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Abstract. - The liquid-solid phase transition of superfluid helium at zero temperature is studied 
in the framework of the density functional theory. The application of a second-order expansion 
of the energy of the system around the density of the liquid phase (Ramakrishnan-Yussouff 
method) is discussed. The role played by the static polarizability of the homogeneous liquid in 
characterizing the equation of state of the solid phase is explicitly pointed out. 

Much work has been devoted in the last decade to the application of the density functional 
theory (DFT) to the liquid-solid transition in a wide variety of systems (for a recent review 
see, for instance, ref. [l]). The theory has proven successful in describing first-order phase 
transition in classical systems, from simple fluids to more complex situations. Moreover, it can 
be applied to investigate properties of quantum systems, such as the Wigner crystallization of 
electrons [2] and the freezing of a quantum hard-sphere liquid [3]. In this context superfluid 
4He corresponds to a unique prototype of real quantum system where theory can be compared 
adequately with experiments. In ref. [4] a first quantitative analysis of the freezing transition 
in 4He, based on DFT, has been presented. The method requires, however, a high enough 
temperature in order to ignore exchange effects in the correlation functions. The aim of the 
present work is to show that reasonable predictions about the freezing transition of superfluid 
helium can be given with DFT also in the degenerate limit of zero temperature. 

The density functional theory is based on the assumption that the energy of a many-body 
system can be expressed as a functional of the single-particle density. The minimum of the 
energy is located at the true equilibrium density of the system [5]. Since there is no a priori 
information about the exact form of the functional, different approximation schemes have 
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been proposed to get sound functionals, containing the relevant symmetries of the system 
and having transparent physical ingredients. In the case of freezing a possible choice is a 
Taylor expansion of the energy about the density of a uniform reference liquid. If the 
expansion is truncated at second order the approximation is known as Ramakrishnan- 
Yussouff method (RY) [6]. The basic idea is that the correlation function in the solid phase, 
which is needed for the computation of the energy, can be approximated by the one of the 
liquid phase, or, equivalently, that the solid can be considered as a nonuniform perturbation 
of the liquid. This is equivalent to  assuming 

where 6p(r) = p,(r) - p1 is the difference between the nonuniform density of the solid and the 
density of the liquid. The energy Eid is the ideal-gas energy, i . e .  the energy of a 
noninteracting inhomogeneous system of particles. For a Bose system at zero temperature 
one has 

while E, is the nonideal part of the functional for the liquid. Its first derivative gives the 
chemical potential, while the second derivative is the quantum analog of the classical 
Omstein-Zernike direct correlation function 

The Fourier transform of w( 1 r - r’ 1 )  is directly related to the static response function G(q) of 
the liquid through the relation 

Once the function G(q) is given as input, the equilibrium density of the solid comes out by 
minimization of the grand potential difference per unit volume between the solid and the 
liquid phase AQ/V at the same chemical potential p: 

The density of the solid phase is usually parametrized as a sum of normalized Gaussians 
centred at  the lattice sites positions {Ri}  for a given crystalline structure: 

where a is a localization parameter (’). With this choice the calculations can be carried out in 
~~ 

(’) Liquid helium at T=O solidifies in a h.c.p. structure. As many authors did, we use a f.c.c. 
lattice, more simple to handle. The two closed-packed structures differ only beyond the third nearest 
neighbour in real space, and the expected differences in eq. (7) are small enough to be safely neglected 
in this context. 
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the reciprocal lattice {Kj}  and the quantity to minimize is 

where Eid corresponds to the integral (2)  with ,c given in eq. (6). In practice ALW is first 
minimized by variation of both the average solid density ps = NN and of parameter a for a 
given liquid density pl, and then the procedure is repeated for different values of p1 until the 
minimum occurs at AQ = 0, to ensure the equality of the liquid and solid pressure. This is 
equivalent to the Maxwell double tangent construction for the liquid and solid equations of 
state. 

