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We consider the space-time evolution of initial discontinuities of depth and flow velocity for an

integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a spe-

cific version of this “Kaup-Boussinesq model” for which a flat water surface is modulationally sta-

ble, we speak below of “positive dispersion” model. This model also appears as an approximation

to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein

condensates. We describe its periodic solutions and the corresponding Whitham modulation equa-

tions. The self-similar, one-phase wave structures are composed of different building blocks, which

are studied in detail. This makes it possible to establish a classification of all the possible wave con-

figurations evolving from initial discontinuities. The analytic results are confirmed by numerical

simulations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4997052]

The Kaup-Boussinesq (KB) water wave equation is inte-

grable, but its generic form suffers from a dynamical

instability. We study here the Riemann problem for a

version of this equation, which does not suffer from the

same deficiency. This equation appears as an approxima-

tion of the nonlinear polarization dynamics of a two-

component Bose-Einstein condensate, and in this context,

it is important to characterize the time evolution of sim-

ple, but experimentally relevant initial profiles.

I. INTRODUCTION

In many physical wave systems, the initial value problem

treated in the long-wavelength (hydrodynamic) approximation

leads to wave breaking after a finite time. As a result, the for-

mal solution becomes multivalued, i.e., it looses its physical

meaning. At the wave breaking point, the first spatial deriva-

tive of the physical variables diverges and the hydrodynamic

approximation fails. This suggests that this nonphysical

behavior can be remedied by accounting for physical effects

described by terms with higher-order derivatives in the corre-

sponding evolution equations. For example, within the

Navier-Stokes description of the dynamics of a compressible

gas, the effects of viscosity are described by second-order

derivative terms, and this leads, instead of wave breaking, to

the formation of viscous shocks, which can often be formally

described by surfaces of discontinuities in the physical varia-

bles. Formulated in this way, the theory of “shock waves” has

found a number of important applications.1,2

At the same time, in many physical systems, the dissipa-

tive effects may be relatively weaker than the dispersive

ones, and in such cases, so-called “dispersive shock waves”

(DSWs) are formed instead of viscous shocks. DSWs can be

represented as modulated nonlinear oscillations whose enve-

lope varies over characteristic distances much greater than

their wavelength. In recent years, such systems have

attracted much attention in fluid dynamics, nonlinear optics,

physics of Bose-Einstein condensates, and other areas of

physics (see, e.g., Refs. 3 and 4). This type of problem was

studied for the first time in the context of the physics of shal-

low water waves whose evolution is described by the cele-

brated Korteweg-de Vries (KdV) equation.5,6 The equations

governing the slow evolution of the envelope of the nonlin-

ear oscillations had been derived by Whitham,7 and later,

they were applied to the description of the DSW structure by

Gurevich and Pitaevskii.8 Because of the universality of the

KdV equation, this approach can naturally be applied to

many other physical situations. When the condition of unidi-

rectional propagation is relaxed, shallow water waves are

described by various forms of Boussinesq equation.9 The

most convenient form for our purpose has been derived by

Kaup;10 this is the so-called Kaup-Boussinesq (KB) equa-

tion. The KB equation is completely integrable, and the

well-developed methods of inverse scattering transform and

finite-gap integration can be used for explicitly deriving its

multi-soliton and (quasi-)periodic solutions.11

In the applications of this theory to concrete physical

problems, only the KB equations with negative dispersion

have been considered so far. In this case, linear perturbations

can be sought under the form of plane waves with angular

frequency x and wavelength k. In non-dimensional nota-

tions, the corresponding dispersion relation reads (h0 is a

constant depth)

x2 ¼ h0k2 � 1

4
k4: (1)

The Whitham modulation equations were derived for this

case in Ref. 12, and a complete classification of all the possi-

ble wave structures resulting from an initial discontinuous

profile was obtained. Besides that, the analytic solution for a

generic wave breaking regime was found in Ref. 13—with
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the use of a generalized hodograph transform—and station-

ary undular bore structures whose form was stabilized by

weak viscous effects were studied in Ref. 14. However, the

dispersion relation (1) corresponds to a dynamical instability

of small wavelength perturbations over a fluid of constant

depth h0. There exists another form of the KB system, with

positive dispersion, for which the dispersion relation of lin-

ear waves reads

x2 ¼ h0k2 þ 1

4
k4: (2)

The corresponding KB system can be written under the fol-

lowing non-dimensional form:

ht þ huð Þx �
1

4
uxxx ¼ 0;

ut þ uux þ hx ¼ 0:
(3)

In the context of shallow water wave physics, h is the local

height of the water layer and u is a local mean flow velocity.15

Equation (2) represents the dispersion relation of linear waves

propagating along a uniform background characterized by the

physical variables h0¼ const and u0¼ 0. It does not suffer

from the instability of Eq. (1). The positive dispersion KB

system (3) may be obtained in the case of capillary waves

propagating on top of a thin fluid layer (see, e.g., Ref. 3).

Besides this physical realization, the system (3) appears as an

approximation to the Landau-Lifshitz equation for the propa-

gation of magnetization waves in easy-plane magnets and to

the Gross-Pitaevskii equations for the propagation of polariza-

tion waves in two-component Bose-Einstein condensates.16

Motivated by these applications of the KB system (3),

we consider in the present paper the so-called Riemann prob-

lem. This corresponds to the study of the time evolution of

initial discontinuous profiles of the form

hðx; t ¼ 0Þ ¼ hL; and uðx; t ¼ 0Þ ¼ uL for x < 0;

hðx; t ¼ 0Þ ¼ hR; and uðx; t ¼ 0Þ ¼ uR for x > 0:
(4)

As we shall see, the resulting wave structures differ consider-

ably from those found in Ref. 12 for the negative dispersion

case. In the case of Eq. (3) studied in the present work, the

classification of the possible wave structures follows closely

the scheme found for the nonlinear Schr€odinger equation in

Refs. 17 and 18. We shall obtain simple analytic formulae

for the main parameters of the wave structures and confirm

their accuracy by comparison with numerical solutions of the

KB system (3).

II. PERIODIC WAVES AND WHITHAM MODULATION
EQUATIONS

In this section, we derive the periodic wave solutions

(the so-called cnoidal waves) of the system (3) and the

Whitham equations governing the modulational dynamics of

a cnoidal wave. This is achieved by using the methods

described, e.g., in Ref. 3 (see also Ref. 13). These techniques

are based on the possibility to represent the system (3) as a

compatibility condition for the linear system10

wxx ¼ Aw; wt ¼ �
1

2
Bxwþ Bwx (5)

with

A ¼ h� k� 1

2
u

� �2

; and B ¼ � kþ 1

2
u

� �
; (6)

where k is a free spectral parameter. Demanding that

ðwxxÞt ¼ ðwtÞxx for any k, we reproduce the KB system (3).

