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Generation of dispersive shock waves by the flow of a Bose-Einstein condensate
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We study the flow of a one-dimensional Bose-Einstein condensate incident onto a narrow obstacle. We consider
a configuration in which a dispersive shock is formed and propagates upstream away from the obstacle while the
downstream flow reaches a supersonic velocity, generating a sonic horizon. Conditions for obtaining this regime
are explicitly derived and the accuracy of our analytical results is confirmed by numerical simulations.
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I. INTRODUCTION

The flow of a quantum fluid past an obstacle can generate
various excitations. In the classical example of liquid He-II
these are phonons and rotons introduced by Landau [1] in
his theory of superfluidity. According to Landau, superflu-
idity is lost when the flow velocity past an obstacle or
through a capillary tube exceeds the threshold of creation of
Cherenkov-like radiation of linear waves (or, in other words,
of quantum quasiparticles). In actual experiments where He-
II flows through a narrow channel, superfluidity is lost at
velocities much lower than what is predicted by the Landau
criterium (see, e.g., [2]). This discrepancy between theory and
experiment was explained by Feynman [3] as resulting from
the nucleation of nonlinear excitations: vortex rings generated
by the flow past the obstacle.

The same phenomenology is observed in the flow of
Bose-Einstein condensates (BECs), either for trapped ultracold
atomic vapors or polaritons in semiconductor microcavities,
with special features linked to the specific dispersion relation
of elementary excitations in these systems: for instance, the
Landau critical velocity is the velocity of sound c, and
in two dimensions (2D) the Cherenkov radiation forms an
interference pattern located outside of the Mach cone [4–7].
These specificities being taken into account, one observes
phenomena similar to those observed in liquid helium: in
2D or 3D flows past obstacles, superfluidity is broken at
velocity lower than c [8,9] because of the nucleation of vortices
[10–14] or generation of effectively stable oblique solitons
[15–17] (recently observed in experiments with polariton
condensates [18,19]), and more complicated dispersive shock
waves (DSW) patterns [20–22].

The situation in quasi-1D flows is similar: although gen-
eration of vortices or oblique solitons is impossible in this
case, dark solitons are still easily generated stable nonlinear
excitations [23,24]. Together with DSW, these nonlinear
excitations are, as is already the case in higher dimension, keys
ingredients for understanding the time-dependent dynamics
of guided BECs in presence of obstacles, as experimentally
studied in Refs. [25–27]. Besides their interest for studying
nonlinear quantum transport, quasi-1D BEC flows have also
been suggested as model systems for creating sonic horizons
suitable for the experimental observation of acoustic analogs of
Hawking radiation [28–34]. In particular, an interesting type of
stationary sonic horizon has been identified in Refs. [34,35]. It

corresponds to the situation where an upstream subsonic region
is separated from a downstream supersonic one by an obstacle
of the form of a δ potential (see Fig. 1 and discussion below).
The present work is devoted to the study of the dynamics of the
formation of this configuration. We show that it can be obtained
by launching a BEC wave packet onto a localized obstacle (not
necessarily a δ peak [36]). When the wave packet reaches the
potential, the density typically piles up in front of the obstacle,
forming a plateau accompanied by a DSW which is ejected
upstream. We study the characteristic features of this DSW in
detail (both analytically and numerically) and determine for
which parameters (specific to the flow and to the obstacle) the
situation just described can be realized.

Theoretical analysis of 1D flows past an obstacle has
already been addressed in a number of papers (see, e.g.,
[35,37–40]). In these papers it was found that there exist two
critical velocities u− and u+ (u− < c < u+). The subcritical
flows whose velocity u is below u− are superfluid and generate
no excitations in vicinity of the obstacle; the supercritical ones
with velocity above u+ do not generate nonlinear DSW but the
Cherenkov radiation is effective and there is no sonic horizon;
finally, in the transcritical region, for flows whose velocity u

lies between the two critical values u− < u < u+, DSW are
generated, generally speaking at both sides of the obstacle,
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FIG. 1. (Color online) Density profile in vicinity of the δ potential
represented by a (red) vertical straight line. The flow is stationary, with
a velocity directed toward positive x as indicated by the arrow. The
density in the region x < 0 is a portion of a dark soliton (see Sec. III B)
with asymptotic upstream density (n1) and subsonic velocity. The
flow in the downstream region x > 0 has a constant density and a
supersonic velocity.
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and only in a very narrow range of velocities both DSW are
detached from the obstacle. Hence, it seems difficult to reach
a situation such as the one illustrated in Fig. 1.

Note however that the above quoted references [35,37–40]
mainly considered flows with identical asymptotic parameters
at both sides far enough from the obstacle. This choice of
boundary conditions is natural when the obstacle is put into
motion starting from a situation where it is immobile in a
condensate at rest. However, another setup is possible, which
is of considerable practical interest, being similar to the flow
of a fluid through a Laval nozzle [41]. In this configuration
(already considered in Ref. [42]) the parameters of the flow
are kept fixed only on the side of the incoming flow and the
downstream flow expands freely into vacuum. In this case a
DSW can be created only upstream and the parameters of the
shock can be calculated analytically for two typical models
of obstacle potential: (i) a smooth potential with typical size
greater than the characteristic healing length ξ and (ii) a short-
range potential acting at distances much less than ξ . In the
first case the dispersion effects can be neglected at the location
of the obstacle (in the so called hydraulic approximation) and
the theory reduces to the scheme presented in Ref. [40]. In the
second case the potential can be approximated by a δ function
and its action amounts to the matching condition of exact
solutions at the point of its location. This last case has not
been considered so far in this kind of problem and we shall
discuss it here in detail. We will show that it makes it possible
to realize asymptotically (i.e., at large time) a sonic horizon
such as represented in Fig. 1.

