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Regularity and chaos in classical
mechanics, illustrated by three
deformations of a circular ‘billiard’

M V Berryi
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Absfract The motion of particles bouncing inside a
curve B is employed to illustrate different types of orbit
in classical mechanics, In the ‘phase space’ whose two
coordinates are s, the position around B, and p, the
direction of impact, orbital dynamics is a discrete area-
preserving mapping between successive bounces; an
orbit may be zero dimensional (i.e. closed, and so re-
turning repeatedly to a finite number of points), one
dimensional (eventually filling an ‘invariant curve’) or
two dimensional {eventually filling an area chaotically).
When B is a circle, s, p space is covered with invariant
curves and no closed orbits are isolated. Different de-
formations of a circle generate very different orbits:
stadia give ergodic motion (almost all orbits explore al-
most all s, p values) with extreme unpredictability
{chaos), ellipses give motion entirely confined to in-
variant curves whose topology is organised by two iso-
lated closed orbits, a family of ovals gives (generic) mo-
tion in which phase space is iniricately divided into cha-
otic areas and areas covered with ipvariant curves. The
nature of the motion is determined by whether the
closed orbits are stable, unstable or neutrally stable.

1. Introduction

In recent years the study of classical mechanics has
revived, and major advances are being made. These
concern the qualitative behaviour of systems over
long times: sometimes motion is predictable in the
sense that slight changes in initial conditions result

Résumé On utilise le mouvement de particules rebon-
dissant & l'intérieur du domaine limité par une courbe
fermée B pour illustrer différents types d’orbites telles
que les décrit la mécanique classique.

Dans T'espace des phases’, associé ici aux deux
coordonnées s, la position Ie long de B et p, le direction
«&’impact, la dynamique orbitale définit une transforma-
tion discréte, conservant les aires, entre rebonds succes-
sifs; une orbite peut étre de dimension nulle {orbite
fermée repassant indéfiniment par un nombre fini de
points), de dimension un, (associée 2 une ‘courbe in-
variante’), ou de dimension deux, (associée & une aire
dont tous les points sont visités aléatoirement au cours
du mouvement).

Quand B est un cercle, I'espace (s, p) est couvert par
I'ensemble des courbes invariantes, et il n’apparait pas
d’orbite fermée isolée. Des déformations diverses du
cercle B conduisent 2 des orbites elles-mémes trés di-
verses; les courbes ‘en stade’ donnent liev 2 des mouve-
ments ergodiques, (presque toutes les orbites explorent
presque toutes les valeurs des coordommées s et p), d’un
caractére trés chaotique et imprévisible; les ellipses don-
nent liev & des mouvements limités & des courbes in-
variantes dont la topologie est définie par deux orbites
fermées isolées; une famille d’ovales conduit 4 des
mouvements pour lesquels ’espace des phases se
répartit de maniére complexe en zones couvertes par
des courbes invariantes et zones correspondant & des
orbites bidimensionnelles. La nature du mouvement est
déterminée par le caractére stable, instable ou
indifiérent des orbites fermées.

in only slightly different motion, sometimes motion
is unpredictable in the sense that slight changes in
initial conditions result in radically different mo-
tion, and sometimes both sorts of motion can co-
exist in the same system for different initial condi-
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tions. Although the ‘new mechanics’ bears on im-
portant issues as diverse as the long-term stability
of the solar system and the degree to which
Newtonian mechanics is really deterministic, its
principles are not widely known. My purpose here
is to illustrate them with an example simple enough
to be presented at the undergraduate level whilst
possessing all the features of the general case.

The example is the ‘billiard problem” of a point
particle moving freely in the region of the plane
bounded by a closed curve B (the ‘billiard’) and
being reflected elasticully at impacts with B, ac-
cording to the law: ‘the angle of reflection equals
the angle of incidence’ (figure 1). At any instant the
particle’s state is determined solely by its position
and direction of motion, because elasticity of colli-
sion implies conservation of energy and hence
speed; for this simple system, dynamics is elemen-
tary geometry. Natural questions are: after many
bounces, has the particle visited the neighbourhood
of every point within B? Has it travelled in almost
every direction? These are questions of ergodic
theory, most familiar in the context of many-
particle systems, where the assumption that all
configurations and momenta, compatible with the
total energy, are eventually explored lies at the
foundation of statistical mechanics. For billiards
which have only two degrees of freedom, the ans-
wers will depend delicately on the shape of B.

A brief guide to the extensive literature on mod-
ern mechanics, and billiards in particular, is given
in §8.

¥

Figure 1 Billiard geometry and coordinates.

