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Abstract – We consider a simple realization of an event horizon in the flow of a one-dimensional
two-component Bose-Einstein condensate. Such a condensate has two types of quasiparticles;
In the system we study, one corresponds to density fluctuations and the other to polarization
fluctuations. We treat the case in which a horizon occurs only for one type of quasiparticles (the
polarization ones). We study the one- and two-body signal associated to the analog of spontaneous
Hawking radiation and demonstrate by explicit computation that it consists only in the emission
of polarization waves. We discuss the experimental consequences of the present results in the
domain of atomic Bose-Einstein condensates and also for the physics of exciton-polaritons in
semiconductor microcavities.
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An intense research activity has been developed in the
recent years aiming at identifying Hawking radiation in
several analog models of gravity (see refs. [1,2] for recent
reviews). The possible black-hole configurations realized
in an analogous system all rely on the remark by Unruh [3]
that if the flow of a fluid has, while remaining stationary,
a transition from a subsonic upstream region to a super-
sonic downstream region, the interface between these two
regions behaves as an event horizon for sound waves. The
supersonic region mimics the interior of a black hole since
no sound can escape from it (one speaks of “dumb hole”).
This analogy is richer than a mere realization of a sonic
event horizon: Quantum virtual particles can tunnel out
near the horizon and are then separated by the background
flow giving rise to correlated currents emitted away from
the region of the horizon (both inside and outside of the
black hole), in exact correspondence with the original sce-
nario of Hawking radiation [4].
Among the prominent experimental configurations

where a sonic horizon has been realized one can quote
the use of ultrashort pulses moving in optical fibers [5]
or in a dielectric medium [6], the study of the flow of
a Bose-Einstein condensate (BEC) past an obstacle [7],
of a laser propagating in a nonlinear luminous liquid [8],
or of surface waves on moving water [9,10]. Several re-
cent theoretical works proposed other realizations of an
artificial event horizon, using, for instance, an electro-
magnetic wave guide [11] (or more recently a SQUID

array transmission line [12]), ring-shaped chain of trapped
ions [13], graphene [14,15], or edge modes of the filling frac-
tion ν = 1 quantum Hall system [16]. Among these the-
oretical proposals, those employing an exciton-polariton
superfluid [17,18] deserve special attention because they
could be realized in a near future. Such systems are spe-
cific because polaritons have an effective spin 1/2 and, as
we will see below, this has important qualitative conse-
quences on the expected Hawking signal.
In the present work we study the possible signatures

of Hawking radiation in a generic two-component BEC
system. Such a system is peculiar in the sense that it sus-
tains two types of elementary excitations, with different
long-wavelength velocities. This makes it possible to re-
alize a unique configuration where an event horizon oc-
curs for one type of excitations but not for the other.
The associated artificial black hole could be experimen-
tally implemented in a polariton condensate (such as pro-
posed in ref. [18]), but also in a two-species BEC such
as realized by considering, for instance, 87Rb in two hy-
perfine states [19], or a mixture of two elements [20],
or different isotopes of the same atom [21]. A gen-
eral theory of such systems requires to consider a wide
range of parameters and of different situations correspond-
ing to possibly different masses of the two species, to
different strengths and signs of intra- and inter-species in-
teractions, to different types of external potentials (pos-
sibly species dependent) and of coupling between the
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two components. In the present work we consider a
simple model which captures the essential physical in-
gredients and characteristics of the phenomenon: The
order parameter of the two-component BEC is described
by a one-dimensional (1D) two-component Heisenberg

field operator (ψ̂+(x, t), ψ̂−(x, t)) obeying a set of coupled
Gross-Pitaevskii equations:

ih̄ ∂tψ̂± = − h̄2

2m
∂2xψ̂± + U(x) ψ̂±

+
[
g1 n̂± + g2(x) n̂∓

]
ψ̂± − μ ψ̂±. (1)

In this equation n̂±(x, t) = ψ̂†
±(x, t) ψ̂±(x, t) is the den-

sity of the (±)-component, U(x) is an external potential,
μ is the chemical potential, and g1 (g2) is the intra-species
(inter-species) contact-interaction coupling constant. We
choose to work in a configuration where 0 < g2 < g1.
This is quite realistic for atomic condensates (provided
one neglects the small difference of the interaction con-
stant between +/+ and −/− components). For excitonic
polaritons it is accepted that g1 > 0 and that |g2| < g1, in
agreement with the observed overall repulsion between po-
laritons, but it is typically believed that g2 < 0. However,
depending on the detuning between the photon and the
exciton modes (and on the proximity with the bi-exciton
resonance), g2 may be positive or negative, as observed in
refs. [22,23]. Our choice to consider the case of a positive
g2 parameter will make it possible to treat a setting where
the event horizon occurs for a flow velocity inferior to the
one of ordinary sound.
We consider an idealized model in which g2 and the ex-

ternal potential U both depend on x in a way that ensures
the existence of a homogeneous and stationary classical
solution of eq. (1) of the form