The paper is organized as follows. In Sec. II we present
the problem and the typical dynamical situation we aim at
describing. In Sec. III we discuss the time-dependent analytical
solutions of the flow in each of the characteristics regions of
space identified in the previous section. In Sec. IV we briefly
compare our results with the ones obtained in the case of a
thick obstacle. In Sec. V we compare the analytical results
with numerical simulations and propose an improvement of
the analytical description. Finally we present our conclusions
in Sec. VI.

II. FORMULATION OF THE PROBLEM

In the so-called 1D-mean-field regime [43] the dynamics of
the condensate is described by the Gross-Pitaevskii equation
which governs the evolution of the wave function ψ(x,t). Ex-
pressing densities in units of a reference density nref , energies,
distances, and velocities in units of the corresponding chemical
potential μref(nref), healing length ξref = h̄/(mμref)1/2, and
speed of sound cref = h̄/(mξref), one can write the Gross-
Pitaevskii equation in the form

i ψt = − 1
2ψxx + [U (x) + |ψ |2]ψ. (1)

The Gross-Pitaevskii equation is a sufficient ingredient for
describing the generation of DSW in a BEC as shown by
the comparisons between theory and experiments displayed in
Refs. [44,45].

By means of the Madelung substitution

ψ(x,t) =
√

n(x,t) exp

[
i

∫ x

u(x ′,t) dx ′
]
e−iμt , (2)

the Gross-Pitaevskii equation can be cast into an
hydrodynamic-like form for the density n(x,t) and the flow
velocity u(x,t):

nt + (nu)x = 0,
(3)

ut + uux + nx +
(

n2
x

8n2
− nxx

4n

)
x

= −Ux.

We now briefly introduce the concept of Riemann invariant
by considering the very simple example of the dispersionless
limit of Eqs. (3). This case is not treated only for pedagogical
purposes. At the boundary between the DSW and regions of
flat profiles (where dispersion is indeed negligible) it will make
it possible to match the description of the nonlinear wave in
terms of elaborate Riemann variables [Eqs. (13) and (14)] with
a simple description of the type specified by Eqs. (5), (6), and
(7) [this matching will be achieved by means of Eqs. (23) and
(25)].

The last term on the left hand-side of the last of Eqs. (3) is
responsible for the dispersive character of the BEC wave. In
the absence of potential, and in a regime where the effects of
dispersion can be neglected, Eqs. (3) reduce to

nt + (nu)x = 0, ut + uux + nx = 0. (4)

These equations can be written in a more symmetric form
by introducing the following Riemann invariants:

λ±(x,t) = u(x,t)

2
±

√
n(x,t), (5)

which evolve according to the equations [equivalent to (4)]

∂tλ± + v±(λ+,λ−) ∂xλ± = 0 (6)

with

v±(λ+,λ−) = 1
2 (3λ± + λ∓). (7)

We will encounter below other Riemann invariants which
describe the DSW and obey equations similar to (6) and (7)
[Eqs. (19) and (20)]. However, the dispersive nature of the
shock will be there fully taken into account, in contrast to the
simple approximations (4), (6), and (7).

Let us now present the initial velocity and density profile
of the incident flow. We suppose that at initial time (t = 0) a
half-infinite pulse of BEC with a step-like distribution

ψ(x,t = 0) =
{√

n0 exp{iu0x} for x < 0,

0 for x > 0
(8)

collides with a repulsive δ potential located at the origin of the
coordinate system:

U (x) = κ δ(x), κ > 0. (9)

In other words, the initial density and flow velocity are

n(x,t = 0) =
{

n0 for x < 0,

0 for x > 0,
(10)

u(x,t = 0) =
{

u0(> 0) for x < 0,

0 for x > 0.
(11)

At later times, the typical situation we aim at describing is illus-
trated in Fig. 2 which represents the density distribution n(x,t)
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FIG. 2. (Color online) Sketch of the density profile n(x,t) at a
given time t > 0. The flow is directed toward positive x. The regions
denoted as A, B, C, and D are presented in the text. Points X−(t)
and X+(t) are the small amplitude edge and soliton edge of the DSW
(region B). The characteristic densities n0, n1, and n2 are defined in
the text [Eqs. (10), (24), and (26)].

at some fixed time t > 0. It corresponds to a flow initiated by
the profile (10) and (11) in which a plateau develops upstream
of the potential (region C) while a dispersive shock wave
(region B) propagates away from the obstacle, in the negative
direction. The flow just downstream from the obstacle forms
a supersonic plateau (region D). The right edge of region D

matches with a simple-wave solution (not shown in Fig. 2)
which describes how the density vanishes at large x. In the
present work we are not interested in the description of this
part of the flow pattern. As one can see, the typical flow we
consider can be subdivided in this case into several regions
(denoted as A, B, C, and D in Fig. 2) with specific features in
each region.