2. Billiard mapping

Between impacts with B, the particle moves in
straight lines. An orbit may therefore be com-
pletely specified by giving the sequence of its posi-
tions and directions immediately after each impact.
The position round B will be parametrised either
by arc length s or by the direction ¢ of the ‘for-
ward’ (i.e. anticlockwise-pointing) tangent, meas-

ured from the origins shown in figure 1. The angle
W gives a unique parametrisation of B provided B
has no inflections, and this will be assumed hence-
forth. To relate the 5 and  parameters, B can be
defined by giving its radius of curvature R as a
function of . Then

ds
R(d’)f@

The direction of the orbit after impact will be label-
led by its angle a with respect 1o the forward
tangent (figure 1), or by the tangential momentum
p. defined by

1]
e, s(¢)=L dWR). (1)
12

p=cos a. (2)

For calculating orbits the ¢, o description is more
convenient, but for theoretical purposes the s, p
description is preferable.

An orbit, then, consists of the succession of
number pairs {s,. p.} corresponding to the nth
bounce, and is generated by specifying an initial
state s,, p, (figure 1). This discrete dynamics is a
mapping M of the ‘phase space’ with coordinates s,
p and is symbolised by

E)) e
pn+1 Pn

{The ‘bounce mapping’ is usually non-linear and so
M cannot usually be represented by a 2 X 2 matrix.)
If L is the length of B, phase space can be re-
stricted to the rectangle —1<sp<+1, 0<<s< L, but
since § is a periodic coordinate (s + L is equivalent
to s) its true topology is that of a circular
ribbon. In terms of the variables s, p (but not 4, &}
M is area preserving, ie.

a(shpl): {3311'330 (4)

s, po) A /osp

this is proved in appendix 1.

There are three ways in which the orbit gener-

ated by infinitely many iterations of M can be
explored in phase space.
(i) A finite set of N points s,, Po) 1, P1i--- ) Sne1s
pn-1 may be encountered repeatedly, correspond-
ing to orbits that close after N bounces. Symboli-
cally, such a closed orbit satisfies

(Sn+N) MN(S") (sn) (5]
Puin P P

30 that each of its N points is a fixed point of the
mapping M™.

(ii) The iterates of s,, po may fill a smooth curve in
phase space, called an invariant curve because the
whole curve maps onto itself under M (although its

individual points do not map onto themselves). This
behaviour occurs, for examplc, if the dynamics is

asﬁ’apo } - l
ap1/opo
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integrable in the sense that there exists a constant
of motion in the form of a function F(s,p)
satisfying

F(S], pl) = F(sﬂi pl)) (6)

in which case the invariant curves are the contours
of F(s, p).

(iif) The iterates of s,, p, may fill an area in phase
space. This happens when the orbit, unrestricted by
the existence of any conserved quantity, evolves in
a chaotic manner whose detail is sensitively depen-
dent on the values of s, and p,.

All three types of orbit will be encountered in
the billiards to be considered later.

In terms of ¢, «, the mapping equations can be
found with reference to figure 1 as follows. The
slope of the trajectory segment beginning at ¢, o
is given by the quotient of the x and y increments
around the curve between yr, and yr,. These incre-
ments can be found using

dx/ds =cos dy/ds =sin i (€))]
which together with (1) give

x(f)—x(fo) = J-OOS Yrds= J.OOS 4,:_[: dy
II"‘l
= L R () cos fr defr (8)

‘1’]
Y1) = y{do) = L R() sin ¢ difr.

The slope is then

( L R sin o d.;,)( L%R(l!f) cos ¥ dub)_l
° ’ =tan(fo+ oo} (9)

and this equation determines ¢, (and hence s,)
given r, (or s) and e (or po). &, (and hence p,) is
now determined by another slope relationship,
namely

fi—a =i+ a ie. oy = iy — g — ag.

These two mapping equations are well suited to
rapid computer iteration. Conversion to the vari-
ables s, p is trivial using (1) and (2).

3. Stability of closed orbits

In what follows an important role will be played by
the closed orbits, which satisfy (5). These may be
stable or unstable in the sense that an orbit starting
at so+8ss, po+38po, Where 83, and 8p, are small,
may after many bounces remain near the closed
orbit or may deviate increasingly from it. After N
iterations, when s, and py have returned to their
initial values, the deviations 8sy and 8py of the
nearby orbit will be

93

SSN) (880)
=m, 11
(SPN' N 8po (an
where my is a 2xX2 matrix with unit determinant
whose precise form for billiard mappings is given in
appendix 1.

Orbital stability depends on the eigenvalues of
my. These are A., given in terms of the trace of my
by

A =H{Tr my =[(Tr my)*-417 (12)
After j traversals of the closed orbit {i.e. Nj itera-
tions of M), the deviations (8sy;, 8pn;) can be

writien as a linear combination of A times eigen-
vectors of my, i.e.