The second order spatial linear differential equation in (5)

has two independent solutions wþ(x, t) and w�ðx; tÞ. Their

product g ¼ wþw� satisfies the following third order equation:

gxxx � 2Axg� 4A gx ¼ 0: (7)

Upon multiplication by g, this equation can be integrated

once to give

1

2
ggxx �

1

4
g2

x �Ag2 ¼ P kð Þ; (8)

where the integration constant has been written as P(k) since

it can only depend on k. The time dependence of g(x, t) is

determined by the equation

gt ¼ B gx � Bxg: (9)

We are interested in the one-phase periodic solutions of the

system (3). They are distinguished by the condition that P(k)

in (8) is a fourth degree polynomial of the form19

PðkÞ ¼
Y4

i¼1

ðk� kiÞ ¼ k4 � s1k
3 þ s2k

2 � s3kþ s4: (10)

In expression (10), we chose for definiteness to order the

zeroes ki according to

k1 � k2 � k3 � k4: (11)

Then we find from Eq. (8) that g(x, t) is a first-degree poly-

nomial in k, of the form

gðx; tÞ ¼ k� lðx; tÞ; (12)

where l(x, t) is connected with u(x, t) and h(x, t) by the

relations

u x; tð Þ ¼ s1 � 2 l x; tð Þ;

h x; tð Þ ¼
1

4
s2

1 � s2 � 2l2 x; tð Þ þ s1l x; tð Þ;
(13)

which follow from a comparison of the coefficients of the

different powers of k on both sides of Eq. (8). The spectral

parameter k is arbitrary, and on substitution of k¼ l into Eq.

(8), we obtain an equation for l,

lx ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PðlÞ

p
;

while a similar substitution into Eq. (9) gives

lt ¼ � lþ 1

2
u

� �
lx ¼ �

1

2
s1lx:
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Hence, l(x, t) and u(x, t) and h(x, t) depend only on the

phase

h ¼ x� 1

2
s1t; (14)

so that

V ¼ 1

2
s1 ¼

1

2

X4

i¼1

ki (15)

is the phase velocity of the nonlinear wave, and l(h) is deter-

mined by the equation

lh ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PðlÞ

p
: (16)

It follows from Eq. (13) that the variable l must be real.

For the fourth degree polynomial (10), the real solution of

(16) corresponds to oscillations of l in one of the two possi-

ble intervals,

k1 � l � k2 or k3 � l � k4; (17)

within which P(l) assumes negative values. It is well known

that the solution of Eq. (16) with boundaries (17) can be

expressed in terms of elliptic functions (see, e.g., Refs. 20

and 21). Without going into details, we shall list here the

results which are the most relevant to our study.

• For the case

k1 � l � k2 (18)

the cnoidal wave solution of Eq. (17) with the initial con-

dition l(0)¼ k1 is given by

l hð Þ ¼ k2 �
k2 � k1ð Þcn2 W;mð Þ

1þ k2 � k1

k4 � k2

sn2 W;mð Þ
; (19)

where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk3 � k1Þðk4 � k2Þ

p
h and

m ¼ k2 � k1ð Þ k4 � k3ð Þ
k3 � k1ð Þ k4 � k2ð Þ (20)

is the modulus of the Jacobi elliptic functions sn and cn.

Substitution of (19) into (13) gives the corresponding

expressions for u(h) and h(h) for a one-phase periodic non-

linear wave. Its wavelength is given by

L ¼
ðk2

k1

dlffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P lð Þ

p ¼ 2K mð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � k1ð Þ k4 � k2ð Þ

p ; (21)

where K(m) is the complete elliptic integral of the first

kind. The soliton solution corresponds to the limit k3! k2

(m! 1). We obtain

l hð Þ ¼ k2 �
k2 � k1

cosh2W þ k2 � k1

k4 � k2

sinh2W

: (22)

This is a dark soliton solution for the variable l. In the

limit k2! k1, we get a small-amplitude harmonic wave

l ¼ k2 �
1

2
k2 � k1ð Þcos k x� Vtð Þ½ �;

where k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � k1ð Þ k4 � k1ð Þ

p
: (23)

If k4¼ k3 but k1 6¼ k2, then we have again m¼ 0 and (22)

reduces to a nonlinear trigonometric wave, but we shall

not present its explicit form here (cf. e.g., Refs. 20

and 21).
• In a similar way, for the case

k3 � l � k4; (24)

the cnoidal wave solutions are of the form [l(0)¼ k4]

l hð Þ ¼ k3 þ
k4 � k3ð Þcn2 W;mð Þ

1þ k4 � k3

k3 � k1

sn2 W;mð Þ
: (25)

In the soliton limit k3! k2 (m! 1), we obtain

l hð Þ ¼ k2 þ
k4 � k2

cosh2W þ k4 � k2

k2 � k1

sinh2W

: (26)

This is a bright soliton (for l-variable) over a constant

background. In the limit k4 ! k3, we get a small-

amplitude harmonic wave

l ¼ k3 þ
1

2
k4 � k3ð Þcos k x� Vtð Þ½ �;

where k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3 � k1ð Þ k3 � k1ð Þ

p
: (27)

As discussed above, nonlinear trigonometric waves also

exit, here in the case where k1¼ k2 but k3 6¼ k4. If further-

more k3 ! k1, one reaches the limit of an algebraic

soliton20,21

l hð Þ ¼ k1 þ
k4 � k1

1þ k4 � k1ð Þ2h2
: (28)

• We now consider slowly modulated cnoidal waves. In this

case, the parameters ki (i ¼ 1, 2, 3, 4) become slowly vary-

ing functions of x and t changing weakly over a wave-

length L. Their evolution is governed by the Whitham

modulation equations3,4

@ki

@t
þ vi

@ki

@x
¼ 0; i ¼ 1; 2; 3; 4: (29)

The Whitham velocities vi appearing in Eq. (29) can be

computed via the formulae (see, e.g., Refs. 3 and 4)

vi k1; k2; k3; k4ð Þ ¼ 1� L

@ki
L
@ki

� �
V; i ¼ 1; 2; 3; 4; (30)

where the phase velocity V and the wavelength L are given

by Eqs. (15) and (21). A simple calculation yields the

explicit expressions
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v1 ¼
1

2

X4

i¼1

ki �
k4 � k1ð Þ k2 � k1ð ÞK mð Þ

k4 � k1ð ÞK mð Þ � k4 � k2ð ÞE mð Þ
;

v2 ¼
1

2

X4

i¼1

ki þ
k3 � k2ð Þ k2 � k1ð ÞK mð Þ

k3 � k2ð ÞK mð Þ � k3 � k1ð ÞE mð Þ
;

v3 ¼
1

2

X4

i¼1

ki �
k4 � k3ð Þ k3 � k2ð ÞK mð Þ

k3 � k2ð ÞK mð Þ � k4 � k2ð ÞE mð Þ
;

v4 ¼
1

2

X4

i¼1

ki þ
k4 � k2ð Þ k4 � k1ð ÞK mð Þ

k4 � k1ð ÞK mð Þ � k3 � k1ð ÞE mð Þ
;

(31)

where m is given by (20) and K(m) and E(m) are complete

elliptic integrals of the first and second kind, respectively.

