical simulations. Details concerning the numerical
schemes used to produce those can be found in appendix A.

As illustrated on Figure (3), what simulations seem to indicate is
that, no matter the initial or final condition, for long enough optimiza-
tion time and far from both t = 0 and t = T, the player distribution
will end up adopting an almost perfect inverted parabola shapeThis should not

come to much as a
surprise since

parabolic solutions
have also been

observed in other
fields where NLS

plays an important
role, such as

non-linear optics
[107] or

Bose-Einstein
condensates [23].
More on that in

chapter 4.

m(t, x) =


3
4
(z(t)2 − x2)

z(t)3 if x ≤ z(t)

0 otherwise
, (3.7)

where the prefactor derives from the normalization, and the time de-
pendent scaling factor z(t) grows in time as a power law,

z(t) ∼ t2/3 . (3.8)

All of this is made more apparent on Figure (4) where we compared
the numerical solution to the scaling form (3.7). The tails of varying
length displayed by the rescaled distribution of players on the right-
most figure constitute the last remnants of diffusion (σ = 0.5 in this
simulation) and happen on a distance, when not rescaled, of order
the healing length ν.

This scaling solution, while not stationary, can be seen as an exten-
sion of the notion of ergodic state. When considering that the forward-
backward structure of MFG equations is one of the main challenges
posed by the discipline, the fact that there exists a time in the dynam-
ics when the initial and final conditions completely decorrelate (as is
the case for the ergodic state) is conceptually, as well as practically (i.e.
when trying to describe the solution), extremely important. In a sense
this scaling can be considered somewhat universal, even though it is
model dependent, because of how important the impact of both the
initial and final conditions can be for the overall game. The rest of
this section will be mostly dedicated to the characterization of this
scaling: where does it come from? what does it mean? what are the
conditions for it to be observed?
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Figure 3: Time evolution of the density of agents. In this case T = 200, g =
−2, σ = 0.5 and µ = 1. The initial distribution is a Gaussian of
variance 0.1, and the terminal cost is flat cT(x) = 0 (for better
legibility).

3.1.3 Hodograph transform

The fact that Φ and
Γ are defined as non
periodic functions
means we cannot
use the traditional
normal mode
decomposition
method [92].

In this section we will make use of the hydrodynamic representa-
tion of MFG equations (3.6) to design a more transparent and conve-
nient framework through which we can study the scaling solution
presented earlier. Because of how similar our problem is to the hydro-
dynamic representation of NLS equation, this development, at least at
first, will closely follow the method presented by A. Kamchatnov in
his book [64] and rely heavily on the notions of Riemann invariants
and hodograph transform.

Riemann’s method can be considered an extension of the method of
characteristics presented in appendix B. It amounts to finding curves
(characteristics) on which some quantities (Riemann invariants) are
conserved. A more detailed discussion of this method, as well as the
results it yields, is provided in Appendix C. Essentially we can show
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Figure 4: On the left is plotted the evolution of m(t, 0) = 3/4z(t) with time
(full line) compared to the t2/3 scaling behaviour (dashed). On
the right are plotted an inverted parabola, and the density m(x, t)
rescaled by z(t) for three different times.

that there exists a pair (λ+, λ−) of Riemann invariants with the fol-
lowing associated dynamics

λ± = v± 2i

√
|g|m

µ

∂tλ+ +

(
3
4

λ+ +
1
4

λ−

)
∂xλ+ = 0

∂tλ− +

(
1
4

λ+ +
3
4

λ−

)
∂xλ− = 0

, (3.9)

reducing the hydrodynamic system (3.6) to a simpler one (3.9) that
can be linearised through an hodograph transform: by interchanging
variables and coordinates. In the region where both λ+ and λ− are
not constant (when one does not follow a characteristic curve), one
may treat them as coordinates in lieu of x and t, which can be, in
turn, considered as functions of (λ+, λ−). As will be shown below,
this allows to reformulate the problem (3.9) in a more convenient
way. To do so, one first needs to express the derivatives with respect
to x and t as ones with respect to λ±

∂(x, t)
∂(λ+, λ−)

=

[
∂(λ+, λ−)

∂(x, t)

]−1

=
1
J

(
∂tλ− −∂xλ−

−∂tλ+ ∂xλ+

)
(3.10)

where J = (∂λ+x∂λ− t − ∂λ−x∂λ+ t) is the Jacobian of the change of
coordinates. The system (3.9) then becomes linear

∂λ−x−
(

3
4

λ+ +
1
4

λ−

)
∂λ− t = 0

∂λ+x−
(

1
4

λ+ +
3
4

λ−

)
∂λ+ t = 0

, (3.11)
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and can readily be integrated once as{
x− β+t = ω+

x− β−t = ω−
, (3.12)

where β± =
( 3

4 λ± + 1
4 λ∓

)
and ω± is solution of

∂λ±ω∓ = −(∂λ±β∓)t = −
1
4

t , (3.13)

so that the functions ω± may be presented as derivatives of a poten-
tial ω± = ∂λ±χ. In order to express t in terms of ω± (or χ) one can
subtract the second equation in system (3.12) to the first and get

(β− − β+)t = ω+ −ω− , (3.14)

which, once we used the fact that β+ − β− = λ+−λ−
2 , yields

∂λ±ω∓ =
ω+ −ω−

2(λ+ − λ−)
. (3.15)

Substitution of this expression in equation (3.13) gives the potential
equation

∂λ+,λ−χ− 1
2(λ+ − λ−)

(∂λ+χ− ∂λ−χ) = 0 , (3.16)

also known as Euler-Poisson-Darboux equation which is the equation
one needs to solve when tackling the traditional defocusing NLS equa-
tion. The main difference in the present case is that the arguments of
χ, namely the Riemann invariants, are complex, sign of the elliptic
nature of the problem. Up to this point all we did was to adapt tra-
ditional methods to MFG, but we must now deviate from [64]. Fortu-
nately, the fact that λ+ and λ− are complex conjugates allows us to
reformulate (3.16) into an other well-known equation and show that
χ is indeed real. Let λ± = ξ ± iη, so that

ξ = v = −∇u
µ
− σ2∇m

2m

η = 2

√
|g|m

µ

, (3.17)

then Euler-Poisson-Darboux equation (3.16) becomes

∂ξ,ξχ + ∂η,ηχ +
1
η

∂ηχ = 0 , (3.18)

which is, if we consider η as a radial distance and ξ as an axial co-
ordinate, Laplace equation in cylindrical coordinates with no angular
dependence. What the hodograph transform does is actually reveal a
formal correspondence between quadratic MFG (at least in the weak
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noise limit) and electrostatics that we can exploit to interpret the scal-
ing solution of section 3.1.2. Equations (3.12) now read{

ηt = −Eη

2(x− ξt) = −Eξ

, (3.19)

with Eη and Eξ the radial and axial components of an analogous elec-
tric field, ~E = −~∇χ. Note that even if Laplace equation (3.18) is tech-
nically a two-dimensional problem, because the connection with elec-
trostatics is made clearer when looking at it from the point of view of
a three-dimensional problem with axial symmetry, this is the one we
will adopt.

3.1.4 Potential representation

Through the hodograph transform we have shown that for any poten-
tial χ, solution of Laplace equation (3.18), there is a solution to the hy-
drodynamic equations (3.6) provided that the relations (3.19) between
x, t and the electric field ~E hold. The linear Laplace equation (and the
related electrostatic problem) is clearly significantly simpler than the
original non-linear hydrodynamic equations. The price to pay for that
simplification is that taking into account the boundary conditions be-
comes highly non trivial since the locus of the curves t(ξ, η) = 0 or
t(ξ, η) = T on which these conditions are expressed actually depend
on the particular potential χ(ξ, η) considered. This makes the tradi-
tional resolution of Laplace equation by means of Green’s theorem
[103] ill-suited for our mixed-type boundary conditions (more on that
in appendix D), but the geometry of the problem in the hodograph
space allows for alternative methods.

In the hodograph space, for any given time t = τ = const. there
exists an associated surface Sτ(ξ(τ, x); η(τ, x); θ) parametrized by the
original space coordinate x and the angular component θ of the cylin-
drical coordinates with which χ is defined. Since we assumed η goes
relatively fast to zero when x goes to infinity (finite extension of the
distribution at any given time), we can say that those surfaces are
closed. And because the dynamics we are interested in is associated
with the spreading of the density of agents, surfaces St(ξ, η, θ) are
contracting as t increases, smaller time surfaces including every larger
time ones as can be seen on Figure (5).

If we consider χ as generated by a distribution of charge ρ(ξ, η),
Laplace equation (3.18) implies that ρ(ξ, η) = 0 between the surfaces
St=0 and St=T but can be non-zero either near the origin (for times
larger than T) or at large distance (corresponding to negative times).
In a sense, the hodograph transform maps the boundary conditions
onto a charge distribution. This mapping, once again, is non trivial
and while the precise relation between the charge distribution and
the boundary conditions is still unclear at the moment, we will see
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Figure 5: Representation of the contraction of constant-time surfaces St in
the (η, ξ) plane for the simulation presented in Figure 3. From
smallest to largest, t = 195, 100, 50 and 20.

that introducing this notion of "charges" makes the mixed boundary
conditions, and by extension the forward-backward structure of MFG

equations, considerably more manageable.
Writing ρ(ξ, η) as the sum of the charge distribution ρ0(ξ, η) at

the origin (representing the final condition) and ρ∞(ξ, η) at infinity
(initial condition), the potential χ takes the form [63]

χ(η, ξ) = 2π

(∫
ρ0(η0, ξ0)

|~r−~r0|
η0dη0dξ0 +

∫
ρ∞(η∞, ξ∞)

|~r−~r∞|
η∞dη∞dξ∞

)
,

(3.20)

where~r = η~eη + ξ~eξ is the point of observation. A feeling of what χ

should look like is given Figure (6). This form allows for a multipole
expansion assuming that the point of observation is sufficiently far
from charges either at the origin or at infinity [63, 80]

χ(η, ξ) =
∞

∑
l=0

(
Ql

rl+1 + Ilrl
)

Pl

(
ξ

r

)
. (3.21)

Here Ql and Il are respectively the exterior and interior axial mul-
tipole moments and Pl are the Legendre polynomials (spherical har-
monics with axial symmetry). This multipole expansion is the most
essential tool we will use to characterize the universal scaling solution
(3.7).
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Figure 6: Potential representation in the hodograph space of the simulation
illustrated Figure (3). The small slit in the center of the figure rep-
resents the terminal condition, that is where charges are located
with distribution ρ0. As we go further from the origin, the poten-
tial seems to flatten indicating the presence of charges at infinity,
distributed according to ρ∞.

3.1.5 Universal scaling solution in the infinite optimization time limit

If the optimization time is long enough we can assume that there
exists a range of times [t̃min, t̃max], 0 � t̃min, t̃max � T, so that on
any surface St∈[t̃min,t̃max] we are sufficiently far from the charges at the
origin not to be subjected to the details of their distribution and far
enough from the charges at infinity so that the effect of each charge is
essentially cancelled by its axial symmetric. In that case we should be
able to give a satisfactory approximation of χ as the potential created
by a point charge Q0 located at the origin

χ(η, ξ) ≈ Q0√
η2 + ξ2

, (3.22)

with a relation between Q0 and the boundary conditions of the prob-
lem yet to be determined. The remainder of this section, will then be
dedicated to showing that this monopole approximation is perfectly
equivalent to the universal parabolic scaling solution (3.7).
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Before trying to compute Q0, we can start by looking at what equa-
tion (3.22) signifies in terms of m(t, x) and v(t, x). Inserting the ap-
proximation (3.22) in the compatibility equations (3.19) yields

∂ηχ = ηt = − ηQ0

(η2 + ξ2)3/2

∂ξχ = 2(x− ξt) = − ξQ0

(η2 + ξ2)3/2

, (3.23)

providing a relation between the original coordinates (x, t) and the
hodograph data (ξ, η). Having recalled the definition of the hodo-
graph coordinates (3.17), this relation can be readily inverted so as to
obtain

m(t, x) =
3
(
(µQ0/2g)2/3z(t)2 − x2)

4z(t)3

v(t, x) = − z′(t)
z(t)

x
, (3.24)

where z takes the form

z(t) = 3
(
|g|
4µ

)1/3

t2/3 . (3.25)

This result is very close to the ansatz (3.7), particularly so when con-
sidering that the normalization condition imposes that Q0 = 2g

µ . What
remains is now to show that the value of Q0 indeed does not change,
no matter the boundary conditions.

Making further use of the electrostatics analogy, since we are not
interested in the details of how charges are distributed around the
origin (or at infinity for that matter) but only in the total charge, we Gauss’s law is also

known as the mean
value theorem in
potential theory of
elliptic PDEs [39].

should be able to compute Q0 using Gauss’s law. As such computing
the flow of the field ~E through a surface St̃ of normal ~n, that includes
all charges distributed around the origin, should yield the monopole

∫
St̃

(~E ·~n)dS = −4πQ0 . (3.26)

Because we are working with a particular set of coordinates we need
to specify the expressions of dS and ~n. As discussed earlier, at fixed
time t = t̃ the surface St̃ = (η(t̃, x); ξ(t̃, x); θ) is parametrized by x
and θ. If γ = (η(t̃, x); ξ(t̃, x)) is a curve on St̃ then its surface element
dS can be computed as

dS = ηdθdγ = η
√
(∂xξ)2 + (∂xη)2dθdx . (3.27)

In the same way we may define the normal ~n to the surface St̃ as

~n =
1√

(∂xξ)2 + (∂xη)2

 ∂xξ

−∂xη

0

 . (3.28)
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Inserting the two previous results in equation (3.26) finally gives

Q0 =
1

4π

∫ 2π

0

∫
R

η [2(x− ξ t̃)∂xη − η t̃∂xξ] dθdx

=
1
2

∫
R

[
−t̃∂x(η

2ξ) + 2xη∂xη
]

dx
. (3.29)

If we assume η to decrease sufficiently fast with x, the first, time
dependent, term integrates to zero. This was to be expected because
no matter the time t̃, as long as 0 < t̃ < T, the total charge included
in St̃ is the same: Q0 is by construction a constant. Integrating by part

and recalling that η = 2
√
|g|m

µ , equation (3.29) indeed yields

Q0 =
2g
µ

∫
R

mdx =
2g
µ

, (3.30)

making use of the normalization condition. This proves the inverted
scaling parabola observed numerically is not an artefact of the simu-
lations but something deeper, universal as previously assumed. The
hodograph transform provides a very natural interpretation of this
scaling solution as the approximation by a simple monopole of a
charge distribution creating an electrostatic potential. The condition
that the observation point is sufficiently far from both the charges
near the origin and the ones near infinity, underlying this approxima-
tion, is equivalent to considering times far from both t = 0 and t = T,
which is, of course, only possible in the long optimization time limit
T → ∞. The electrostatic picture even allows for a precise quantifi-
cation of the conditions of validity of the monopole approximation,
making for a complete characterization of this regime. As such we
are, in a way, able to extend the notion of ergodic state to a situation
where a genuine ergodic state cannot exist.

Of course all of this is only the tip of the iceberg as the scaling
parabolic solution is solely due to the contribution of the first non
trivial multipole moment (I0 amounting to an irrelevant additive con-
stant). The next sections will touch on my ongoing work about higher
order moments. It will hint at their nature and provide the reader
with some leads as how they should be dealt with.

3.1.6 Finite optimization time: impact of higher order multipole moments
on the hydrodynamic coordinates

In the case of finite optimization time one cannot only rely on the
universal scaling solution (3.7) and needs to account for higher order
multipole moments. Naturally the smaller the optimization time (or
the closer to either the beginning or the end of the game) the more
moments are needed to give an accurate description of the solution.

As is the case in electrostatics, an estimation of which moments
should be considered can be easily performed based on the expan-
sion itself (3.21). Particularly if the value of the different moments
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are known. But one should note that by construction, as coefficients
of the expansion of the potential equation (3.20), interior moments Il
are of order r−l

∞ and exterior moments Ql of order rl+1
0 . As such, even

not knowing the exact value of moments Il or Ql it should be fair to
assume that for r big enough in front of r0 and small enough in front
of r∞ (i.e. for times t, 0 � t � T) only lower orders of the multipole
expansion matter. Given that, let us compute the impact of the first
few moments on the hydrodynamic coordinates, and let us start with
I1 as its contribution is of similar order as Q0’s. Going back to the
compatibility equations (3.19), we may write

ηt = − ηQ0

(η2 + ξ2)3/2

2(x− ξt) = − ξQ0

(η2 + ξ2)3/2 + I1

, (3.31)

which, recalling Q0 = 2g
µ , can be easily inverted so that

m(t, x) =
3
[

z(t)2 −
(

x− I1
2

)2
]

4z(t)3

v(t, x) = − z′(t)
z(t)

(
x− I1

2

) . (3.32)

I1 represents the position of the maximum of the distribution, based
on this fact alone it makes perfect sense that its contribution and Q0’s
are of similar importance. Now, let us assume that we are interested
in the behaviour of the system at time τ, 0 � τ < T/2 such that,
besides Q0 and I1, only I2 matters. The compatibility equations (3.19)
become

ηt = − ηQ0

(η2 + ξ2)3/2 − η I2

2(x− ξt) = − ξQ0

(η2 + ξ2)3/2 + I1 + 2ξ I2

, (3.33)

which can once again be easily inverted to show that I2 serves as the
origin of time (or initial extension of the distribution)

m(t, x) =
3
[

z(t + I2)2 −
(

x− I1
2

)2
]

4z(t + I2)3

v(t, x) = − z′(t + I2)

z(t + I2)

(
x− I1

2

) . (3.34)

While these contributions are easily computed, inverting the hodo-
graph transform quickly calls for highly involved calculations. For
example, simply adding Q1 to the equation requires finding the roots
of a polynomial of degree 8. Because of this, aiming for anything
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but an implicit solution of the problem (3.6) is unrealistic when us-
ing purely analytical methods. However the inversion can be made
numerically fairly easily [61, 62].

Even if numerics remain involved in this description of the MFG

solution, this constitutes a huge improvement over a fully numerical
resolution. Numerically implementing the inverse hodograph trans-
form is clearly simpler than the algorithm described in appendix A,
and the fact that there is no need for a self-consistency loop means
that the program will likely run quicker. Another important aspect
of this method is that it allows for a better monitoring of the solu-
tion, through the contribution (or lack thereof) of a given multipole
moment with physical significance, than a "brute force" numerical
resolution, leading to a better understanding of the mechanisms at
work.

3.1.7 Physical meaning of the multipole moments

While the physical meaning of a given multipole moment can some-
times be deduced directly from its impact on the hydrodynamic co-
ordinates (like I1 and I2), things are usually not that straightforward
and one needs to compute the moment itself to obtain more infor-
mation. For example, it is not clear a priori from the compatibility
equations (3.19) that Q0 can be related to the normalization of the
player distribution. In this section I will try to provide a method to
compute multipole moments and give a sense of what they represent.

To compute the multipole moments we need to go back to their def-
inition as coefficients of the expansion (3.21) of the potential equation
(3.20). The equivalence of those equation implies that at any order l

Ql = 2π
∫

rl Pl

(
ξ

r

)
ρ0(ξ, η)ηdηdξ

Il = 2π
∫

r−(l+1)Pl

(
ξ

r

)
ρ∞(η, ξ)ηdηdξ

, (3.35)

corroborating my claim that Il is of order r−l
∞ and Ql of order rl+1

0 . This
may not seem particularly helpful at first glance because if we know
that the charge distribution ρ is related to the boundary conditions of
the game, we do not actually know how they are related. Nonetheless,
we will show that we can compute the multipole moments in terms of
η and ξ exclusively, using their definition (3.35) and the compatibility
equations (3.19).

By considering that the potential χ can be seen as generated by
charges distributed either at the origin of the hodograph space or at
infinity, we allow ourselves to look both at negative times and times
greater than T. This can be represented by rewriting the Laplace equa-
tion (3.18) as a Poisson equation

∆χ = 4πρ , (3.36)



3.1 integrable mean field games in the weak noise limit 39

which is equivalent to the integral representation (3.20). As men-
tioned in section 3.1.3, the compatibility equations (3.19) can serve
as definition for an "electric" field ~E = −~∇χ, so that equation (3.36)
can be rewritten

~∇ · ~E = −4πρ . (3.37)

We can now replace the charge distribution in the definition of the
multipole moments by the divergence of the field which is known
through those same compatibility conditions (3.19). However we are
still not able to make sense of those moments because ~∇.~E depends
on x and t which themselves depend on ξ and η in an unknown way,
making the volume integrals involved in the definition (3.35) tricky
to compute. A way to (partially) mitigate this problem would be to
remove the time dependence by transforming the volume integral
in a surface integral (over constant time surface) by way of Stokes
theorem. To that end let us introduce ~Fl and ~Gl two vector fields such
that 

~∇ · ~Fl = rl Pl

(
ξ

r

)
(~∇ · ~E)

~∇ · ~Gl = r−(l+1)Pl

(
ξ

r

)
(~∇ · ~E)

, (3.38)

then we can reformulate the definition of the multipole moments
(3.35) in terms of ~Fl and ~Gl as

Ql = −
1
2

∮
St̃

(~Fl ·~n)dS

Il = −
1
2

∮
St̃

(~Gl ·~n)dS
, (3.39)

where the integrals are computed over a constant time surface St̃,
0 < t̃ < T, so that they include all charges around the origin. In this
case, as in section 3.1.5, choosing to integrate over a constant time
surface is not necessary but is rather convenient because it explic-
itly eliminates the time dependence: the surface element dS and the
normal ~n are once again defined by equations (3.27) and (3.28). Natu-
rally, the (equally unknown) x dependence remains, but the fact that
the multipole moments are by construction constants of motion, and
that Q0 is essentially the normalization constant, hints that they may
be equivalent to the first integrals of motion that are traditionally de-
fined as integrals over the position. While this would not help when
trying to compute the moments per se, because of the nature of the
mixed boundary conditions, it would still help to make sense of what
they represent.

The first step to confirming the hypothesis that multipole moments
are equivalent to the first integrals of motion is to express ~Fl and
~Gl in terms of ξ and η. Obviously the definition given by equation
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(3.38) involves a divergence and multiple solutions would be valid
(up to a function of zero divergence), but we choose to go with what
can arguably be considered the simplest one: matching the η and ξ

components of ~Fl respectively with those of ~E

~Fl(η, ξ) = Fl
η(η, ξ)~eη + Fl

ξ(η, ξ)~eξ

∂η(ηFl
η) = rl Pl

(
ξ

r

)
∂η(ηEη)

∂ξ Fl
ξ = rl Pl

(
ξ

r

)
∂ξ Eξ

, (3.40)

and the natural equivalent for ~Gl . The first ODE can be integrated
over η and the second over ξ, respectively leaving ξ and η (but not t)
constant, yielding

Fl
η(η, ξ) =

1
η

[∫ η

rl(η′, ξ)Pl

(
ξ

r(η′, ξ)

)
∂η′(η

′2t)dη′
]∣∣∣∣

ξ=const.

Fl
ξ(η, ξ) =

∫ ξ

rl(η, ξ ′)Pl

(
ξ ′

r(η, ξ ′)

)
∂ξ ′(2x− ξ ′t)dξ ′

∣∣∣∣
η=const.

,

(3.41)

once Eη and Eξ have been replaced using the compatibility equations
(3.19). Inserting this (implicit) expression in equation (3.39) allows to
reformulate the definition of the exterior multipole moments

Ql = −
1
2

∫
R

[(
∂xξ

[∫ η

rl(η′, ξ)Pl

(
ξ

r(η′, ξ)

)
∂η′(η

′2t)dη′
]∣∣∣∣

ξ=const.

+η∂xη

[∫ ξ

rl(η, ξ ′)Pl

(
ξ ′

r(η, ξ ′)

)
∂ξ ′(ξ

′t)dξ ′
]∣∣∣∣

η=const.

)

−2η∂xη

[∫ ξ

rl(η, ξ ′)Pl

(
ξ ′

r(η, ξ ′)

)
∂ξ ′(x)dξ ′

]∣∣∣∣
η=const.