85 8s. /85
( SN')=AA‘+( s )+BM(8S ) (13)
ODni 8P, Sp_

Radius R,

Radius /y

Figure 2 Deviation from the simplest closed orbit.

There are three possibilities. Firstly, if
Tt mp| <2 (stable) (14)

it follows from (12) that A, are complex conjugates
on the unit circle, so that

Al =P (15)
where B is a ‘stability angle’. In this case the
deviations (13) oscillate about zero as j increases,
and remain bounded, so that the orbit is stable.

Secondly, if
Trmy|>2  (unstable) (16)

it follows from (12) that A, are real and reciprocals
of each other, so that

[ALl == a7

where vy is an ‘instability exponent’. In this case the
positive exponent guarantees that almost all devia-
tions grow exponentially so that the orbit is unsta-
ble. And thirdly, in the exceptional case that
[Trmn|=2

(neutral) (18)
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both eigenvalues are +1 or —1 and a further
analysis shows that the deviations grow linearly so
that in this case the orbit has neutral stability.

The simplest example is the ‘diametral’ two-
bounce orbit (figure 2) with impacts on opposite
sides of B at normal incidence (ao=a,;=3m, po=
p.=0). If the radii of curvature R are the same at
both impacts, and if the length of each trajectory
segment is p, then it follows from general formulae
in appendix 1 that the deviation matrix m, is

2p(1-p/R) }
2(p/R-1-1)

_ RR-1-1
2/R)(p/R - 1)(2—p/R)

2
19)

From (14} and (16), the stability conditions are
P 1{>0
2R <0

1nsta‘bllllty (20)
stability.

The same conditions follow in this special case from
more elementary arguments involving the focusing
or defocusing consequent upon repeated reflections
between concave mirrors. Instability can have
dramatic consequences, as we shall see in §5.

4. Circulax billiards

When B is a circle, the radius of curvature R(y) is
independent of . Elementary geometry, or
trigonometry based on (9) and (10), shows that
each orbit consists of a succession of chords {figure
3(a)) making equal angles & with B. Circular bil-
liard motion is therefore restricted by the simple
conservation law

p = constant 21)

la) tb)

wsInfSte o e & e
=

0 i

55—

Figure 3 Billiards in a circle: (a) basic orbit geometry,
(b) typical orbit (never closing), {c) two closed orbits,
(d) phase space trajectories for orbits in (b) and ().

the systern is integrable and phase space s, p 1§
covered with invariant curves parallel to the s di-
rection. This excludes the third type of orbit discus-
sed in §2, namely those filling an area. But as will
now be explained, the other two types of orbit do
oceur.

A typical value of a will be an irrational submul-
tiple of 1, and generates an orbit that never repeats
but continually hits B at diffcrent points s,, eventu-
ally filling an annulus within B as shown for the
orbit labelled «, in figure 3(b). In phase space the
iterates s,, p fill the invariant curve p=cosa,
(figure 3(d)).

But if « is a rational submultiple of n, i.e.

a=7KIN K, N mutually prime integers

(22)

then the orbit closes after N bounces, as shown for
a=90° and e =36 in figure 3{(c). In the phase
plane the iterates repeatedly return to N points on
the line p=cos 7K/N (figure 3(d)).

An important feature of these closed orbits is the
fact that they are not isolated: a continuous family
of new ones can be produced by rotation relative to
B. In phase space the different N-point orbits are
related by translation in the s direction, so that the
complete family of closed orbits will fill the in-
variant curve p =constant. Associated with this
non-isolation of the closed orhits in a circle is the
fact that the orbits have neutral stability in the
sense of equation (18). This is easily verified for the
diametral orbit (N=2) by using equation (20),
because in a circle the separation p between the
ends of a diameter is 2R.

5. First deformation: stadia

In the stadium (figure 4), B consists of two semicir-
cular arcs with radius R joined by tangential
straight lines with length 7. As i — 0, the stadium

N

S

>

Figure 4 The stadium, with initial conditions s, a; for
the orbit mapped on figure 5, a family of non-isolated
two-bounce orbits and an isolated unstable two-bounce
orbit.
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Figare 5 Stadium billiard mapping with so=1, po=1/e. R=1 and (a) n =0.001, 900 bounces, (b) 1 =0.01, 900
bounces, {c} n=0.1, 900 bounces, {(d) n=1, 5000 bounces.

degenerates into the circle, and it might be thought
that for small n the mapping M would generate
invariant curves similar to those for the circular
billiard. In fact the opposite is the case, because it
has been proved {sece §8) that the stadium is an
ergodic billiard, meaning that for almost every ini-
tial condition s,, pos, the iterates s,, p, will come
arbitrarily close to every point in phase space as
B —> 0,