In the soliton limit m ! 1 (i.e., k3 ! k2), the Whitham

velocities reduce to

v1 ¼
1

2
3k1 þ k4ð Þ; v2 ¼ v3 ¼

1

2
k1 þ 2k2 þ k4ð Þ;

v4 ¼
1

2
k1 þ 3k4ð Þ: (32)

In a similar way, in the small amplitude limit m! 0 (i.e., k2

! k1) we obtain

v1 ¼ v2 ¼ 2k1 þ
k4 � k3ð Þ2

2 k3 þ k4 � 2k1ð Þ ;

v3 ¼
1

2
3k3 þ k4ð Þ; v4 ¼

1

2
k3 þ 3k4ð Þ; (33)

and in another small amplitude limit (m! 0 when k3! k4)

we have

v1 ¼
1

2
3k1 þ k2ð Þ; v2 ¼

1

2
k1 þ 3k2ð Þ;

v3 ¼ v4 ¼ 2k4 þ
k2 � k1ð Þ2

2 k1 þ k2 � 2k4ð Þ : (34)

III. KEY ELEMENTS OF SELF-SIMILAR WAVE
STRUCTURES

The initial profiles (4), being infinitely sharp, do not

involve any characteristic length. However the dispersion

relation (2) is characterized by the value of the shallow water

wave velocity: cs ¼ x=kjk!0 ¼
ffiffiffiffiffi
h0

p
. Therefore, the large

scale features of the solution of this problem (with character-

istic length scale much greater than the wavelength) can only

depend on the self-similar variable n¼ x/t, which can be

made non-dimensional with the help of the velocity cs. This

means that the large scale features of the wave pattern must

be self-similar and should be composed of (possibly several)

regions where h and v either smoothly depend on n, or con-

sist of modulated periodic waves whose envelopes (and

wavelength L) depend slowly on n.

In the framework of the hydrodynamic approximation,

these regions are separated by weak discontinuities where

the physical variables have cusps. If the hydrodynamic

approximation leads to non-monotonous dependence of

velocities on the wave amplitude, then the wave structure

can be more complicated; an example of such a situation

was considered, e.g., in Ref. 20. At first we shall consider

smooth solutions of the KB system (3).

A. Dispersionless limit

For smooth enough wave patterns, we can neglect the

last dispersive term in the first equation of the system (3) and

arrive at the so-called dispersionless equations

ht þ ðhuÞx ¼ 0; ut þ uux þ hx ¼ 0; (35)

which coincide with the well-known shallow water equa-

tions. Introducing the Riemann invariants

k6 ¼
u

2
6

ffiffiffi
h
p

; (36)

the system (35) can be written in the following diagonal

form:

@k6

@t
þ v6 k�; kþð Þ @k6

@x
¼ 0;

where v6 k�; kþð Þ ¼ 1

2
3k6 þ k7ð Þ : (37)

The physical variables are expressed in terms of k6 as

u ¼ kþ þ k�; h ¼ ðkþ � k�Þ2=4: (38)

For the self-similar solutions, one has k6¼ k6(n) and the

system (37) reduces to

dkþ
dn
� vþ � nð Þ ¼ 0;

dk�
dn
� v� � nð Þ ¼ 0: (39)

This system admits a trivial solution for which kþ¼ const

and k– ¼ const. It describes a uniform flow with constants h
and u. We shall call such a solution a “plateau.”

Other solutions of (39) are called simple waves. For

such flows, one of the Riemann invariants is constant (say,

k–), whereas the other one changes in such a way that the

term between parenthesis in its equation is zero (vþ¼ n in

the example considered). One has thus two possible types of

self-similar simple waves:

k� ¼ Cst � �k� ; with

vþ �k�; kþ
� �

¼ 1

2
3kþ þ �k�
� �

¼ n ¼ x=t ;

8><
>: (40)

or

kþ ¼ Cst � �kþ ; with

v� k�; �kþ
� �

¼ 1

2
3k� þ �kþ
� �

¼ n ¼ x=t :

8><
>: (41)

The constancy of one of the Riemann invariants means that h
and u are related by a simple formula: either k� ¼ u=2

�h1=2 ¼ const ¼ �k� ¼ �u=2� �h
1=2

or kþ ¼ u=2þ h1=2

¼ const ¼ �kþ ¼ �u=2þ �h
1=2

, where �u and �h are some values

that fix the value of the constant Riemann invariant and can

be chosen at convenience for solving a specific problem.
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Thus, for given values of �u and �h, a simple wave corresponds

to a configuration where the variables u and h are connected

by the relations corresponding to one of the two parabolae

drawn in the plane (u, h) in Fig. 1. The parabolae cross at the

point P ¼ ð�u; �hÞ, which represents a uniform flow with con-

stant values of u ¼ �u and h ¼ �h which is a trivial “plateau

solution” of Eq. (35).

The dispersionless system (35) requires continuity of the

functions u(x, t) and h(x, t), but, as usual in hydrodynamics,

admits jumps of their space derivatives, i.e., “weak dis-

continuities.” Therefore, a plateau solution ð�u; �hÞ can be

attached at one of its boundaries to a simple wave. We have

here two possibilities. If the uniform flow corresponding to

P ¼ ð�u; �hÞ matches with the simple wave along which kþ ¼
�kþ ¼ const (one of the solid parabolae in Fig. 1), then from

Eq. (41) one gets for this flow

u x; tð Þ ¼
2

3

x

t
þ �kþ

� �
¼ 2

3

x

t
þ �u

2
þ

ffiffiffi
�h

p� �
;

h x; tð Þ ¼
1

9

x

t
� 2�kþ

� �
¼ 1

9

x

t
� �u � 2

ffiffiffi
�h

p� �2

:

8>>>><
>>>>:

(42)

This wave configuration represents a rarefaction wave (RW)

propagating to the right. If it propagates into “vacuum,” then

Eq. (42) gives the full solution of the problem (4) with left

boundaries hL ¼ �h and uL ¼ �u, whereas at the right boundary

hR¼ 0 (the value of uR is irrelevant in the space without

fluid). This situation is depicted in Fig. 2(a). The left edge of

this rarefaction wave propagates to the left at the velocity

s� ¼ uL �
ffiffiffiffiffi
hL

p
and the right edge propagates to the right

into the empty space with the velocity sþ ¼ uL þ 2
ffiffiffiffiffi
hL

p
.