]
dx

.

(3.42)

The (time dependent) term in parenthesis integrates to zero because
Ql is a constant, while the other can be rewritten as an integral over
the position x at constant η

Ql =
∫

R
η∂xη

[∫ x
rl Pl

(
ξ

r

)
dx′
]∣∣∣∣

η=const.
dx , (3.43)

leaving us with a fairly compact expression. Obviously the same treat-
ment can be applied to Il , hence

Il =
∫

R
η∂xη

[∫ x
r−(l+1)Pl

(
ξ

r

)
dx′
]∣∣∣∣

η=const.
dx . (3.44)
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We can deal with the integral over x′ by integration by part and take
a look at the first multipole moments

Q0 = −1
2

∫
R

η2dx =
2g
µ

∫
R

mdx

Q1 = −1
2

∫
R

η2ξdx = −2g
µ2

∫
R

m∇udx = −2g
µ2

∫
R

(
m∇u− u∇m

2

)
dx

Q2 =
∫

R

η4

4
− ξ2η2dx =

8g
µ2

∫
R

g
2

m2 +
1

2µ
m(∇u)2dx

.

(3.45)

First, we can fortunately check that equation (3.43) gives the same re-
sult we found in section 3.1.5 when applied to Q0. Now, Q1 and Q2

are interesting because they are respectively proportional to the mo-
mentum and Hamiltonian of the MFG equations (2.24) in their weak
noise limit. Form definitions (3.3) and (2.35), we can indeed check
that

Q1 = − g
µ2 P , (3.46)

and

Q2 = lim
σ→0

[
8g
µ2 E

]
. (3.47)

This tends to confirm our hypothesis, and while we lack rigorous
proof, it would not be too far-fetched to conjecture that the (exterior)
multipole moments are equivalent to the first integrals of motion. For
the interior moments Il , however ,equation (3.44) does not yield par-
ticularly exploitable results (at least to my understanding). But we
already have a feeling of what role the interior multipole moments
play thanks to section 3.1.6. It seems that the interior moments help
define the initial condition while the exterior moments describe how
it will evolve, which is coherent with their respective location in the
hodograph space. As such, the mapping between the boundary condi-
tions and the distribution of charges turns into an equally non trivial,
albeit less abstract, mapping between the boundary conditions and
the first integrals of motion. Given that, I also want to stress how the
forward-backward structure of MFG equations (2.24) affect how we
should deal with their resolution on a fundamental level. Were it an
initial value problem we would be able to compute an arbitrary large
number of multipole moments (or even directly compute χ through
Green’s theorem, c.f. Appendix D) and solve it completely. But the
mixed boundary conditions does not give such an opportunity.

The existence of the potential χ underlies the integrable character
of the hydrodynamic equations (3.6). In a sense it can be seen as the
generating functional of the canonical linearising transforms, which
the hodograph transform would be part of. This is important because
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it means that, as we were able to adapt Riemann’s method, usually
employed to deal with dispersionless hydrodynamics, to MFG in the
weak noise limit, we may also be able to adapt more complex tools
like the Inverse Scattering Transform (IST) or even Witham theories to
a more general problem like the quadratic integrable MFG equations
(3.1).

3.1.8 Multipole expansion and the boundary conditions: constructing a
numerical ansatz

Before I conclude this discussion on the weak noise limit of integrable
MFG, I would like to say a few words about the value of the potential
representation and its multipole expansion as a way to numerically
approximate solutions of hydrodynamic equations (3.6). This is some-
thing I mentioned briefly at the end of section 3.1.7, the multipole
expansion allows for the construction of a variational ansatz, with an
arbitrary number of physically meaningful parameters to fit.Multipole

coefficients are not
arbitrary fitting

parameters, they
have physical

significance. If one
were to compute

every last one, they
would be able to

reconstruct the exact
solution of Laplace

equation [65].

This ansatz can be used in a very simple way to obtain a reason-
able (arbitrarily precise) approximation of m and v. Denoting by ·̄ the
discretized version of ·, the most straightforward method maybe is to
compute a truncated version of the multipole expansion (3.21)

χ̄(η, ξ) =
N

∑
l=0

(
Ql

r̄l+1 + Il r̄l
)

Pl

(
ξ̄

r̄

)
, (3.48)

along with the compatibility conditions (3.19){
∂η̄χ̄ = η̄ t̄

∂ξ̄ χ̄ = 2(x̄− ξ̄ t̄)
. (3.49)

We may then define a cost function

c = ∑
〈t̄=0〉
|m̄−m0(x̄)|+ ∑

〈t̄=T〉
|v̄− vT(x̄)| , (3.50)

where 〈t̄ = 0〉 and 〈t̄ = T〉 refer to the sum over all the values taken by
m̄ and x̄ so that t̄ = 0 and t̄ = T respectively. Finding the best approx-
imation of m and v, solutions of hydrodynamic equations (3.6) with
boundary conditions m(0, x) = m0(x) and v(T, x) = vT(x), amounts
to finding the ensemble of multipole coefficients {Q0, ...QN ; I0, ..., IN}
that minimizes c. This can be done using standard optimization tech-
niques and can prove (for a reasonable number of fitting parameters)
significantly faster than a brute force resolution like the one presented
in Appendix A. These two approaches are philosophically distinct
and have different purpose. This section’s method provides a quick
way to obtain a qualitative, easy to interpret and physically significant
solution. It is particularly pertinent at the early, exploratory stage that
this thesis is written. Alternatively, a (longer, more time consuming)
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brute force resolution would yield quantitatively exact results better
suited to applications oriented studies. Unfortunately, this exact solu-
tion would come with little insight (because of its high complexity)
about the underlying MFG mechanisms. To briefly discuss the effi-
ciency of the present method I shall provide a few examples.

First I will consider equations (3.6) with parabolic initial condition
m0(x) and linear terminal condition vT, and try to approximate the
solutions via an expansion (3.48) truncated at order N = 2. On Figure
(7) are represented the numerical solutions of m(0, x) and v(T, x) ob-
tained through the optimization of c over {Q0, Q1, Q2; I0, I1, I2} com-
pared to m0 and vT. Because m0 and vT are part of the family of
solutions generated by N = 2, we can see that the approximation
and the boundary condition are essentially indistinguishable, and it
remains the case throughout the rest of the game.

If I depart from initial conditions that belong to the family of solu-
tions described by N = 2, for example m0 Gaussian, I can still obtain
acceptable results, as illustrated Figure (8a), at t = 0. As we can expect
from the electrostatics analogy, the system then relaxes towards an in-
verted parabola as we move away from the charges at infinity. This is
exemplified Figure (8b) where the tails of the numerical distribution
only come from the fact that the program described in Appendix A
cannot deal with σ = 0.

The next step would now be to consider both initial and final condi-
tions that do not belong to the N = 2 family, for example m0 Gaussian
and vT cubic. A comparison between those two initial / final condi-
tions and the best fit using a N = 2 multipole expansion is shown
Figure (9). However, contrary to the previous case, the system will
not relax towards the inverted parabola solution as (especially for
such a short game) moving away from charges at infinity means com-
ing closer to charges at the origin. In particular, the curvature of the
terminal cost has the distribution of players split into three parts, all
of which are smaller inverted parabolas. This can be observed Fig-
ure (10) where the distribution of player is shown at the middle of
the game, t = T/2. At this point, all the N = 2 approximation can
provide is an idea about the extension of the distribution of players.
A more precise, quantitative description would require using higher
order moments.

With this I conclude this section on integrable MFG in the weak
noise limit. Making use of notions originating from hydrodynam-
ics, namely Riemann invariants and the hodograph transform, I was
able to introduce a powerful analogy between electrostatics and MFG

through the potential representation (3.18). The main benefit of this
alternative representation is to allow for an admittedly non-trivial
mapping between first integrals of motion and boundary conditions
thanks to a multipole expansion. Because of this mapping I was able
to highlight the existence of a universal scaling solution, an extension
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Figure 7: Comparison between the N = 2 approximation (blue) and the
boundary conditions (red). For this Figure I chose T = 10, g = −2,

µ = 1, m0(x) = 3(0.252−x2)
4(0.25)3 and vT(x) = 0.07x, while the optimiza-

tion of c yields Q0 = −2, Q1 = 0, Q2 = −0.12, I0 = 0, I1 = 0,
I2 = 0.034.

of the notion of ergodic state in a context where the ergodic state
should not exist, as well as develop ansätze of various degrees of
complexity. While the forward-backward structure still constitutes a
major challenge, these tools make it more manageable and bring a
better understanding of the processes at work.

The next section will deal with the "complete" integrability of the
more general problem described by the quadratic integrable MFG

equations (3.1). Following a similar procedure of trying to adapt and
implement proven methods developed by physicists in the context
of MFG, the next section will provide some elements on how to ac-
commodate the Inverse Scattering Transform (IST) to the problem at
hand.

3.2 complete integrability of mean field games equa-
tions

The last section hinted to the fact that the fundamental reason why
we were able to construct this potential representation was in fact
the integrable nature of hydrodynamic equations (3.6), property they
share with the more general equations (3.1) we will now consider.
This was to be expected and can obviously be traced back to the
Schrödinger representation of MFG equations (3.1)

µσ2∂tΦ = −µσ4

2
∆Φ− gmΦ

µσ2∂tΓ =
µσ4

2
∆Γ + gmΓ

. (3.51)

NLS equation being integrable in the absence of external potential, it
is natural to assume that equations (3.51), its MFG counterpart, are
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Figure 8: Comparison between the N = 2 approximation (blue) and the re-
sults of the brute force resolution described in Appendix A (red).
For this Figure I chose T = 10, g = −2, µ = 1, a Gaussian of
variance 0.1 as initial distribution m0(x) and vT(x) = 0.07x, while
the optimization of c yields Q0 = −2, Q1 = 0, Q2 = −0.12, I0 = 0,
I1 = 0, I2 = 0.0225. Simulations have been made with non-zero
noise, σ = 0.4.
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Figure 9: Comparison between the N = 2 approximation (blue) and the
boundary conditions (red). For this Figure I chose T = 10, g = −2,
µ = 1, a Gaussian of variance 0.1 as initial distribution m0(x) and
vT(x) = 8.10−4x3, while the optimization of c yields Q0 = −2,
Q1 = 0, Q2 = 0.025, I0 = 0, I1 = 0, I2 = 0.0225.
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Figure 10: Comparison between the N = 2 approximation (blue) and the re-
sults of the brute force resolution described in Appendix A (red).
For this Figure I chose T = 10, g = −2, µ = 1, a Gaussian of vari-
ance 0.1 as initial distribution m0(x) and vT(x) = 8.10−4x3, while
the optimization of c yields Q0 = −2, Q1 = 0, Q2 = 0.025, I0 = 0,
I1 = 0, I2 = 0.0225. Simulations have been made with non-zero
noise, σ = 0.4.

too. NLS equation has been studied extensively for the past 60 yearsAn example of such
caveat is the fact
that Φ and Γ are
defined positive,

rendering the
traditional dark

soliton [92] solution
invalid.

and we should be able to make use, with a few caveats, of the tools
developed during this period to, in turn, study MFG.

One of the most powerful methods when it comes to exploiting
the integrability of NLS equation was first introduced by V. Zakharov
and A. Shabat in their seminal paper of 1972 [99]. It presents what
would later be known as the Inverse Scattering Transform (IST) and
constitutes the basis of soliton theory [89]. In this section I will try to
adapt this method, in its modern acceptation, to MFG and, to that end,
will rely heavily on a book written by L. Faddeev and L. Takhtajan
[46].

This section deals with unfinished work. It presents the IST formal-
ism and how it can be applied to MFG, but does not provide a solution
to the system of equations (3.51). Instead it examines intermediate re-
sults, such as a way to generate first integrals of motion, and discusses
issues with this method (when it comes to MFG) that will need to be
addressed.

3.2.1 Nondimensionalization

As is often the case when dealing with non-linear PDEs, it will prove
convenient to parametrize the system of equations (3.51) using dimen-
sionless units. This is particularly true now that we are interested in
the complete problem rather than its weak noise limit, and that the
effects carried by the different parameters µ, σ and g are actually
competing with one another.
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We have already introduced the healing length ν =
∣∣µσ4/g

∣∣ in
section 3.1.1 as a typical length scale of the problem and, in a similar
fashion, we can now introduce τ = 2µ2σ6/g2 as its typical time scale.
Denoting both t′ = t/τ and x′ = x/ν we can then write equations
(3.51) in their dimensionless form{

∂t′Φ = −∂x′x′Φ + 2νmΦ

∂t′Γ = +∂x′x′Γ− 2νmΓ
, (3.52)

making it even clearer that ν is essentially the only relevant parame-
ter.

I should stress that m has dimension inverse length and is of order
1/L, where L is the typical extension of the distribution of players.
This system of dimensionless equations tends to confirm my earlier
claim that one can safely neglect diffusion as long as players are typi-
cally distributed over a distance larger than the healing length ν.

Dropping the "prime", this is the representation I will use for the
rest of this section as it makes tracing the impact of the different
parameters all that easier. Especially when one takes into account the
several transformations required by the IST method.

3.2.2 Zero curvature representation

The foundation of the IST method lies in the fact that dimensionless
equations (3.52) can be seen as compatibility conditions for an auxil-
iary, overdetermined, linear system. Let F = ( f1, f2) be a vector func-
tion of (x, t) defined by{

∂xF = U(x, t, λ)F

∂tF = V(x, t, λ)F
, (3.53)

where U and V are 2× 2 matrix functions depending unsurprisingly
on (x, t) but also on a spectral parameter λ, the importance of which
will be made clear later. By computing the cross derivative of F in dif-
ferent ways, it is easy to check that in order for it to verify Schwartz’s
theorem and the problem to be well-defined, one needs to impose

∂tU − ∂xV + [U, V] = 0 , (3.54)

and this relation to hold no matter the value taken by λ. If we assume
that

U =
√

ν

(
0 Φ

Γ 0

)
+

(
λ
2 0

0 −λ
2

)
, (3.55)

and

V =
√

ν

(√
νΦΓ −∂xΦ

∂xΓ −
√

νΦΓ

)
− λU , (3.56)



48 integrability of quadratic mean field games

then equations (3.52) are perfectly equivalent to the compatibility con-
dition (3.54). What this representation brings to the table is a fairly
natural geometric interpretation. The matrices U and V can be seen
as the x and t components of a connection (or gauge field) in the
vector bundle R2 × R+2, while the left hand side of compatibility
condition (3.54) can be seen as the curvature (or strength field) of this
connection according to the Ambrose-Singer theorem [6]. Hence the
name zero-curvature representation. In the field of classical integrable
systems this is known as Lax connection and the compatibility equa-
tion (3.54) is equivalent to Lax equation when the number of degrees
of freedom becomes infinite [11].

A reasonable progression, once we interpret (U, V) as a connection,
is to consider the parallel transport it induces. Let γ be a curve in R2

partitioned into N adjacent segments γ1...γN . We define the parallel
transport along γ as

Ωγ = lim
N→∞

[
P

N

∏
n=1

(
1 +

∫
γn

(Udx + Vdt)
)]

(3.57)

where P denotes the path ordering (because the connection is non-More generally those
conventions and this

nomenclature come
from the path

integrals
representation of

propagators in
quantum mechanics

[113]. Path integrals
have become more

and more pervasive
in physics since the
50s, for a primer on

the subject I refer
the reader to [98].

Abelian) and 1 the identity. A physicist’s (and more compact) nota-
tion for this expression would be

Ωγ = P exp
∫

γ
(Udx + Vdt) , (3.58)

and this is the one we will use from now on. This last expression
is particularly convenient for two reasons. The first one is that it
makes it clear that if γ represents a path from the origin (x0, t0) to
the point of observation (x, t), the parallel transport along this path
is simply F, solution of the auxiliary problem (3.53) with initial con-
dition F(x0, t0) = (1, 1). More generally, given initial data F(x0, t0),
solution of equations (3.53) is given by the covariantly constant vec-
tor field

F(x, t) = ΩγF(x0, t0) . (3.59)

The second, and maybe more important, reason is that it makes com-
puting the parallel transport over a closed curve γ0 (holonomy of
the connection) trivial by way of the non-Abelian Stokes theorem (cf
appendix E). Indeed

Ωγ0 = 1 , (3.60)

no matter the starting point thanks to the vanishing of the curvature.
This property is akin to that of Lagrangian manifolds in Hamiltonian
mechanics and will prove to play a fundamental role in the computa-
tions of integrals of motion.
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3.2.3 Monodromy matrix

The main characteristics of the problem are the monodromy matrices
defined as the propagators in the two directions x and t

T(x, y, λ; t) = P exp
∫ y

x
U(z, t, λ)dz

S(t1, t2, λ; x) = P exp
∫ t2

t1

V(x, t, λ)dt
. (3.61)

These "global" objects will turn out to be easier to manipulate than
their local counterparts U and V, notably thanks to the non-Abelian
Stokes theorem. To illustrate this, I shall consider a closed rectangu-
lar loop γR as represented Figure (11). Because of its geometry, the

Figure 11: A rectangular loop γR in the (x, t) plane. The vanishing of the
curvature imposes that the parallel transport along it is the iden-
tity.

parallel transport along γR can be readily expressed in terms of the
monodromy matrices

ΩγR = S(t2, t1, λ; x)T(y, x, λ; t2)S(t1, t2, λ; y)T(x, y, λ; t1) = 1 .

(3.62)

By construction, the monodromy matrices exhibit the following inver-
sion property{

T(x, y, λ; t) = T−1(y, x, λ; t)

S(t1, t2, λ; x) = S−1(t2, t1, λ; x)
, (3.63)

which one can use to write the parallel transport equation (3.62) as

T(x, y, λ; t1) = S−1(t1, t2, λ; y)T(x, y, λ; t2)S(t1, t2, λ; x) . (3.64)

Now, if one can find two points x and y (for example x → −∞ and
y→ ∞) so that for all times t

V(x, t, λ) = V(y, t, λ) , (3.65)
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then the time evolution of the monodromy matrix T given by equa-
tion (3.64) can be seen as equivalent to a gauge transformation. This
implies that the (gauge invariant) Wilson line that constitutes Tr [T] is
a constant in time

Tr [T(x, y, λ; t1)] = Tr
[
S−1(t1, t2, λ; x)T(x, y, λ; t2)S(t1, t2, λ; x)

]
= Tr [T(x, y, λ; t2)] ,

(3.66)

and this for any λ. I will now show that Tr [T] can be used as gener-
ating function for the constants of motion.

3.2.4 Computing conserved quantities

The monodromy matrix contains all the information we need about
the system of equations (3.52), most notably, its trace can be used as
generating functions for the first integrals of motion. To extract those
conserved quantities one first needs to write the monodromy matrix
as a Poincaré expansion in terms of λ. I will not discuss how this
upcoming expansion came to be, for a complete derivation I refer the
interested reader to the aforementioned monograph [46].

We start by introducing E(y− x, λ), the monodromy matrix of equa-
tions (3.52) for the trivial constant solutions Φ(x, t) = Γ(x, t) = 0

E(y− x, λ) = lim
Φ→0

lim
Γ→0

[
P exp

∫ y

x
U(z, t, λ)dz

]
= exp

[
λ

2
(y− x)σ3

] , (3.67)

where σ3 is the Pauli matrix

σ3 =

(
1 0

0 −1

)
. (3.68)

The monodromy matrix can then be written as

T(x, y, λ; t) = E(y− x, λ) +
∞

∑
n=1

Tn(x, y; t)E(y− x, λ)

λn

+
∞

∑
n=1

T̃n(x, y; t)E(x− y, λ)

λn + o(λ−∞) .
(3.69)

This expansion will allow us to associate a conserved quantity to each
and every order in λ.

To get a more explicit expression of the coefficients Tn and T̃n we
turn to an alternative definition of the monodromy matrix T. The in-
tegral definition (3.61) is perfectly equivalent to the differential equa-
tion

∂yT(x, y, λ; t) = U(y, t, λ)T(x, y, λ; t) , (3.70)
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with initial condition

T(x, y, λ; t)|x=y = 1 . (3.71)

To solve equation (3.70) at every order in λ, because we are eventu-
ally interested in taking the trace of T, it is convenient to write the
monodromy matrix as the gauge transformation of a diagonal ma-
trix, a process sometimes called abelianization [11]. If condition (3.65)
is satisfied, one can write

T(x, y, λ; t) = (1 + W(x, λ; t)) exp Z(x, y, λ; t) (1 + W(y, λ; t))−1 ,

(3.72)

where W and Z are respectively an off-diagonal and a diagonal ma-
trix, shown to be uniquely defined, of Poincaré expansion [46]

W(y, λ; t) = ∑
n

Wn(y; t)
λn , (3.73)

and

Z(x, y, λ; t) = E(y− x, λ) + ∑
n

Zn(x, y; t)
λn . (3.74)

Inserting the expression (3.72) in equation (3.70), and separating di-
agonal and off-diagonal parts, one obtains∂yZ(x, y, λ; t) = λσ3 + U(y, t)W(y, λ; t)

∂yW(y, λ; t) + W(y, λ; t)∂yZ(x, yλ; t) = U(y, t) +
λ

2
σ3W(y, λ; t)

,

(3.75)

by denoting U(y, t) ≡ U(y, t, λ = 0). The implicit expression of ∂yZ
given by the diagonal part of equations (3.75) can be used to write
the off-diagonal part as a Riccati equation

∂yW − λσ3W + WUW −U = 0 . (3.76)

Using the expansion (3.73) and focusing on the nth order in λ yields
the recursion relation

Wn+1 = σ3

[
∂yWn +

n−1

∑
k=1

WkUWn−k

]
, (3.77)

with initial condition

W1 = −σ3U . (3.78)

More explicitly, if we write

W =
√

ν

(
0 −∑n

w̃n
λn

∑n
wn
λn 0

)
, (3.79)



52 integrability of quadratic mean field games

the recursion relation (3.77) becomes
wn+1 = ∂ywn + νΦ

n−1

∑
k=1

wkwn−k

w̃n+1 = −∂yw̃n − νΓ
n−1

∑
k=1

w̃kw̃n−k

, (3.80)

with {
w1 = Γ

w̃1 = −Φ
. (3.81)

Now, let us go back to the diagonal part of equations (3.75), which
can be readily integrated as

Z(x, y, λ; t) =
λ(y− x)σ3

2
+
∫ y

x
U0(z, t)W(z, λ; t)dz . (3.82)

If we expand W in the integral this last expression becomes

Z(x, y, λ; t) =
λ(y− x)

2

(
1 0

0 −1

)

+

(
∑∞

n=0
1

λn

∫ y
x wnΦdz 0

0 −∑∞
n=0

1
λn

∫ y
x w̃nΓdz

) . (3.83)

By way of equations (3.80) and (3.81), it is easy to check that∫ y

x
wn(x, t)Φ(x, t)dz =

∫ y

x
w̃n(x, t)Γ(x, t)dz , (3.84)

for all n. Like Tr [T], Tr [exp Z] constitutes a Wilson line and is intrinsi-
cally gauge invariant. As such, by exponentiating equation (3.83) and
taking the trace, we obtain from the abelianization equation (3.72)

Tr [T] = Tr [exp Z]

= 2ch

[
λ(y− x) +

∞

∑
n=0

1
λn

∫ y

x
wn(x, t)Φ(x, t)dz

]
, (3.85)

meaning that for all n the integral (3.84) has to be constant in time.
By looking at the first three orders and computing the monodromy
matrix over the whole domain we are interested in (letting x → −∞
while y→ ∞)

Q0 =
∫

R
w1Φdx =

∫
R

ΓΦdx ∝ N

Q1 =
∫

R
w2Φdx =

1
2

∫
R
(Γ∂xφ−Φ∂xΓ)dx ∝ P

Q2 =
∫

R
w3Φdx =

∫
R
(νm2 + ∂xΦ∂xΓ)dx ∝ E

. (3.86)
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One can check that these are indeed equivalent to the conserved quan-
tities N, P and E introduced at the beginning of the chapter. Higher
order terms correspond to more abstract quantities I will not discuss
but are still, by construction, invariant. To prove that those invariants
are actually first integrals of motion, and to recover the definition of
Liouville integrability, one simply needs to show that they all are in
involution, something that is done in appendix F.