To illustrate this astonishing theorem, figure 5
shows iterates under the mapping M from the
‘typical’ initial conditions s,=1, po=1l/e (ie.
ap=08.4°) (figure 4) for stadia with R=1 and
increasing values of n. Figure 5(a) shows 200 itera-
tions for n =0.001. A slight thickening of the line
shows that points are beginning to deviate from the
line p = p, which is an invariant curve when n =0.
Figure 5(b) shows 900 iterations for n =0.01, and
it is now obvious that the points are exploring an
area rather than a curve. In figure 5(c), showing
900 iterations for i =0.1, this areaz has expanded
to include most of the phase space with p >0 and
some of the phase space with p <0. Similar be-
haviour is expected, and observed, if n is held fixed

and the orbit followed for more bounces.

It is very instructive to follow the process of area
filling in more detail, by increasing the deformation
to 1 =1 and the number of iterations to 5000, thus
generating the mapping of figure 5(d). It is clear
that the points do fill the phase space uniformly
except for two small ‘holes’ centred on p=0, s =4L
and p=0, s=3L. The existence of these holes
(which can also be seen in figure 5(c¢)) does not
violate the ergodic theorem, because they get smal-
ler as n — « and eventually disappear, leaving the
whole s, p plane filled with points.

The holes are connected with the family of two-
bounce non-isolated closed orbits formed by per-
pendicular impacts on the straight sections of B
(figure 4). In phase space this family forms two
invariant curves in the form of straight line seg-
ments with p=0 and izR<s<}wR+7n and
3wR +m < s <3wR +2n. An orbit near one of these
closed orbits (i.e. with small angular deviation 8p,),
will ‘resonate’ in a zigzag path for many bounces
before striking one of the semicircles and getting
lost in the chaos. But according to the ergodic
theorem such orbits must, on average, spend equal
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times in equal areas of phase space. Therefore the
existence of ‘resonances’ near the invariant curves
implies that after leaving a resonance the orbit
spends a long time (i.e. many bounces) avoiding the
resonance region. Appendix 2 gives a quantitative
theory of this effect. In particular, an orbit starting
far from the invariant curves will probably avoid
their neighbourhood for a long time. Several cycles
of resonance and avoidance can be seen in figure
5(d) (the resonances—zigzag paths—are the lines
of dots inside the holes). This phenomenon shows
that ergodicity does not preclude strong position-
dependent correlations between bounces.

Away from the holes, points s,. p, jump errati-
cally and apparently randomly over phase space.
To quantify this randomness we study the long
diametral closed orbit in figure 4, which has N =2,
s0=0, s, =3L, po=p,=0. This is isolated, and it is
unstable according to the criterion (20) because

P __2R+m_
2R 2R

i
2R

1=—>0. (23)

Now consider a mis-aimed orbit that starts out
from S, =0 but has a small angular deviation 8p,.
According to (13), its evolution (diverging unstably
away from the long diameter) depends on the
larger eigenvalue A. After 2§ bounces the particle

will be travelling in a direction
8pz = '\jSPo- (24)

It is reasonable to claim that when the deviation
reaches 1 rad the orbit has lost all memory of the
closed orbit near which it began. This loss of mem-
ory occurs after n* bounces where, from (24)

*n log(1/8py)
logd

n (25)

As a concrete example, let us choose a stadium
with i1 =R as in figure 5{(d). Then (19) and (12}
give

Trm,=14 A=7+748=1393. (26

In a typical computer about 14 digits can be stored,
so let us take Sp,=10""". Then (25) gives

n*=19.58 27)

so that in spite of the careful aim the particle
bounces irrecoverably away from the closed orbit

after only 20 impacts. Morcover cach increase of

one decimal digit in the precision with which 8p, is
specified will only enable the orbit to be predicted
for about two extra bounces.

In such systems the extreme natural instability
must therefore soon outstrip the precision available
in any computer (unless special programming
techniques are employed to increase the number of
stored digits in proportion to n). For pictures such
as figure 5{d), involving thousands of bounces, this

implies that the individual points bear no relation
to those that would have been generated by the
exact solution of the bhilliard problem from s,, po-
Strangely enough, this does not mean that the
computations are worthless, because it has also
been proved that there exist initial conditions close
to s, py Whose exact orbits lie arbitrarily close to the
approximate one computed from s, pq.

What this example shows is that the existence of
causal dynamics in which initial conditions deter-
mine the trajectory of systems for all time is consis-
tent with instabilities preventing any particular tra-
jectory from being calculated, even approximately,
by any practical (or, in a finite universe, conceiva-
ble} means.