(1) In region A [x < X−(t)] we have the incoming flow ψA

with the parameters (10) and (11). This flow can be considered
as a boundary condition:

nA(x,t) = n0,

uA(x,t) = u0,
x < X−(t) for all t > 0. (12)

In this region there is no dispersion nor external potential and
the analysis in terms of Riemann invariants (5) is trivially valid:
the Riemann invariants are constant with λA

± = 1
2u0 ± √

n0.
(2) In region B [X−(t) < x < X+(t)] a dispersive shock

wave takes place which can be described as a modulated
periodic solution ψB(x,t) of Eqs. (1) and (3) with U (x) = 0.
Such a solution can be written in the form (see, e.g., [40,46])

nB(x,t) = 1
4 (λ4 − λ3 − λ2 + λ1)2 + (λ4 − λ3)(λ2 − λ1)

× sn2[
√

(λ4 − λ2)(λ3 − λ1) (x − V t),m], (13)

uB(x,t) = V − C

nB(x,t)
, (14)

where sn is the sine elliptic Jacobi function,

V = 1

2

4∑
i=1

λi, m = (λ2 − λ1)(λ4 − λ3)

(λ4 − λ2)(λ3 − λ1)
(15)

and

C = 1
8 (−λ1 − λ2 + λ3 + λ4)(−λ1 + λ2 − λ3 + λ4)

× (λ1 − λ2 − λ3 + λ4). (16)

In strictly periodic solutions the parameters λ1 � λ2 � λ2 �
λ4 are constant and they determine characteristics of the wave
such as the amplitude of oscillations

a = (λ2 − λ1)(λ4 − λ3) (17)

and the wavelength

L = 2 K(m)√
(λ4 − λ2)(λ3 − λ1)

, (18)

K(m) being the complete elliptic integral of the first kind. In
the limit m → 0 (λ2 = λ1), (13) describes a small amplitude
sinusoidal wave, and in the opposite case m → 1 (λ2 = λ3)
it describes a dark soliton. In the case of a slowly modulated
dispersive shock wave such as occurring in region B, the λ are
functions of x and t which vary weakly over one wavelength
and one period. Their slow evolution is governed by the
Whitham equations [46,47]

∂λi

∂t
+ vi(λ1,λ2,λ3,λ4)

∂λi

∂x
= 0, i = 1, 2, 3, 4. (19)

Comparing with Eqs. (6) and (7) one sees that the λi are the
Riemann invariants of the Whitham equations. The vi are the
characteristic velocities. Their λi’s dependence is much more
complicated than the simple linear combinations appearing
in (7); they can be expressed in terms of complete elliptic
integrals of the first and the second kind [48,49]. One can
use the following convenient formula for their computation
[46,50]:

vi = V − 1

2

L

∂L/∂λi

, i = 1, 2, 3, 4. (20)

At x = X−(t) we have the “small amplitude edge” of the dis-
persive shock wave [with λ2(X−(t),t) = λ1(X−(t),t)] where
the wave should satisfy the matching conditions with the flow
in region A. This implies that the mean values of the density nB

and the flow velocity uB coincide with n0 and u0, respectively:

nB(X−(t),t) = n0, uB(X−(t),t) = u0. (21)

Since at the left edge of the DSW we have λ2 = λ1, the
Whitham equations (19) for λ3 and λ4 can be shown to simplify
to

∂tλ3 + 1
2 (3λ3 + λ4) ∂xλ3 = 0,

(22)
∂tλ4 + 1

2 (λ3 + 3λ4) ∂xλ4 = 0,

and these equations can be identified with the Riemann form
(6) and (7) of the dispersionless limit (4) of Eqs. (3) (without
potential); that is, one has

λ4(X−(t),t) = λA

+ = 1
2u0 + √

n0 ≡ λ0,
(23)

λ3(X−(t),t) = λA

− = 1
2u0 − √

n0.

The other edge of the DSW occurs at x = X+(t). We denote
it as the “soliton edge” because at this point the density
oscillations are soliton-like : λ2(X+(t),t) = λ3(X+(t),t) (i.e.,
m = 1). The matching conditions at X+ read

nB(X+(t),t) = n1, uB(X+(t),t) = u1, (24)

where we suppose that X+ is located far enough from the
origin in order that the stationary solution ψC in region B
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reaches its asymptotic values nC(x) → n1, uC(x) → u1 when
x � X+ (i.e., in the formal limit x → −∞ in region B, see
below for more details). Since at the soliton edge λ2 = λ3, one
can show as previously that the Whitham equations for λ4 and
λ1 reduce to a form similar to (6) and (7) where λ4 plays the
role of λ+ and λ1 plays the role of λ−. Hence one has

λ4(X+(t),t) = λC

+ = 1
2u1 + √

n1,
(25)

λ1(X+(t),t) = λC

− = 1
2u1 − √

n1.

(3) Region C corresponds to a smooth and stationary
solution ψC(x,t) of the Gross-Pitaevskii equation for X+ <

x < 0 and region D to a smooth and stationary solution ψD for
0 < x < Xsw. The flow at x > Xsw represents a simple wave
solution (with small dispersive corrections) connecting region
D with vacuum and is of no interest to us (this is the reason
why we do not show the region x > Xsw in Fig. 2). In region
D we have a uniform flow

nD(x,t) = n2 = const

uD(x,t) = u2 = const
for 0 < x < Xsw. (26)

Since the flow is stationary in both regions C and D,
the parameters (24) and (26) must satisfy the condition of
conservation of flux

n1u1 = n2u2, (27)

and the Bernoulli law (constant value of the chemical
potential μ)

1
2u2

1 + n1 = 1
2u2

2 + n2 = μ. (28)

One must also satisfy the condition of continuity of the wave
function at x = 0,

ψC(0,t) = ψD(0,t), (29)

and the jump condition for the derivative of the wave function
which follows from Eqs. (1) and (9)

∂xψD(0,t) − ∂xψC(0,t) = 2 κ ψC(0,t). (30)

Thus, our task is to find the solution which satisfies all the
above matching conditions [Eqs. (21), (24), (27)–(30)] and
yields the parameters n1, u1, n2, u2, and the positions X±(t)
of the edges of the DSW as functions of the incoming flow
parameters n0, u0, and of the potential strength κ . It is clear that
such a solution does not exist for any choice of the parameters
n0, u0, κ . For example, in the limit κ → 0 our system reduces
to the well-known “dam problem” [46,47] which is described
in the hydrodynamic approximation by a simple wave solution
without formation of dispersive shock wave. Therefore our
solution should be complemented by an explicit statement of
its conditions of existence.