3.2.5 Inverse scattering transform and its application to Mean Field Games

The IST can be seen as a more complicated Fourier transform (and a
generalization in some sense) for non-linear equations. Its implemen-
tation as a method for solving NLS equation can be summarized in
three major steps, just like Fourier transform for translational invari-
ant systems, presented as a commutative diagram

[Φ(T, x), Γ(0, x)] IST //

dynamics (complicated)

��

Scattering data

dynamics (simple)

��
[Φ(t, x), Γ(t, x)] Evolved scattering dataIST−1

oo

.

First, one needs to relate the fields Φ and Γ to their associated scatter-
ing data, namely the transition coefficients and the discrete spectrum
for the first equation of the auxiliary problem (3.53), all of which can
be extracted from the monodromy matrix T. This done, one can now In terms of

Hamiltonian
mechanics, the IST
defines a canonical
transformation to
action-angle
variables.

compute the time evolution of this scattering data, which is signifi-
cantly simpler than the original equations (3.51): as we shall see, the
dynamics of T is actually linear. The last step is also the most arduous
one. It consists in reconstructing the fields from the evolved scatter-
ing data, and this usually amounts to solving some flavour of the
Riemann problem or Gelfand-Levitan-Marchenko integral equation.
In this section I will discuss the steps I was able to take in order to
accommodate the IST to MFG and the difficulties I faced trying to fully
implement the method.

Scattering data and relation to scattering theory

To extract the scattering data, let us go back to the auxiliary problem
(3.53) and focus on its x−component

∂xF(x, t) = U(x, t, λ)F(x, t) , (3.87)

where the solution F = ( f1, f2) is a vector function and, given initial
data at point (x0, t), can be computed as

F(x, t) = T(x0, x, λ; t)F(x0, t) . (3.88)
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The problem (3.87) consists in a first order, linear, 2-dimensional sys-
tem: its space of solution is 2-dimensional as well and it can prove
useful to fix a basis of solutions by looking at their asymptotic be-
haviour when x → ±∞. From the definition of Lax connection (3.55),
if one assumes that Φ and Γ decrease sufficiently fast, one can write

U(λ) = lim
x→±∞

U(x, t, λ) =
λ

2
σ3 , (3.89)

from which one can deduce a basis of asymptotic solutions

Ψ1(x) =

(
1

0

)
exp

[
λ

2
x
]

Ψ2(x) =

(
0

1

)
exp

[
−λ

2
x
]

. (3.90)

One can now identify two bases of solutions fi and gi, i = 1, 2, known
in the context of scattering theory as Jost solutions, according to their
asymptotic behaviour either when x → ∞ or x → −∞

fi(x, t) x→+∞−−−−→ Ψi(x)

gi(x, t) x→−∞−−−−→ Ψi(x)
. (3.91)

For compactness, the two vectors of each of those bases can be ar-
ranged as the columns of 2× 2 matrices

F(x, t) = (f1(x, t),f2(x, t))

G(x, t) = (g1(x, t),g2(x, t))
, (3.92)

which can be explicitly computed as

F(x, t) = lim
x0→∞

T(x0, x, λ; t)E(x0)

G(x, t) = lim
x0→−∞

T(x0, x, λ; t)E(x0)
, (3.93)

by noting that the previously defined matrix E, equation (3.67), can
actually be written E = (Ψ1, Ψ2). Because both F and G are basis for
the space of solutions of the auxiliary problem (3.87), one can perform
a change of basis

F(x, t) = G(x, t)T(λ, t) , (3.94)

where

T(λ, t) = G−1(x, t)F(x, t)

= lim
x→∞

lim
y→−∞

E(−x, λ)T(x, y, λ; t)E(y, λ)
. (3.95)

The transformation matrix T is called the reduced monodromy matrix.
Because it converts one Jost solution into the other it can be inter-
preted as a classical equivalent to the S-matrix of scattering theory
and its elements are called transition coefficients by analogy. In the
most general case

T(λ, t) =

(
a(λ, t) b(λ, t)

c(λ, t) d(λ, t)

)
, (3.96)

and a, b, c, d constitute the scattering data.
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Evolution of the reduced monodromy matrix

To compute the time evolution of the reduced monodromy matrix T

one should first consider the regular monodromy matrix T. To that
end let us take the time derivative of equation (3.70)

∂t,yT = ∂tUT −U∂tT . (3.97)

Using the compatibility conditions (3.54) to express ∂tU in terms of
V yields

∂y(∂tT −VT) = U(∂tT −VT) , (3.98)

from which we can infer

∂tT(x, y, λ; t) = V(y, t, λ)T(x, y, λ; t) + T(x, y, λ; t)V(x, t, λ) , (3.99)

by making use of the initial condition (3.71). Now, to get the evolution
of the reduced monodromy matrix one has to consider the asymptotic
behaviour

lim
x→±∞

V(x, t, λ)E(x) =
λ2

2
σ3E(x) (3.100)

leading to a remarkably simple dynamics

∂tT(λ, t) =
λ2

2
[σ3,T] . (3.101)

Another interesting aspect of this equation is that the dependence on
Φ and Γ has completely disappeared, making for a trivial resolution.
In terms of the transition coefficients this means that a and d on the
diagonal are constants

a(λ, t) = a(λ, 0)

d(λ, t) = d(λ, 0)
, (3.102)

which was to be expected because of equation (3.66), and that b and
c on the off-diagonal can be expressed as

b(λ, t) = b(λ, 0)eλ2t

c(λ, t) = c(λ, 0)e−λ2t
. (3.103)

This simplification comes from the fact that the IST can be interpreted,
from the Hamiltonian standpoint, as a transformation to action-angle
variables. The trace of T can be used as a generating function of
the conserved quantities and, hence, of the action variables, while
elements on the off-diagonal serve as angle variables.

Of note, one can use relations (3.102) and (3.103) to further the
analogy with scattering theory. The matrix U being trace-less, the
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monodromy matrix T, and by extension its reduced counterpart T,
are by construction uni-modular

ad− bc = 1 . (3.104)

Because the products ad and bc are both constant in time, this previ-
ous relation can be understood as a normalization condition. More-
over, by dividing equation (3.104) by ad, one can recover an equation
akin to the 1D optical theorem

1
ad

+
bc
ad

= 1 (3.105)

where one can define t(λ) = 1/a(λ)d(λ) and
r(λ) = b(λ)c(λ)/a(λ)d(λ), respectively the transmission and reflection
coefficients of scattering theory associated to the auxiliary problem
(3.87).

Inverse transform and difficulties with Mean Field Games

To perform the inverse transform, one would have to solve the Rie-
mann problem that constitutes equation (3.95)

T = G−1F , (3.106)

but would also need to address certain issues that come with MFGs.
The most pressing issue probably comes from the fact that, con-

trary to their NLS counterpart, the fields Φ and Γ are not complex
conjugates. The main consequence of this manifests when dealing
with the reduced monodromy matrix T which has to be expressed in
the more general way equation (3.96), rather than the traditional

TNLS(λ, t) =

(
a(λ, t) b(λ, t)

b∗(λ, t) a∗(λ, t)

)
, (3.107)

ā and b̄ denoting the complex conjugates of a and b. This symmetry
simplifies the Riemann problem (3.106) greatly but also makes the
practical computations of the scattering data undoubtedly easier. In
this configuration, a direct and explicit relation between a and the
conserved quantities can be obtained using equation (3.85) and an-
other one, between a and b, can be derived through the normalization
condition

|a(λ)|2 − |b(λ)|2 = 1 . (3.108)

Moreover, one can actually extract a lot of information from this sim-
ple relation, in particular concerning the analytic properties of the
scattering data. Notably this implies that the transition coefficient a
has no zeros for real λ but, in general, these definitions can be ex-
tended in the complex λ upper-half plane where a is analytic except
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for simple zeros that correspond to bound states of the auxiliary prob-
lem (3.87) (poles of the reflection and transmission coefficients, and
hence of the S-matrix). Those poles can be found by noticing that
equation (3.87) reduces to an eigenvalue problem when multiplied
by σ3 on the left

LF =
λ

2
F , (3.109)

for the first order differential operator

L = σ3∂x −U0 . (3.110)

The new-found operator L has continuous spectrum of multiplicity
two on the whole real line - two linearly independent bounded solu-
tions of equation (3.87) - associated with the transition coefficients a
and b. It also admits the set λj, j = 1...n, which is the complete list of
zeros of a, as discrete spectrum. Both the continuous and discrete (if
it exists) part of the spectrum are needed to solve the Riemann prob-
lem [46]. I assume a simplification similar to equation (3.107) exists
in the context of MFG, because it seems too fundamental not to, but
still have not found it.

Another issue lies in the fact that, depending on the type of utility
function u considered, the assumption that Φ and Γ decrease suf-
ficiently fast, necessary for asymptotic equation (3.89), may not be
legitimate. This is particularly true for repulsive interactions where
utility function translates to no confining effect whatsoever: u goes to
zero at infinity where it is minimal, which means that

lim
x→±∞

Φ = lim
x→±∞

exp
[
− u

µσ2

]
= 1 . (3.111)

One would then have to find a way to regularize the problem, which
should be doable (see The case of finite density [46]), by modifying the
time component V of the Lax connection, but would require some
additional work.

Finally, as always, remains the issue of the forward-backward struc-
ture of equations (3.51). It is not yet clear how this will affect the IST

but I can see two avenues to attempt and solve the problem. The first
one would be to add a self-consistency equation, on top of the IST,
which may prove to be highly non-trivial to solve. Another solution
would be to try and study the reduced monodromy matrix in time
along with T and use the notion of duality of Lax pairs as discussed
by J. Avan and V. Caudrelier in [10]. Both those approaches seem
reasonable and may shed some new light on the forward-backward
structure, but they would require a good understanding of the prob-
lem at hand and one should first focus on the two other aforemen-
tioned issues.

The IST is a powerful tool to solve non-linear PDEs and, just like
the potential representation, being able to devise a MFG equivalent of
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such a method would prove to be a useful step towards a better under-
standing of the mechanisms at hand in equations (3.51) but also of the
forward-backward structure. Even if I have not been able, during my
PhD, to fully accommodate the IST to the problem (3.51), the fact that
there exists a zero-curvature representation is nonetheless sufficient
to say that this is feasible. This is because the vanishing curvature
of the Lax connection underlies a Poisson structure for the scattering
data: equations (3.51) constitute an infinite-dimensional Hamiltonian
system while the IST can be seen as the transform to the action-angle
variables that compose the scattering data. Then, even if it differs
slightly from the traditional IST, such a transform should exist in the
context of MFG, and, in order to try and find it, I have identified three
main issues that need to be addressed and will be the subject of fur-
ther research.

With this I conclude this chapter on the integrability of MFG. In
the next chapter I will discuss methods on how to handle the MFG

problem (2.24) with non-zero external potential on the heuristic level,
making use of results obtained through the study of its integrable
limit.



4
H E U R I S T I C A P P R O A C H T O 1 D Q U A D R AT I C M E A N
F I E L D G A M E S

This chapter follows a different philosophical path than the previous
one and is largely based on a not yet published article [21]. Its main
aim is to provide a discussion on a small set of "paradigm" MFG prob-
lems, which, in the spirit of the Ising problem of statistical mechanics,
are simple enough to be analysed and understood (at least from the
physicist’s point of view) but complex and rich enough to shed some
light on a set of mechanisms that will characterize a much larger class
of MFG models. The way this chapter differs from chapter 3, though,
is a practical one. While the previous chapter was focused on finding
exact results in some (very) limiting regimes, chapter 4 will outline
a strategy, that takes its root from those aforementioned results, to
examine more general problems, this time, in a more qualitative fash-
ion.

This "more general" class of problems I will now consider still falls
under the category of quadratic MFG, described by the 1+1 dimension
system of equations (2.24) with potential (2.36) featuring, contrary to
chapter 3 potential, a non-zero external gain

∂tu +
σ2

2
∂xxu− 1

2µ
(∂xu)2 = gm + U0(x)

u(x, t = T) = cT[m](x)

∂tm−
1
µ

∂x [m∂xu]− σ2

2
∂xxm = 0

m(x, t = 0) = m0(x)

. (4.1)

A potential of the type V[m] = gm + U0(x) displays short-range in-
teractions, the strength of which is monitored by the constant g, and
an external gain U0(x) representing the intrinsic interest for a player
to be in state x (proximity to various facilities or resources, trending
market, uncontroversial opinion, etc.). Of important note is that, be-
cause the potential V has to be interpreted as a gain (by opposition to
a cost) according to the chosen sign convention, positive and negative
g respectively imply attractive and repulsive interactions, while, for
it to have a confining effect, U0 has to be negative at large distance.

Similar problems have been already studied in the regime of strong
positive interactions [106, 108]. Consequently, this chapter proposes
an extension of these previous studies by considering in details the
negative coordination regime. In particular, it will tackle in depth one
of the conceptual difficulties presented by MFG theory, namely the one
associated with the forward-backward structure of equations (4.1),

59
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which, in some sense, makes the problem non-local in time. Since a
forward equation, specified by its past, is coupled to a backward equa-
tion, specified by its future, the behaviour at any given time appears,
a priori, affected by what is going on during the entire duration of the
MFG process. In order to exacerbate this issue of time non-locality, this
chapter will focus on the long optimization time limit, and on con-
figurations such that the considered system goes through differentThis typically refers

to problems that
involve a very
narrow initial
distribution of

agents.

regimes in which the weight of disorder, interactions between play-
ers, and personal preferences on the location have different relative
importance. As such, those different regimes will be characterized by
the balance between the various components of the energy

E =
∫

R
dx
[
−µσ4

2
∂xΓ.∂xΦ +

[
U0 +

g
2

ΓΦ
]

ΓΦ
]

=
∫

R
dx
[

µσ2

2

(
m
( v

σ

)2
− σ2 (∂xm)2

4m

)
+
[
U0 +

g
2

m
]

m
] . (4.2)

Just as in section 2.4.3, the first, σ dependent, term of the integrand
can be interpreted as kinetic energy, the U0 term as potential energy and
the g term as interaction energy. The conservation of total energy, and
the fact that transitioning from one regime to another implies a trans-
fer between one "kind" of energy to another, will help in providing a
global picture, across various regimes, of the MFG dynamics.

Because long optimisation times are considered, the first aspect of
MFG equations (4.1) one should address is the corresponding ergodic
state. As will be argued in section 4.1, the (static) ergodic state char-
acterises a significant part of the agents dynamics and its existence
even provides a major simplification for the transient dynamics as it
effectively decouples the initial and terminal boundary conditions of
the problem. Section 4.2 will then introduce, in some details, two rel-
evant limiting regimes which will serve as starting points to describe
the early stages of the game. Finally, in section 4.3, the full dynam-
ics of the problem will be examined, and in particular, the essential
question of matching the different regimes will be addressed.

4.1 static mean field game : the ergodic state

The notion of ergodic state is crucial in MFG theory, and its importance
is twofold. To start with, it corresponds to a simpler, static problem,
which, for the vast majority of the game, provides a good approxi-
mation of the exact behaviour of equations (4.1). But it also allows
for the short time and long time dynamics (leading to or leaving the
ergodic state) to essentially decouple. Rather than having to find a so-
lution of equations (4.1) for perfectly arbitrary boundary conditions
m0(x) and cT(x), the beginning of the game can be described by solv-
ing those equations with the same arbitrary initial condition m0(x)
but a generic terminal condition : the ergodic state. Conversely, the



4.1 static mean field game : the ergodic state 61

end of the game can be described using the ergodic state as initial
condition and cT(x) as terminal. As such, this notion of ergodic state
reduces the problem (4.1) to two relatively simpler ones and it there-
fore makes sense to address it first. The aim of this section will be
to discuss the ergodic solution, the approximation schemes used to
describe this regime, and its stability.

4.1.1 Alternative representations in the ergodic state

In the strong interaction regime we focus on, the ergodic state can
be approached equivalently within either the Schrödinger or hydro-
dynamic representations. The two approaches lead to a very simple
analysis and both are presented below.

During the ergodic state, strategies become essentially stationary,
as established by equations (2.25). As such, it is appropriate to intro-
duce Ψ(x), solution of the stationary NLS equation Of note, Ψ is not to

be confused with the
complex conjugate of
Ψ, denoted Ψ∗.−λΨ(x) =

µσ4

2
∂xxΨ(x) + U0(x)Ψ(x) + g|Ψ(x)|2Ψ(x) , (4.3)

to describe Φ = exp
[
−u/µσ2] and Γ = m/Φ, ergodic solutions in

the Schrödinger representation. Indeed, one can easily check from
the definition of the ergodic state, equations (2.26), that both Φ and
Γ follow the same equation (4.3). Under the ergodic state, the sys-
tem of time-dependent coupled PDEs (2.29) reduces to the one, time-
independent, ODE (4.3), and the connection with NLS equation is made
even clearer. One can then check thatΦ(t, x) = exp

(
+ λ

µσ2 t
)

Φ(x)

Γ(t, x) = exp
(
− λ

µσ2 t
)

Γ(x)
, (4.4)

are solutions of the time-dependent equation (2.29) and that
Φ(t, x)Γ(t, x) = Φ(x)Γ(x) = m(x) corresponds to the static ergodic
density.

Similarly, one can introduce the ergodic equations of the hydro-
dynamic representation. Introducing v as the ergodic velocity, equa-
tions (2.32) readily become

v = 0

λ

µ
+

σ4

2
√

m
∂xx
√

m +
gm + U0

µ
= 0

, (4.5)

once again simplifying greatly the problem by getting rid of the time
dependence but also of the coupling between the two functions v and
m.
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Figure 12: Computational solution of the Gross-Pitaevskii equation (full)
and Thomas-Fermi approximation (dashed). In this case g = −2,
σ = 0.4, µ = 1 and U0(x) = −x2.

4.1.2 Bulk of the distribution: Thomas-Fermi approximation

One of the many interests of the Schrödinger representation is that
one can exploit the large literature surrounding this equation. In the
strong interaction regime, a particularly popular way of tackling the
stationary NLS (or Gross-Pitaevskii) equation is through the use of
Thomas-Fermi approximation, as described in [40].

Introducing L, the typical extension of the distribution of players,
one can check that the kinetic term of energy (4.2) behaves as

Ekin = −
∫

R
dx

µσ4

2
∂xΓ.∂xΦ ∼ µσ4

L2 , (4.6)

while the interaction term scales as

Eint =
∫

R
dx

g
2
(ΦΓ)2 ∼ g

L
. (4.7)

The ratio between kinetic and interaction energies constitutes a good
representation of the relative importance of diffusion and interaction
processes and can be estimated by∣∣∣∣Ekin

Eint

∣∣∣∣ ∼ ν

L
, (4.8)

where

ν ≡ µσ4

|g| (4.9)

is the healing length, already introduced in chapter 3.
In the limiting case where kinetic energy is negligible in the bulk

of the distribution, i.e. when the typical extension of the distribution
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is large in front of the healing length ν, equation (4.3) loses its differ-
ential status and becomes a simple algebraic equation Such configurations

are bound to happen
as long as one
assumes (strong)
repulsive
interactions will
cause agents to
spread despite the
confining effect of
U0.

−λ ≈ U0(x) + g|Ψ(x)|2 , (4.10)

which is easily solved as

ΨTF(x) =


(

λ + U0(x)
|g|

)1/2

if λ > −U0(x)

0 otherwise

, (4.11)

where the constant λ is then computed using the normalisation con-
dition∫

R
m(x)dx = 1 . (4.12)

The exact same approximation can also be obtained by neglecting
the o(σ4) term in the system of hydrodynamic equations (4.5), which
yields

v = 0

m =
λ + U0

|g|
, (4.13)

an expression that is perfectly equivalent to equation (4.11).
Such an approximation may seem naive at first but actually yields

rather good results. Looking at the example of quadratic external po- Note that, as
mentioned above,
U0(x) has to be
understood as a gain
and, to have a
confining effect, it
has to reach its
maximum value for
a finite value of x,
thus the negative
sign.

tential U0(x) = −µω2
0x2/2, one can infer, through the normalisation

of the distribution of players, that

λ =

3|g|
4

√
µω2

0
2

2/3

, (4.14)

and check that in the bulk of the distribution, as illustrated on Figure
(12), the approximation agrees perfectly with the exact result.

The tails of the distribution, for which player density is low, and
thus where interactions effects are small, constitute the only place
where diffusion has to be taken into account. As such, they cannot
be properly described by Thomas-Fermi approximation and call for a
specific treatment.

4.1.3 Tails of the distribution: semi-classical approximation

Thomas-Fermi approximation yields good results in the bulk of the
distribution, i.e. for λ > −U0(x), but fails to describe regions where
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the density of agents is small. If this density is sufficiently small how-
ever, for example in the tails of the distribution where λ + U0 is suf-
ficiently negative, the problem simplifies once again because the non-
linear term that represents interactions becomes negligible. In this
context equation (4.3) now reads

−λΨ(x) ≈ µσ4

2
∂xxΨ(x) + U0(x)Ψ(x) , (4.15)

and we will address it here through a semi-classical approximation.
More specifically, we look for solutions of equation (4.15) in the form
ΨSC(x) = ψ(x) exp

(
S(x)/

√
µσ4

)
up to the second order in σ2. As

an example, we will once again look at the case of quadratic external
potential U0(x) = −µω2

0x2/2, and compare the approximation to nu-
merical results. In order to keep the core of the text concise, details
of the computation are provided in appendix G. The semi-classical
approximation yields

ΨSC(x) =
[

C
µω2

0x2 − 2λ

]1/4

exp

 λ

µω0σ2

x

√
µω2

0
2λ

√
x2 µω2

0
2λ
− 1

−argcosh

x

√
µω2

0
2λ


,

(4.16)

where C is a constant numerically determined to match with the bulk
of the distribution. As illustrated Figure (13), results provided by this
approximation are in very good agreement with the actual solution
of equation (4.3) for x >

√
2λ

µω2 .
However, one can note that, for this approximation scheme, the (so-

called) turning point x = X, where the Thomas-Fermi solution ΨTF

vanishes, is singular. This can be easily avoided by way of a uniform
approximation [76]

ΨSC =


Cleft

(
8πSleft

3U0

)1/2

cos
(π

3

)
[J1/3(Sleft) + J1/3(Sleft)] if x < X

2Cright

(
8Sright

π |U0|

)1/2

cos
(π

3

)
K1/3(Sright) if x > X

,

(4.17)

where Cleft and Cright are constants to be numerically determined, Jγ

stands for the Bessel function of the first kind of order γ and Kγ

for the modified Bessel function of the second kind. Explicit expres-
sions for the actions Sleft and Sright, in the case of the quadratic gain
U0(x) = −µω2

0x2/2, are provided in Appendix G. Figure (14) illus-
trates how this uniform approximation, equation (4.17), constitutes
an improvement over the previous one, equation (4.16).
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Figure 13: Computational solution of the Gross-Pitaevskii equation (full),
Thomas-Fermi approximation (dashed) and semi-classical ap-
proximation (dot). The inset shows the same curves in Log-Linear
plot focusing on the tail of the distribution. Parameters for this
figure are g = −2, σ = 0.4, µ = 1, U0(x) = −x2 and C = 8.10−4.
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Figure 14: Computational solution of the Gross-Pitaevskii equation (full),
Thomas-Fermi approximation (dashed), semi-classical approxi-
mation (dot) and uniform approximation (dash-dot). Parameters
for this figure are to g = −2, σ = 0.4, µ = 1, U0(x) = −x2,
Cleft = 0.14 and Cright = 0.07.
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Depending on the specifics of U0(x), computing this approxima-
tion may become somewhat involved. If so, the tails of the distri-
bution can still be described by an Airy function, as discussed in
[40], using the consistently simpler, albeit less accurate, approxima-
tion method of linearising the external gain around the turning point
x ≈ X and looking at the asymptotic behaviour.