6. Second deformation: ellipses

Quite different orbits are generated by deforming
the circular billiard into ellipses rather than stadia.
In terms of a parameter A, the equations

x =a cosh M cos A

. . (28)
y =a sinh M sin A
determine an ellipse whose eccentricity € is
€ = (cosh? M) ! (29)

and whose foci lie at x =+a. y=0. A is related to
the direction parameter  (figure 1) by

dy dy/dA
t =—= = —tanh M cot A. 30
A= Tdxan | @nhMeo (30)
The radius of curvature is
R(p) = a cosh M sinh M
* (cosh® M sin® iy +sinh® M cos? )2
(31)

Billiard motion in an ellipse is integrable: no
matter what the value of the eccentricity e is, there
exists a constant of motion F(s, p) restricting the
orbits to invariant curves in s, p space. This con-
trasts with the stadiom, which for arbitrarily small
deformations m generated ergodic motion. The ex-
istence of the conserved quantity depends on a
geometric fact whose proof is elementary but tedi-
ous: each orbit will repeatedly touch a conic con-
focal with B; an ellipse is touched if sq, po is such
that the first segment of the orbit does not pass

between the foci, and a hyperbola is touched if the

segment does pass between the foct. The two types
of orbit are illustrated in figure 6. Confocal conics
are obtained by considering both M and A as
parameters in (28): varying A for fixed M generates
an ellipse, and varying M for fixed A generates a
hyperbola. The iitial condition s, ps determines
the parameter of the conic that is repeatedly
touched. This parameter is the constant of motion;
tedious algebra gives the explicit formula
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p*— €2 cos® i s)

<e<
1-€? cos® ii(s) O<e<l

F(s,p)= (32)

where (s) is obtained from (1) and (31). J H
Hannay (private communication) points out that

the constant of motion is simply interpreted as the
product of angular momenta about the two foci.)

la} [8)

Figure 6 Orbits in an ellipse: (a) repeatedly touching a
confocal ellipse, (b) repeatedly touching confocal hyper-
bolae.

Figure 7 shows some of the contours of F(s, p);
these are the invariant curves. There are two kinds
of orbit. Firstly, for [p| near to unity there are orbits
like that in figure 6(a) which bounce all round B,
exploring all values of s whilst repeatedly touching
an ellipse. Secondly, for |p| small and s close to 3L
or 3L there are orbits like that in figure 6(b), which
bounce across B, exploring a restricted range of s
whilst repeatedly touching a hyperbola.

Along some of the invariant curves, motion will
be periodic as in the case of the circular-billiard
orbits with rational « {cf the dot orbits in figure

W
—_——

Figure 7 Ellipse billiard mapping.
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3(d)); these closed orbits are not isolated but form
families filling their curves. Much more important,
however, are two isolated closed orbits which
dominate the topology of figure 7. These are the
diametral two-bounce orbits. Firstly, there is the
orbit along the long diameter, with p=0 and s=0
and 3L. Applying criterion (20), and using (28) and
(31), we have

P _ 2x(A=0) _ 1
2R 2R(fr=3m) tanh®y

=1 (33)

so that this orbit is unstable. It differs from its
counterpart in the stadium (figure 4) because neigh-
bouring orbits escape along smooth invariant
curves (locally hyperbolic) rather than exploring a
chaotic area. Secondly, there is the orbit along the
short diameter, with p=0 and s =1L and L. Now
(20) gives

o _2y(A=3m)

_ 2
2R~ 2R © tanh® <1

(34)

so that this orbit is stable, in contrast to its counter-
part in the stadium (figure 4) which was neutrally
stable and moreover non-isolated.

7. Third deformation: ovals

So far we have encountered stable closed orbits,
unstable closed orbits, marginally stable closed or-
bits, orbits covering smooth invariant curves and
orbits filling areas chaotically. In the *generic’ case,
that is for “typical’ boundaries B, all these different
kinds of orbit co-exist. In this respect neither the
circle nor the stadium nor the ellipse is generic.
Now I shall describe a class of oval billiards that
does display generic behaviour.