Despite the lack of rigorous arguments about the validity of the second-order truncation, 
the RY method has been applied with reasonable success in different contexts, suggesting 
the occurrence of important cancellation effects in the higher-order terms. Various attempts 
have been recently made to go beyond the RY approximation, as in the case of the MWDA 
method employed by Denton et al. [3] to study the quantum hard-sphere liquid. However, 
the applicability of these methods to LennardJones systems at  zero temperature is not yet 
well established [3]. In this context the relative simplicity of the RY method and the clear 
interpretation of its physical ingredients make it a useful starting point to discuss the 
freezing transition of liquid helium. 

An important point to stress is that in liquid 4He the static response function G(q), key 
ingredient of the theory, is accessible via inelastic neutron scattering experiments. In fact, 
at zero temperature, G(q) is related to the inverse energy-weighted moment of the dynamic 
form factor S(q, 0): 

G(q) = - 1 (hw)- 'S(q ,  col dw . (8) 1 
N 

The sum rule (8), also known as the compressibility sum rule in the low-q limit, is well suited 
for experimental investigation in superfluid 4He. In fact the discretization of the elementary 
excitations (phonon-maxon-roton branch) ensures a regular behaviour of the integrand in 
the low-frequency region. On the other hand the l / w  factor makes the integral rapidly 
convergent at high U.  To date measurements of G(q) are however available only at  zero 
pressure [7]. They reveal a characteristic bump in the roton region (q  = 2 A-'). This bump 
implies the tendency to favour self-consistent density oscillations with wavelength of the 
order of the interparticle distances, i .e .  the localization of atoms on a lattice. For a 
quantitative use of the RY expansion one has to know the static response function for a 
reference liquid at  density higher than that at  vapour pressure. We point out that, with the 
available experimental techniques of neutron scattering, the required knowledge on G(q) 
should not be difficult to obtain. 

In the absence of experimental data on G(q) at higher pressure one can simply try the 
Feynman relation [8] 

connecting the static response function to the static form factor S(q) ,  known with good 
accuracy at  different densities. We have taken the values of S(q) given by the Monte Carlo 
calculations with the LennardJones potential of ref. [9] and tabulated for three densities 
(similar results are obtained in ref. [lo] using the Aziz potential). The resulting static 
response function at  zero pressure (dashed line) is compared with the experimental data of 
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Fig. 1. - Inverse static response function G-'(q) at zero pressure normalized to its q = 0 value. The 
latter is fixed by the compressibility sum rule for the homogeneous liquid. Circles: experimental data 
as extracted from ref. [i']; full line: ref. [13]; dashed line: eq. (9) with S, given by GFMC 
calculations [91. 

Fig. 2. - Solid and liquid equations of state as predicted in the present work using the RY method. The 
arrows show the densities of the solid and liquid phases at  the freezing transition. The quantity in 
abscissa corresponds to the volume per atom in u3 units (u=2.556& 

ref. [7] in fig. 1. Performing the RY minimization procedure with the three available values 
of pl,  we obtain minimum values of M2 very far from zero, i.e. we do not find any solid in 
equilibrium with the liquid at density ,c1. As already pointed out by other authors [lll, this 
drawback of the Feynman relation, in providing a reasonable equation of state of solid 4He, 
follows mainly from the fact that it does not properly account for the multiphonon 
contribution to the dynamic structure function and provides only a lower bound of G(q) [121. 