4.1.4 Some properties of the ergodic state

To conclude this section on the ergodic state, I shall describe here
some of its properties that will prove to be essential when trying to
connect it to the beginning (or end) of the game.

4.1.4.1 Final cost and energy

Something that may not appear clearly from the original definition
of the ergodic state, equations (2.26), but becomes obvious when
looking at its hydrodynamic counterpart, equations (4.13), is that, for
quadratic MFG in the strong repulsive interactions regime, the value
function u becomes essentially flat during the ergodic state

v = 0 ⇔ u = K + o(σ2) , (4.18)

where the o(σ2) term represents corrections to the Thomas-Fermi ap-
proximation and K is a constant. MFG equations (4.1) being invariant
by translation of u, I will choose this constant K to be zero for the re-
mainder of this chapter. In the upcoming sections, this characteristic
u = 0 will be used as an effective terminal condition when discussing
the beginning of the game.

Another interesting aspect of the ergodic state is that it provides an
easy access to the (conserved) energy E = E of the system

E =
∫

R
dx
[ g

2
m2 + mU0dx

]
< 0 , (4.19)

neglecting o(σ4) terms of the kinetic energy. By definition, because
interactions are chosen to be repulsive and the external gain to be
confining (which implies it can be chosen negative for all x), the en-
ergy has to be negative.

What those two properties allow is for one to restrict their analy-
sis of the transient states to games of negative energy and flat cost
terminal conditions, making for a simpler discussion of the time-
dependent problem.

4.1.4.2 Approaching the ergodic state : stability analysis

To conclude this section, I discuss the stability of the ergodic state.
Focusing mainly on the bulk of the distribution, I will use the hydro-
dynamic representation as it is the better framework to deal with the
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small σ limit. Recalling equations (4.13), the expression of the ergodic
state under this representation

v = 0

m = −λ + U0

g
, (4.20)

one can then apply small perturbations δm and δv to this station-
ary state and compute their evolution. Near the ergodic state equa-
tions (2.32) become

˙δm = −∂x(mδv)

δ̇v = − g
µ

∂xδm
, (4.21)

implying

¨δm =
g
µ

∂x(m∂xδm) . (4.22)

Assuming that δm = δm0eωt, equation (4.22) amounts to the eigen-
value problem

D̂δm0 = −µ

g
ω2δm0 , (4.23)

with

D̂ ≡ −∂x(m(~x)∂x·) . (4.24)

It is relatively straightforward to show that D̂ is a real symmetric
operator, implying its eigenvalues are real, and furthermore that all
these eigenvalues are positive (cf Appendix. H). Denoting by εi these
real eigenvalues and by ϕi(x) the corresponding eigenvector, the lin-
ear modes in the vicinity of (m, v) take the form One should be

reminded that g is
negative in this
context.

Q±
(i) =

(
δm(i), δv±

(i)

)
≡
(

ϕi(x),±
√
−g/µεi∂x ϕi(x)

)
, (4.25)

and follow an exponential time dependence
Q±
(i)(t) = e±ωitQ±

(i)(0)

ωi =

√
−gεi

µ

. (4.26)

This exponential behaviour highlights the fact that, as discussed in
[108] in a simpler (variational) context, the ergodic state should be
understood as a unstable / hyperbolic fixed point, which is approached
exponentially fast at small times, and departed from similarly quickly
near the end of the game T.
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Figure 15: First order Legendre polynomial of the second kind. Its effect on
the ergodic state would be to add feet to the distribution.

Returning to the particular case of quadratic external gain U0 =

−µω2
0x2/2, and assuming, as is the case above, that δm ∝ e±ωt, one

obtains
− 2

(
ω

ω0

)2

δm = ∂y
[
(1− y2)∂yδm

]
y = x

√
µω2

0
2λ

, (4.27)

a Legendre equation defined for 0 ≤ y ≤ 1. Dismissing odd ones,
the solution with smallest eigenvalue (for ω = ω0) is the first order
Legendre polynomial of the second kind, hence

δm ∼ Q1(y)e±ω0t . (4.28)

As shown on Figure (15), the effect of this perturbation is simply to
add tails to the distribution of agents, which is qualitatively in good
agreement with simulations.

4.2 time dependent problem : the beginning of the game

As was previously argued, different length scales are associated with
different dynamical regimes: very short distances L � ν are dom-
inated by diffusion, while, for longer ones L � ν, interactions take
over. As the typical size of the distribution of agents further increases,The large interaction

limit considered in
this chapter

essentially implies
that the healing

length ν is much
smaller than any

characteristic feature
of the individual

(external) gain
U0(x).

however, interaction effects become weaker (although the effects of
diffusion decrease even more rapidly) and, even in the large |g| limit,
the ergodic state is eventually characterized by a balance between
interaction energy Eint and potential energy Epot. The fact that this
balance has to be reached is precisely what fixes the extension of the
ergodic state distribution.

To consider a system which traverses all dynamical regimes, one
then has to assume that the initial distribution is extremely narrow.
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As such, the beginning of the game will mainly consist in an expan-
sion of this initial distribution, expansion that will go on until the
balance between Eint and Epot is reached. During that expansion, un-
der the assumption that |g| is sufficiently large [109], one may neglect
the effects of the external potential. To describe the earlier stages of
the game it is, hence, sufficient to study the set of equations (2.29) in
the particular case of U0(x) = 0

− µσ2∂tΦ(t, x) =
µσ4

2
∂xxΦ(t, x) + gΦ2(t, x)Γ(t, x)

+ µσ2∂tΓ(t, x) =
µσ4

2
∂xxΓ(t, x) + gΦ(t, x)Γ2(t, x)

. (4.29)

While it can be shown that this system is integrable (in the sense
that there exists a canonical transform from (Φ, Γ) to action-angle
variables), with this section I do not aim to explicitly make use of
this property. Rather, I will argue that those various limiting regimes
can be efficiently investigated through the use of variational ansätze.
Finally, to simplify the analysis even further, based on results from
section 4.1.4 on the ergodic value function (which can here be inter-
preted as a final cost for the beginning of the game), upcoming dis-
cussions will be made under the assumption that the terminal cost is
essentially flat.

4.2.1 Large ν regime : Gaussian ansatz

When the extension of the distribution of agents is small in front
of ν, the effects of diffusion become dominant, and equations (4.29)
become simple heat equations, for which the Green’s function has
a Gaussian shape. It is therefore natural to tackle this regime using
Gaussian variational approach [91], already applied to MFG models
featuring large attractive interactions [108].

4.2.1.1 Preambular definitions

Variational approximation amounts to minimizing the action (2.33)
on a small subclass of functions (here chosen so that the distribution
of agents is Gaussian), effectively reducing a problem with an infinite
number of degrees of freedom to one with a finite, easily manageable,
number. As in [108] I consider the following ansatz

Φ(x, t) = exp
[
(−Λt/4 + Pt · x)

µσ2

]
1

(2πΣt)1/4 exp
[
− (x− Xt)2

(2Σt)2 (1− Λt

µσ2 )

]
Γ(x, t) = exp

[
(+Λt/4− Pt · x)

µσ2

]
1

(2πΣt)1/4 exp
[
− (x− Xt)2

(2Σt)2 (1 +
Λt

µσ2 )

] ,

(4.30)
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which indeed yields a Gaussian distribution centered in Xt with stan-
dard deviation Σt

m(t, x) = Γ(t, x)Φ(t, x) =
1√

2πΣ2
t

exp
[
− (x− Xt)2

2(Σt)2

]
, (4.31)

and where Pt and Λt respectively are the momentum and the position-
momentum correlator of the system. Inserting this variational ansatz
in the action (2.33) one gets

S̃ =
∫ T

0
L̃(t)dt (4.32)

where the Lagrangian L̃ = L̃τ + Ẽkin + Ẽint + Ẽpot only depends on Xt,
Pt, Σt, Λt and their time derivatives. This yields

L̃τ = ṖtXt −
Λt

2Σt
Σ̇t Ẽkin =

P2
t

2µ
+

Λ2
t − µ2σ4

8µΣ2
t

Ẽint =
g

4
√

πΣt
Ẽpot =

∫
R

U0(x)m(t, x)dx
. (4.33)

As long as the density of players m(t, x) remains narrow enough
that U0(x) can be linearised on the distance Σt, one may assume that
Ẽpot ≈ U0(Xt) and that the variables (Xt, Pt) and (Σt, Λt) decouple.
As discussed in [108], (Xt, Pt) then follows the dynamics of a point
particle of mass µ subjected to the external potential U0(x). The dis-
cussion below, in which the approximation U0(x) = 0 is considered,
could therefore be generalized straightforwardly to this aforemen-
tioned situation (by simply adding the motion of the center of mass).

4.2.1.2 Evolution of the reduced system (Xt, Σt; Pt, Λt) for U0(x) = 0

Minimizing the action with respect to each parameter yields the evo-
lution equations

Ẋt =
Pt

µ
Ṗt = 0

Σ̇t =
Λt

2µΣt
Λ̇t =

Λ2
t − µ2σ4

2µΣ2
t

+
g

2
√

πΣt

. (4.34)

Under the assumption that U0(x) = 0, Pt is a constant and is essen-
tially a measure of the asymmetry of Φ(t, x) and Γ(t, x) as well as the
drift of the center of mass of the distribution of players. If Φ(t, x) and
Γ(t, x) are symmetric with respect to x = x0, Pt = 0 and the center
of mass does not move. For the sake of simplicity, let us focus on this
configuration and let Xt = x0 = 0. The equations concerning (Σt; Λt)

are more complicated but can be decoupled using the fact that the to-
tal energy of the system Ẽtot = Ẽkin + Ẽint + Ẽpot is conserved, hence

Ẽtot =
µΣ̇2

2
− µσ4

8Σ2
t
+

g
4
√

πΣt
. (4.35)
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4.2.1.3 Zero-energy solution

In the limiting case where U0(x) is negligible for all times (not just
the initial expansion we consider here), and assuming an infinitely
long game, the distribution of agents will spread indefinitely, tending
towards a perfectly diluted state m(t, x) ≈ 0. This would correspond
to an (asymptotic) ergodic state Σ → ∞ of energy Ẽtot → 0. In that
case the the evolution equation (4.35) reads

Σ̇t =
1
Σt

√
µσ4
√

π − 2gΣt

4µ
√

π
, (4.36)

which can be integrated as√
1− 2Σt√

πη

(
1 +

Σt√
πη

)
−
√

1− 2Σ0√
πη

(
1 +

Σ0√
πη

)
= − 3t

2πτ
,

(4.37)

Σ0 being the initial width of the distribution.

4.2.1.4 Finite-energy solutions

In practice, according to section 4.1.4, the energy of the ergodic state
is known to be negative and, as such, one should mainly be interested
in negative energy solutions. In that case, it is important to note that

Σt cannot grow past a certain value Σ∗ =
g
√

π+
√

g2/
√

π−8µσ4 Ẽtot

8Ẽtot
oth-

erwise Σ̇t would become complex valued. If Ẽtot < 0, equation (4.35)
can be integrated as

F(8Etot,−2g/
√

π, µσ4; Σt)− F(8Etot,−2g/
√

π, µσ4; Σ0) =
t

2
√

µ
,

(4.38)

where F(a, b, c; x) is defined as

F(a, b, c; x) =
∫ xdx√

ax2 + bx + c

=
b

2|a|3/2 arcsin

√ 4a2

b2 − 4ac

(
x +

b
2a

)+

√
ax2 + bx + c

a

.

(4.39)

For completeness, I also provide solution of equation (4.35) in the
case of positive energy

G(8
√

πEtot,− 2g, µσ4√π; Σt)

− G(8
√

πEtot,−2g, µσ4√π; Σ0) =
t

2
√

µ
√

π

, (4.40)
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Figure 16: Computational solution of the Gross-Pitaevskii equation with
Gaussian initial condition (blue dot) and variational ansatz (red
dashed). The inset shows the time evolution of the numerical vari-
ance (blue full) and Σt (red dashed) as defined in equation (4.38).
In this case g = −2, σ = 3.5, µ = 1, Σ0 = 0.2 and T = 20.

where G(a, b, c; x) is defined as

G(a, b, c; x) =



√
ax2 + bx + c

a

− b
2|a|3/2 argsinh

√ 4a2

b2 − 4ac

(
x +

b
2a

) if b2

4ac > 1

√
ax2 + bx + c

a

− b
2|a|3/2 argcosh

√ 4a2

4ac− b2

(
x +

b
2a

) if b2

4ac < 1

.

(4.41)

It can be worth noting that in the t → 0 limit, equations (4.36), (4.38)
and (4.40) yield similar behaviour for Σt, scaling as t2/3. This type of
variational approach yields quantitatively accurate results, illustrated
Figure (16), as long as Σt � ν. With that, I conclude my discussion of
the large ν regime, next I will address the small ν one.

4.2.2 Small ν regime : Parabolic ansatz

As was shown in a previous paper [19], and argued at length in
chapter 3, in the weak noise, infinite optimization time limit of the
potential-free negative coordination MFG, the distribution of players
quickly deforms to take the shape of an inverted parabola that scales
with time. These parabolic solutions can be interpreted as arising
from a low order approximation of a multipolar expansion (3.21) in
an electrostatic representation of the problem [19]. Furthermore, sim-
ulations indicate that, under the assumption that the variations of the
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terminal cost are small compared to ũ = µσ2, (non scaling) inverted
parabolas are still stable solutions of equations (4.29) with finite opti-
mization time.

Imposing the normalisation condition {
∫

R
m(t, x)dx = 1 ∀ t} one

can thus consider the ansatz

m(t, x) =


3(z(t)2 − x2)

4z(t)3 if z(t) > x

0 otherwise
, (4.42)

already introduced in chapter 3, and look for a formal solution out-
side the singularities in the derivative at x = ±z(t). It is worth men-
tioning that such an approach already exists in the realm of cold
atoms [41] [23]. However, differences arise from the fact that, con-
trary to NLS equation, equations (4.29) do not feature complex time
dynamics, and from the quintessential forward-backward structure
of MFG.

In practice, in this subsection, I shall examine (as an independent
problem) an effective potential-free (i.e. U0(x) = 0) game in the small
ν regime. Once again, I shall assume that the final condition, at t = T̃,
is that of a flat terminal cost c̃T̃(x) = 0. Moreover, I will consider that
the initial density of agents, at t = 0, is essentially a Dirac delta func-
tion, or in other words, an inverted parabola of the form (4.42) with
z(t = 0) = z0 = 0. Note that, as I will still assume that the healing
length ν is the smallest length size of the problem, this implies that
I actually consider in this section the limit ν, z0 → 0 with z0 � ν. In
the context of the original game, this effective game will correspond
to the expansion phase beyond the healing scale ν. How it will be
coupled to the ergodic state or to the small ν regime will be exam-
ined subsequently, but as the conserved energy of the ergodic state is
negative, I will consider more specifically this regime.

4.2.2.1 Preambular definitions

While the Schrödinger representation of MFG equations (4.1), along
with the Gaussian variational ansatz, were well-suited to describe a
large ν regime, the hydrodynamic representation is actually more con-
venient to deal with the small noise limit. In the context of cold atoms,
the equivalent of the o(σ4) term in hydrodynamic equations (2.32) is
considered to be safely negligible as long as the extension of the con-
densate is large in front of the healing length ν. Focusing on this
weak noise regime (Thomas-Fermi approximation) here amounts to
studying the system

∂tm + ∂x(mv) = 0

∂tv + ∂x

[
v2

2
+

g
µ

m +
U0

µ

]
= 0

. (4.43)
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Going through Madelung substitution shows that we can get away
with only neglecting o(σ4) terms while absorbing o(σ2) contributions
in the definition of v equation (2.31), which is not as transparent from
equations (4.1).

As will be argued below, one can find exact solutions of equa-
tions (4.43) assuming the parabolic form (4.42), and, therefore, one
does not need to resort to the action (2.33) to derive the correspond-
ing dynamics.

4.2.2.2 Elementary integration of the hydrodynamic representation

In the U0(x) = 0 limit, the expression of the velocity associated to a
parabolic distribution, ansatz (4.42), can easily be extracted from the
continuity equation in (4.43). Integrating over [−∞; x] and taking into
account that m vanishes at infinity, one obtains

v(t, x) =
z′(t)
z(t)

x . (4.44)

To derive the time evolution of z(t), one can insert the explicit forms
of m(t, x) and v(t, x) in the second equation of equations (4.43), yield-
ing

z′′(t) =
3g

2µz(t)2 . (4.45)

This closely resembles what can be found when dealing with expand-
ing Bose Einstein condensates [23], one main difference lying in the
fact that the multiplicative constant in front of 1/z2 is negative in the
context of MFG but positive in the context of Bose Einstein conden-
sates. This last equation (4.45) can be integrated as

z′(t)2 = −3g
µ

[
1

z(t)
+

ε

z∗

]
. (4.46)

For commodity the integration constant has been written as 3|g|ε/µz∗
where ε can take the values −1, 0 or 1, and z∗ is a constant of same
dimension as z (in this case a length). As will be discussed below,
the values −1, 0 or 1 of ε correspond to negative, zero or positive
energies. Furthermore, it will be shown that, in the particular case
of ε = −1, z∗(> 0) can be interpreted as the final extension z(T̃)
of the distribution of players in the effective game. In the context
Bose Einstein condensates, only the positive ε case is relevant [23],
and the fact that, here, zero or negative ε may be considered as well,
which allows for new sets of solutions, constitutes another important
difference.
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4.2.2.3 Characterisation of z(t)

To solve this equation, let us introduce two functions ξ+(y) > 0 and
ξ−(y) ∈ [0; 1], associated with +1 and −1 values of ε, implicitly de-
fined through the relations√

ξ+(y)(1 + ξ+(y))− argsinh
√

ξ+(y) = y ∀y > 0 , (4.47)

and

arcsin
√

ξ−(y)−
√

ξ−(y)(1− ξ−(y)) = y ∀y ∈ [0,
π

2
] . (4.48)

One should also define a third function ξ0(t) given explicitly as

ξ0(y) =
(

3y
2

)2/3

∀y > 0 , (4.49)

which corresponds to the ε = 0 solution discussed in chapter 3. It
is worth noting that all three functions are monotonous, increasing
functions of time and have the following properties

ξ+(0) = ξ−(0) = ξ0(0) = 0

ξ+(y) > ξ0(y) ∀y

ξ0(y) > ξ−(y) ∀y ∈ ]0,
π

2
]

ξ+(y) ≈ ξ0(y) ≈ ξ−(y) as y→ 0

.

One can now write the different solutions of equation (4.46) in terms
of the above functions. Even if only repulsive interactions are consid-
ered, because of the square power in equation (4.46), its solutions can
either be increasing or decreasing. There are three families of increas-
ing solutions

z(t) =


z∗ξ+(αz−3/2

∗ t) if ε = 1

ξ0(αt) if ε = 0

z∗ξ−(αz−3/2
∗ t) if ε = −1

, (4.50)

where α =
√
−3g/µ. The reciprocal three families of decreasing so-

lutions are irrelevant to this chapter’s discussion as they will not ulti-
mately lead to the ergodic state introduced section 4.1. Still, a succinct
analysis of those solutions are provided in appendix I for the sake of
completeness.

One should now wonder how the boundary conditions of the ef-
fective game constrain solutions within the family (4.50). The afore-
mentioned initial condition that the density of agents starts as a Dirac
delta function, which imposes that z(t = 0) = 0, is actually already
implemented in equation (4.50). One, then, only has to consider the
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terminal boundary condition, i.e. the fact that at T̃ the terminal cost
is flat. Recalling the definition of the velocity

v = −∂xu
µ

+ o(σ2) , (4.51)

its expression (4.44) in the small ν regime implies that the terminal
cost cT̃(x) = u(T̃, x) can be constant only if the time derivative of z(t)
is zero. According to equation (4.46), this is only possible if ε = −1
and z(t) = z∗. Hence, the study of the effective game considered in
this section can be reduced to that of "-" type solutions and one can
infer that z∗ = z(T̃). Now, one can check easily from equation (4.48)
that ξ−(π/2) = 1 (which is compatible with the fact that ξ−(y) ∈
[0; 1] is an increasing monotonous function defined for y ∈ [0, π/2]).
From equation (4.50) one can then deduce

z(T̃) = z∗ ⇒ αz−3/2
∗ (T̃) =

π

2
. (4.52)

This yields a relation between the final time of the effective game T̃
and the final extension of the distribution of players

T̃ =
πz3/2
∗

2α
. (4.53)

The duration of the effective game, i.e. the time it takes to go from a
narrow, delta-like, initial distribution of agents to a flat terminal cost,
thus determines the parameter z∗, and therefore fixes which member
of the family equation (4.50) has to be considered.

Inserting equation (4.50) in the ansätze (4.42) and (4.44), directly
yields explicit expressions for m ans v, which, as illustrated on Figure
(17), provide excellent approximations, even when the noise σ, and
thus the healing length ν, is not strictly zero (see captions for details).

4.2.2.4 Energy of the system

The energy plays a crucial role in the dynamics of the spreading of
players and its conservation is a key property one can use to match
different regimes of approximation. Because the ultimate goal of this
chapter is to propose a method to link this regime, representing early
stages of the game, to the ergodic state described in section (4.1),
this section will focus on negative energy only. In the potential-free
regime, the energy contains two terms, one represents kinetic energy
(associated with the diffusion term), while the other comes from the
interactions. Dropping the o(σ4) term in the definition equation (4.2)
of the kinetic energy, we thus have E = Ekin + Eint, with

Ekin =
µ

2

∫ z

−z
mv2dx

Eint =
∫ z

−z

gm2

2
dx

. (4.54)
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Figure 17: Computational solution of the Gross-Pitaevskii equation (blue
dot) and parabolic ansatz (red dashed). The inset shows the
time evolution of z numerically (blue full) and analytically (red
dashed). In this case, parameters are chosen to be g = −2,
σ = 0.45 and µ = 1, meaning ν ≈ 0.02. The actual (numeri-
cal) game takes place from t = 0, when it starts as an inverted
parabola of extension 0.4, to t = T = 20 when the terminal cost
is flat. The effective game essentially starts at time t ≈ −0.07 as
a Dirac delta function and its effective duration is T̃ ≈ 20.07. The
only difference between the numerical results and the parabolic
ansatz comes from the fact that σ is non-zero in the simulation.
This figure also illustrates how the Thomas-Fermi approximation
becomes more and more effective as the typical extension of the
density becomes larger in front of ν.
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As the energy is conserved, it can be evaluated at any time, and par-
ticularly at the end of the effective game. If ε = 0, z → ∞ as t → ∞
and it becomes clear that, in this case, E = 0. A similar reasoning
would show that, asymptotically if ε = +1, E ∼ 1/z2

∗ > 0. When
ε = −1, however, we can evaluate the energy at t = T̃, when z = z∗
and v = 0, which trivially implies that, at that point and within the
Thomas-Fermi approximation, kinetic energy is zero. Inserting equa-
tion (4.42) with z(t) = z∗ into the second equation (interaction energy)
of system (4.54) one obtains

E−kin(T̃) = 0 + o(σ4)

Eint(T̃) =
3g

10z∗

, (4.55)

which, using equation (4.53) implies

E =
3g

10z∗
=

3g
10

(
2αT̃

π

)−2/3

. (4.56)

For the effective game considered here – narrow initial density, flat
terminal cost v(T̃) = 0, small ν regime and individual gain U0(x) = 0
– there is a strong link between the duration of the game T̃ and the
energy E. In some sense T̃ monitors the dynamics of the spreading of
the players completely, and takes the same role as Ẽtot did in the large
ν regime. As such, finite games with flat terminal cost correspond to
non-zero energy and there is a one-to-one relation between T̃ and E.

This closes the analysis of the small ν regime, and more generally
of the expansion regime. The next section will now address ways to
relate those transient times to the ergodic state.