Recall from §2 the specification of B in terms of
the function R(ys). For analysis and computation of
billiard mappings this representation of curves is
more convenient than customary representations
(e.g. W(s), R(s}, x(s) and v(s), 1/R as a function of
s or ). R must be a periodic function chosen such
that x(¢} and y(yf) are periodic too, so that B is
closed. From (8), the condition for this is

2
j dyR (e =0. (35)
0

The Fourier expansion of R(y) therefore begins
with the terms involving 24, and from this point of
view the simplest deformation of a circle is

R{g)=a(l+38 cos 24). {36)
From (8), the Cartesian coordinates are
x(g) = al(} +38)sin o + 15 sin 34r] 37

y () = al{~1+38)cos ¢ — 25 cos 3]
and from (1) the arc length is
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s() = ay — 37 +35 sin 24) (38 % P
so that all the curves have length L = s(2%) = 2ma. tal (o)
These equations describe a family of ovals Lo.57 Lo 57
parametrised by 8. If 0<8<1 the ovals are i
smooth, with short diameter [0 0
) -0.57 k-0 57
2y(w)=a(l—-38) (39)
and long diameter k170 L1170
2x(Gm) = a(l+38) (40) | 170 -0570 057 170 170 -0S70 057 170
as shown in figures 8(a) and (b). If 5 =1 the radius 7o 1170
of curvature can vanish and the curve develops two |~ (o) R (-}
‘swallowtails’ with four cusps (figures 8(¢) and (d)).
For billiards only the case 0=8 <1 will be consi- [057 19.57
dered. The curves bear some resemblance to cer- |y Lo O
tain cycloids but do not appear to be identical with | ; o, L o5y
any of the classical ovals, despite the simplicity of
their parametric equations (37).
Let us begin studying the iniricate phase space [170 r-1.70
structure of the map generated by oval billiards by K0 0570 087 1W| 40 0579 057 1M
considering the two shortest closed orbits. Just as Figure § Ovals with (a) §=0.3, (b) §=0.6, (c) 5=1.0,
for ellipses, these consist of diametral bounces (N= (d}) §=1.5.
tal (&)
0.56 0,56 ) o EE
. 14
“ . 2
.33 i - - 0.33 ;
’ ™ . .
LA e N ~ H.1
PO X Sl e 3
Lo\, VAR Aoton R j
~ "/ \\‘. . . i"’
033 S e Tne 0B K . N
Y K '.._: . R
L-0.56 et TR
5

0 0;70 150 209 2,79 349 419 489 559 6.28

078 o R A el

~1.00
Figure 9 Oval billiard mapping with s,=0.001, p,=0,
700 bounces and {(a) §=0.1, (b) §=0.3, (c) §=0.7.

s
0 o7 1}0 209 219 3’.1;9 419 489 559 6,28
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2) along the long and short diameters. And just as
for ellipses, the ‘short’ orbit is stable and the ‘long’
orbit is unstable, for all deformations 8. This fol-
lows from the criterion (20) together with (36) (for
R) and {39) and (40} (for p). Moreover, just as for
ellipses the stable orbit is surrounded by smooth
invariant curves {¢f figure 7). However, motion
near the unstable orbits reveals that not all the s, p
plane is covered with invariant curves. To illustrate
this, figure 9 shows orbits starting very close to the
unstable fixed point at s,=0, po=0 and followed
through 700 iterations, for §=0.1, 0.3 and 0.7, It is
clear that these orbits explore chaotic areas con-
taining and linking the unstable points. The areas
grow with the deformation & but remain localised
as n— %, in contrast to stadia where the whole
plane gets filled as n — . (The ‘dust patterns’ of
figure 9 are not quite symmetrical about the s axis
because p, can keep the same sign for many succes-
sive bounces before ‘leaking’ across the s axis
through the chaos near a fixed point.}

For ellipses, only these diametral closed orbits
were isolated. But ovals display the generic prop-
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erty that all closed orbits—infinitely many—are
isolated. As an example, consider the four-bounce
anticlockwise circulating orbits. In circles and el-
lipses these would form a continuous family with
neutral stability. In ovals there are only two: one
unstable and one stable. Figures 10{(a) and {(b)
show orbits close to these for 6§ =0.3, as well as
sketches of the orbits themselves. Use of symmetry
and equations (38)-(40) show that the coordinates
of the orbits are

1-18
s=0, ma p =%—%§-z)]—m unstable
1+38 41
s =3ma, 3wa 3 unstable( )

PR 1T
s=+alr—18), ma+talm—18)
p=12 stable.

Now refer to figure 10(c). The chaotic area is a
magnification of part of figure 10(a), and illustrates
the generic feature that chaos surrounds unstable
closed orbits. The loop is a magnification of part of
figure 10{b), and illustrates the generic feature that