III. SOLUTION OF THE PROBLEM

A. Dispersive shock wave (region B)

As was indicated above, the DSW is described by four
parameters λi , i = 1, 2, 3, 4, which change slowly along the
wave. We suppose that the DSW is detached from the obstacle
and propagates upstream with the velocities V± of the edge
points X±. The distance at which ψC reaches its asymptotic

value (with nC � n1, uC � u1) when one goes away from the
origin is of order of the healing length in the region C, that
is, ∼n

−1/2
1 . Since this distance is much less than the (time

increasing) length |X+|, we can assume in good approximation
that the formation of the plateau nC � n1, uC � u1 occurs
instantaneously. Then the DSW can be described by a self-
similar solution of the Whitham equations (19) and for the
left-propagating DSW we get

λ1 = const, λ3 = const, λ4 = const, (31)

and

v2(λ1,λ2(x/t),λ3,λ4) = x

t
. (32)

This is the so-called Gurevich-Pitaevskii problem introduced
into the theory of DSW in Ref. [51] and used for description of
internal waves generated by the flow of water past an uneven
bottom in [52,53] (see also [40] and references therein).

When n1 and u1 are found, the values of the constants λ1,
λ3, and λ4 can be determined from Eqs. (23) and (25), whereas
Eqs. (20) and (32) determine λ2 as a function of x/t :

v2(λ1,λ2,λ3,λ4)

= 1

2

∑
i

λi + (λ3 − λ2)(λ2 − λ1)K(m)

(λ3 − λ2)K(m) − (λ3 − λ1)E(m)
= x

t
.

(33)

The plots of λi , i = 1, 2, 3, 4, as functions of x/t are displayed
in Fig. 3. The left edge of the DSW moves with velocity

V− ≡ X−
t

= v2(λ1,λ1,λ3,λ4)

= 1

2
(2λ1 + λ3 + λ4) + 2(λ3 − λ1)(λ4 − λ1)

2λ1 − λ3 − λ4
, (34)

−3 −2 −1
 x/t

−2

−1

0

1

2

λ2(x/t)

λ3

λ4

λ1

λ+

A λ+

C

λ−

C

λ−

A

region Bregion region
A C

0V−− V+

FIG. 3. (Color online) The Riemann invariants plotted as func-
tions of the self-similar variable x/t in regions A, B, and C. In
region C the (red) dashed line (not considered in Sec. III) corresponds
to the soliton train with λ2 = λ3 = x/t − u1/2 discussed in Sec. V
[Eq. (86)]. The figure is drawn for the situation studied in Sec. V,
with n0 = 1, u0 = 1, and κ = 5.2. The corresponding velocities of
the edges of the DSW (region B) are V− = −2.4 and V+ = −0.48.
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and the right edge moves with velocity

V+ ≡ X+
t

= v2(λ1,λ3,λ3,λ4) = 1

2
(λ1 + 2λ3 + λ4). (35)

For finding n1, u1, and, hence, λ1, we have to turn to the
solution of the Gross-Pitaevskii equation in region C and its
matching with the solution in region D.

B. Flow across the δ potential (regions C and D)

In regions C and D the flow is stationary, ψ(x,t) =
e−iμtϕ(x), so that the Gross-Pitaevskii equation reduces to

− 1
2ϕxx + |ϕ|2ϕ + κδ(x)ϕ = (

1
2u2

1 + n1
)
ϕ. (36)

It is convenient to introduce temporarily the variables

ϕ = √
n1φ, u1 = √

n1 Mc,
(37)

y = √
n1 x, κ̃ = κ√

n1
,

Mc being the asymptotic (formally at x → −∞) Mach number
of the flow in region C. Then Eq. (36) takes the form

− 1
2φyy + |φ|2φ + κ̃δ(y)φ = (

1
2M2

c + 1
)
φ. (38)

From conservation of the flow (27) we get
u2

u1
= n1

n2
≡ η, (39)

and η can be found as a function of Mc = u1/
√

n1 < 1 with
the use of Eq. (28) or

M2
c

2
η3 −

(
1 + M2

c

2

)
η + 1 = 0. (40)

The relevant solution (η > 1) of this equation is given by

η = 1

2

(√
1 + 8

M2
c

− 1

)
. (41)

We look for a solution of Eq. (38) of the form

φ(y) = eiyMc {cos θ tanh[(y − y0) cos θ ] − i sin θ} (42)

for y < 0 and

φ(y) = −1

η
ei(yηMc+γ ) (43)

for y > 0. In the above expressions (42) and (43) we have
u2/

√
n1 = ηMc and sin θ = Mc. This solution has been first

identified in Ref. [35]. The flow upstream from the obstacle
corresponds to a portion of a dark soliton which is attached
at y = 0 to a downstream supersonic flow. The condition of
continuity of the function φ(y) at y = 0 [see (29)] gives

sin γ = √
η sin θ, cos γ = √

η tanh(y0 cos θ ), (44)

from which we get

tanh(y0 cos θ ) =
√

1 − ηM2
c

η
(
1 − M2

c

) . (45)

The condition (30) takes the form

φy(0+) − φy(0−) = 2̃κφ(0). (46)