4.3 the entire game

In this section will be examined how the previously discussed regimes
of approximation couple with one another. Section 4.3.1 will first ad-
dress, once again, an effective game, in the vein of the one studied
in section 4.2.2, but assuming a finite value of healing length so that
players are initially distributed on a distance much smaller than ν.
This allows to focus on the transition from a large to a small ν regime
during the initial stages of the game. Then, in section 4.3.2 will be
considered the matching of the expansion phase, described by the
effective game, with the ergodic state.

4.3.1 Matching small and large ν regimes

As mentioned above, this section, just as section 4.2.2, will feature an
effective potential-free game of duration T̃4, with flat terminal cost
and an initial distribution of agents which width Σ0 is much smaller
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that the healing length ν. Furthermore, it will be assumed that the
optimization time is large enough so that, at the end of the game, the
distribution of players has spread on a distance much larger than the
healing length ν.

Under those assumptions, one can distinguish two main phases
the effective game will go through: an initial phase which can be de-
scribed by the Gaussian ansatz introduced section 4.2.1 and, at the
end of the game, a terminal phase for which the density of agents
will evolve according to the parabolic ansatz of section 4.2.2. Between
those two phases, the density will transition from a Gaussian-like dis-
tribution to an inverted parabola. The precise shape of the density
during the crossover is complicated to describe, and will not be ad-
dressed here, but, as will soon be argued, one can still estimate the
dynamics of the spreading of players across the two regimes.

To proceed, let us introduce a couple of quantities that will charac-
terise the dynamics. The first one is the total energy E of the system,
a conserved quantity, which is common to both regimes. The second
is the time ttr at which the system will transition from the Gaussian
regime to the parabolic one.

Seen from the Gaussian side of the transition, the transition time
tG
tr is defined by the condition

Σ(tG
tr) = ν , (4.57)

which, through equation (4.38), provides a relation between E and tG
tr

F(8E,−2g/
√

π, µσ4; ν)− F(8E,−2g/
√

π, µσ4; Σ0) =
tG
tr

2
√

µ
. (4.58)

But, seen from the parabolic side of the transition, the energy E fixes
the duration T̃3 of the effective game of section 4.2.2 through equa-
tion (4.56). On this side of the transition, the transition time tpara

tr is
defined by the condition

z(tpara
tr − tpara

0 )√
5

= ν , (4.59)

where z/
√

5 is the standard deviation of the parabolic distribution
equation (4.42), and tpara

0 = T̃4 − T̃3 the time at which the parabolic
evolution appears to have started (from an initial Dirac delta shape)
seen from the small ν side of the transition. Based on equation (4.50),
this implies that

√
5ν

z∗
= ξ−

(
αz−3/2
∗

(
tpara
tr − tpara

0

))
. (4.60)

Using this last result along with equation (4.48), one obtains now a
relation between tpara

tr and z∗

α

z3/2
∗

(tpara
tr − tpara

0 ) = arcsin

√√
5ν

z∗
−

√√√√√5ν

z∗

(
1−
√

5ν

z∗

)
, (4.61)
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Figure 18: Time evolution of the variance (left) and the width of the parabola
(right). The numerical solution for the density of players has been
numerically fitted with a Gaussian and an inverted parabola,
full curves are obtained through the extraction of the fitting pa-
rameters. Dashed curves are obtained using either the Gaussian
or parabolic ansatz with energy E = −9.95 × 10−3 computed
through the self-consistent condition. Parameters for this figure
are g = −2, σ = 1.2, µ = 1, ν = 1, Σ0 = 0.2 and T = 300.

which, given the fact that z∗ and E are linked through equation (4.56)
is actually a relation between tpara

tr and E.
The self-consistent condition tpara

tr = tG
tr then implies that equa-

tions (4.58)-(4.61) fix both the energy E and the transition time ttr,
and thus solve the game we are considering in this subsection.

Knowing the energy, as illustrated in Figure (18), one can recon-
struct the evolution of the variance of the Gaussian distribution at
small times using equation (4.38) and, then, of the width of the in-
verted parabola using equation (4.50). Figure (19) gives further indi-
cation that both the Gaussian and parabolic ansätze yield good results
to evaluate not only the spreading of the players but also the shape of
the distribution in this configuration. The two regimes overlap when
Σt is of order ν and either approximation regime gives a fairly accu-
rate description of the phenomenon. However, as we near the end of
the game both approximations become less and less accurate due to
the proximity of the terminal condition, which, because σ is non-zero,
is not perfectly flat

vT(x) = 0 + o(σ2) . (4.62)

Another reason for this would be the presence of higher order mul-
tipole coefficients Qn, n > 2, that we (implicitly) neglected when
constructing the parabolic ansatz, but can be shown to be non-zero
nonetheless.

4.3.2 Matching transient and ergodic states

With this section I now turn back to the complete game, of equa-
tions (4.1), or, more specifically, to the first half of that game linking
the initial distribution of agents to the ergodic state. I will focus on
the case of a narrow initial condition, of width Σ0 � ν, for the distri-
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Figure 19: Density of players at different times, numerical results are plot-
ted (solid line) along with the Gaussian (dotted line) and the
parabolic ansatz (dashed line). At the beginning of the game, Figs
(19a) and (19b), the Gaussian ansatz is the most accurate. Then in
the middle of the game, Figs (19c) and (19d), the parabolic consti-
tutes a better approximation. At the end of the game, Figs (19e)
and (19f), the parabolic ansatz becomes less and less accurate as
we near the terminal condition. Here g = −2, σ = 1.2, µ = 1,
ν = 1, Σ0 = 0.2 and T = 300, while E = −9.95× 10−3 has been
computed through the self-consistent condition.
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bution of agents, so that it includes the three regimes of approxima-
tion examined in this chapter. The system will, therefore, initially goIt should also be

noted that I will
assume that the

maximum of the
external gain U0

coincides with the
center of mass of the

initial distribution,
so that I do not have

to take its motion
into account.

through an expansion phase, during which one can neglect the indi-
vidual gain / potential U0(x), and will successively traverse the large
ν and the small ν regimes before reaching the ergodic state. The goal
of this section then is to provide ways to understand how to connect
those three regimes.

In this configuration, the energy E is completely fixed by the er-
godic state

E = E =
g
2

∫
R

m2dx +
∫

R
mU0dx . (4.63)

The initial large ν expansion phase is therefore completely fixed by E
and Σ0 through equation (4.38), which in turn fixes the transition time
ttr between the large and the small ν regimes through equation (4.58).

Once in the small ν regime, the energy E again fixes the duration T̃3

of the effective game of section 4.2.2. The only parameter that remains
to be fixed is the effective beginning time tpara

0 of that effective game
which is given by equation (4.61) with, according to equation (4.56),
z∗ = 3g/10E.

Naturally, because one has to take the external gain into account
when nearing the ergodic state, the final extension of the effective
game z∗ does not correspond to the extension the ergodic state z
and its duration T̃3 does not correspond to typical duration τ of the
transient time leading to the ergodic state. However, those respective
quantities are of same order as long as, in the ergodic state, interaction
energy and potential energy are comparable. No matter the external
gain, as mentioned in section 4.1.2

Eint ∼
g
z

. (4.64)

Hence, if interaction energy represents a set proportion p of the total
energy, Eint = pE, z should be of order z∗/p. And, noting that T̃3 ∼
z3/2
∗ , we can infer that τ should not be too far-off from T̃3/p3/2. In the

particular case of a quadratic external gain U0(x) = −µω2
0x2/2, we

can easily compute the ratio between Eint and Epot

Eint

Epot
= 2 ⇒ Eint =

2
3

E , (4.65)

result which is completely independent of the values of g, µ or ω0.
The ergodic density is then an inverted parabola of width z = 3z∗/2
and τ is of order T̃3(3/2)3/2. This is illustrated Figure (20).

What the effective game provides, in this context, is not a quanti-
tatively precise description but a good qualitative estimation of what
actually happens during the beginning of the game.

Mean Field Games constitute a challenge because of their unusual
forward-backward structure. In this chapter I presented a simple,
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Figure 20: The full line represents the time evolution of the maximum of the
player density m(x = 0, t). The dashed horizontal line is set at
m(0), maximum of the density during the ergodic state, and the
dotted vertical at t = T̃IV(3/2)3/2 = 2.5. Here g = −2, σ = 0.4,
µ = 1, ω2

0 = 0.2, E = −0.36 and T = 15.

heuristic, yet efficient method to describe negatively coordinated MFG

in one dimension, leaning heavily on the notion of ergodic state in-
troduced by P. Cardaliaguet [28]. The existence of this ergodic state
proves to be of paramount importance as it allows the initial and fi-
nal conditions to essentially decouple. The problem of finding a way
to link initial and final conditions, both arbitrary, simplifies as it be-
comes a problem of finding a way to link either to a generic ergodic
state. Making first use of the mapping to the non-linear Schrödinger
equation as introduced in [108], and then of the hydrodynamic rep-
resentation from [19], we were able to identify different regimes of
approximation and put forward adequate ansätze to reconstruct the
whole game. Results from those ansätze have been compared to nu-
merical solutions, for parameters in their domain of application, and
are highly satisfactory as well as easily computed.





5
S E M I - C L A S S I C A L A N A LY S I S O F F O K K E R - P L A N C K
E Q U AT I O N : W E A K N O I S E L I M I T O F T H E S E M I N A R
P R O B L E M

This chapter is largely based on a 2019 paper [20] and constitutes, in
some way, a departure from the previous two. By that I mean that
it will not deal with a potential of the type (2.36) or even with inter-
acting players for that matter. At least not interacting in a sense that
would be traditionally admitted in physics. In fact, in this chapter, I
will argue the Wentzel-Kramers-Brillouin (WKB) approximation in the
context of the weak noise limit of FP equation and examine its appli-
cation to a MFG toy-model. As such, this chapter has, in a sense, more
to do with FP equation than with MFG per se. But, on a more global
scale, it can also be seen as the first steps towards an alternative ap-
proach to the small noise limit of MFG I’ve been discussing in the past
two chapters.

The idea behind this work originates from a paper [60] written
by my predecessor, I. Swiecicki, and supervisors, T. Gobron and D.
Ullmo, discussing in some details a specific MFG toy-model, the semi-
nar problem, introduced by O. Guéant and co-workers [55]. This MFG

problem consists in finding the effective starting time of a seminar,
fixed by a quorum condition, when all the participants try to opti-
mize their behaviour to avoid arriving too late or too early. The state
variable x is therefore one dimensional, and corresponds simply to the
physical space in which the motion of the agents takes place (the cor-
ridor leading to the seminar room) modelled as the negative real line
x ∈]−∞, 0]. Absorbing boundary conditions {∀t, m(t, x = 0) = 0}
are assumed since no one is expected to exit the seminar room be-
fore the beginning of the talk. Furthermore, the functional V[mt](x)
is taken to be uniformly zero, and the coupling between the HJB equa-
tion and the density of agents is just provided by a quorum condition
on the number of agents in the room at the beginning of the seminar.
In other words the seminar is initially planned to begin at time t = t̄
but actually starts at t = T defined as

T = inf
{

t ≥ t̄ :
∫ 0

−∞
m(x, t) ≤ 1− θ

}
, (5.1)

where θ is a (known) acceptable proportion of the expected number
of attendees: the seminar does not start if the room is empty, but
waiting for it to be completely full would be a waste of time. As such
one can define a terminal cost

c(t) = α[t− t̄]+ + β[t− T]+ + γ[T − t]+ , (5.2)

85
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where α, β and γ respectively quantify the susceptibility to social pres-
sure, the desire not to be late and the reluctance to pointless waiting.
In this context, the quadratic MFG equations (2.24) would read

∂tm(x, t) + ∂x(m(x, t)a(x, t))− σ2

2
∂xx m(x, t) = 0 FP , (5.3)

∂tu(x, t)− 1
2µ

[∂xu(x, t)]2 +
σ2

2
∂xx u(x, t) = 0 HJB , (5.4)

with initial and final conditions m(x, t = 0) = m0(x), u(x, t = T) =

cT(x). The coupling between these two PDEs here only comes from
the fact that the drift velocity in equation (5.3) is given in term of
the gradient of the utility function as a(x, t) = −∂xu(x, t)/µ, and
interactions are implicitly hidden in the definition of T.

In the noiseless limit σ = 0, this system of equations reduces to
a transport equation coupled to a Hamilton-Jacobi equation, both of
which we associate with the classical dynamics of point particles. This
limit is therefore rather intuitive, and in some respects simpler to
analyse than the noisy regime. It turns out however that in many
circumstances this limit is ill-defined, which implies that it is manda-
tory to include a small but non zero noise. In that case, what one
needs to analyse is the small (but non-zero) σ limit of the system MFG

equations (5.3)-(5.4), which quite naturally one would wish to study
in terms of classical trajectories to make contact with the intuitive de-
scription one has in mind for the σ = 0 limit.

In the weak noise regime, it has been shown in [60] that this prob-
lem is associated with the drift field depicted Figure (21), and reading
to leading order

a(t, x) =


a(0) for x ≤ −a(0)(T − t)
−x

(T − t)
for −a(0)(T − t) ≤ x ≤ −a(2)(T − t)

a(2) for −a(2)(T − t) ≤ x ≤ 0

, (5.5)

where a(0) > a(2) are two constant drift velocities.
In this chapter I will therefore analyse the Fokker-Planck equation

for this velocity field in the small σ regime, and try to show that we
can provide a very precise solution of this problem based solely on
the classical trajectories for a dynamics closely related to (but slightly
different from) the σ = 0 limit of equation (5.3).

The fact that this can be achieved for the FP equation can be seen
readily by multiplying equation (5.3) by σ2, and noting that it then
has the structure of what Maslov has termed a λ-pseudo differential
operator [83], in the sense that each partial derivative is associated
with a factor λ−1 ≡ σ2. This implies that a semi-classical approximation
scheme can be applied to this equation in small σ2 limit. This fact
has of course been recognized for many years, and led to some pub-
lications [43, 96, 100]. Most of them, however, use a rather indirect
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Figure 21: Regions of the (t,~x) space, where T = 2 is the time when the sem-
inar effectively begins, and their associated optimal drift a(t,~x).
In regions (0) and (2) the drift stays constant and is denoted re-
spectively a(0) and a(2) (here 5 and 2). In region (1), the drift is
linear in x.

approach, for example making use of transformation of variables to
a form more directly related to the Schrödinger equation and then
applying normal mode decomposition (c.f. [35] on the example of a
diffusion in bi-stable potentials). Here, I instead choose to adopt the
philosophy of the ray method introduced in [38].

The goal of this chapter will thus be to show that a straightforward
approach, where the time-dependent WKB approximation is applied
directly on equation (5.3), can be used effectively to obtain an ex-
tremely good approximation for the solution of FP equation (5.3) with
the drift field (5.5). As such, I will only address the first (and maybe
simplest) step in the analysis of the coupled MFG equations system,
and furthermore do this on a specific illustrative case. But I will take
this as an opportunity to discuss the application of the WKB approach
in the perspective developed by Maslov [83], which is, in a way, more
transparent that what can be found in the literature [38], and leads to
a rather intuitive interpretation.

The chapter will be organized as follows. In section 5.1, I will give,
without justification, the recipe for the construction of the WKB ap-
proximation. For the sake of clarity this will be done for a one di-
mensional problem, and I will assume that the initial density m0(x)
is a Gaussian. Section 5.2 will then provide a derivation of these WKB
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expressions, together with a generalization to higher dimensionality
and to a larger class of initial densities. Readers with little interest
in these formal issues may skip that section and go directly to sec-
tion 5.3 where the WKB approximation is applied to two simple exam-
ples, where it turns out to provide the exact solution, as well as to the
case corresponding to the drift field equations (5.5).

5.1 wkb approximation of a 1d fokker-planck equation

This section aims to provide, without any demonstration, the pre-
scription for the construction of the WKB solution of the FP equa-
tion (5.3) in the small σ regime. We limit ourselves here to the one-
dimensional case and to Gaussian initial densities

m0(x) = N exp
[
−µ(x− x0)

2

2σ2

]
, (5.6)

where x0 is the center of the Gaussian and N =
√

µ/2πσ2 is a nor-
malization factor. More general m0(x) could easily be considered (see
section 5.2), but Gaussians have an intrinsic interest, and, in addition,
this also allows us to get the Green’s function of the equation by re-
ducing the width of the Gaussian to zero.

The semi-classical scheme follows three steps. The first one consists
in constructing a Lagrangian symplectic manifold on which we can
define an action. The second step uses this input to build the WKB ap-
proximation. Finally, we address how absorbing boundary conditions
can be implemented in the semi-classical scheme.

5.1.1 Symplectic manifold and classical action

Introducing the λ-pseudo differential operator

L̂ ≡ [λ−1∂t ·+λ−1∂x(a·)− 1
2
(λ−1∂x)

2·] , (5.7)

with, once again, λ ≡ σ−2 assumed large, FP equation (5.3) can be
written as

L̂m = 0 . (5.8)

Using the usual mapping λ−1∂x → p, λ−1∂t → E, L̂ can be associated
with the classical symbol

L(x, t; p, E) = E + pa(x, t)− p2

2
, (5.9)

which, if understood as a classical Hamiltonian leads to the canonical
equations{

ṫ = ∂EL = 1 Ė = −∂tL = −p∂ta

ẋ = ∂pL = a(t, x)− p ṗ = −∂xL = −p∂xa
. (5.10)
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Now, consider the initial Gaussian distribution (5.6) for x0 and µ

given. It can be written in the semi-classical form

m0(x0) = N exp [λS0(x0)] , (5.11)

with

S0(x0) ≡ −µ
(x0 − x0)

2

2
. (5.12)

At any point of space x0, one can therefore initiate a classical trajec-
tory at t = t0 with an initial momentum

p0(x0) = ∇S0(x0) = −µ(x0 − x0) , (5.13)

and fulfilling the compatibility condition

L(x, t; p, E) ≡ 0 . (5.14)

The reunion of all these trajectories obtained from these initial condi-
tions and the canonical equations (5.10) form a 2-dimensional man-
ifold M = {(t,x(t, x0),E(t, x0)p(t, x0)} where p, x and E respec-
tively represent the value taken by p, x and E after evolving on this
manifold from~r0 = (t0, x0; E0(x0), p0(x0)) for a time t− t0. An exam-
ple of such a manifold is illustrated in Figure (22).

Figure 22: A typical manifold generated by the classical trajectories in region
(1) of the drift field. In this case a = −x

T−t , µ = 1.5, σ = 0.4, T = 2
and x0 = −5. The dashed curves represent specific trajectories
beginning at x0 = −5.5, −5 and −4.5 from left to right.
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To the manifold M, we can now associate a classical action

S(t, x) ≡
∫
[L:~r0→~r]⊂M

pdx + Edt (5.15)

where~r0 = (t0, x0; E=0, p=0) is the point on M above ~X0 = (t0, x0),
and~r ∈M is the point above ~X = (t, x).

Of note is that, since M is a Lagrangian manifold, the integral in
equation (5.15) can be taken on any path on M joining ~r0 to ~r. For
instance, the action S(t, x) can be computed either as

S1(t, x) =
∫ x0(t,x)

x0

p0(x′)dx′︸ ︷︷ ︸
S0(x0)

+
∫ t

t0

(p(s, x0)ẋ(s, x0) +E(s, x0))ds ,

(5.16)

in which x0(t, x) is the initial position of the trajectory arriving at x
at time t, or as

S2(t, x) =
∫ t

t0

(p(s, x0)ẋ(s, x0) +E(s, x0))ds +
∫ x

x(t,x0)
p(x′, t)dx′ ,

(5.17)

with p(x, t) the momentum coordinate of the point of M above (t, x).
Both expressions lead to the same result (i.e. S1(t, x) = S2(t, x) =

S(t, x)). This is illustrated on Figure (23).
For the Gaussian initial density considered here, the definition of

the initial momentum given by Eq. (5.13) and the compatibility con-
dition L ≡ 0 imposes that p(t, x0) = 0 and E(t, x0) = 0 for all time,
yielding

S(t, x) = S2(t, x) =
∫ x

x(t,x0)
p(t, x′)dx′ , (5.18)

where the path of integration on the manifold is taken at constant
time t from the point above x ≡ x(t, x0) (evolution of the center of
the distribution x0) to the point above x.

As a final comment, it is worth mentioning that, for more general
initial conditions, S0(x0) can be non-zero and should be added to the
right-hand side of equation (5.15).

5.1.2 Semi-classical approximation for m(t, x)

With the aforementioned definition of the action, the WKB approxima-
tion for the density of probability is expressed as

ms.c.(t, x) =
N√

∂x0x(t, x0)
exp

[
λS(t, x)− 1

2

∫ t

t0

(∂xa)dτ

]
, (5.19)
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Figure 23: Same manifold as in Figure (22) where are highlighted two paths
with same beginning and end. Because of the Lagrangian nature
of the manifold we can write

∫
C1
(Eṫ + pẋ)dt =

∫
C2
(Eṫ + pẋ)dt.

where, in the pre-factor, x(t, x0) is the position of a trajectory started
at x0 at time t = t0 (thus with an initial momentum p0(x0) given by
equation (5.13)), and the integral in the exponential is taken along
this trajectory. Except for the fact that the exponent is real rather than
complex, the only difference with respect to the traditional WKB ex-
pressions derived in optics or in the context of Schrödinger equation
is the extra term 1

2

∫ t
t0
(∂xa)dτ in the exponent. This additional term

can be traced back to the non-symmetric ordering of the operators
p̂ ≡ λ−1∂x and x̂ ≡ ×x in FP equation which makes, in particular, the
operator L̂ non hermitian. Introducing L̂0 the hermitian approxima-
tion of L̂ in which the term λ−1∂x(a.) has been replaced by its symmet-
ric counterpart (1/2)[λ−1∂x(a ·) + aλ−1∂x(·)], and L̂1 = L̂ − L̂0, the
additional term in the semi-classical form (5.19) can be understood as
arising from the perturbative effect of L̂1 on L̂0 (c.f. Appendix J).

5.1.3 Absorbing boundary conditions

In section 5.3, we shall illustrate this WKB approach with the problem
corresponding to the drift velocity field (5.5), problem for which we
assume an absorbing boundary condition at x = 0. Because such ab-
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sorbing boundary conditions are rather common, I shall now discuss
how they can be implemented in the semi-classical scheme.

Let us consider the semi-classical solution of the free problem (i.e.
without absorbing boundary condition)

mfree(t, x) =
N√

∂x0x(t, x0)
exp

[
λS(t, x)− 1

2

∫ t

t0

(∂xa)dτ

]
. (5.20)

For sake of simplicity, I assume that (as will be the case in the ex-
amples we are going to consider), the trajectories on which S(t, x) is
constructed are reaching x = 0 with positive velocity.

Consider now the compatibility condition (5.14) at x = 0, for an
arbitrary time t, and with the choice E = ∂tS

L(0, t; p, ∂tS) = 0 .

It admits two solutions

ẋ = a(x, t)− p = ±
√

a2 + 2∂tS . (5.21)

The one corresponding to a positive velocity is simply

p+(t) = ∂xS(t, x=0) , (5.22)

but another set of trajectories initiated at time t and position x = 0
can be generated with momentum

p−(t) = a +
√

a2(t, 0) + 2∂tS(t, 0) (5.23)

and energy

E(t) = ∂tS(t, 0) . (5.24)

These trajectories have negative velocities and thus “bounce” off the
boundary point x = 0. A reflected density

mref(t, x) =
N√

∂x0x̃(t, x0)
exp

[
λS̃(t, x)− 1

2

∫ t

t0

(∂xa)dτ

]
, (5.25)

can therefore be constructed in exactly the same way as before us-
ing the reflected trajectories x̃ and reflected action S̃. At x = 0,One should only

impose
S(t0, 0) = S̃(t0, 0)

for an arbitrary time
t0.

mref(t, 0) = mfree(t, 0) since the time derivative of the incident or
reflected action are identical ∂tS(t, 0) = ∂tS̃(t, 0) = E(t, 0), and the
same is true for the pre-factors ∂x0x̃(t, x0) = ∂x0x(t, x0) as at x = 0
only the momentum has changed but not the position. Therefore, the
total density

mtot(t, x) = mfree(t, x)−mref(t, x) (5.26)

is a semi-classical solution to FP equation (5.3) which fulfils the ab-
sorbing boundary condition mtot(t, 0) = 0.
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5.2 derivation and generalization

I will now provide a derivation (and some generalization) of the semi-
classical solution (5.19). This approach is very similar in spirit to the
ray method developed by Cohen and Lewis [38], but follows more
closely the WKB formalism developed by Maslov [83], that might be
easier to access for physicists.