.00 ia) F1.00 {5}
.78 Lt e -~ et T - -0.78 o~ -
< TR o S o
Hse s "7 1056
10.33 -0.33
F0.11 0,71
o 7 o
k-0.11 r-0.1
-0.33 033
3 3
0 070 140 209 279 349 419 489 559 678 0 070 140 209 275 349 419 4B) 559 628
.78 i) o
H0.76 s —
S f"'. .:" \ /
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0,71 ;o Ay
. ;o .
.68 < j P
P \" I I'\ ‘."'
L0.66 z:-‘ & ‘ "
34 S
L0.63 q'-r:’;i - 1
ki % . RS
061 - {"._. o Figure 10 Oval billiard mapping, § =0.3: {a) near unst-
® = P 5 able circulating four-bounce orbit, 600 iterations, (b)
r0.58 near stable circulating four-bounce orbit, 600 iterations,
(¢) magnification of part of {(a) and (b) with chaos near
10.56 S the unstable orbit and an island chain around the stable
2,95 309 326 338 353 367 3682 39 LV 435 orbit (inset: further magnification of right-most island).
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smooth invariant curves surround stable closed or-
bits. Around this loop is a chain of nine elongated
‘islands’ (one of which is shown (inset) under still
higher magnification}, surrounding part of a much
longer closed orbit (with N =36) close to the stable
four-bounce orbit. These islands illustrate a further
and very important feature: the whole structure
(invariant curves around stable fixed points, chaos
around unsiable fixed points) repeats recursively
down to infinitely fine scales. (Resolving the island
structure in figure 10(c) required high precision: it
was necessary to solve the map equation (9) for ¢,
to one part in 2%°)

Some idea of the richness of orbital structure for
generic billiards, can be got from figure 11,
which is a synoptic picture made by combining 25
orbits, each followed for 200 bounces. The orbits of
figure 10 are not shown, because their structure
would not be fully developed in 200 iterations; but
the ‘band’ where they lie is clearly evident near
p = 1/v2. In addition, islands surrounding two sta-
ble triangular orbits (N =3, circulating clockwise
and anticlockwise} can be seen just above and
below the central chaos, and elongated islands sur-
rounding a stable period-8 orbit can be seen just
outside the large central invariant curves.

0 01.'1‘0 1.40 2‘09 21.?9 3il’9 4119 f.l.89 5.59 6.38

Figure 11 Oval billiard mapping, 8§ =0.3; 25 orbits fol-
lowed through 200 bounces.

The final topic to be illustrated by oval billiards is
the birth (or disappearance) of closed orbits as a
parameter (in this case &) varies. Consider the
stable two-bounce orbit along the short diameter.
Imagine this traversed twice, so that it becomes a
diametral orbit with N =4. Its stability, according
to §3, depends on the matrix m, which is simply the

square of m, as given by (19). The trace can be
calculated to be

Tr my=Tr(m?) =2- 16 % (2—%)(%— 1)2. (42)

R v

Figore 12 Oval billiards: four-bounce closed orbits near
the short diameter; I and Il are stable, II1 and IV
unstable.

Equations (36) (39) and (40) give

p _2(1-33)
R (1+8) “3)

from which it follows that, when 0=§=<1, |Tr m,|
never exceeds 2 so that (cf equation (16)) the orbit
with N =4 is never unstable. But it becomes neutr-
ally stable (Tr m,=2) when p =R, i.e. when

=1 (44)

What does this mean?

What it means is that as & increases through 2,
four new closed orbits with N =4 split off from the
basic diametral orbit. Their topologies are shown in
figure 12, and should be contrasted with the four-
bounce orbits in figures 10{a) and (b). It is left as an
exercise for readers to show that when & —3 is small
the orbits’ coordinates are

I =iL+As, p=0 s=3iL, p==xAp
M s=3L, p~=Ap s=3LzAs, p=0
111 ~iL+kAs, p=~FHAp {45)
s=~3L+3As, p=HAp
IV s=il+HAs. p~+HAp
=3[ +HAs, p= :F;;%Ap
where
8-\ 5As
As E8a( ) Ap=——r1u!. (46)
6 8a

Orbits I and II are stable, III and IV unstable.
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The phenomenon just described is a particular
type of ‘bifurcation’, which because of the ovals’
high symmetry is different from the usual case
where a stable orbit becomes unstable whilst ‘emit-
ting’ two new stable orbits.

Figure 13 is a synoptic picture of the phase plane
for & =0.65, showing islands surrounding the stable
orbit of type I, just discussed. The large chaotic
area has grown out of the unstable diametral two-
bounce orbit {cf figure 9). This area is bounded not
only by invariant curves surrounding the stable
diametral two-bounce orbit but also by invariant
curves near p==1, indicating the existence of
near-grazing orbits that circulate eternally anti-
clockwise or clockwise. The chaotic area is not
uniformly filled. For example, the ‘holes’ near the
stable four-bounce circulating orbit of figure 10(h)
are clearly visible.

0 070 140 209 2‘.?9 3;1.9 419 489 559 6.28

Figure 13 Owval billiard mapping, & = 0.6: 25 orbits fol-
iowed through 200 bounces.