In a similar way, if P ¼ ð�u; �hÞ matches with the simple

wave along which k� ¼ �k� ¼ const, then (40) yields

u x; tð Þ ¼
2

3

x

t
þ �k�

� �
¼ 2

3

x

t
þ �u

2
þ

ffiffiffi
�h

p� �
;

h x; tð Þ ¼
1

9

x

t
� 2�k�

� �
¼ 1

9

x

t
� �u þ 2

ffiffiffi
�h

p� �2

:

8>>>><
>>>>:

(43)

This represents a rarefaction wave propagating to the left.

Again, it corresponds—in the hydrodynamic approxima-

tion—to the solution of the problem (4) with hL¼ 0, whereas

at the right boundary hR ¼ �h and uR ¼ �u (see Fig. 2(b)). The

edge velocities are equal to s� ¼ uR � 2
ffiffiffiffiffi
hR

p
and sþ ¼ uR

þ
ffiffiffiffiffi
hR

p
.

It is clear that we can generalize these solutions to the

cases where both sides of the rarefaction wave connect uni-

form flows with equal values of the corresponding Riemann

invariants uL=2þ
ffiffiffiffiffi
hL

p
¼ uR=2þ

ffiffiffiffiffi
hR

p
or uL=2�

ffiffiffiffiffi
hL

p
¼ uR=

2�
ffiffiffiffiffi
hR

p
. In these cases, the rarefaction wave connects two

uniform flows and the corresponding distributions of h and u
are shown in Fig. 3. The velocities of the edges of the rare-

faction waves are given in both cases by the formulae

s� ¼ uL �
ffiffiffiffiffi
hL

p
; sþ ¼ uR þ

ffiffiffiffiffi
hR

p
. These values have simple

physical interpretation: they are the sums of the local flow

velocities (uL or uR) and of the propagation velocities of

small amplitude disturbances directed to the left for the left

edge (�
ffiffiffiffiffi
hL

p
) and to the right for the right edge (þ

ffiffiffiffiffi
hR

p
).

It is important to note that the system (39) only admits

solutions of the type (40) and (41) for which the non-

constant Riemann invariant increases with n¼ x/t. The above

wave structures correspond to the conditions (a) kL
þ

< kR
þ; kL

� ¼ kR
� or (b) kL

þ ¼ kR
þ; kL

� < kR
�, as illustrated in

Figs. 4(a) and 4(b). The other two situations represented in

Figs. 4(c) and 4(d), that is (c) kL
þ ¼ kR

þ; kL
� > kR

� and (d)

kL
þ > kR

þ; kL
� ¼ kR

�, result in multi-valued solutions and are

FIG. 1. Relation between u and h for simple wave solutions in the disper-

sionless regime. The solid lines correspond to the curve kþ ¼ Cst ¼ �kþ [por-

tion of parabola ending at point with coordinates ð�u þ 2
ffiffiffi
�h
p

; 0Þ] and to the

curve k� ¼ Cst ¼ �k� [portion of parabola ending at point ð�u � 2
ffiffiffi
�h
p

; 0Þ].
They are continued by the dashed curves along which k� ¼ �kþ (right dashed

curve) and kþ ¼ �k� (left dashed curve). These dashed curves are of no sig-

nificance for the present discussion of simple waves, but will become impor-

tant in Sec. IV.

FIG. 2. Height and velocity profiles for self-similar rarefaction wave solu-

tions of the dispersionless equations (35) expanding into empty space (the

so-called “dam problem”). Panel (a) corresponds to a flow expanding in the

positive x direction and panel (b) to a flow expanding in the negative x direc-

tion. The values of the edge velocities s6 are given in the text.

FIG. 3. Self-similar solutions of the dispersionless equations (35) composed

by a rarefaction wave connecting two uniform flows. The two left plots cor-

respond to the situation where kþ¼ const for the whole flow; the two right

ones to k� ¼ const.
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therefore nonphysical: the dispersionless approximation is

not applicable in these cases and we have to turn to another

type of key elements for describing such structures.

B. Dispersive shock waves

Since the pioneering work of Gurevich and Pitaevskii,8

it is known that wave breaking—such as depicted in Figs.

4(c) and 4(d) for the dispersionless Riemann invariants—is

regularized by the replacement of the nonphysical multi-

valued dispersionless solution by a dispersive shock wave.

This wave pattern can be represented approximately as a

modulated nonlinear periodic wave whose parameters ki

(i¼ 1, 2, 3, 4, cf. Sec. II) change slowly along the wave

structure. In this case, the two dispersionless Riemann invar-

iants k6 are replaced in the DSW region by four Riemann

invariants ki (cf. Figs. 4(c) and 4(d)). In this region, the evo-

lution of the DSW is determined by the Whitham equations

(29). In our case, when we consider of self-similar solution,

all Riemann invariants depend only on n¼ x/t, and the

Whitham equations reduce to

dki

dn
� vi k1; k2; k3; k4ð Þ � n½ � ¼ 0; i ¼ 1; 2; 3; 4: (44)

One of the two factors in this equation must vanish, that is,

for each i, either the Riemann invariant ki is constant, or

vi¼ n. For the Whitham velocities (31), there exist solutions

for which, in the DSW region, only one of the Riemann

invariants varies, whereas the three others remain constant.