Substitution of expressions (42) and (43) in this relation gives
after some algebra with the use of Eqs. (44) and (45) the
equation

(η − 1)

√
1

η2
− M2

c = 2̃κ. (47)

Elimination of η with the help of Eqs. (41) yields

κ̃ = F (Mc), i.e., κ = √
n1F (Mc), (48)

where

F (Mc) = Mc

8

(√
1 + 8

M2
c

− 3

)3/2

. (49)

Hence, according to (37)

u1 = √
n1 Mc = κMc

F (Mc)
. (50)

Then Eqs. (39) and (41) yield the expressions for n2 and u2:

n2 = n1

η
= κ2M2

c

4F 2(Mc)

(√
1 + 8

M2
c

+ 1

)
, (51)

u2 = u1η = κMc

2F (Mc)

(√
1 + 8

M2
c

− 1

)
. (52)

We thus have obtained the parameters n1, u1, n2, u2 as func-
tions of κ and Mc. We now have to relate Mc to the physical
parameters n0 and u0 which describe the incoming flow.

C. The global solution

To get the global solution, we use the relation λA
+ = λ4 =

λC
+ [see Eqs. (23) and (25) and Fig. 3] and (48) and (50) to

obtain

λ0 ≡ 1

2
u0 + √

n0 = 1

2
u1 + √

n1 = κ

F (Mc)

(
1 + Mc

2

)
.

(53)

As a result, all expressions can be written in a parametric form
with Mc playing the role of the parameter. From (53) we get

κ(λ0,Mc) = λ0
F (Mc)

1 + Mc/2
, (54)

which determines Mc as a function of κ and λ0. Substitution
of this expression into (48)–(50) yields

n1(λ0,Mc) = λ2
0

(1 + Mc/2)2
, u1(λ0,Mc) = λ0Mc

1 + Mc/2
, (55)

n2(λ0,Mc) = λ2
0M

2
c

(2 + Mc)2

(√
1 + 8

M2
c

− 1

)
, (56)

u2(λ0,Mc) = λ0Mc

2 + Mc

(√
1 + 8

M2
c

+ 1

)
. (57)

In combination with (54), formulas (55)–(57) determine—in
a parametric form—the dependence of n1, u1, n2, u2 on κ and
λ0 = 1

2u0 + √
n0. These formulas represent an important step

in our study since they determine the overall structure of the
flow (n1, u1, n2, and u2) as a function of the initial parameters
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characterizing the incident beam (n0 and u0) and the obstacle
(κ) with which it collides.

Actually, the overall structure of the flow is fully character-
ized only once the locations X−(t) and X+(t) of the boundaries
between the different zones are known (cf. Fig. 2). According
to our self-similarity hypothesis X±(t) = V± t , where V± are
the time-independent velocities of the boundaries. Now that n1

and u1 are found, V+ and V− are simply determined as follows.
One first can get [from Eqs. (23) and (25)] the expressions for
the three Riemann invariants which remain constant in the
region of the DSW

λ1 = −λ0
2 − Mc

2 + Mc

,

λ3 = 1

2
u0 − √

n0 (58)

λ4 = λ0 = 1

2
u0 + √

n0

Then, substitution of formulas (58) into Eqs. (34) and (35)
yields the desired expressions of the velocities V− and V+ of the
edge points of the shock wave. In particular, it is interesting to
realize [cf. Eq. (61)] that the velocity V− of the small amplitude
edge X− of the DSW corresponds to the group velocity of
linear excitations in region A of the system with wavelength
L(X−), where L is the (position-dependent) wavelength of
the nonlinear oscillations (13). This is obtained by noticing
that the explicit formula (34) and the expressions (58) of the
Riemann invariants makes it possible to write V− under the
form

V− = u0 + 2
√

n0
1 + Mc/2

Mc − 2 − 2M0

×
[

1 + 2
(2 + M0)(M0 − Mc)

(1 + Mc/2)2

]
, (59)

where M0 = u0/
√

n0. Similarly, when λ1 = λ2, the expression
(18) for L reduces to

L(X−) = π√
(λ4 − λ1)(λ3 − λ1)

= π√
n0

(1 + Mc/2)√
(M0 + 2)(M0 − Mc)

. (60)

Defining k = 2π
√

n0/L(X−) as the dimensionless wave vec-
tor at the small amplitude edge of the DSW, it is a simple
exercise to show that using Eq. (60) one can rewrite (59) under
the form

V− = u0 − c0
1 + k2/2√
1 + k2/4

, (61)

which is the group velocity of excitations whose dispersion
relation is given by ω(k) = u0k − c0k

√
1 + k2/4, where c0 =√

n0 is the speed of sound in a uniform system at rest
with density n0. This dispersion relation corresponds to (left
propagating) linear elementary excitations in a BEC with
constant density n0 and constant velocity u0. Relation (61)
is very natural since V− is the velocity of the small amplitude
edge X− at which the DSW is linear: the linear front of a wave
packet should propagate with the appropriate group velocity.
This is a generic feature of the small amplitude edge of a
DSW, as proven on general grounds in Ref. [54]. Relation (61)

nonetheless constitutes a nontrivial check of the validity of our
description since the connection between V− and L(X−) is not
straightforward.