8. Brief literature guide

Several review articles describing the recent de-
velopments in mechanics but not primarily devoted
to billiards have been written by physicists. A very
readable elementary article by Whiteman (1977)
gives a list of applications in physics, including
plasma physics, celestial mechanics and statistical
mechanics. Ford (1975) emphasises the connection
with statistical mechanics, Berry (1978) emphasises
the intermixing of regularity and chaos and de-
scribes the application to the gaps in Saturn’s rings
and the astercid belt, Treve (1978) emphasises the
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structure of area-preserving mappings and de-
scribes applications in plasma physics, and Helle-
man {1980) emphasises the bifurcation of closed
orbits.

Underlying the whole subject is a great deal of
mathematics, lucidly presented in the book by
Arnol’d (1978), and explored in detail by Abraham
and Marsden (1978).

Concerning billiards, the proof that stadia are
ergodic was given by Bunimovich (1974, 1979),
employing concepts developed by Sinai (1970,
1979). Joyce (1975) gives a fascinating application
of ergodic billiard theory to auditorium acoustics.
The proof that billiards for which B is sufficiently
smooth (e.g. ovals) are not ergodic (i.e. part of
phase space is filled with invariant curves) was
given by Lazutkin (1973); his proof required R(y)
to possess 553 continuous derivatives, but a much
smaller number is probably sufficient! An early
paper giving a clear account of billiard geometry is
that by Poritsky (1950). Statistical properties of
stadium billiards, as well as a class of ovals (differ-
ent from those discussed here} which interpolate
between circles and stadia and exhibit generic
behaviour, are described by Benettin and Strelcyn
(1978).

I have not discussed the delicate case of polygon
billiards, where the absence of focusing or defocus-
ing curved boundaries means that all closed orbits
have neutral stability. The problems involved with
billiards of this type are considered by Zemlyakov
and Katok (1975), Hobson (1975) and Richens and
Berry (1981).
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Appendix 1

To show that the billiard mapping M is area preserving,
it is necessary to evaluate the derivatives in (4). Refer-
ring to figure 14, it is clear that in consequence of small
initial deviations 8sy, 8o the deviation 8s, is given by

(A1)

where pg, is the length of the chord between s, and s,,
and the angles are related by (cf equation {10))

Boug + i = Bifr, — Sexg. (A.2)

To obtain these relations in terms of s and p, equations
(1) and (2} are invoked, to give, after a little algebra,

(Ssl) _ (aslfaso asl,fap(,) (850) _ m1,o(850) (A3
8py/  \ap,fas, 9p./dpe/ \8py 3po

where the ‘deviation matrix’ m, , is

85 sin oy + 85, sin ey = po Sy + Sify)
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Figure 14 Geometry of deviations

“sineg,  pgy
sina; sinaR(g)
Mo= _ Boy sin a, N sinay,
R{yIR(} Ry Rig)
Po1

" sin g $in @ (
Ad)

_sina, [

sin ety sin ey Ry}

This matrix has determinant unity, so that equation (4) is
satisfied.

After N bounces, deviations accumulate by successive
multiplication of matrices of the form (A.4). In particu-
far, for an N-bounce closed orbit the matrix my,
defined by equation (11) is given in terms of the bounce
geometry by

My = Mo N 1Mo s - - - Py My My e (ALS)

For the special case of a diametral two-bounce orbit,
(19) follows on substituting &, = «, =%, gy, =p,
R('po) = R(d‘[) =R.

Appendix 2

I shall estimate the average number of iterations N{p)
before a stadium orbit enters the phase plane regions
within 3p of the two s-axis line segments corresponding

to the non-isolated neutrally stable short diametral
closed orbits (figure 4). These two regions have area
4ndp, and the whole phase plane has area 21 =
2(27wR +27). By the ergodic property of the motion,
the fraction of iterations for which the point s,, p, lies
in one of the regions is

_4ndp_ mdp

f 2. wR+yw

(A.6)

However, once inside this region the orbit will resonate
on a zigzag path for n/2R8p bounces before emerging,
Therefore the average number of bounces between such
resonances is

1 7 (m+n/R)
—_—X—

N(5p) T IRep 20 (A7)
For the stadium of figure 5(c), n/R =1 and N =5000,
so that this theory predicts 8p ~ 1/50 for the half-width
of the ‘excluded’ regions. By measurement, 8p is about
1/30 so that the theory gives the right order of mag-
nitude for the effect.

It is probable that this ‘repulsion’ by non-isolated
closed orbits is a general phenomenon, greatly slowing
down the exploration of the phase plane in ergodic sys-
tems. The effect will be stronger if there are more
families of non-isolated closed orbits.
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