Ψ±(x) =
√
n0

2
exp(ik0x). (2)

This can be realized by considering a step-like configura-
tion for which U(x) = Uu Θ(−x) + UdΘ(x) and g2(x) =
g2,u Θ(−x)+g2,dΘ(x) (where Θ is the Heaviside step func-
tion) with

Uu + g2,u n0/2 = Ud + g2,d n0/2. (3)

The order parameter (2) describes a uniform flow in
which both components have the same density n0/2 and
the same velocity V0 = h̄k0/m. We consider the case
V0 > 0, and denote the x < 0 (x > 0) region as the
upstream (downstream) region. In each of these regions
the long-wavelength elementary excitations consist either
in density or in polarization fluctuations with respective

velocities denoted as c
(d)
α and c

(p)
α (α = u or d, depending

if one considers the upstream or the downstream region).

c
(d)
α is the usual speed of sound whereas c

(p)
α will be termed

“polarization sound velocity”; Their precise definition will
be given later (after eqs. (6) and (7)). As illustrated in

Upstream 0 Downstream x
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(p)
u

c
(p)
d

c
(d)
u

c
(d)
d
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Fig. 1: (Colour on-line) Velocities of the ordinary sound c(d)

(black solid line) and of the polarization sound c(p) (red solid
line) as a function of x. The dotted horizontal line represents
the constant velocity V0 of the flow. The blue dot is the refer-
ence velocity

√
g1n0/(2m). The downstream region is shaded

in order to recall that it corresponds to the interior of the black
hole.

fig. 1 we choose the parameters of the system in such a
way that

c
(p)
d < V0 < c(p)u < c(d)u < c

(d)
d . (4)

Then the point x = 0 is an event horizon for the fluctua-
tions of polarization but not for the fluctuations of density
(the usual sound).
Note that the configuration we consider is of the same

type as the one considered in refs. [24,25] for a one-
component system, and seems rather awkward: It consists
in a uniform flow of a 1D BEC in which the two-body in-
teraction varies spatially (in order to locally modify the
speed of polarization sound in the system) although the
velocity and the density of the flow remain constant. This
is only possible in the presence of an external potential
specially tailored so that the local chemical potential re-
mains constant everywhere (this is ensured by eq. (3)).
This makes the whole system quite difficult to realize ex-
perimentally. However, it was shown in refs. [26] and [18]
that the Hawking radiation associated to this configura-
tion has the same properties as others associated to more
realistic realizations of an event horizon in a BEC or a
polariton condensate.
The black-hole configuration being fixed, we now char-

acterize the spontaneous Hawking emission by studying
the quantum Bogoliubov excitations of the system, in a
manner similar to what has been done in refs. [27–29]. The
most efficient way to characterize the different branches of
the dispersion relation is to consider the classical (or more
precisely first quantized) version of eq. (1). One writes
the order parameter as ψ±(x, t) = Ψ±(x)+ δψ±(x, t) with
|δψ±| � |Ψ±|. In a region where U(x) and g2(x) have the
constant values Uα and g2,α (α = u or d) the fluctuations
with given pulsation ω on top of the background (2) are
of the form

δψ±(x, t) = eik0x
[
u±,α(x, ω) e

−iωt + w∗
±,α(x, ω) e

iωt
]
, (5)

where the u±,α’s and the w±,α’s are plane waves of mo-
mentum h̄ q. The corresponding dispersion relations are
represented in fig. 2. The curves corresponding to density
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Fig. 2: (Colour on-line) Upstream (upper plot) and down-
stream (middle plot) dispersion relations. The red (black)
curves correspond to polarization (density) modes. In each
plot the horizontal dashed line is fixed by the chosen value of
ω. The labeling of the different branches is explained in the
text. The abscissae of the dots fix the values of the wave vector
q(ω) corresponding to each branch. The lower diagram illus-
trates the terminology used in the main text for denoting the
waves as outgoing or ingoing. As in fig. 1, the downstream
region is shaded in order to recall that it corresponds to the
interior of the black hole.