These solutions correspond qualitatively to the same patterns

as the ones depicted in Figs. 4(c) and 4(d). However, natu-

rally, the dependence of the Riemann invariants on n result-

ing from (44) differs from the one obtained from (39)

(different equations and different variables). As a result, the

velocities of the edges of the DSW do not coincide with the

velocities of the nonphysical solutions of the dispersionless

equations. It nonetheless remains true that Figs. 4(c) and

4(d) schematically represent the structure of the Riemann

invariants for the solutions of the Whitham equations (44):

in Fig. 4(c), k2 varies and (k1, k3, k4) remain constant,

whereas in Fig. 4(d), k3 varies and (k1, k2, k4) remain con-

stant. We thus arrive at the following description of these

solutions:

• In the case of Fig. 4(c) where kL
þ ¼ kR

þ; kL
� > kR

� we have

k1 ¼ kR
�; k3 ¼ kL

�; k4 ¼ kL
þ ¼ kR

þ; (45)

and k2 depends on n according to the equation

v2ðkR
�; k2; k

L
�; k

L
þÞ ¼ n: (46)

The resulting wave pattern is obtained by substitution of

these values of (k1, k2, k3, k4) into (19) and (13). The left,

small amplitude, edge of the DSW propagates with the

velocity

s� ¼ 2kR
þ þ

kL
þ � kL

�

� �2

2 kL
þ þ kL

� � 2kR
þ

� � : (47)

The right edge corresponds to the soliton limit, propagat-

ing with the velocity

sþ ¼
1

2
kR
� þ 2kL

� þ kL
þ

� �
: (48)

• In a similar way, in the case of Fig. 4(d) where kL
þ >

kR
þ; kL

� ¼ kR
� we have

k1 ¼ kL
� ¼ kR

�; k2 ¼ kR
þ; k4 ¼ kL

þ; (49)

and the dependence of k3 on n is determined by the

implicit equation

v3ðkR
�; k

R
þ; k3; k

L
þÞ ¼ n: (50)

Substitution of the values of ki resulting from (49) and

(50) into (25) and then (13) yields the oscillatory DSW

structure for the physical variables u and h. The left edge

of the DSW corresponds to the soliton limit and this soli-

ton moves with the velocity

s� ¼
1

2
kR
� þ 2kR

þ þ kL
þ

� �
: (51)

Its right edge corresponds to the small amplitude limit

propagating with the velocity

sþ ¼ 2kL
þ þ

kR
þ � kL

�

� �2

2 kR
þ þ kR

� � 2kL
þ

� � : (52)

IV. CLASSIFICATION OF SOLUTIONS OF THE
RIEMANN PROBLEM

For a given choice of initial conditions (4), the solution

of the Riemann problem consists of combinations of the key

elements listed in the preceding Sec. III: plateaus, rarefaction

waves and dispersive shocks. It is important to notice that if

FIG. 4. Diagrams representing the evolution of the Riemann invariants as a

function of x/t. Plots (a) and (b) correspond to the configuration where a dis-

persionless rarefaction wave connects two uniform flows. Plots (c) and (b)

considered within the dispersionless approximation correspond to a formal

multi-valued solution. In this case, the dispersionless approximation breaks

down and one observes a dispersive shock wave, accurately described by 4

Riemann invariants within the Whitham modulational approach, cf. Sec.

III B.
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an RW or a DSW matches with a plateau at its both left and

right edges, then these plateaus share one of their (disper-

sionless) Riemann invariants. For example, in Figs. 4(a) and

4(d), we have kL
� ¼ kR

� and in Figs. 4(b) and 4(c) we have

kL
þ ¼ kR

þ.

Also, in the case of a DSW, despite the fact that the

dynamics inside the shock region is described by four

Riemann invariants, two of them coincide with the disper-

sionless invariants of one of the plateaus at the edges of the

shock. Hence one may say that the value of one of the disper-

sionless Riemann invariants [k– say, as in the case of Fig.

4(d)] is “transferred” through the DSW, although, if it were

computed using formula (36), one would find that it strongly

oscillates inside the DSW region. The equality kL
� ¼ kR

� [for

the case of Fig. 4(d)] connects the parameters of the flow at

both sides of the dispersive shock, and in this sense, it plays

a role similar to that of the Rankine-Hugoniot condition in

the theory of viscous shocks (see Refs. 22 and 23).

Due to this property of the dispersionless Riemann

invariants, the points corresponding to the edges of the DSW

(or of the RW) must lie on one of the parabolae along which

the value of the dispersionless Riemann invariant remains

constant. Hence, the dispersionless parabolae of Fig. 1 are

useful tools for the classification of all possible solutions.

One should keep in mind that the parabolic arcs symbolize

the different types of solutions: a physically acceptable

single-valued RW [Figs. 4(a) and 4(b)] or a formal multi-

valued solution [Figs. 4(c) and 4(d)] which should be

replaced by a DSW correctly treated within the Whitham

approach. After these preliminary remarks, we can proceed

to the classification of the wave structures.

The left and right boundaries of the whole wave struc-

ture connect with undisturbed plateau regions whose parame-

ters coincide with the initial conditions (4); for instance, in

any situation, one should always have at the left boundary:

uðx=t � sL
�Þ ¼ uL and hðx=t � sL

�Þ ¼ hL. Consequently, the

left and right edges propagate into plateau regions repre-

sented by the two points (uL, hL) and (uR, hR) in the (u, h)

plane. We represent in Fig. 5 the two parabolae correspond-

ing to the constant dispersionless invariants kL
6 ¼ uL=2

6
ffiffiffiffiffi
hL

p
including their branches extending beyond the tangent

points with the u-axis (which were represented as dashes

lines in Fig. 1). These parabolae cut the physical half-plane

h> 0 into six domains labeled by the symbols A, B,…, F.

Depending on the domain in which the point R with coordi-

nates (uR, hR) lies, one has one of the six following possible

orderings of the left and right Riemann invariants:

A : kL
� < kL

þ < kR
� < kR

þ; B : kL
� < kR

� < kL
þ < kR

þ;

C : kR
� < kL

� < kL
þ < kR

þ; D : kL
� < kR

� < kR
þ < kL

þ;

E : kR
� < kL

� < kR
þ < kL

þ; F : kR
� < kR

þ < kL
� < kL

þ:

(53)

These six situations correspond to the six possible wave

structures resulting from the initial discontinuous profiles

(4). We shall now describe their main properties and parame-

ters. Note that, as expected, the typology below does not

depend on the absolute values of uR and uL, but only on their

relative positions.

(A) In this case, the two rarefaction waves represented

in Figs. 2(a) and 2(b) are combined into a single wave struc-

ture where they are separated by an empty region [in which

h(x, t)¼ 0]. The velocities of the edges of the RWs are given

by the formulae

sL
� ¼ uL �

ffiffiffiffiffi
hL

p
; sL

þ ¼ uL þ 2
ffiffiffiffiffi
hL

p
;

sR
� ¼ uR � 2

ffiffiffiffiffi
hR

p
; sR

þ ¼ uR þ
ffiffiffiffiffi
hR

p
:

(54)

The corresponding wave structure is displayed in Fig. 6(A).

As expected, the dispersionless approximation gives a very

accurate description of the solution.

In the hydrodynamic context, this situation corresponds

to launching two fluids in opposite directions with velocities

so large that the rarefaction waves are not able to fill the

empty regions between them.