As for the soliton edge of the DSW, we obtain from Eqs. (35)
and (58)

V+ = u0(1 + Mc) − 2
√

n0

2 + Mc

. (62)

This is the velocity of the edge soliton whose amplitude is
equal to

a = (λ3 − λ1)(λ4 − λ3) = 4
√

n0(u0 − Mc

√
n0)

2 + Mc

. (63)

Note that our approach not only determines the gross
features of the flow (those which are depicted in Fig. 2: u1,
n1, u2, n2, and X±) but also yields a precise prediction for the
density profile in the region of the obstacle and of the DSW. In
the region of the obstacle the order parameter is determined by
Eqs. (42) and (43). In the region of the DSW, the velocity and
the density profile are determined by Eqs. (13) and (14) which
need the input of the λi [Eqs. (32) and (58)]. These predictions
will be tested against numerical simulations in Sec. V.

The solution found here is based on two assumptions:
(i) that the discontinuity n1 > n0 arises after collision of the
BEC pulse with the obstacle. This is equivalent to the condition
a > 0 or

u0√
n0

> Mc, (64)

and (ii) that the DSW is detached from the obstacle, that is,
V+ < 0 or

u0√
n0

<
2

1 + Mc

. (65)

If the density n0 is fixed, then Eq. (64) gives the lower velocity
u0 below which—and Eq. (65) gives the upper velocity above
which—the solution we are interested in disappears. These
critical values of u0 are functions of the incoming density n0

and of the potential strength κ determined by the equations

F

(
u0√
n0

)
= κ√

n0
(lower boundary) (66)

and

u0√
n0

F

(
2
√

n0

u0
− 1

)
= κ√

n0
(upper boundary), (67)

where we recall that function F is defined by (49). These two
curves are plotted in Fig. 4.

For small κ/
√

n0 we get the series expansions:

u0√
n0

� 1 − 3

2

(
κ√
n0

)2/3

(lower boundary) (68)

and

u0√
n0

� 1 + 3

4

(
κ√
n0

)2/3

(upper boundary). (69)

In the opposite limit of large κ/
√

n0 we get

u0√
n0

� 1

2
√

2

(
κ√
n0

)−2

(lower boundary) (70)
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0 1 2 3 4 5
κ /√n0

0

0.5

1

1.5

2
u

0 
/ c

0

FIG. 4. Boundaries of the region of parameters for which the
DSW is expelled upstream from the obstacle. The vertical axis is the
speed of the incident beam in units of the speed of sound c0 = √

n0.
The horizontal axis is the dimensionless strength κ/

√
n0 of the δ

potential. The DSW is expelled from the region of the obstacle when
the point representative of the system lies between the two solid
curves which correspond to Eqs. (66) and (67). The dashed curves
are the approximate boundaries (68), (69) (valid when κ/

√
n0 
 1),

(70), and (71) (valid when κ/
√

n0 � 1).

and

u0√
n0

� 2 − 2
√

2

(
κ√
n0

)−2

(upper boundary). (71)

We emphasize here that Eqs. (66) and (67) are important
results of our study because they determine the region of
parameters for which our analytical solution exists, that is, for
which (i) the DSW is expelled upstream from the obstacle and
(ii) the flow forms in vicinity of the obstacle a sonic horizon
such as schematically represented in Fig. 1.

In this line it is important to notice that the above approach
is not applicable for positive values of the soliton edge velocity
V+ > 0, that is, when the soliton edge of the DSW is attached
to the obstacle. This is different from what happens in the case
of thick obstacles [40] where the existence of a characteristic
length l of the potential representing the obstacle plays a
crucial role. Since in this case l is large compared with the
wavelength of the (possibly attached) DSW, the regions of
DSW and of the “hydraulic solution” in vicinity of the obstacle
are well separated and one can safely assume formation of a
plateau at the left boundary of the region of the hydraulic
solution. In the present case of a δ potential such a plateau
forms at a distance of the same order of magnitude as the
DSW wavelength and, hence, in the case where the DSW is
attached to the obstacle the solution of region C (see Fig. 2)
completely disappears and the formulas derived above lose
their meaning.

IV. COMPARISON WITH THE FLOW PAST A WIDE
PENETRABLE BARRIER

In this section we briefly compare the results we obtained
for a thin potential with those obtained in Ref. [40] for a wide
and smooth potential U (x) which takes its maximal value at
x = 0,

Um = max{U (x)} = U (0), (72)

and differs from zero only inside the region

−l � x � l. (73)

If l and all lengths characteristic of the potential are much
larger than the healing length of the condensate, the transition
from an upstream subsonic flow to a downstream supersonic
one is described by the so-called “transcritical flow” [40]. It
is obtained for an incoming velocity u0 ∈ [u−,u+], where the
critical velocities u± are the roots of the equation

1
2u2 − 3

2u2/3 + 1 = Um (74)

(to simplify the notation, in this section we assume nref =
n0). If Um 
 1, the critical velocities are given by the series
expansions

u± ≈ 1 ±
√

3Um

2
. (75)

Flow velocities u1,2 at the boundaries of the hydraulic region
are roots of the equation

u2

2
+

(
u0 − u

2
+ 1

)2

− 3

2

[
u

(
u0 − u

2
+ 1

)2]2/3

= Um.

(76)

The smaller root corresponds to the upstream velocity u1 and
the larger one to the downstream velocity u2. If Um 
 1 we
get

u1 = 1 + 1

3
(u0 − 1) −

√
2Um

3
,

(77)

u2 = 1 + 1

3
(u0 − 1) +

√
2Um

3
.