fluctuations are represented in black in the figure. Their
dispersion relation reads

(ω − V0 q)
2 = [c(d)α ]2q2 +

h̄2q4

4m2
, (6)

with m[c
(d)
α ]2 = 1

2 (g1 + g2,α)n0 (α = u or d). In the left-
hand side of eq. (6) the term −V0 q is a Doppler shift
indicating that the dispersion relation is evaluated in the
laboratory frame in which the flow has a constant and
uniform velocity V0. In the upstream region the different
channels corresponding to (6) are denoted as u(d)|in and
u(d)|out, where the u stands for “upstream”, the (d) for
“density” and the “in” (the “out”) labels the wave whose
group velocity is directed towards (away from) the horizon.
What is considered as an ingoing or an outgoing wave is
pictorially represented in the lower diagram of fig. 2. In the
downstream region the channels are accordingly denoted
as d(d)|in and d(d)|out (see fig. 2).
The curves corresponding to fluctuations of the polar-

ization [π(x, t) = n+(x, t) − n−(x, t)] are represented in
red in fig. 2. Their dispersion relation is

(ω − V0 q)
2 = [c(p)α ]2q2 +

h̄2q4

4m2
, (7)

with m[c
(p)
α ]2 = 1

2 (g1−g2,α)n0. In the upstream region the

corresponding channels are denoted as u(p)|in and u(p)|out.
In the downstream region, V0 > c

(p)
d , and new branches ap-

pear in the dispersion relation of polarization waves. Alto-
gether in this region the branches are denoted as d1(p)|in,

d1(p)|out, d2(p)|in and d2(p)|out (see fig. 2). In the follow-
ing we refer to the quasiparticles corresponding to the dis-
persion relation (6) as density quasiparticles and to those
corresponding to (7) as polarization quasiparticles.

The existence of the discontinuity in the parameters of
the system at x = 0 prevents the channels we have just
identified for an hypothetical homogeneous configuration
to be the true eigenmodes of the system. The correct
eigenmodes are linear combinations of the channels in the
upstream region and channels in the downstream one, with
appropriate matching at x = 0. Among all the possible
combinations, we are primarily interested in the scatter-
ing modes which describe a plane-wave excitation originat-
ing from infinity —either upstream or downstream— on
a well-defined ingoing channel, impinging on the horizon,
and then leaving again towards infinity as a superposi-
tion of the outgoing branches. When ω is lower than the
threshold ω∗ identified in fig. 2, there are 5 ingoing chan-
nels and 5 outgoing ones. The corresponding scattering
amplitudes form a 5× 5 S matrix which can be shown to
be block diagonal:

S =

⎛
⎜⎜⎜⎜⎝

S(p,p)
0 0
0 0
0 0

0 0 0
0 0 0

S(d,d)

⎞
⎟⎟⎟⎟⎠ , (8)

with

S(p,p) =

⎛
⎝ Su(p),u(p) Su(p),d1(p) Su(p),d2(p)

Sd1(p),u(p) Sd1(p),d1(p) Sd1(p),d2(p)

Sd2(p),u(p) Sd2(p),d1(p) Sd2(p),d2(p)

⎞
⎠ , (9a)

S(d,d) =

(
Su(d),u(d) Su(d),d(d)

Sd(d),u(d) Sd(d),d(d)

)
. (9b)

For instance, the Su(p),d1(p) matrix element denotes the
(complex and ω-dependent) scattering coefficient from the
ingoing downstream channel d1(p)|in towards the outgoing
upstream channel u(p)|out. As discussed in refs. [26,28,29],
current conservation imposes a skew unitarity of the S ma-
trix: S†ηS = η, where here η = diag(1, 1,−1, 1, 1). When
ω is larger than the maximum ω∗ of the d2(p) branches
(see fig. 2) the d2|in and d2|out channels disappear, the
S(p,p) submatrix becomes 2×2, and the now 4×4 S matrix
obeys the usual unitarity condition S†S = diag(1, 1, 1, 1).