(B) Here the parabolae u=2þ
ffiffiffi
h
p
¼ uL=2þ

ffiffiffiffiffi
hL

p
and

u=2�
ffiffiffi
h
p
¼ uR=2�

ffiffiffiffiffi
hR

p
cross at the point P¼ (uP, hP) with

the Riemann invariants kP
6 ¼ uP=26

ffiffiffiffiffi
hP

p
, and their equality

yields the values of the physical variables

uP ¼ kP
þ þ kP

� ¼
1

2
uL þ uRð Þ þ

ffiffiffiffiffi
hL

p
�

ffiffiffiffiffi
hR

p
;

hP ¼
1

4
kP
þ � kP

�

� �2

¼ 1

4

1

2
uL � uRð Þ þ

ffiffiffiffiffi
hL

p
þ

ffiffiffiffiffi
hR

p	 
2

:

(55)

In this case, one has two rarefaction waves separated by a

plateau region, which is represented by point P in the (u, h)

plane of Fig. 6(B). The velocities of the edges can be easily

found from the self-similar solutions (40) and (41)

sL
� ¼ v� kL

�; k
L
þ

� �
¼ 1

2
3kL
� þ kL

þ

� �
¼ uL �

ffiffiffiffiffi
hL

p
;

sL
þ ¼ v� kP

�; k
L
þ

� �
¼ 1

2
3kR
� þ kL

þ

� �
;

sR
� ¼ vþ kP

�; k
P
þ

� �
¼ 1

2
kR
� þ 3kL

þ

� �
;

sR
þ ¼ vþ kR

�; k
R
þ

� �
¼ 1

2
kR
� þ 3kR

þ

� �
¼ uR þ

ffiffiffiffiffi
hR

p
:

(56)

The corresponding wave structure is displayed in Fig. 6(B).

As in case (A), the dispersionless approximation gives a very

accurate description of the solution.

FIG. 5. Regions in the (u, h) plane corresponding to different types of flow.

The left boundary corresponds to point L of coordinates (uL, hL). The two

parabolae are defined by the equations h ¼ ð1
2

u� kL
þÞ

2
and h ¼ ð1

2
u� kL

�Þ
2
.

The type of flow depends on the region (A, B,…, or F) in which lies the right

boundary point R of coordinates (uR, hR).
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Here the hydrodynamic interpretation is that the two flu-

ids are moving away from each other with velocities lower

than in the previous case (A), and the rarefaction waves are

now able to provide enough flux of fluid to create a plateau

in the region which separates them. This plateau has a fixed

value of the height h and the flow velocity u.

(C) In this case, the initial profile evolves to form a

DSW on the left, an RW on the right, and a plateau in

between. The Riemann invariants in the plateau region are

kP
� ¼ kR

� and kP
þ ¼ kL

þ. In the DSW region, the Riemann

invariants behave as schematically represented in Fig. 4(c).

The edges of the DSW propagate with velocities

sL
� ¼ v2 kR

�; k
R
�; k

L
�; k

L
þ

� �
¼ 2kR

� þ
kL
þ � kL

�

� �2

2 kL
þ þ kL

� � 2kR
�

� � ;

sL
þ ¼ v2 kR

�; k
L
�; k

L
�; k

L
þ

� �
¼ 1

2
kR
� þ 2kL

� þ kL
þ

� �
;

(57)

and the velocities of the edges of the RW are equal to

sR
� ¼ vþ kP

�; k
P
þ

� �
¼ 1

2
kR
� þ 3kL

þ

� �
;

sR
þ ¼ vþ kR

�; k
R
þ

� �
¼ 1

2
kR
� þ 3kR

þ

� �
:

(58)

This situation could be interpreted as if one fluid was collid-

ing with the other flowing away with such velocity that a pla-

teau with increased density is formed between them. The

corresponding wave structure is displayed in Fig. 7(C). The

right RW and the plateau region are correctly described by

the dispersionless approximation, as can be check on the

upper plot of this figure where the two approaches perfectly

match between points P (plateau region) and R (right bound-

ary). Of course, this is not true for the DSW: at variance with

the behavior expected on the basis of the dispersionless

approximation (black solid line), the numerical results (red

solid line) display large oscillations between points P and L.

This behavior is, however, quite successfully described by

the Whitham approach, as can be seen in the lower plot of

Fig. 7(C).

(D) Here we have an RW on the left and a DSW on the

right with a plateau in between. The Riemann invariants in

the plateau region are equal again to kP
� ¼ kR

�; kP
þ ¼ kL

þ. The

velocities of the RW’s edges are equal to

sL
� ¼ v� kL

�; k
L
þ

� �
¼ 1

2
3kL
� þ kL

þ

� �
;

sL
þ ¼ v� kR

�; k
L
þ

� �
¼ 1

2
3kR
� þ kL

þ

� �
:

(59)

The behavior of the two dispersionless Riemann invariants in

the region of the rarefaction wave corresponds to the case illus-

trated in Fig. 4(b). In the DSW region, there are four Riemann

invariants, which behave as schematically represented in Fig.

4(d), and the edges of the DSW propagate with velocities

sR
� ¼ v3 kR

�; k
R
þ; k

R
þ; k

L
þ

� �
¼ 1

2
kR
� þ 2kR

þ þ kL
þ

� �
;

sR
þ ¼ v3 kR

�; k
R
þ; k

L
þ; k

L
þ

� �
¼ 2kL

þ þ
kR
þ � kR

�

� �2

2 kR
þ þ kR

� � 2kL
þ

� � :
(60)

FIG. 6. Solutions in the cases (A)

(three plots of the left column) and (B)

(three plots of the right column). The

initial profiles are characterized by

hL¼ 1, uL¼ –3, hR¼ 1, uR¼ 3 in case

(A) and hL¼ 1.5, uL¼ –1.5, hR¼ 2,

uR¼ 1.5 in case (B). The upper plots

display the behavior of the solution in

the (u, h) plane. The black solid line

(almost perfectly recovered by the red

line) is the result expected form the

dispersionless approximation. The red

solid line displays the results of numer-

ical simulations. The middle plots

schematically represent the behavior of

the Riemann invariant as functions of

n. These are sketches, not on scale

with the two other rows. The lower

plots compare the numerical simula-

tions for the velocity field u(n) (pink

thick lines) with the analytic approach

(black solid lines) from the dispersion-

less approximation. In these plots, the

vertical colored line are the velocities

of the edges between the different

components of the wave structure, as

determined from (54) in case (A) and

(56) in case (B).
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This situation is similar to the preceding one upon exchang-

ing the roles of the left and right fluids; we thus do not illus-

trate it by a figure.