The DSWs can be attached to the transcritical flow as
accounted for in detail in [40]. In our initial value problem,
with a wave packet incoming from the left infinity, there can be
no downstream DSW. However, an upstream DSW exists. It is
detached from the obstacle only if the condition u0 < 2 − u1

is fulfilled. Thus, the solution we are interested in, with a DSW
expelled upstream from the region of the obstacle, corresponds
to a region in the plane (Um,u0) where

u− < u0 < 2 − u1. (78)

This determines the parameters of the flow and of the potential
leading to the formation of an acoustic analog of a black hole
in the flow of a condensate past a thick obstacle. If Um 
 1,
then inequalities (78) take the form

1 −
√

3Um

2
< u0 < 1 +

√
3Um

8
. (79)

The whole region (78) is shown in Fig. 5 which is the thick
obstacle analog of Fig. 4.

V. COMPARISON WITH NUMERICAL SIMULATIONS

Our analytical theory is based on the assumption that
the stationary flow with a plateau in region C is formed
instantaneously after collision of the condensate with the
obstacle. This assumption justifies the application of the
self-similar solution [characterized by formulas (31) and (32)]
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0 0.2 0.4 0.6 0.8 1
Um

0

0.5

1

1.5

u0

FIG. 5. Boundaries of the region (78) for which the hydraulic
solution exists and the upstream DSW is detached from a thick and
smooth obstacle (here we use units such that n0 = 1). The dashed
lines correspond to the approximations (79) which are valid when
Um 
 1.

which only depends on the variable x/t . However, in practice
(i) any initial wave packet has—contrarily to our simplified
initial flow (8)—a finite region of transition from a constant
plateau density to vacuum, and (ii) the stationary solution in
region C forms in a period of time negligibly small compared
with the asymptotic values of time under consideration, but
nonetheless finite, and this may induce some noticeable
effects. Therefore we performed numerical simulations for
determining the limitations of our analytical approach.

In our numerics the incident condensate wave packet was
represented by the following initial density distribution:

n(x,t = 0) = n0

[
1 − tanh(x/�)

2

]4

. (80)

According to the prescription of Sec. II we take here nref = n0,
so that n0 = 1 henceforth. The velocity of the incident flow
it taken to be u0 = 1 (i.e., u0 = c0 = cref). We consider three
different cases with different thicknesses � of the incident
front of the wave packet: � = 20, 10, and 5 (in units of ξ0 =
ξref). The obstacle is modeled by a Gaussian potential

U (x) = U0 exp{−x2/σ 2} (81)

with U0 = 4 and σ = 0.5 (i.e., the size of the obstacle is less
than the healing length).

The results of the numerical evolution of the flow after
a time t = 500 are shown in Fig. 6, where the different
numerical curves correspond to different values of �. The
potential (81) deviates significantly from a δ potential: we
have here σ = 0.5 which is too large for using the natural
prescription for defining, starting from (81), an equivalent δ

potential of the form (9) by κ = ∫
U (x)dx = U0σ

√
π = 3.5.

This prescription would be accurate only in the limit σ 
 1.
The value κ = 5.2 used in the analytical procedure results from
a fit of the numerically obtained density of the plateau (n1 =
2.192); then all the other parameters of the flow are determined
by the analytical formulas. That this procedure is legitimate
is confirmed by the very good description of the upstream
velocity u1 in region C and of the density n2 and velocity u2 in
the supersonic downstream region D: one obtains analytically
u1 = 0.0390, n2 = 0.0412, and u2 = 2.075, whereas one finds

−1000 −500 0
x

0

1

2

n
(x

) analytical

−1000 −500 0
0

1

2

n
(x

) numerical Δ=5

−1000 −500 0
0

1

2

n
(x

) numerical Δ=10

−1000 −500 0
0

1

2

n
(x

) numerical Δ=20

FIG. 6. Density profiles at t = 500. The three upper panels
present the results of numerical simulations performed in the case
where the obstacle is represented by the Gaussian potential (81) and
the incident beam by (80) with � = 20, 10, and 5. The lower panel
is the analytical result corresponding to a point-like obstacle (9) and
a step-like incident beam (10) and (11), that is, � = 0.

numerically u1 = 0.0388, n2 = 0.0410, and u2 = 2.075 (see
also Fig. 7).

We checked that the natural prescription κ = U0σ
√

π

yields a very good agreement of the analytical and of the
numerical approaches for low values of σ . For instance, when
U0 = 4 and σ = 0.1 the natural prescription yields κ = 0.71
and for this value of κ one obtains analytically n1 = 1.658,
whereas one find numerically n1 = 1.6703. In this case perfect
agreement with the numerical values of n1, n2, u1, and u2 is
found by using an effective κ = 0.7365, close to the natural
prescription. However, for reducing the numerical effort we

−590 −580 −570
x

0

1

2

n
(x

)

−4 0
x

0

1

2

FIG. 7. (Color online) Density profiles at t = 500. These plots are
enlargements of specific parts of the two lower plots of Fig. 6. The left
plot concerns a part of the DSW (−590 < x < −560), and the right
one concentrates on the region of the obstacle. In both the right and
left plots the black solid line corresponds to the analytical density
profile. In the right plot the red solid line is the numerical density
computed in the case � = 5. The numerical profile is represented by
red points in the left plot, because it would be indistinguishable from
the analytical result if represented with a solid line.
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performed extensive simulations only in the case σ = 0.5.
The efficiency of the effective δ barrier for representing a
potential of the form (81) even though σ is not very small is a
positive test of the robustness of our analytical description of
the system.

We note that the theory predicts the conservation of the
Riemann invariant

λA

+(= λ0 = 1.5) = λC

+ = u1/2 + √
n1 (82)

across the DSW (cf. Fig. 3) and that this is fulfilled with very
good accuracy in the numerical simulations. The positions
X±(t) of the edges of the DSW are also in good agreement with
the theoretical prediction. Because of the scale used on the x

axis of Fig. 6, one could think that the density is discontinuous
around x = 0. This is not the case, and furthermore one can
verify that in this region the analytical and numerical density
profiles are very similar, as shown in Fig. 7 (right plot).
Also inside the DSW, the nonlinear oscillations are very well
described by the analytical approach (Fig. 7, left plot).