We computed the coefficients of the S matrix both
analytically (in the low-ω limit) and numerically (for
unrestricted values of ω). We checked the excellent agree-
ment between the two approaches in their common range
of validity (i.e., at ω → 0) and also that the current con-
servation conditions are verified, exactly in the analytical
approach, and with a high degree of accuracy in the nu-
merical treatment (the error is always less than 10−7). All
the matrix coefficients of the form Si,d1(p) and Si,d2(p) with

i ∈ {u(p), d1(p), d2(p)} (i.e., the two rightmost columns of
S(p,p)) diverge at low ω. This is connected to the fact
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that the associated Wigner time delay diverges: Low-
energy polarization quasiparticles entering the system via
the d1(p)|in or the d2(p)|in channels —i.e., from the in-
terior of the black hole— remain blocked at the horizon
forever: This is a signature of the occurrence of an event
horizon for the polarization modes. On the contrary, low-
energy density quasiparticles entering the system from the
downstream region can escape the black hole, since we
work in a configuration where the horizon does not affect
the density fluctuations (see fig. 1). Of course all quasipar-
ticles entering the system from the upstream region can
cross the horizon and penetrate into the black hole.
Within the present Bogoliubov analysis, the knowledge

of the S matrix of the system makes it possible to charac-
terize the Hawking signal which corresponds to emission of
radiation from the interior toward the exterior of the black
hole. In our specific case the energy current associated to
emission of elementary excitations is (cf. [30])

Q(x, t) = − h̄2

2m

∑
σ=±1

〈
∂tψ̂

†
σ(x, t) ∂xψ̂σ(x, t)

〉
+H.c., (10)

where “H.c.” stands for “Hermitian conjugate”. Q(x, t) is
here time and position independent in agreement with the
conservation of the energy flux in a stationary configura-
tion. Computing its expression far upstream (x → −∞)
one can show, as expected, that the current is only carried
by the u(p)|out channel and is, at zero temperature, given
by the formula

Q = −
∫ ω∗

0

dω

2π
h̄ω

∣∣Su(p),d2(p)(ω)
∣∣2. (11)

Hence the quantity |Su(p),d2(p)(ω)|2 characterizes the
emission spectrum of Hawking radiation. Although we
consider a setting with step-like variations of the exter-
nal parameters, resulting in an infinite effective surface
gravity, the Hawking spectrum is still thermal like, i.e.,
approximately of the form

∣∣Su(p),d2(p)(ω)
∣∣2 � Γ

exp
(

h̄ ω
kBTH

)
− 1

, (12)

where kB is the Boltzmann constant, Γ is denoted as the
gray-body factor and TH is the Hawking temperature.
Since we have computed the explicit low-ω expression of
the coefficients of the S matrix, we can determine TH and Γ
by a low-ω fit of expression (12). In particular one obtains
the following explicit expressions for the reduced Hawking

temperature TH = kBTH/m[c
(p)
u ]2 and for the gray-body

factor:

TH =
1

2

m2
u

md

(1− m2
u)(m

2
d − 1)

3
2

m2
d − m2

u

, Γ =
4mu

(1 + mu)2
, (13)

where mα = V0/c
(p)
α is the (polarization) Mach number in

region α (α = u or d and mu < 1 < md).
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Fig. 3: (Colour on-line) |Su(p),d2(p) |2 (red solid line) and its
approximation by eq. (12) (black dashed line) as a function of
ω. We consider the case with mu = 0.7 and md = 3. With
the present choice of parameters, Γ � 0.969, TH � 0.111
and ω∗ξ

(p)
u /c

(p)
u � 0.196, where ξ

(p)
u = h̄/(mc

(p)
u ). The in-

set displays TH as a function of mu for several values of md

(md = 1.5, . . . , 10).

The numerically determined |Su(p),d2(p) |2 is compared
in fig. 3 with the thermal spectrum (12) where TH is
given by (13). The plot is done in a configuration where
mu = 0.7, md = 3 and g2,u/g1 = 0.2. In the type of set-
ting we consider, fixing these three parameters determines
all the other relevant quantities of the system. In partic-

ular one has here g2,d/g1 � 0.956, V0/c
(d)
u � 0.572 and

V0/c
(d)
d � 0.448. As expected one sees in the figure that

the (numerically) exact spectral density |Su(p),d2(p) |2 co-
incides with a thermal gray-body emission at low energy.
Note however that |Su(p),d2(p) |2 is strictly zero for ω > ω∗
since above this threshold the d2(p)|in and d2(p)|out chan-
nels disappear and the S matrix becomes 4× 4.
Formulas (13) show that the Hawking temperature is