(E) In this case, the initial profile evolves in two DSWs

separated by a plateau, the parameters of which are kP
� ¼ kR

�
and kP

þ ¼ kL
þ. The DSW’s edges propagate with velocities

sL
� ¼ v2 kR

�; k
R
�; k

L
�; k

L
þ

� �
¼ 2kR

� þ
kL
þ � kL

�

� �2

2 kL
þ þ kL

� � 2kR
�

� � ;

sL
þ ¼ v2 kR

�; k
L
�; k

L
�; k

L
þ

� �
¼ 1

2
kR
� þ 2kL

� þ kL
þ

� �
;

sR
� ¼ v3 kR

�; k
R
þ; k

R
þ; k

L
þ

� �
¼ 1

2
kR
� þ 2kR

þ þ kL
þ

� �
;

sR
þ ¼ v3 kR

�; k
R
þ; k

L
þ; k

L
þ

� �
¼ 2kL

þ þ
kR
þ � kR

�

� �2

2 kR
þ þ kR

� � 2kL
þ

� � :
(61)

Here we have a collision of two fluids with “moderate”

velocities: the two DSWs do not overlap, but a central pla-

teau region of increased height is formed. This situation is

represented in Fig. 7(E). Again, the theoretical approach

quite accurately describes the numerical results (cf. the bot-

tom row).

The upper part of the figure illustrates a phenomenon

already present in case (C): the large nonlinear oscillations

in the DSW regions are associated with locally negative val-

ues of h(x, t). This phenomenon is clearly seen in Fig. 8,

which represents h as a function of n for the two configura-

tions (C) and (E) considered in Fig. 7. Although extended

regions of constant and negative values of h lead to a dynam-

ical instability [as clearly seen from the dispersion relation

(2)], nothing forbids local excursions of h below 0, and this

is confirmed by the excellent agreement of the numerical and

theoretical results presented in Fig. 8. Of course, in this case,

the interpretation of h as being the height of a fluid surface

becomes meaningless, but, as explained in the introduction,

the physical model behind the nonlinear equations (3) can

have an origin different from shallow water physics.

(F) In this configuration, the two fluids collide with

velocities so large that the central plateau observed in case

(E) disappears: the DSWs overlap and, on the basis of a simi-

lar situation observed for the nonlinear Schr€odinger equa-

tion18 and for the Landau-Lifshitz equation,16 one would

FIG. 7. Same as Fig. 6 for the cases

(C) (three plots of the left column) and

(E) (three plots of the right column).

The initial profiles are characterized by

hL¼ 0.5, uL¼ 0.5, hR¼ 2, uR¼ 0.5 in

case (C) and hL¼ 0.6, uL¼ 1.5,

hR¼ 0.5, uR¼�0.5 in case (E). The

lower plots compares the numerical

simulations for the velocity field u(n)

(pink thick lines) with the theoretical

approach (black solid lines) composed

of dispersionless approaches (in the

plateau and the RW region) and

Whitham modulation theory for the

DSW. In the region of the DSW, we

only display the envelope of the non-

linear modulated wave. A more accu-

rate comparison is done in Fig. 8.

FIG. 8. h as a function of n for the same configurations as the ones depicted

in Figs. 7(C) and 7(E). The pink solid line represents the results of the

numerical simulations, and the black solid line is the theoretical result. Note

the numerous excursions of h(x, t) below zero.
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expect that the plateau is replaced by a new structure, sepa-

rating two partial DSWs, which can be approximated by a

non-modulated cnoidal wave (whose four Riemann invari-

ants are constant) or more accurately by a two-phase nonlin-

ear wave.

Our numerical simulations show that this is not the case:

the collision of the DSW is here associated with a numerical

instability which we attribute to a physical dynamical insta-

bility of the region of the overlapping DSWs.

V. DAM BREAK AND PISTON PROBLEM

In view of the particularities noticed in Sec. IV—possi-

ble negative values of h and dynamical instabilities—it is

interesting to study in more detail two model cases, illustrat-

ing the specificity of the Kaup-Boussinesq system. The first

one is the dam break problem, which corresponds to a partic-

ular case of initial conditions (4). The second case is the pis-

ton problem. It does not pertain to the same class of initial

conditions, but nevertheless provides an instructive insight

on non-modulated cnoidal waves whose stability is ques-

tioned by the results obtained in case (F).

A. Dam break problem

This is the case where a semi-infinite constant height of

water expands into empty space, which would be a model of

flow after the abrupt breaking of a dam. Such a configuration

is schematically described by an initial condition of type (4)

with

hR ¼ 0 and uR ¼ 0 : (62)

On the basis of physical intuition, one expects that the time

evolution of this initial profile will result in a rarefaction

wave expanding into vacuum, as for the case illustrated in

Fig. 2(a). This is not quite correct: such a situation is only

reached when uL is sufficiently negative. More specifically,

the initial condition (62) pertains either to case (A) when

uL < �2
ffiffiffiffiffi
hL

p
, to case (D) when juLj < 2

ffiffiffiffiffi
hL

p
, or to case (F)

when uL > 2
ffiffiffiffiffi
hL

p
. In other words, this is only when the initial

left velocity (the initial velocity of the water of the dam) is

negative enough that a rarefaction wave is observed. This

behavior is different from the one observed in the similar

case for the nonlinear Schr€odinger equation.18 In the present

case, the most natural situation where uL¼ 0 (the water in

the dam is initially steady) pertains to case (D) for which the

dam break leads to a DSW where the field h becomes nega-

tive. Only when uL becomes negative enough [in practice,

when it becomes lower than �2
ffiffiffiffiffi
hL

p
, i.e., when one reaches

the regime (A)] does the excursion of h(x, t) below zero

disappear.

This point deserves a slightly more detailed discussion:

for the dam break problem in case (D), one can easily check

that the plateau region has a vanishing extension (sL
þ ¼ 1

2
kL
þ

¼ sR
�). The behavior of the Riemann invariants is depicted in

Fig. 9. In this case, k1¼ k2 and the DSW is described by a

nonlinear trigonometric wave20,21 whose large amplitude

boundary (at sR
�) corresponds to an algebraic soliton of

type (28) for which the largest value of l is k4 ¼ kL
þ. Then,

from (13), the corresponding extremal value of h is � 1
2
k2

4

¼ � 1
2
ð1

2
uL þ

ffiffiffiffiffi
hL

p
Þ2: it is always negative, and only vanishes

when one leaves regime (D) to enter regime (A), i.e., when

uL � �2
ffiffiffiffiffi
hL

p
: in this case, the plateau P and the right bound-

ary R coincide and the flow is of the type exemplified in Fig.

2(a), which corresponds to an RW expanding into empty

space, as intuitively expected.