In ref. [13,14] a phenomenological approach to inhomogeneous liquid 4He has been 
recently developed and successfully applied to the study of the free surface as well as of 4He 
films. The theory provides an expression for the energy of the nonuniform liquid, which 
includes the equation of state in the uniform limit, the effects of short-range correlations, 
through the use of the average weighted density method [15], and the correct long-range 
behaviour of the interparticle potential. In fig. 1 we plot the resulting predictions for the 
static response function G(q) at zero pressure (full line). The comparison with the 
experimental points has the same quality as the Feynman prediction (9) in the roton region 
( 2 8 - 9 ,  with some improvement at higher q's. We stress here that the first nearest 
neighbour in the reciprocal lattice is typically at distances of 2 8 - l ,  so that the relevant 
contribution of G(q) to the sum in eq. (7) comes out from the range between 2 and 3 8-'. The 
crucial point is that the difference between the predictions of ref. [13] and the Feynman 
approximation for G(q) is much more pronounced at  high pressure, where the Ramakrish- 
nan-Yussouff method is actually employed. In particular the quantity v(q; p)  calculated with 
the method of ref. [13] is systematically lower than the Feynman one in the relevant range of 
q. A lower curve for v(q; p) in the roton region implies a larger negative energy contribution 
in eq. (7) and, consequently, more binding for the solid phase. 

The pressure dependence of G(q) can also be tested looking at the ratio between thef-sum 
rule jhwS(q,  w )  dw = Nh2 q2/2m and the inverse energy-weighted moment (8). The square 
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root of this ratio provides an estimate of the phonon-roton excitation energy. Using G(q) 
from ref. [131, the resulting dispersion relation shows the correct trend for the energy in the 
roton region (the roton minimum lowers, as a function of pressure, following the behaviour 
of the experimental data). 

Performing the complete minimization of functional (7) one finds a solid phase in 
equilibrium with the liquid. The equation of state of the solid is shown in fig. 2 and the values 
of the thermodynamic parameters at  the freezing transition are given in table I, together 
with the experimental data [16] and the results of GFMC simulations [lo]. The difference in 
the molar volumes for the solid and liquid phases at the transition obtained with the RY 
method is of the same order as in the GFMC simulation, while the predictions for the 
freezing pressure are significantly higher. The transition is also characterized by the 
Lindemann parameter, defined as the ratio between the average quadratic displacement of 
one atom from its lattice position and the nearest-neighbour distance. Using a f.c.c. lattice 
one has L =  m, where a is the lattice constant, directly related to ps.  We find 
a = 1.85 A-2 and then L = 0.25, a value close to the results of Monte Carlo simulations [9,171. 
We note that in solid 4He the atomic delocalization is strongly influenced by quantum effects 
and the Lindemann parameter turns out to be much larger [3,9,18] than the typical values 
for classical systems. For this reason ignoring the overlapping among the Gaussians of eq. 
(6), which would correspond to assuming Eid/V = (3h2/4m) aps, is a worse approximation here 
than in the classical case. In particular it yields a Lindemann parameter 10% lower and 
values of ps and pl about 3% higher, corresponding to a freezing pressure of 47atm. 

TABLE I. - Thermodynamic parameters at the freezing transition. Experimental and GFMC data are 
taken from ref. [17] and ref. [lo], respectively. 

P1 c3 Ps a3 AV (cm3/mol) P (atm) 

exP 
GFMC 
RY 

0.434 
0.438 
0.459 

0.478 
0.491 
0.515 

2.165 25 
2.47 26.7 
2.51 41 

Our results suggest that the Ramakrishnan-Yussouff approximation can provide a 
reasonable starting point to describe the helium freezing transition in the context of DFT. 
The resulting predictions depend however in a critical way on the assumption made for the 
static response function G(q). The Feynman approximation (9) does not seem to be enough 
accurate in this context, while more reasonable results are obtained employing the static 
response function of ref. [13], which better accounts for the pressure dependence of G(q). 

A more systematic knowledge of the static response function G(q), based on new neutron 
scattering data and on ab initio calculations, seems to be crucial in order to draw more 
definitive predictions for the solid-liquid transition. In particular it will permit to appreciate 
the quality of the RY method, as well as of different density functional theories [l, 3,151 
beyond the RY approximation. The progress in this direction is expected to stimulate new 
interest in the theoretical study of inhomogeneous helium systems, including the liquid-solid 
interface and the layer structure of helium films. 

* * *  
Useful and stimulating discussions with A. MERONI and G. SENATORE are acknow- 

ledged. 
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