We therefore want to describe the evolution of an initial density (at
t = t0) which is in the semi-classical form

m0(~x) = φ0(~x) exp [λS0(~x)] , (5.27)

with ~x ∈ Rd. Such form includes Gaussian densities such as equation
(5.6), but are significantly more general.

By writing (σ−2 ≡ λ), FP equation reads in the more general case,

0 = λ−1∂tm + λ−1∇(~a(t,~x)m)− 1
2

λ−2∆m = L̂m , (5.28)

which, up to the i factors, very much looks like a λ-pseudo differential
Maslov operator of symbol

L(~x, t;~p, E) = E +~a(~x, t)·~p− ~p2

2
. (5.29)

Following Maslov’s derivation [83], let us consider the ansatz

m(t,~x) = φ(t,~x) exp [λS(t,~x)] , (5.30)

with φ(t0,~x) = φ0(~x) and S(t0,~x) = S0(~x).

Writing ~X ≡ (t,~x), ~P ≡ (E,~p), FP equation (5.28) becomes

L̂
[
φ(~X)eλS(~X)

]
= 0

= eλS(~X)
[

R0φ(~X) + λ−1R1φ(~X) + O(λ−2)
] , (5.31)

with

R0 = L(~X; ∂~XS) , (5.32)

and

R1 =〈∂~PL(~X; ∂~XS), ∂~Xφ〉

+

{
1
2

Tr
[
∂2
~P~PL(~X; ∂~XS)∂2

~X~XS
]
+ Tr

[
∂2
~X~PL(~X; ∂~XS)

]}
φ

. (5.33)

Neglecting terms of order λ−2 and higher, solving FP equation (5.28)
now amounts to solving R0 = 0 and R1 = 0.
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5.2.1 R0 = 0, Hamilton-Jacobi equation

The equation (R0 = 0) can be written as an Hamilton-Jacobi equation
on S

L(~X; ∂~XS) = ∂tS +~a(t,~x)·~∇S− 1
2
(∇S)2 = 0 , (5.34)

with an initial condition at t = t0

S(t0,~x0) = S0(~x0) . (5.35)

Solution of this kind of equations is typically obtained through the
method of characteristics as described in Appendix B. In this case it
amounts to build a one parameter family of rays (t,~x; E,~p)~x0(s) ≡
~r(s,~x0), indexed by ~x0, which follow – for a fictitious time s – the
Hamilton dynamics associated with L{

ṫ = ∂EL = 1 Ė = ∂tL = −~p·∂t~a

~̇x = ∂~pL =~a(t,~x)− ~p ~̇p = −∂~xL = −~p·∂~x~a
, (5.36)

with initial the conditions{
~r(0,~x0) = (E0, t0,~p0(~x0),~x0)

L(~r(0,~x0)) = 0
, (5.37)

corresponding to

~p0(~x0) = ∂~x0 S0(~x0) . (5.38)

Equations (5.37) fixes E0 and it is clear from equations (5.36) that we
can take s ≡ t− t0.

As stressed in the previous section, the family of rays defined
by equations (5.36)-(5.37) form a Lagrangian manifold, thus, accord-
ing to the method of characteristics (cf appendix B), the solution of
Hamilton-Jacobi equation (5.34) reads

S(t,~x) =
∫ ~X

~X0

Edt + ~p·d~x , (5.39)

where the integral is taken on any path on the manifold starting above
the point ~X0 = (t0, ~X0) such that S0(~X0) = 0 and ending on the point
above ~X = (t,~x).

5.2.2 R1 = 0, transport equation

Looking at the first term of R1, one may notice that it can be rewrit-
ten in a more explicit fashion using the canonical Hamilton-Jacobi
equations

〈∂~PL
(
~X, ∂~XS

)
, ∂~Xφ〉 = ∂tφ + (~a(t,~x)− ∂~xS) ∂~xφ

= ∂tφ + ~̇x∂~xφ =
Dφ

Dt

, (5.40)
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where D
Dt represents the time derivative along the flow. This allows to

write the equation (R1 = 0) as a simple evolution equation

Dφ

Dt
= −

{
1
2

Tr
[
∂2
~P~PL(~X, ∂~XS)∂2

~X~XS
]
+ Tr

[
∂2
~X~PL

]}
φ . (5.41)

To solve this equation one may make use of Liouville’s formula, which
states that for a dynamical system

d~x
dt

= f (~x) , (5.42)

and for any (d−1)-parameter family of trajectories ~x(t,~α) indexed by
~α ∈ R(d−1), the determinant J(t,~α) ≡ det

[
∂~x(t,~α)
∂(t,~α)

]
fulfils

D ln J
Dt

= Tr
[

d f
d~x

(~x(t,~α))
]

. (5.43)

Elements of a demonstration are given in appendix K for the sake of
completeness. Using the canonical equations yields

~̇X = ∂~PL , (5.44)

and noting that one can write ~X ≡ (t, ~x(t,~x0)) along with having J
denote det[∂t,~x0

~X], Liouville’s formula reads

D ln(J)
Dt

= Tr
[
∂~X(∂~PL)

]
= Tr

[
∂2
~P~X L + ∂2

~P~PL∂2
~X~XS

]
. (5.45)

Hence equation (5.41) becomes

Dφ

Dt
+

1
2

D
Dt

(ln J)φ = −1
2

Tr[∂2
~X~PL]φ , (5.46)

and, multiplying both sides by
√

J,

D
Dt

[√
Jφ
]
= −1

2
Tr
[
∂2
~X~PL

]√
Jφ . (5.47)

Finally, we have

φ(~x(t,~x0)) =

√
J(~x(t0,~x0))√
J(~x(t,~x0))

φ(~x(t0,~x0))

× exp
(
−1

2

∫ t

t0

Tr
[
∂2
~X~PL

]
dτ

) , (5.48)

where
√

J(~x(t0,~x0)) = 1 and, for L given by equation (5.29), Tr
[
∂2
~X~P

L
]
=

~∇ ·~a. In 1d J would simply become ∂x0x, yielding the pre-factor in
equation (5.19).
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It is also worth noting that equation (5.41) can be solved in multiple
ways, another possibility would be

D
Dt

[Jφ] = +
1
2

Tr
[(

∂2
~P2 L
)
·
(

∂2
~X2 S
)]

Jφ , (5.49)

implying

φ(~x(t,~x0)) =
J(~x(t0,~x0))

J(~x(t,~x0))
φ(~x(t0,~x0))

× exp
(
+

1
2

∫ t

t0

Tr
[(

∂2
~P2 L
)
·
(

∂2
~X2 S
)]

dτ

) . (5.50)

Here J serves only as a pre-factor, and either expressions can be used.

5.3 application to the seminar problem

For a 1d problem, and writing λ−1 ≡ σ2, the semi-classical expression
for m reads

m(t, x) =
N√
∂x0x

exp
[

S(t, x)
σ2 − 1

2

∫ t

0
(∂xa)dτ

]
. (5.51)

I will use this expression to study the different drift regimes, c.f. equa-
tion (5.5), presented by the seminar problem for Gaussian initial con-
dition at t=0

m0(x) = N exp
[
−µ(x0 − x0)

2

2σ2

]
= N exp

[
S0(x0)

σ2

]
, (5.52)

to which, through equation (5.13), is associated the one-parameter
family of initial points in phase space

~r(x0) = (t=0, x0, E0(x0), p0(x0)) (5.53)

corresponding to

p0(x0) = ∂x0 S0(x0) = −µ(x0 − x0) ,

and

E0(x0) =
p2

0(x0)

2
− p0(x0)a(x0, t=0) .

5.3.1 Constant drift

I will start with the simple case of a constant drift a (this would cor-
respond to regions (0) or (2) in Figure (21)). In order to obtain a den-
sity as expressed in equation (5.51), there are two terms one needs
to compute: the pre-factor ∂x0x(t, x0) and the action S(t, x). To do so,
one should start from the canonical equations of motion{

ṗ = −∂xL = −p∂xa = 0

ẋ = ∂pL = a− p ( = const. along a trajectory) .
(5.54)
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For the one-parameter family of trajectories given by equations (5.53),
this leads to{

p(t, x0) = µ(x0 − x0)

x(t, x0) = x0 + [a−p(t, x0)]t = x0(1 + tµ) + t(a− µx0) .
(5.55)

The pre-factor is then readily obtained as

∂x0x(t, x0) = 1 + tµ . (5.56)

The action is computed noticing that, along the center of mass tra-
jectory x(t, x0), the momentum p(t, x0) and energy E(t, x0) remain
identically zero. Hence, M = {(t,x(t, x0),E(t, x0)p(t, x0)} being La-
grangian,

S(t, x) =
∫ x

x(t,x0)
p(t, x′)dx′ , (5.57)

with p(t, x), the momentum of the point above (x, t) on M. Denoting
x0(t, x) the initial position of a trajectory arriving at x at time t (i.e.
such that x = x(t, x0)), the second equation of system (5.55) gives

x0(t, x) =
x− at + µx0t

1 + µt
, (5.58)

and the first one

p(t, x) = − µ

1 + µt
(x− (x0 + at)) . (5.59)

After integration, this last expression yields,

S(t, x) = −
(

µt
1 + µt

)(
(x− x0 − at)2

2t

)
. (5.60)

Finally, using the equation (5.51) one may reconstruct the semi-classical
form

m(t, x) =
√

µ

2πσ2
1√

1 + tµ
exp

[
−
(

µt
1 + µt

)(
(x− x0 − at)2

2tσ2

)]
,

(5.61)

which turns out to be the exact expression for the evolution of a initial
Gaussian density in the case of a constant drift. This was actually to
be expected since going back to the derivation of the semi-classical
approximation, one may notice that the neglected terms only contain
second (or higher) order spatial derivatives of a which are identically
zero in the case of a constant drift.

If µ→ ∞, m(0, x)→ δ(x− x0), and

m(t, x)→ G(t, x, x0) =

√
1

2πtσ2 exp
[
− (x− x0 − at)2

2tσ2

]
, (5.62)

which indeed is the exact Green function of FP equation for a constant
drift.
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Absorbing boundary condition at x = 0

To implement the absorbing boundary condition at x = 0, we fol-
low the procedure discussed earlier in section 5.1.3 and construct the
reflected action

S̃(t, x) = S(t, 0) +
∫ x

0
p−(t, x′)dx′ , (5.63)

where p−(t, x) is the reflected momentum.
To compute this quantity, let us introduce

tabs =
x0

µ(x0 − x0)− a

the time at which the trajectory initiated at x0 reaches 0 (and is thus
“absorbed”). Since velocity is constant on a given trajectory, we can
express the velocity before the bounce as ẋ+(x0) = −x0/tabs and thus
just after the bounce as ẋ−(x0) = +x0/tabs. Equations (5.54) then give

p−(t > tabs, x0) = a− x0

tabs
= 2a− µ(x0 − x0) , (5.64)

and

x(t > tabs, x0) =
x0

tabs
(t− tabs)

= −x0(1 + µt)− at + µx0t
. (5.65)

Defining x̃0(t, x) the initial position of a trajectory arriving at
x(t, x0) = x after reflection at x = 0, we thus infer from equation
(5.65)

x̃0(t, x) =
µtx0 − at− x

1 + µt
, (5.66)

which, inserted into equation (5.64), gives

p−(t, x) = 2a−
(

µt
1 + µt

)(
x + x0 + at

t

)
. (5.67)

Performing the integral in equation (5.63), and noting that the lower
bound cancels the term S(t, x=0), we thus write

S̃(t, x) = 2ax−
(

µt
1 + µt

)(
(x + x0 + at)2

2t

)
, (5.68)

yielding for the total (incident plus reflected) density

mtot(t, x) =
√

µ

2πσ2
1√

1 + tµ

{
exp

[
−
(

µt
1 + µt

)(
(x− x0 − at)2

2tσ2

)]
− exp

(
2ax
σ2

)
exp

[
−
(

µt
1 + µt

)(
(x + x0 + at)2

2tσ2

)]} .
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(5.69)

This fulfils the absorbing boundary conditions mtot(t, 0) = 0 and, for
the same aforementioned reason, is an exact solution of the FP equa-
tion. Note that, for finite µ, the Gaussian initial condition (5.52) fulfils
the boundary condition m0(x = 0) up to exponentially small terms,
and conversely equation (5.69), which satisfies the boundary condi-
tion exactly, only satisfies the initial condition mtot(t, 0) = m0(x) up
to exponentially small terms. As µ→ ∞, however, the boundary con-
dition is exactly met by m0 and equation (5.69) provides the exact
Green function of FP equation.

5.3.2 Linear drift

I will now consider a linear drift a(x, t) = x/(t− T), with T > t
the time at which the seminar begins, associated with region (1) in
Figure (21). The canonical equations become

ẋ = ∂pL = a− p =
x

t− T
− p

ṗ = −∂xL = −p∂xa = − p
t− T

,
(5.70)

giving
p(t, x0) = p0(x0)

T
T − t

=
µT(x0 − x0)

T − t

x(t, x0) =
x0(T − t)

T
− µt(x0 − x0) .

(5.71)

We thus have

∂x0x =
(T − t + µtT)

T
, (5.72)

which, together with∫ t

0
(∂xa)dτ = log

[
(T − t)

T

]
, (5.73)

yields for the pre-factor

N√
∂x0x

exp
[
−1

2

∫ t

0
(∂xa)dτ

]
=

√
µ

2πσ2

√
T2

(µtT + T − t)(T − t)
.

(5.74)

Turning now to the action, and looking at the second equation of
(5.71), we have

x0(t, x) = (x− µtx0)
T

T − t + µTt
, (5.75)
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which, inserted into the first equation of (5.71), gives for the momen-
tum p(t, x),

p(t, x) =
µ T (x0(T − t)− Tx)
(T − t)(T − t + µTt)

. (5.76)

This leads to, after integration

S(t, x) =
∫ x

x(t,x0)
p(t, x′)dx′ =

µ(x0(t− T)− Tx)2

2(T − t)(T − t + µTt)
. (5.77)

Using the semi-classical form (5.51), and computing the reflected ac-
tion S̃(t, x) by following the same procedure discussed in section 5.3.1

S̃(t, x) =
µ(xT + (T − t)x0)

2

2(t− T)(T − t + µTt)
, (5.78)

one obtains the evolution of a Gaussian initial density with a linear
drift velocity and absorbing boundary conditions at x=0

m(t, x) =
√

µ

2πσ2

√
T2

(µtT − T − t)(T − t){
exp

[
µ(xT − (T − t)x0)

2

2σ2(t− T)(T − t + µTt)

]
− exp

[
µ(xT + (T − t)x0)

2

2σ2(t− T)(T − t + µTt)

]}
.

(5.79)

As µ → ∞ we recover the Green function of the corresponding FP

equation

G(t, x, x0) =

√
T

2πσ2t(T − t)

{
exp

(
−

T(x− T−t
T x0)

2

2σ2t(T − t)

)

− exp

(
−

T(x + T−t
T x0)

2

2σ2t(T − t)

)}
.

(5.80)

And, again because the second x derivative of the drift is zero, expres-
sions (5.79) and (5.80) are exact.

5.3.3 Coupling the two solutions

Note that even if the
derivative of the

drift field a(t, x) is
discontinuous at the
boundary, p, E and

L are continuous,
and thus the
Lagrangian

character of the
manifold M is

trivially preserved.

I will now consider the full problem corresponding to the drift field
equation (5.5), taking into account the possibility that agents begin-
ning in region (0) or (2) (associated with constant drifts a(0) and
a(2)) may leak into region (1) (associated with a linear drift a(x, t) =
x/(t − T)), and reciprocally. I focus here on times t ≤ T and on
the configuration where the agents start their diffusion in region (1),
which is the one of interest from the point of view of MFG theory.
Corresponding expressions for a group of agents initially located in
region (2) are given in appendix L.
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Let me begin by defining x∗(n)(x0), p∗(n)(x0) and t∗(n)(x0), (n =

0, 2), the position, impulsion and time at which a trajectory initiated
at~r(x0) (cf equation (5.53)) crosses the boundary between regions (1)
and (n), n being either 0 or 2. Using equation (5.71) together with
the fact that the boundary between two regions corresponds to the
x = a(n)(t− T) straight line, one may write

x∗(n)(x0) = a(n)(t∗(n) − T)

= x0
(T − t∗(n))

T
− µ(x0 − x0)t∗(n)(x0)

. (5.81)

It is then possible to compute t∗(n), by inverting this last equation, and
obtain p∗(n), inserting this newly found t∗(n) expression in equation
(5.71)

t∗(n)(x0) = T
[

1− µT(x0 − x0)

a(n)T + x0 + µT(x0 − x0)

]
p∗(n)(x0) =

a(n)T + µT(x0 − x0) + x0

T

. (5.82)

Before the crossing (t < t∗(n)) the agents do not feel the effects of
the drift change, and their trajectories remain the same as in equation
(5.71). In region (1), (x∗(0) < x < x∗(2)), the pre-factor is thus obtained,
as in section 5.3.2, through equation (5.74) and the action through
equation (5.77). After the crossing however, the density changes and
one has to compute its new expression. The complete solution is then
simply obtained by patching the linear and the leaking densities, im-
posing continuity of the solution.

Using the canonical equations in the region in which the agents are
leaking, one has for t > t∗(n),{

x(n)(t, x0) = x∗(n) + (a(n) − p∗(n))(t− t∗(n))

p(n)(t, x0) = p∗(n)
. (5.83)

Let x0(t, x) be the initial position of a trajectory arriving at position
x at time t (thus x(n)(t, x0) = x), t∗(n)(t, x) the time at which this tra-
jectory crosses the boundary between the two regions, and p∗(n)(t, x)
the momentum at the crossing

x0(t, x) =
T(x− µtx0)

T − t− µTt

t∗(n)(t, x) = T
{

1− µT [x0 − x0(t, x)]
aT + x0(t, x) + µT(x0 − x0(t, x))

}
p∗(n)(t, x) =

aT + µT [x0 − x0(t, x)] + x0(t, x)
T

. (5.84)
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One may now compute the pre-factor

N√
∂x0xn

exp
[
−1

2

∫ t∗(t,x)

0
(∂xa(1))dτ

]
=√

µ

2πσ2
T

T − t + µTt
µT(x0 − x) + x + a(n)(T − t + µTt)

µT(x0 − x)− µtx0
,

(5.85)

and the action

S(n)
leak(t, x) =

∫ a(n)(t−T)

x
p(1)(t, x′)dx′ +

∫ x

a(n)(t−T)
p∗(n)(t, x′)dx′

=
1

2(T − t + µtT)

[
−(a(n))2(t− T)(T − t + µTt)

+2a(n)(T − t + µTt)x + (1− µT)x2 + 2µTxx0 + µ(t− T)x2
0

]
,

(5.86)

with p(1) given by equation (5.76). It should be noted that if both x
and x0 belong to the boundary between region (1) and region (n),
the pre-factor diverges because of diffraction effects that would have
to be treated specifically.

The reflected action is computed through the usual procedure, but,
this time, taking into account that the reflected trajectory may also
transit from a region to an other

S̃leak(t, x) =S(n)
leak(t, 0) +

∫ min[x;a(1)(t−T)]

0
p∗(0)− (t, x′)dx′

+
∫ min[max[x;a(1)(t−T)];a(2)(t−T)]

a(1)(t−T)
p(1)− (t, x′)dx′

+
∫ max[x,a(2)(t−T)]

a(2)(t−T)
p∗(2)− (t, x′)dx′ ,

(5.87)

with p∗(n)− the reflected leaking momentum in region (n) and p(1)− the
reflected linear drift momentum. Complete, explicit, expressions are
given in appendix L (c.f. equations (L.2), (L.3) and (L.4)). However, the
contribution of reflected trajectories decay exponentially away from
the absorbing boundary x = 0. Assuming t ≤ T, as we do here, this
implies that unless t ≈ T, we can assume the contribution of reflected
trajectories are important only when they are still in region (0), and
the reflected action can be approximated as

S̃leak(t, x) =2a(0)x

− 1
2(T − t + µtT)

[
−(a(0))2(t− T)(T − t + µTt)

+ 2a(0)(T − t + µTt)x

+(1− µT)x2 + 2µTxx0 + µ(t− T)x2
0
]

.

(5.88)
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One can then check that, for this specific drift field, the reflected pre-
factor is the same as the direct one and eventually, using equation
(5.51), obtains

mleak(t, x) =

√
µ

2πσ2
T

T − t + µTt
µT(x0 − x) + x + a(n)(T − t + µTt)

µT(x0 − x)− µtx0

{
exp

(
Sleak(t, x)

σ2

)
− exp

(
S̃leak(t, x)

σ2

)}
.

(5.89)

Contrarily to constant and linear drifts which represent non-generic
cases for which the WKB expression is exact, the above result is an
approximation, valid only in the semi-classical regime of small σ. To
be a bit more quantitative, it can be appropriate to introduce the di-
mensionless parameter K defined as the ratio between the drift time
τdrift = x(t, x0)/a, time needed to get from x = x(t, x0) to the loca-
tion of the absorbing boundary condition x = 0 at speed a, and the
diffusion time τdiffusion = x2(t, x0)/σ2, time it would take for a purely
diffusive process to spread the density from its center in x = x(t, x0)

to x = 0. Thus

K =
τdrift

τdiffusion
=

∣∣∣∣ σ2

ax(t, x0)

∣∣∣∣ ∝ σ2 . (5.90)

The weak noise [semi-classical] regime can be therefore characterized
by K � 1 while the strong noise regime by K � 1. Note that K usually
depends on time. Figure (24) shows a comparison between a numer-
ical solution and the semi-classical approximation for different small
values of K, fixing σ and varying t. As we can see the semi-classical ap-
proximation is almost indistinguishable from the numerical solution
up to K = 0.33 and remains good for K slightly greater than one even
if we can observe small discrepancies. Looking at larger values of σ

(and hence K), c.f. Figure (25), we see that, even for the largest value
of K considered here (K = 6.66), the agreement is still rather good al-
though the difference with the exact result becomes more significant.
The fact that the source of errors in the semi-classical treatment is gen-
erated only at the boundaries between the various regions explains
the effectiveness of the approximation in this particular setup.

In this chapter I discussed a new take on the WKB approximation
scheme to study FP equation. This approach, based on Maslov’s ge-
ometric perspective, offers a transparent way of tackling FP equation
and this was illustrated by the treatment of a problem motivated by
a simple MFG toy-model.

As stressed in the introduction, this chapter aims more to discuss
FP equation than MFG, even if some application of this discussion can
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Figure 24: Spatial distribution of the agents at fixed time, dashed lines show
the numerical solution while solid lines show the approximation.
From left to right, K = 0.19 and t = 1.1, K = 0.24 and t = 1.3,
K = 0.33 and t = 1.5, K = 0.56 and t = 1.7, K = 1.67 and t = 1.9.
In this case T = 2, a(0) = 0.4, a(2) = 0.9, σ = 0.2, x0 = 1.2 and
µ = 106.

Figure 25: Spatial distribution of the agents at fixed time, dashed lines show
the numerical solution while solid lines show the approximation.
From left to right, K = 0.74 and t = 1.1, K = 0.95 and t = 1.3,
K = 1.33 and t = 1.5, K = 2.22 and t = 1.7, K = 6.66 and t = 1.9.
In this case T = 2, a(0) = 0.4, a(2) = 0.9, σ = 0.4, x0 = 1.2 and
µ = 106.

be exploited in the context of MFG. I have addressed here only a very
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small part of the program which would consist in providing a ray the-
ory of MFG in the small but non zero-noise limit. This program would
require a few steps (defining a ray theory of HJB equation to start with
and then dealing with the coupling between the two equations) which
are significantly more involved. I leave these for future research, but
this WKB approach provides a sound start for this program.