B. Piston problem

The piston problem corresponds to the situation where a

hard wall (the piston) is moving (in the case considered here,

with a constant positive velocity V) with respect to a steady

fluid. We work henceforth in the rest frame of the piston. In

this frame, the piston is located at x¼ 0, and the fluid is

incoming from the right with a constant velocity uR¼�V and

a fixed constant depth hR. The boundary condition on the pis-

ton is u(0, t)¼ 0: the fluid in contact with the piston is at rest

with respect to it. The boundary condition for the height is

taken as h(0, t)¼ 0, or hx(0, t)¼ 0. These two conditions, of

Dirichlet or Neumann type, are equivalent if treated within

the Whitham approach, since the corresponding profiles differ

only locally near 0, over a characteristic length of order 1.

For intermediate velocities V, the profile is of the type

characterized by the arrangement of Riemann invariants dis-

played in Fig. 4(d): there is a plateau in contact with the piston,

then, at its right, a DSW, and finally a plateau corresponding to

the right boundary condition, characterized by kR
6 ¼ 1

2
uR

6
ffiffiffiffiffi
hR

p
. The plateau in contact with the piston is characterized

by a height hL (unknown at this point) and a velocity vL¼ 0;

hence kL
6 ¼ 6

ffiffiffiffiffi
hL

p
. The constancy of the lower Riemann

invariant across the structure of Fig. 4(d) yields kL
� ¼ kR

�,

which fixes the value of hL ¼ ð
ffiffiffiffiffi
hR

p
� uR=2Þ2. The velocities

FIG. 9. The upper plot is a sketch of the behavior of the Riemann invariants

describing the dam break problem when juLj < 2
ffiffiffiffiffi
hL

p
[type (D) configura-

tion]. The dispersionless Riemann invariants describing the boundary condi-

tions at the right are kR
þ ¼ kR

� ¼ 0, and at the left, kL
6 ¼ 1

2
uL6

ffiffiffiffiffi
hL

p
. The two

lower plots compare the results of the numerical simulations (pink solid

lines) with the theoretical results (black solid lines) for the boundary condi-

tion hL¼ 1 and uL¼ 0.
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of the edges of the DSW are determined from (51) and (52). In

particular, the boundary between the left plateau and the DSW

has a velocity s� ¼
ffiffiffiffiffi
hR

p
� V=2. This velocity vanishes when

V ¼ 2
ffiffiffiffiffi
hR

p
. For piston velocities V larger than this threshold,

the plateau in contact with the piston disappears and the struc-

ture of the flow changes: in a good approximation, it is repre-

sented by a stationary, non-modulated cnoidal wave (SCW) in

contact with the piston. This SCW is connected to its right

with a partial DSW, itself connecting to a plateau defined by

the right boundary condition. This corresponds to the arrange-

ment of Riemann invariants displayed in Fig. 10.

The fact that the cnoidal wave located in the region

0< n< s– in Fig. 10 is stationary reflects in the relation

k1þ k2þ k3þ k4¼ 0, which fixes its phase velocity to zero.

This yields

k3 þ k4 ¼ �k1 � k2 ¼ �uR ¼ V: (63)

Another condition is obtained by imposing that there is no

flux through the piston, and therefore the average flux van-

ishes: hhui ¼ 0 [it is evident that there is no contribution of

the last term in the first Eq. (3) to the average flux, since

huxxi � 0 by virtue of local periodicity]. The relation (63)

yields s1¼ 0 and Eq. (13) now reads u¼�2 l and h(l)

¼�s2� 2l2, where s2 ¼ k1k2 � ðk1 þ k2Þ2 þ k3k4. Hence

we get the condition

s2hli þ 2hl3i ¼ 0 ; (64)

where hlni ¼ L�1
Þ

1
2
lndl=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�PðlÞ

p
. Condition (64) is ful-

filled for s3 ¼ ðk1 þ k2Þðk3k4 � k1k2Þ ¼ 0. Together with

(63) this yields a system for the yet unknown quantities k3

and k4. The obvious solutions are [taking into account the

ordering (11)] k4¼�k1 and k3¼�k2. Then, in the SCW, the

height h oscillates between the two opposite values

62V
ffiffiffiffiffi
hR

p
and the velocity v between �V62

ffiffiffiffiffi
hR

p
. The veloc-

ities of the edges of the DSW are s� ¼ v3ðk1; k2; k3; k4Þ and

sþ ¼ v3ðk1; k2; k4; k4Þ ¼ 2
ffiffiffiffiffi
hR

p
þ V � hR=ðV þ

ffiffiffiffiffi
hR

p
Þ. The

wavelength of the large amplitude edge of the DSW (at

n¼ s–) is given by

L ¼ 2K m�ð Þ
V

; where m� ¼ 4hR

V2
(65)

is the modulus (20) of the elliptic functions; m*< 1 in the

present case since V > 2
ffiffiffiffiffi
hR

p
. As is checked in Fig. 10, these

predictions are in excellent agreement with the numerical

simulations.

Two comments are in order here: first, the numerical

simulations show that the cnoidal wave is weakly modulated,

and, as suggested in Refs. 12 and 24, it should be more accu-

rately described as a two phase solution. However, as seen in

Fig. 10, the modulation is small, and the approximate

description of the structure as an SCW is quite accurate.

Second, and more important, we have here an example of

dynamically stable non-modulated cnoidal wave with large

amplitude (h oscillate between 65 in the SCW region of Fig.

10). This is quite different from the situation observed in

Sec. IV [region (F) in Fig. 5] where an expected SCW result-

ing from the collision of two DSWs has proven unstable.

This example shows that the wave structures in the piston

problem may have properties quite different from those aris-

ing from the evolution of initial discontinuities.

VI. CONCLUSION

In this paper, we have developed a full classification of

the wave patterns evolving dynamically from initial disconti-

nuities according to the Kaup-Boussinesq equation with posi-

tive dispersion. At variance with the case of negative

dispersion considered in Ref. 12, the classification used here

follows closely the one for the nonlinear Schr€odinger equa-

tion,18 although there are a number of technical differences

caused by the possible negative value of the “height” field

and also by different representations of dark and bright

“soliton trains” and corresponding changes of the Whitham

modulation equations. This common behavior of the positive

dispersion Kaup-Boussinesq and the nonlinear Schr€odinger

equation is related to the common sign of dispersion in both

equations and will be clarified in a forthcoming publication.16

Our results can find applications as approximations of

the dynamics of polarization waves in two-component Bose-

Einstein condensates21 and of magnetic systems with easy-

plane anisotropy.25 Work in this direction is in progress.
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