Hence we can legitimately state that the hypothesis of
rapid formation of the DSW which, as already explained, is
at the heart of our assumption of self-similarity, is validated
by the comparison with numerical simulations. This makes
it possible to bypass the delicate and interesting question
of the short-time dynamics which is discussed for instance
in Ref. [42]. However, our numerical simulations reveal a
peculiar feature of the flow, namely a train of dark solitons
is observed along the plateau in region C (cf. Fig. 6, upper
panels). As it is clear from the figure, the number of solitons
in the plateau decreases with � and the appearance of a train
of solitons is thus an effect of the finite width of the front
of the initial wave packet. These solitons are generated at
the initial stage of evolution and their precise characteristics
depend on the details of the initial density distribution. We
note that the number of solitons in the train is several orders
of magnitude lower than the number of nonlinear oscillations
in the DSW (see Fig. 6), that is, the existence of this train of
solitons is a minor effect in our asymptotic description of the
flow. Nonetheless, in any experiment the incident wave packet
will not be infinitely sharp and the resulting train of solitons
should be easily observed. It is therefore worth spending some
time discussing its properties.

The periodic solution (13) and (14) describes a train of
solitons if one considers a situation where λ2 = λ3 while the
other Riemann invariants (λ1 and λ4) remain constant. Here
one has

λ1 = −λ0
2 − Mc

2 + Mc

, λ4 = λ0. (83)

The velocity V and minimal density nmin of one of the solitons
of the train can be expressed as functions of the coinciding
Riemann invariants λ2(x,t) = λ3(x,t):

V = 1

2
(λ1 + 2λ3 + λ4) = u1

2
+ λ3 (84)

and

nmin = 1
2 (λ1 + λ4)2 − λ3(λ1 + λ4 − λ3)

= 7
4u2

1 − u1V + V 2, (85)

−250 −200 −150 −100 −50 0
x

0

0.1

0.2

0.3

n
m

in

FIG. 8. The thick solid line represents the analytical prediction
(87) for the positions of the points of minimal density of the soliton
train at time t = 500. The value u1 = 0.039 was used in the plot of
Eq. (87) [see discussion below Eq. (85)]. The dots show the same
quantity obtained from the density profile n(x,t = 500) computed
numerically in the case � = 20 (see Fig. 6, upper panel).

where u1 is given by Eq. (55), Mc being determined as a
function of κ and λ0 by Eq. (54). In the present case (n0 = 1,
u0 = 1, and κ = 5.2) one gets u1 = 0.039. In accordance
with the general spirit of our approach, we again assume
self-similarity of the solution, that is, the locations of the
solitons are given by an equation of the form x = V t .
The corresponding values of

λ2 = λ3 = x

t
− u1

2
(86)

are shown in Fig. 3 as a (red online) dashed line attached to the
soliton edge of the DSW [55]. Note that (86) corresponds to
the solution (32) of the Whitham equation in the soliton limit
where λ2(x/t) = λ3(x/t).

Then, elimination of V from (85) yields the following
relation:

nmin = 7

4
u2

1 − u1
x

t
+

(x

t

)2
(87)

between two easily measurable parameters: the minimal
density nmin of a soliton and its coordinate x at time t . The
very good agreement of this analytical prediction with the
numerical results is illustrated in Fig. 8 where the solid line
represents the curve (87), whereas the dots show the minimal
density at the position of the solitons as observed in Fig. 6,
upper panel (in the case where � = 20).

Hence, although the detailed description of all the features
of the soliton train—depending of the precise shape of the
incident front of the wave packet and of the potential—is
beyond the scope of our approach, we still can get some insight
on the loci of the density minima by assuming a kind of self-
similarity which relies on the fact—confirmed by inspection
of the numerical simulations—that the train is formed in a very
short period, at the initial stage of the collision between the
condensate and the obstacle. It then evolves according to the
solitonic limit of Whitham equations.

VI. CONCLUSIONS

In the present work we studied the flow of a Bose-Einstein
beam incident onto an obstacle in a regime where a structure
forms similar to the supersonic expansion obtained in a Laval
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nozzle. For an appropriate choice of incident flow and of
potential modeling the obstacle we showed that, at large
time, an acoustic horizon is created around the obstacle. Its
formation is accompanied by a release of energy in the form
of a dispersive shock wave whose characteristics were studied
in detail. This made it possible to precisely determine the
condition of formation of the structure studied in the present
work (see Fig. 4).

The analytical description has been sustained by numerical
simulations which confirmed our analysis. The numerics
however revealed an interesting and unexpected feature: the
ejection of the DSW from the region of the horizon is typically
accompanied by a train of dark solitons which are only slowly
expelled from the obstacle. We argued that this train of solitons
is formed in the initial stage of collision of the Bose-Einstein
beam with the obstacle and that its detailed characteristics
depend on the precise shape of the incident beam and of the
obstacle potential. We also showed that one of its important
features can be described analytically (namely the line of
location of the density minima), precisely because this train is
formed in an early stage.

The existence of this history-dependent train of solitons is
due to the specific dispersive and nonlinear wave mechanics
describing the Bose-Einstein condensate. It remains to inves-
tigate whether this train of solitons does or does not hinder
the experimental observation of sonic analog of Hawking
radiation.
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