6
C O N C L U S I O N

While MFG theory was initially introduced by mathematicians, and
while its applications are the most prevalent in fields like Engineer-
ing Sciences and Economics, I believe physicists can provide such a
discipline with an interesting and alternative point of view. Even in
simplified forms, MFG problems are usually technically complicated
and the exact mechanisms brought forward by their constitutive equa-
tions, along with their mixed initial/final boundary conditions, are
still ill-understood. In this context, a physicist’s approach, which aims
to develop intuition and qualitative understanding through the exam-
ination of various limiting regimes and approximation schemes, can
prove to be pertinent.

This manuscript can serve as a fairly accessible entry point for
physicists in the realm of MFG theory, focusing on a particular class
of models, dubbed quadratic, which display on the formal level some
similarities to problems of physics. Chapter 2 introduced such models
in a synoptic, albeit non-perfectly rigorous, way. Elements of Optimal
Control, as well as Game Theory, were presented and parallels with
Physics were drawn.

Chapter 3 investigated the particular case of integrable quadratic
MFG for which exact analytical solutions can be computed. The small
noise limit, for which there exists an instructive potential representa-
tion, was initially considered. The integrable character (in the physi-
cal sense) of those games was highlighted through the introduction
of an infinite number of conserved quantities, equivalent to the tra-
ditional first integrals of motion, as coefficients of the multipole ex-
pansion of the potential from an auxiliary problem of electrostatics.
Although what concrete effect each of those coefficients has on the
actual solution of the game currently remains unclear, this multipole
expansion presents several interesting features:

• In the long time limit, the auxiliary electrostatic potential can
be approximated as one created by a simple monopole. This
underlines the existence of a universal (as in independent of
both the initial and terminal conditions) scaling behaviour, of a
pseudo-ergodic state in a context where the ergodic state cannot
be reached.

• The multipole expansion provides a generic way to approach
this class of games and to interpret its solutions. Each coefficient
has a proper physical meaning, independent of the boundary
conditions.

107
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• An easily controllable ansatz can be constructed as truncation
to arbitrary finite order of the multipole expansion.

Noisy games were then considered and the possibility of using In-
verse Scattering methods was explored. The applicability of these
methods to MFG indicates the existence of a transformation to action-
angle variables which can serve a role akin (and even complementary)
to that of the multipole expansion in noiseless regimes. However, a
few technical difficulties need to be addressed before all else:

• There should exists a simplifying hypothesis allowing the re-
duced monodromy matrix to be expressed in terms of two in-
dependent coefficients (just as Schrödinger monodromy) rather
than four.

• The fact that Schrödinger variables do not vanish at infinity
should be taken into account.

• A way to implement the MFG forward-backward structure should
be devised, either through the addition of a self-consistent con-
dition or by looking at the time monodromy.

Trying and solving any of those problems represents a reasonable
axis for future research.

Chapter 4 proposed a simple, heuristic yet efficient, method to de-
scribe negatively coordinated MFG in one dimension. Three limiting
regimes were emphasized: two dynamical ones describing the early
stages of the game by way of two different ansätze, and a static one,
also known as ergodic state, corresponding to the vast majority of the
remaining game. Ways to couple those regimes, based on the concept
of conservation of energy borrowed from Physics, were examined and
characteristic length, as well as times, were introduced. That said, the
finer details of the transition from one regime to another is still ill-
described. Moreover this chapter focused on very particular, highly
localized, initial conditions, it could be interesting to investigate more
general ones. On a similar note, in a more general setting where cen-
ter of mass of the distribution of players and maximum of the ex-
ternal gain do not coincide, collective motion of players towards this
maximum is likely to occur. This, along with the possibility of an ex-
ternal gain displaying several local maxima, was not considered here.
Finally, the existence of solutions to a counter-intuitive game, where
interactions between players are repulsive and the effects of the exter-
nal gain negligible but where players are actually gathering instead of
dispersing, were briefly hinted at. These solutions could certainly be
accounted for by the multipole expansion introduced chapter 3 and
constitute a good argument as to why this particular representation
should be further investigated.

Lastly, chapter 5 dealt with a WKB approach to Fokker-Planck equa-
tion in the weak noise limit, and, as such, does not strictly relate to
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MFG theory. Nonetheless, this semi-classical approximation can find
applications in the context of MFG and provides quantitatively satis-
factory results, as was illustrated with the example of the seminar
problem. Suggesting a similar treatment of Hamilton-Jacobi-Bellman
equation, and then of the complete system of coupled MFG equations,
is thus quite conceivable. This would represent an alternative ap-
proach to the weak noise limit of MFG, one which would probably
be less abstract and more generic, albeit less insightful, than the po-
tential representation of chapter 3.

Quadratic MFG form a brand new field for physicists to explore.
They represent a simplification over more general models that can be
addressed through methods originating from Physics, while still de-
scribing a reasonably large class of problems. This thesis takes a few
steps in this fairly uncharted territory, examining by way of various
approximation schemes what can be arguably considered the sim-
plest non-trivial examples of negatively coordinated quadratic MFG,
and highlights results that I believe to be encouraging. Although, at
the moment, the models described in this manuscript still require fur-
ther investigation, on a larger time-scale, one can wonder about en-
riched versions of those conundrums. The more natural extension of
the previously discussed models would probably come as a generali-
sation to higher dimension. Another rather obvious extension would
be to study non-local interactions. In a similar vein, examining effects
of segregation (be it à la Schelling or in more simplistic ways) or frus-
tration by looking at the interactions between different types of pop-
ulations seems to be a reasonable direction to follow as well. Finally,
it could be interesting to look for alternative MFG models that, maybe,
fall outside of the quadratic class but are still simple enough to be
studied thoroughly. Surely, one has to wonder if MFG, in the way they
were described here, can accurately describe socio-economic phenom-
ena, as the hypothesis of a perfectly rational and infinitely far-sighted
player does not seem to be realistic. With this in mind, it may be fea-
sible for one to devise a MFG toy-model featuring preference for the
present and/or non-rational (possibly evolutionary) behaviours that
can be approached through the lens of Physics.





Part III

A P P E N D I X





A
N U M E R I C A L S C H E M E

The results of most simulations discussed in this manuscript were
computed using the same C++ algorithm, this appendix provides de-
tails about the overall structure of the program as well as the dis-
cretization scheme. Numerical computations are done using the NLS

representation of MFG equations

µσ2∂tΦ = −µσ4

2
∂xxΦ− (gm + U0)Φ

µσ2∂tΓ =
µσ4

2
∆∂xx + (gm + U0)Γ

u = −µσ2 log Φ

m = ΦΓ

, (A.1)

mainly because Φ and Γ follow the same equation (up to a sign) and
it is obviously more convenient to have to program a solver for only
one type of equation rather than two. Another important reason to
use this representation comes from the fact that it makes it easy to
adapt proven discretization schemes used in other contexts where
NLS equation is present.

a.1 basic structure

The main difficulties when trying to solve equations (A.1) come from
the non-linear coupling between Φ and Γ along with the forward-
backward structure of the system. The easiest way to bypass those
difficulties is to assume a particular form of m, solve a linearized ver-
sion of equations (A.1) and then iterate to obtain the "real" solutions
in a self-consistent fashion. Essentially the algorithm can be broken
down in such a way:

• Assume a plausible form of the density m0. The ergodic state, if
one exists, can serve as a good initial guess.

• Compute a first solution Φ1 of the equation

µσ2∂tΦ1 = −µσ4

2
∂xxΦ1 − (gm0 + U0)Φ1 , (A.2)

with initial condition exp
[
− uT(x)

µσ2

]
. One should start by comput-

ing Φ because the initial condition for Γ is ill-defined.

• Compute Γ1, solution of

µσ2∂tΓ1 =
µσ4

2
∂xxΓ1 + (gm0 + U0)Γ1 , (A.3)
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with initial condition m0(x, t = 0)/Φ1(x, t = 0).

• Update the initial guess m0 → m1 = Φ1Γ1 and repeat the pro-
cess until mi is sufficiently close to mi−1.

This method is fairly efficient but self-consistency may prove difficult
to achieve (probably because the solutions of the equations (A.1) con-
stitute a saddle point of the action rather than a clear minimum) and
convergence may never occur. A simple, yet not perfectly controlled,
fix to this problem is to update the guess using a linear combination
of the previous guess and what should be the new one

mi+1 = αmi + (1− α)Φi+1Γi+1 , (A.4)

α being an arbitrary number between 0 and 1.

a.2 crank-nicolson method

Because equations (A.1) are based on NLS equation, we can make use
of the well-known Crank-Nicolson discretization scheme [37].

a.2.1 Discretization scheme

Crank-Nicolson method is a finite difference method used mostly to
deal with diffusion equations. For added stability, compared to Euler
method for example, it is implicit in time.

time discretization

∂tφ→
φ

j+1
i − φ

j
i

∆t
(A.5)

(implicit) space discretization

∂xφ→ 1
2

(
φ

j+1
i+1 − φ

j+1
i−1

2∆x
+

φ
j
i+1 − φ

j
i−1

2∆x

)
(A.6)

hence

∂xxφ→ 1
2(∆x)2

[(
φ

j+1
i+1 − 2φ

j+1
i + φ

j+1
i−1

)
+
(

φ
j
i − 2φ

j
i + φ

j
i−1

)]
(A.7)

discretized equation

φ
j+1
i

(
µσ2

∆t
+

µσ4

2(∆x)2 −
U + gmj+1

i
2

)
− µσ4

4(∆x)2 (φ
j+1
i−1 + φ

j+1
i+1)

=
µσ4

4(∆x)2 (φ
j
i−1 + φ

j
i+1)− φ

j+1
i

(
−µσ2

∆t
+

µσ4

2(∆x)2 −
U + gmj

i
2

) (A.8)
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Defining

φj =


φ

j
1

φ
j
2
...

φ
j
N

 , (A.9)

one can write the discretized equation (A.8) in matrix form

Aφj+1 = Bφj , (A.10)

where A and B are tridiagonal matrices with coefficients

Adiag =
µσ2

∆t
+

µσ4

2(∆x)2 −
U0 + gmj+1

i
2

Aup = Adown = − µσ4

4(∆x)2

Bdiag = −µσ2

∆t
+

µσ4

2(∆x)2 −
U0 + gmj

i
2

Bup = Bdown =
µσ4

4(∆x)2

. (A.11)

Because A and B are tridiagonal, numerical inversion is made using
the o(N) Thomas algorithm [42].

a.2.2 Neumann boundaries

In this case Dirichlet boundary conditions are trivially implemented
in a 2L long box. To deal with Neumann boundaries, however, one
needs to introduce ghost sites at each boundaries, in sites 0 and N + 1,
and use either forward or backward finite difference to approximate
the derivative

0 = ∂xφ(−L, t) ≈ −3φ(−L, t) + 4φ(−L + ∆x, t)− φ(−L + 2∆x, t)
2∆x

0 = ∂xφ(L, t) ≈ 3φ(L, t)− 4φ(L− ∆x, t)φ(L− 2∆x, t)
2∆x

,

(A.12)

using o(∆x2) approximations [57]. This leads to the discretized equa-
tions 

φ
j
0 =

4φ
j
1 − φ

j
2

3

φ
j
N+1 =

4φ
j
N − φ

j
N−1

3

, (A.13)
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which modify the first and last row of A and B

AN
diag,1 = Adiag,1 +

4
3

Aup,1 BN
diag,1 = Bdiag,1 +

4
3

Bdown,1

AN
diag,N = Adiag,N +

4
3

Adown,N BN
diag,N = Bdiag,N +

4
3

Bup,N

AN
up,1 = −Adown,1

3
+ Aup,1 BN

up,1 = Bup,1 −
Bdown,1

3

AN
up,N = −

Aup,1

3
+ Adown,N BN

up,N = Bdown,N −
Bup,1

3

.

(A.14)

a.2.3 Von Neumann stability analysis

Crank-Nicolson method is supposed to be unconditionally stable and
one can easily check that it is, at least is under Von Neumann stability
analysis. To that end, one can study the growths of plane waves: sup-
pose φ = exp(ikx + ωt) and plug it in the discretized version of Eqs
(A.1)

µσ2 eω∆t − 1
∆t

=
µσ4

2(∆x)2 (cos(k∆x)− 1)
(

eω∆t + 1
)

+
U0 + gm

2

(
eω∆t + 1

) . (A.15)

One can now compute the growth factor

eω∆t =
A + B + C
A− B− C

, (A.16)

with 
A = µσ2/∆t > 0

B = µσ4 (cos(k∆x)− 1) /2(∆x)2 < 0

C = (U + gm)/2 < 0

. (A.17)

and check that it remains smaller than 1 for all ∆t and ∆x.
Even if Crank-Nicolson itself is unconditionally stable, it is of im-

portant note that the complete scheme is not. Noise, σ in other words,
plays a critical regularizing role, particularly if interactions are repul-
sive.



B
M E T H O D O F C H A R A C T E R I S T I C S

A rather complete
discussion of this
method can be found
for instance in
chapter II of
monograph [39].

The method of characteristics is typically used to solve first-order
partial differential equations. It aims to reduce a PDE to a family of
ODEs that can be easily integrated. Let us consider a PDE

F(x1, ..., xn, u, p1, ..., pn) = 0 (B.1)

where pi ≡ ∂xi u. Introducing a parameter s, and denoting by ˙( ) its
associated derivative, let γ = (x1, ..., xn, u, p1..., pn)(s) be a curve of
R2n+1. Assuming that u is a solution of PDE (B.1), one can infer three
remarkable relations. First, by applying the chain rule to a solution u
one can deduce

u̇ = ∑
i

pi ẋi , (B.2)

then, taking the exterior derivative of du yields

d(du) = 0 = ∑
i

ẋidpi − ṗidxi , (B.3)

and finally, differentiating equation (B.1) with respect to s, one finds

∑
i
(∂xi F + pi∂uF)ẋi + ṗi∂pi F = 0 . (B.4)

Combining the last three equations, one can obtain the Lagrange-
Charpit equations

ẋi

∂pi F
= − ṗi

∂xi F + pi∂uF
=

u̇
∑i pi∂pi F

, (B.5)

that can be used to find a characteristic curve γ along which PDE (B.1)
simplifies to an ODE.

In the particular case of the Hamilton-Jacobi equation

∂tS + a∂xS− 1
2
(∂xS)2 = 0 , (B.6)

it is straightforward to check that the action defined by equation (5.15)
is a solution, as Lagrange-Charpit equations are essentially equivalent
to the canonical equations of Hamiltonian mechanics (5.10). Using the
least action principle, one can check that for any X = (x, t), ∂xS = p
and ∂tS = E, where p and E are the momentum and energy of the
trajectory reaching x at time t. Since all the trajectories involved have
to fulfil the compatibility condition (5.14), reading L(x, t; ∂xS, ∂tS) = 0
in this case, which is precisely the Hamilton-Jacobi equation.
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C
R I E M A N N I N VA R I A N T S

As mentioned in section (3.1.3), Riemann’s method can be considered
as an extension of the method of characteristics. It amounts to finding
curves (characteristics) on which some quantities (Riemann invariants)
are conserved. Let Ω(t, x) be a curve (of tangent ~s and normal ~n) on
which m, v, solutions of system (3.6), and their derivatives are known.
Let θ(t, x) be the angle between~s and the x-axis, one can write

dv
ds

= ∂xv cos θ + ∂tv sin θ

dm
ds

= ∂xm cos θ + ∂tm sin θ

. (C.1)

The Cauchy problem for the system (3.6) can only be solved if the
initial (or boundary) data is not specified on a characteristic curve be-
cause one cannot use a Taylor expansion in its vicinity (information
only propagates along the characteristic). As a consequence the deter-
minant ∆ of the combined system (3.6)+(C.1) is non zero unless Ω is
a characteristic. Computing ∆

∆ =

∣∣∣∣∣∣∣∣∣∣
1 v 0 m

0 g/µ 1 v

sin θ cos θ 0 0

0 0 sin θ cos θ

∣∣∣∣∣∣∣∣∣∣
= −(cos θ − v sin θ)2 +

g
µ

m sin2 θ

, (C.2)

reveals that Ω is a characteristic if

cot θ± = v± i

√
m|g|

µ
. (C.3)

This is the major difference with traditional NLS equation, the charac-
teristics, here, are complex and have no physical meaning and thus so-
lutions cannot feature discontinuous derivatives anywhere. Another
way to look at this is to acknowledge that the system (3.6) is elliptic
rather than hyperbolic: its solutions are not wave-like, a perturbation
propagates instantly to all points of the domain. Nevertheless, the fact
that characteristics are complex bears no consequence for the hodo-
graph transform itself as we only need the Riemann invariants to do
so.

Now that we have identified the characteristics of the problem, let
us show that there exists a pair (λ+, λ−) of Riemann invariants asso-
ciated to the pair (θ+, θ−), and extract their dynamics. To do so we
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120 riemann invariants

start by multiplying the first equation of (3.6) by − g
µ sin θ, the second

by (cos θ − v sin θ), and subtract one from the other

− g
µ

sin θ [∂tm + ∂x(mv)]− (cos θ− v sin θ)

(
∂tv + v∂xv +

g
µ

∂xm
)
= 0 .

(C.4)

Using equations (C.1) and the fact that ∆ = 0 along a characteris-
tic curve, one can rewrite the previous equation in a more compact
manner

dv
ds
± i

√
|g|
µm

dm
ds

= 0 , (C.5)

the left-hand side of which has the form of a total derivative. Intro-
ducing λ± such that

∂mλ± = ±i

√
|g|
µm

∂vλ± = 1

, (C.6)

it then becomes clear that

dλ±
ds

= 0 , (C.7)

the definition of a Riemann invariant. From there, computing (λ+, λ−),
as well as their dynamics, is fairly straightforward. One can integrate
equations (C.6) and reformulate equation (C.7) in terms of (x, t) using
equations (C.1) and (C.3) so that one is able to construct

λ± = v± 2i

√
|g|m

µ

∂tλ± +

(
3
4

λ± +
1
4

λ∓

)
∂xλ± = 0

, (C.8)

the equations introduced in section (3.1.3).



D
G R E E N ’ S T H E O R E M A N D T H E L A P L A C E
E Q U AT I O N

Traditionally the boundary value problem for elliptic PDEs, and in
particular for Laplace equation, can be solved by means of Green’s
theorem. In other words, if one is able to compute the impulse re-
sponse, also known as Green’s function, G of Laplace equation (3.18),
one should be able to define the potential χ as the convolution of G
with the boundary data.

d.1 green function of laplace equation in cylindric

coordinates

Green’s function for Laplace equation is defined as its impulse re-
sponse

∆G = −4π

η
δ(η − η′)δ(ξ − ξ ′) , (D.1)

where ∆ is the cylindrical Laplacian and the Dirac deltas have been
expressed in cylindrical coordinates. Equations of this type are quite
well-known and can be solved by separation of variables. To that end,
it is convenient to introduce Dirac deltas in their Fourier representa-
tion

δ(ξ − ξ ′) =
1
π

∫ ∞

0
cos(k(ξ − ξ ′))dk , (D.2)

and assume G can take the form

G =
1
π

∫ ∞

0
cos(k(ξ − ξ ′))gk(η, η′)dk , (D.3)

so as to write equation (D.1) as

∂η,η gk +
1
η

∂η gk − k2gk = −
4π

η
δ(η − η′) . (D.4)

As long as η 6= η′ and the right-most term is equal to 0, this equation
is known as Bessel’s differential equation and it admits first order
modified Bessel functions of the first and second kind, I0(kη) and
K0(kη), as solution. For G to make sense, it has to be continuous,
bounded for η → 0 as well as η → ∞ and symmetric by inversion
of η and η′. Given the properties of I0 and K0, the only acceptable
solution for equation (D.1) is

gk = AI0(kη<)K0(kη>) , (D.5)
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122 green’s theorem and the laplace equation

where η< = η and η> = η′ when η < η′ but η< = η′ and η> = η

when η > η′. The prefactor A is then determined by the discontinuity
in the slope induced by the δ function

dgk

dη

∣∣∣∣
+

− dgk

dη

∣∣∣∣
−
= −4π

η′
= AkW[I0(kη), K0(kη)] , (D.6)

W[I0(x), K0(x)] = − 1
x being the Wronskian of the modified Bessel

functions of first and second kind, yielding A = 4π.

d.2 solving the boundary value problem

In order to specify the boundary problem one needs to solve, one
has to relate equation (3.18) to the original problem, namely, MFG

equations (2.24) along with their mixed-type boundary conditions on
u and m. Let SΩ(ξΩ, ηΩ, θ) be a curve in the hodograph space where{

ξΩ = ξ(t(s), x(s))

ηΩ = η(t(s), x(s))
, (D.7)

represent the boundary conditions of the initial problem. Using the
compatibility equations (3.19) one may then compute χ on SΩ

∂ξχΩ = 2(x(s)− ξΩt(s))

∂ηχΩ = ηΩt(s)

∂sχΩ = ∂ξχΩ∂sξΩ + ∂ηχΩ∂sηΩ

, (D.8)

and the boundary problem is specified. One can now apply Green’s
theorem, in the hodograph coordinates (η, θ, ξ), to χ and G∫

VΩ

[
χ(ξ ′, η′)∆G(ξ, η; ξ ′, η′) −G(ξ, η; ξ ′, η′)∆χ(ξ ′, η′)

]
η′dη′dθdξ ′

=
∫

SΩ

[
χ(ξ ′, η′)~∇G(ξ, η; ξ ′, η′)− G(ξ, η; ξ ′, η′)~∇χ(ξ ′, η′)

]
·~ndS

.

(D.9)

where VΩ is the volume enclosed by SΩ in which χ is meant to be
computed, ~∇ is the cylindrical gradient and ~n is the normal to SΩ.
By definition, G being an impulse response and χ being solution to
Laplace equation (3.18), the volume integral in equation (D.9) can be
easily rewritten

χ(ξ, η) = − 1
4π

∫
SΩ

[
χ(ξ ′, η′)~∇G(ξ, η; ξ ′, η′)

−G(ξ, η; ξ ′, η′)~∇χ(ξ ′, η′)
]
·~ndS

. (D.10)

Note that this is an integral statement, not a solution to a boundary-
value problem as a problem where both χ and ~∇χ are known is over-
specified. In the context of MFG, the initial-value problem would spec-
ify both η(t = 0, x) and ξ(t = 0, x), and hence ~∇χ through the com-
patibility equations (3.19), on a surface SΩ. Then, observing that the
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impulse response G is actually defined up to an harmonic function
F, one can choose GN = G + F as Green’s function of the problem
so that the ~n · ~∇GN(ξ, η; ξ ′, η′) term in integral (D.10) vanishes on SΩ.
As such

χ(ξ, η) =
1

4π

∫
SΩ

GN(ξ, η; ξ ′, η′)~∇χ(ξ ′, η′) ·~ndS , (D.11)

is solution to Laplace equation (3.18) with Neumann boundary con-
ditions. A remarkable advantage of this method is that GN does not
depend on the details of the boundary conditions, but only on SΩ,
simplifying the original problem greatly. However, determining GN

can become rather involved depending on the shape of SΩ.
The main problem with such an approach comes from the fact that

SΩ does not exist in the context of MFG because there is no point at
which we know both m and u, η and ξ. Seemingly, one could look for
particular cases where the problem simplifies, the most obvious one
being the limit we considered in the simulation illustrated Figure (3),
where {ξ(T, x)→ 0 ∀x} . In this case the system (D.8) reduces to

∂ξχΩ = 2x

∂ηχΩ = ηΩT

χΩ =
η2

ΩT
2

, (D.12)

and equation (D.9) to

χ(ξ, η) = − 1
4π

∫ η̄

0
η′
[

η′2T
2

∂ξ ′G(ξ, η; ξ ′, η′)− 2xG(ξ, η; ξ ′, η′)

]
dη′ ,

(D.13)

η̄ = η(T, 0) being the maximum of η at time T. The second term in
the integrand is problematic as it contains x which is an unknown
function of η at t = T. But, because this relation holds for all function
G that verifies equation (D.1) on the domain where χ is defined, if
one can find a valid function G so that G = 0 if ξ ′ = 0 one can also
compute the potential regardless of if η(T, x) is known or not. Let us
call G0 the free Green function computed in last section

G0 = 4
∫ ∞

0
cos(k(ξ − ξ ′))I0(kη<)K0(kη>)dk , (D.14)

and define

F = 4
∫ ∞

0
cos(k(ξ))I0(kη<)K0(kη>)dk , (D.15)

then

G = G0 − F = 4
∫ ∞

0
[cos(k(ξ − ξ ′))− cos(kξ)]I0(kη<)K0(kη>)dk ,
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(D.16)

is a valid candidate. Hence, one should be able to obtain a fairly
simple expression for the potential

χ(ξ, η) = − 1
π

∫ η̄

0

∫ ∞

0
k sin(kξ)

η′3T
2

I0(kη<)K0(kη>)dη′dk . (D.17)

Unfortunately this does not work either, because for the terminalThe reason this is
not the case in the

aforementioned
simulation is only

because σ, there, is
small but non zero.

cost to be flat, ξ(t = T, x) = 0 for all x, the charge distribution at
the origin ρ0 (and by extension all of the exterior multipole moments)
also needs to be zero. This means that the only way to observe a
flat terminal cost in the weak noise limit is for both m and u to be
stationary which corresponds to a highly unsatisfactory solution. In
that sense, the limit of flat terminal cost is ill-defined for σ = 0. Or
rather, the limit σ → 0 does not commute with the one cT(x) → 0.
To my knowledge no matter the (mixed-type) boundary conditions
and the simplification they bring, one will end up facing a similar
problem.



E
N O N - A B E L I A N S T O K E S T H E O R E M

This appendix aims to introduce the non-Abelian Stokes theorem in
the context of the IST presented section 3.2. While I want to keep this
discussion concise, more details on this subject can be found in [24].

e.1 stokes theorem

We start by briefly recalling the traditional, Abelian, Stokes theorem.
Let N be a d-dimensional manifold, ∂N its (d− 1)-dimensional bound-
ary and ω a (d − 1)-form with differential dω. Then this theorem
states that∫

N
dω =

∫
∂N

ω , (E.1)

converting an integral over a closed surface into a volume integral.

e.2 generalization to non abelian forms

To generalize the previous result, one can introduce the covariant
derivative

Di = ∂i − Ai , (E.2)

where Ai is the i component of a connection. Then, the non Abelian
version of the relation (E.1) naturally reads

P exp
∮

A = P exp
∫

DA , (E.3)

where P denotes the path ordering. Now, let us recall the compatibil-
ity condition (3.54) of the auxiliary problem (3.53)

∂tU + ∂xV + [U, V] = 0 . (E.4)

As I mentioned in section 3.2, U and V can be interpreted as a con-
nection (or gauge potential), used to define the parallel transport Ω
through equation (3.58). We can make this more explicit by noticing
that the compatibility condition (3.54) can be rewritten in a very com-
pact way

[D0, D1] = 0 , (E.5)

with {
∂0 − A0 = ∂x −U

∂1 − A1 = ∂t −V
, (E.6)
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126 non-abelian stokes theorem

which is equivalent to saying that the differential form A = Aidxi has
a vanishing covariant derivative

DA = Dj Aidxi ∧ dxj = 0 . (E.7)

By way of the non-Abelian Stokes theorem, this means that

P exp
∮

A = 1 , (E.8)

hence the name zero-curvature condition.



F
P O I S S O N C O M M U TAT I V I T Y O F T H E F I R S T
I N T E G R A L S O F M O T I O N

For the MFG equations (3.1) to be completely integrable in the Liou-
ville sense, the (infinite number of) conserved quantities generated
section 3.2.4 need to be in involution. In this appendix I will intro-
duce a Poisson structure in the context of integrable MFGs and use it
to show the Poisson commutativity of the aforementioned conserved
quantities.

f.1 generalisation of poisson brackets to infinite di-
mensional systems

For N-dimensional Hamiltonian systems, given two functions
f (pi, qi, t) and g(pi, qi, t) of Darboux coordinates (pi, qi) on the phase
space, Poisson brackets take the form

{ f , g} =
N

∑
i=1

(
∂ f
∂qi

∂g
∂pi
− ∂ f

∂pi

∂g
∂qi

)
. (F.1)

However, MFG equations (3.1) constitute an infinite-dimensional sys-
tem and definition (F.1) needs to be extended. In this case the phase
space M is an infinite-dimensional real space with positive coordi-
nates defined by pairs of functions Φ(x, t) and Γ(x, t). On this phase By analogy with

finite-dimensional
coordinates, x may
be thought of a
coordinate label.

space, the algebra of observables is made up of smooth, real, ana-
lytic functionals, on which one can define a Poisson structure by the
following bracket

{F, G} =
∫

R

(
δF
δΦ

δG
δΓ
− δF

δΓ
δG
δΦ

)
dx , (F.2)

which possesses the standard properties of Poisson brackets: it is
skew-symmetric and satisfies Jacobi identity. The coordinates Φ and
Γ may themselves be considered functionals on M (albeit with gener-
alized functions for variational derivative) such that

{Φ(x, t), Γ(y, t)} = δ(x− y)

{Φ(x, t), Φ(y, t)} = {Γ(x, t), Γ(y, t)} = 0
. (F.3)

These formulae directly yield that, for any observable F

δF
δΦ

= {F, Γ} and
δF
δΓ

= −{F, Φ} , (F.4)
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and in particular, if this observable is the energy defined by equation
(2.35), F = E, one obtains Hamilton’s equations of motion

δE
δΦ

= {E, Γ} = µσ2∂tΓ

δE
δΓ

= −{E, Φ} = µσ2∂tΦ
, (F.5)

which are perfectly equivalent to MFG equations (3.1). The Poisson
structure defined by the non-degenerate bracket (F.2) highlights the
symplectic nature of the phase space M and each of the Poisson com-
muting integrals of motion correspond to a leaf of the regular fo-
liation of this phase space. This provides yet another, Hamiltonian,
representation of MFG problems.

f.2 classical r-matrix

The simplest way to check that all the invariant observables generated
section 3.2.4 are in involution (and prove that the system is completely
integrable in the Liouville sense) is probably to verify that the Poisson
bracket of the trace of the monodromy matrix with itself vanishes

{Tr [T] , Tr [T]} = 0 , (F.6)

as Tr [T] can serve as generating functions for the constant of motion.
In this section I will introduce a powerful tool that will help me with
these computations: the classical r-matrix.

To that end, let us define a tensorial Poisson bracket for any 2 × 2
matrix functionals A and BThis can naturally

be generalized to
n× n matrices, but

I restrict the
discussion to

matrices of the size
of T.

{A⊗ B} =
∫

R

(
δA
δΦ
⊗ δB

δΓ
− δA

δΓ
⊗ δB

δΦ

)
dx , (F.7)

such that

{A⊗ B}j,k,m,n = {Aj,m, Bk,n} . (F.8)

Hence, using relations (F.3), one can compute the bracket of U, x-
component of the Lax connection, with itself

{U(x, λ)⊗U(y, µ)} = ν(σ− ⊗ σ+ − σ+ ⊗ σ−)δ(x− y) , (F.9)

which can also be written as

{U(x, λ)⊗U(y, µ)} = [r(λ− µ), U(x, λ)⊗ I + U(x, µ)⊗ I] δ(x− y) ,

(F.10)

where the classical r-matrix takes the form

r(λ) = − ν

λ


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (F.11)
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The point of this formulation is to express tensorial Poisson brackets,
which may be difficult to compute for the monodromy matrix T, as
simple commutators. The existence of the r−matrix and formulation
(F.10) underlies integrability and has a natural Lie-algebraic interpre-
tation. As such, this relation takes the name of fundamental Poisson
bracket.

f.3 sklyanin fundamental relation

To compute the Poisson bracket of T with itself one can evaluate an
integral version of the fundamental Poisson bracket (F.10)

{Tab(x, y, λ), Tcd(x, y, µ)} =∫ y

x

δTab(x, y, λ)

δUjk(z, λ)
{Ujk(z, λ), Ulm(z′, µ)}δTcd(x, y, µ)

δUlm(z′, µ)
dzdz′

. (F.12)

By varying the differential equation (3.70), that serves as definition of
the monodromy matrix T

∂xδT(x, y, λ) = δU(x, λ)T(x, y, λ) + U(x, λ)δT(x, y, λ) , (F.13)

the solution of which is

δT(x, y, λ) =
∫ x

y
T(x, z)δU(z)T(z, y)dz , (F.14)

it follows that

δTab(x, y, λ)

δUjk(z, λ)
= Taj(x, z, λ)Tkb(z, y, λ) . (F.15)

Inserting this last expression in equation (F.12) one eventually gets

{T(x, y, λ)⊗ T(x, y, µ)} =
∫ x

y
(T(x, z, λ)⊗ T(x, zµ))

[r(λ− µ), U(z, λ)⊗ I + I⊗U(z, µ)]

(T(z, y, λ)⊗ T(z, y, µ)) dz

,

(F.16)

that simplifies, noticing the integrand is a total derivative with respect
to z,

{T(x, y, λ)⊗ T(x, y, µ)} = −[r(λ− µ), T(x, y, λ)⊗ T(x, y, µ)] . (F.17)

This formulation is sometimes called RTT Poisson structure or Sklyanin
fundamental relation. check
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f.4 involution of the first integrals of motion

From Sklyanin fundamental relation (now that integrals depending
on unknown fields Φ and Γ that constitute Poisson brackets are dealt
with implicitly) it is easy to show the constants of motion are in in-
volution. In particular, recalling that, for any pair of matrices (A, B)

Tr(A⊗ B) = Tr[A]Tr[B] , (F.18)

yields from equation (F.17), since the trace of a commutator is zero,

{Tr[T(x, y, λ)], Tr[T(x, y, µ)]} = 0 , (F.19)

proving the involution of the first integrals of motion.



G
D E R I VAT I O N O F T H E S E M I - C L A S S I C A L
A P P R O X I M AT I O N F O R Q U A D R AT I C E X T E R N A L
P O T E N T I A L

This appendix deals with the semi-classical approximation of equa-
tion (4.15). Such approximation consists at looking for solution of the
form

ΨSC(x) = ψ(x) exp

(
S(x)√

µσ4

)
, (G.1)

that verify the aforementioned equation up to the second order in σ2.

Order σ0

At zeroth order, equation (4.15) reduces to

(U0(x) + λ)ψ(x) +
(∂xS(x))2

2
ψ(x) = 0 , (G.2)

which can be analytically integrated given the external potential is
not too complicated. Taking once again the example of a quadratic
potential, we get

S(x) =
∫ x√

2λ

µω2
0

√
2
(

µω2
0s2

2
− λ

)
ds

=
λ√
µω2

0

x

√
µω2

0
2λ

√
x2 µω2

0
2λ
− 1− argcosh

x

√
µω2

0
2λ

 .

(G.3)

Order σ2

At first order in σ2, equation (4.15) becomes

∂xxS(x)ψ(x) + 2∂xS(x)∂xψ(x) = 0 ⇒ ψ(x) =
C1/4√
∂xS(x)

, (G.4)

easily computed using equation (G.2)

ψ(x) =
[

−C
2(U0(x) + λ)

]1/4

, (G.5)

up to a multiplicative constant C obtained numerically.
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Uniform approximation

In order to avoid the use of complex numbers, one has to consider
different versions of the semi-classical action S, depending on the
sign of (U0 + λ). For x <

√
2λ

µω2

Sleft(x) =
∫ √

2λ

µω2
0

x

√
2
(

λ−
µω2

0s2

2

)
ds

=
λ√
µω2

0

π

2
− x

√
µω2

0
2λ

√
1− x2 µω2

0
2λ
− arcsin

x

√
µω2

0
2λ

 ,

(G.6)

while, as earlier, if x >
√

2λ
µω2

Sright(x) =
λ√
µω2

0

x

√
µω2

0
2λ

√
x2 µω2

0
2λ
− 1− argcosh

x

√
µω2

0
2λ

 .

(G.7)



H
P R O O F T H AT T H E O P E R AT O R D̂ H A S O N LY R E A L
N O N - N E G AT I V E E I G E N VA L U E S

This appendix investigates the operator D̂ introduced in equation (4.24),
and in particular provides a proof of why it has only real non-negative
eigenvalues.

Consider any two function with compact support (ϕ, ϕ′). Applying
the operator D̂ and integrating by part twice gives that〈

ϕ
∣∣D̂∣∣ ϕ′

〉
=
∫

dxϕ(x)D̂
[
ϕ′(x)

]
=
∫

dxD̂ [ϕ(x)]
[
ϕ′(x)

]
=
〈

ϕ′
∣∣D̂∣∣ ϕ

〉 . (H.1)

The operator D̂ is therefore real and symmetric and, as such, has only
real eigenvalues.

Now, introducing εi eigenvalue of D̂, and ϕi(x) the corresponding
eigenvector, one has〈

ϕi
∣∣D̂∣∣ ϕi

〉
= εi

∫
dxϕ2

i (x)

=
∫

dx [∂x ϕ(x)]2 m(x)
. (H.2)

Since ϕ(x)2, [∂x ϕ(x)]2, and m(x) are all positive quantities, this im-
plies that εi too has to be positive.

133





I
D E C R E A S I N G S O L U T I O N S O F T H E E F F E C T I V E
G A M E

As mentioned in section 4.2.2, this appendix provides expressions for
the decreasing families of solutions of the effective game

z(t) =


z∗ξ+(αz−3/2

∗ (t0 − t)) if ε = 1

ξ0(α(t0 − t)) if ε = 0

z∗ξ−(αz−3/2
∗ (t0 − t)) if ε = −1

. (I.1)

Contrary to increasing solutions, decreasing solutions can only be de-
fined on [0, t0], and with t0 < πz3/2

∗
2α if ε = −1. Using those properties

we can also construct a mixed type solution by patching together an
increasing "-" type solution with a decreasing one of same z∗

z(t) =


z∗ξ−(

π

2
+ αz−3/2

∗ (t− Tm)) for 0 ≤ t ≤ Tm

z∗ξ−(
π

2
− αz−3/2

∗ (t− Tm)) for Tm ≤ t ≤ T
, (I.2)

with Tm the the time at which the solutions starts decreasing, with

T − πz3/2
∗

2α
≤ 0 ≤ Tm ≤

πz3/2
∗

2α
. (I.3)

Increasing "+", decreasing or mixed type solutions can all be observed
numerically, however they refer to configurations where variations of
the terminal cost are important in front of ũ = µσ2 and fall outside
the scope of chapter 4. Still, I mention them, once again, for the sake
of completeness.
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J
N O N - H E R M I T I A N C O R R E C T I O N T O T H E
S E M I - C L A S S I C A L T R E AT M E N T O F
F O K K E R - P L A N C K E Q U AT I O N

As mentioned in section 5.1.2, the additional term 1
2

∫ t
t0

∂xa dτ in the
semi-classical expression (5.19) can be seen as coming from the per-
turbation of the non-Hermitian operator

L̂1 = L̂− L̂0 , (J.1)

on the Hermitian approximation of L̂

L̂0 = {λ−1∂t ·+
λ−1

2
[∂x(a·) + a ∂x(·)]−

1
2
(λ−1∂x)

2·} . (J.2)

This can be made clearer by applying L̂1 on m(t, x)

L̂1m =
λ−1

2
[∂x(am)− a∂x(m)]

=
λ−1

2
(∂xa)m

, (J.3)

and then defining its classical symbol

L1 =
λ−1

2
∂xa . (J.4)

Using traditional first order perturbation theory for the action we
thus obtain S→ S0 + δS with

δS ≡ −
∫ t

t0

L1dτ = −λ−1

2

∫ t

t0

(∂xa)dτ , (J.5)

where the integral is taken on the unperturbed trajectory.
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K
L I O U V I L L E ’ S F O R M U L A

For completeness, in this appendix, we provide a brief derivation of
the Liouville formula used in Section 5.2, as presented in [101]. We
consider a dynamic system described by

d~x
dt

= f (~x) (~x ∈ Rd) , (K.1)

and consider a (d − 1)-family of trajectories ~x(t,~α) indexed by ~α ∈

R(d−1) . Defining J(t,~α) ≡ det
[

∂~x(t,~α)
∂(t,~α)

]
, the Liouville’s formula states

that

d ln J
dt

= Tr
[

∂ f
∂~x

(~x(t,~α))
]

. (K.2)

Derivation

Let A a d× d matrix. Naturally det A = exp[Tr ln A], and thus

d(ln det A)

dt
=

d(Tr ln A)

dt
. (K.3)

Now, for any function g of A, writing g(A) = ∑n gn An and using the
cyclicity of the trace

d(Trg(A))

dt
= Tr

[
g′(A)

dA
dt

]
. (K.4)

Thus, if A ≡ ∂~x
∂(t,~α) and J(t,~α) ≡ det A, one obtains

d ln J
dt

= TrA−1 dA
dt

. (K.5)

Noting that, here, the total derivative d
dt is the same as the partial

derivative ∂t taken at constant~α, one furthermore has

dA
dt

=
∂2~x(t,~α)
∂t∂(t,~α)

=
∂ f (~x(t,~α))

∂(t,~α)
, (K.6)

and in the end

d ln J
dt

= Tr
[

∂(t,~α)
∂~x

∂ f (~x(t,~α))
∂(t,~α)

]
= Tr

[
∂ f
∂~x

(~x(t,~α))
]

. (K.7)
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L
C O U P L I N G T W O S E M I - C L A S S I C A L S O L U T I O N S O F
F O K K E R - P L A N C K E Q U AT I O N

This appendix aims at addressing what was left out of 5.3.3 for the
sake of succinctness. I will first provide explicit expressions for the
reflected action equation (5.87), then I will discuss the configuration
where the agents begin in a constant drift region.

Explicit expression of the reflected action

Recalling equation (5.87)

S̃leak(t, x) =S(n)
leak(t, 0) +

∫ min[x;a(1)(t−T)]

0
p∗(0)− (t, x′)dx′

+
∫ min[max[x;a(1)(t−T)];a(2)(t−T)]

a(1)(t−T)
p(1)− (t, x′)dx′

+
∫ max[x,a(2)(t−T)]

a(2)(t−T)
p∗(2)− (t, x′)dx′ ,

(L.1)

there are three domains in which S̃leak(t, x) takes slightly different
expressions.

• x < a(1)(t− T)

S̃leak(t, x) = 2a(0)x− 1
2(T − t + µtT)

[
−(a(0))2(t− T)(T − t + µTt)

+2a(0)(T − t + µTt)x

+(1− µT)x2 + 2µTxx̄0

+µ(t− T)x̄2
0

]
.

(L.2)

• a(1)(t− T) < x < a(2)(t− T)

S̃leak(t, x) =
1

2(T − t + µtT)(t− T)

[
(t− T)2x2

0

+µ(T2x2 − 2T(T − t)(2a(0)(T − t) + x)x0

] . (L.3)
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• x > a(2)(t− T)

S̃leak(t, x) =
1

2(T − t + µtT)

[
(a(2))2(t− T)(T − t + µtT)

−2a(2)(T − t + µtT)x

+(µT − 1)x24a(2)µT(T − t)x0

+2µTxx0 + µ(T − t)(4a(1)T − x0)x0

]
.

(L.4)

Figure 26: Spatial distribution of the agents, the thin line represents the nu-
merical solution, the thick straight line the approximation using
equation (5.87) and the thick dashed line the approximation us-
ing only equation (L.2). In this case T = 2, a(0) = 0.4, a(2) = 0.9,
σ = 0.2, x̄0 = 1.2 and µ = 106. From left to right, t = 1.7, t = 1.8,
t = 1.9.

However, as mentioned in section 5.3.3, equation (5.87) can be ap-
proximated using only equation (L.2). This is illustrated in Figure 26

where the results of the two approximations, although obviously dif-
ferent for t ≈ T become more and more similar the smaller t gets.

Leak from a constant to a linear drift region

I begin, as in Section 5.3.3, by computing the position, time and mo-
mentum of the agents as they cross the boundary between a region
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of constant drift a(n) and region (1). Keeping the same notations and
using the same method as earlier one has

x∗(n)(x0) = a(n)(t∗(n) − T) = x0(1 + t∗(n)µ) + t∗(n)(a(n) − µx0)

t∗(n)(x0) =
a(n)T + x0

µ(x̄0 − x0)

p∗(n)(x0) = µ(x̄0 − x0)

.

(L.5)

Using the canonical equations in region (1), one can compute for t >
t∗(n)(x0)

p(n)(t, x0) =
aT + x0 − µT(x̄0 − x0)

t− T
x(n)(t, x0) = at + x0 − µt(x̄0 − x0)

x0(t, x) =
x− at + µtx̄0

1 + µt

, (L.6)

from which one gets the prefactor

N√
∂x0xn(t, x0)

exp
[
−1

2

∫ t

t∗(n)(t,x)
(∂xa(1))dτ

]
=√

µ

2πσ2(1 + tµ)
µ(t− T)(at− x + x̄0)

a(T − t) + x + µTx− µ(T − t)x̄0

,

(L.7)

and the action

S(n)
leak(t, x) =

∫ a(n)(t−T)

x(t,x̄0)
p(n)(t, x′)dx′ +

∫ x

a(n)(t−T)
p∗(1)(t, x′)dx′ , (L.8)

with p(n) the constant drift momentum of region (n) given by equa-
tion (5.59) and p∗(1) the leaking momentum in region (1) obtained by
inserting the third equation of system (L.6) into the second, yielding

S(n)
leak(t, x) =

1
2(1 + µt)(t− T)

[
−a(n)2(t− T)(T − t + µtT)

+ x2(1 + µT)

+ 2µ(t− T)xx̄0

+ µ(T − t)x2
0

−2a(n)(t− T)(x + µtx̄0)
]

. (L.9)

In the case where agents begin in region (2), they may diffuse up to
region (0), using, once again the same scheme, one may compute the
new prefactor

N√
∂x0x0(t, x0)

exp

[
−1

2

∫ t∗(2)(t,x)

t∗(1)(t,x)
(∂xa(1))dτ

]
=√

µ

2πσ2(1 + tµ)
µ(a(2)t− x + x̄0)

a(0) − a(2) + a(0)µt + µ(x̄0 − x)

, (L.10)
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and the new action

S(0)
leak(t, x) =

∫ a(2)(t−T)

x(t,x̄0)
p(n)(t, x′)dx′ +

∫ a(0)(t−T)

a(2)(t−T)
p∗(1)(t, x′)dx′

+
∫ x

a(0)(t−T)
p∗(0)(t, x′)dx′

, (L.11)

takes the explicit form

S(0)
leak(t, x) = − 1

2(1 + µt)

[
a(2)2(3 + µt)(t− T)

− a(0)2(T − t + µtT)

− 2a(2)x

+ 2a(0)
(
−a(2)(2 + µt)(t− T) + x + µt(x− x̄0)

)
−µ(x− x̄0)

2]
.

(L.12)

Finally the reflected action is computed as

S̃leak(t, x) =S(0)
leak(t, 0) +

∫ min[x;a(1)(t−T)]

0
p∗(0)− (t, x′)dx′

+
∫ min[max[x;a(1)(t−T)];a(2)(t−T)]

a(1)(t−T)
p∗(1)− (t, x′)dx′

+
∫ max[x,a(2)(t−T)]

a(2)(t−T)
p(2)− (t, x′)dx′ ,

(L.13)

that can be approximated, as in section 5.3.3, as

S̃leak(t, x) = 2a(0)x +
1

2(1 + µt)

[
a(2)2(3 + µt)(t− T)

− a(0)2(T − t + µtT)

− 2a(2)x

+ 2a(0)
(
−a(2)(2 + µt)(t− T) + x + µt(x− x̄0)

)
−µ(x− x̄0)

2]
.

(L.14)
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µ = 106. From left to right, t = 1.7, t = 1.8,
t = 1.9. . . . . . . . . . . . . . . . . . . . . . . . 142
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