roughly of order of m[c
(p)
u ]2, which itself is of order of the

chemical potential of the system. In atomic condensates
the chemical potential is of order of the temperature of
the system and the Hawking current will be hidden by the
thermal noise. In polariton systems the chemical potential
is typically of order of 0.5meV and low temperature exper-
iments could in principle distinguish the Hawking current
from the thermal noise.
We now consider another experimental observable which

can reveal the Hawking phenomenon even in the presence
of a realistic thermal noise. As first explicitly pointed
out in refs. [24,25], in analog systems an external ob-
server is able to measure correlations across the hori-
zon revealing the existence of the Hawking current (see
also refs. [26,28,29,31,32]). For the present setting we ex-
pect that these correlations are due to pairwise emission
of polarization quasiparticles on both sides of the hori-
zon. The polarization density operator in our system is
π̂(x, t) = n̂+(x, t)− n̂−(x, t). In the configuration we con-
sider it has zero mean [〈π̂(x, t)〉 = 0] and the corresponding
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Fig. 4: (Colour on-line) 2D plot of the numerical result for the

dimensionless quantity ξ
(p)
u g(d)(x, x′)/n0 in the case in which

g2,u/g1 = 0.2, mu = 0.7 and md = 3. The shaded area near the

axis corresponds to the zone |x| or |x′| < 10 ξ
(p)
u .

correlation signal is time independent:

g(p)(x, x′) = 〈: π̂(x, t) π̂(x′, t) :〉
= 〈π̂(x, t) π̂(x′, t)〉 − δ(x− x′)n0.

(14)

It is also interesting to study the correlation of the density
fluctuations

g(d)(x, x′) = 〈:δn̂(x, t) δn̂(x′, t) :〉
= 〈δn̂(x, t) δn̂(x′, t)〉 − δ(x − x′)n0,

(15)

where δn̂(x, t) = n̂+(x, t) + n̂−(x, t)− n0.
In a hypothetical homogeneous configuration where

U(x) and g2(x) have constant uniform values, these cor-
relators read

g(d,p)(x, x′) =
n0

ξ(d,p)
F

(
|x− x′|
ξ(d,p)

)
, (16)

where F (z) = −(πz)−1
∫∞
0 dt sin(2 t z) (1 + t2)−3/2 and

ξ(d,p) = h̄/mc(d,p).
The correlation patterns (16) are drastically modified in

the presence of an event horizon. There is a first trivial
modification due to the space dependence of the speeds of
sound: Formulas (16) are modified upstream and down-
stream of the horizon because, in the region x < 0, the

values of ξ
(d)
u and ξ

(p)
u are different from those of ξ

(d)
d

and ξ
(p)
d in the region x > 0. The second modification

corresponds to long-distance correlations and is more in-
teresting: Quantum fluctuations generate correlated cur-
rents of polarization quasiparticles propagating away from
the horizon in the u(p)|out, d1(p)|out and d2(p)|out chan-
nels. This, in turn, induces long-range modifications of
g(p)(x, x′). No such long-distance correlations are ex-
pected for g(d)(x, x′) since there is no horizon for the den-
sity quasiparticles.
The knowledge of the S matrix makes it possible to ex-

plicitly compute the quantities g(p)(x, x′) and g(d)(x, x′)
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Fig. 5: (Colour on-line) Same as fig. 4 for the dimensionless

quantity ξ
(p)
u g(p)(x, x′)/n0. The dashed straight lines corre-

spond to the correlation lines where a heuristic interpretation
of the Hawking signal leads to expecting the largest long-range
signal (see the text).

if x and x′ are not too close to the horizon1. We do
not write down here the extensive explicit formulas (see
ref. [33]) but rather display a plot of both quantities
g(d)(x, x′) (fig. 4) and g(p)(x, x′) (fig. 5) in a black-hole
configuration with g2,u/g1 = 0.2, mu = 0.7 and md = 3
(the same parameters for which fig. 3 has been drawn).
As expected no track of Hawking radiation can be ob-
served in the plot of g(d)(x, x′). On the other hand,
g(p)(x, x′) displays long-range correlations along three spe-
cial directions highlighted in fig. 5 by dashed straight lines.
According to the standard scenario of Hawking radia-
tion [4], if correlated low-energy Hawking quasiparticles
are emitted along the u(p)|out, d1(p)|out and d2(p)|out
channels, at time t after their emission, these phonons

are respectively located at positions (V0 − c
(p)
u ) t < 0

(see footnote 2), (V0 + c
(d)
d ) t > 0, and (V0 − c

(p)
d ) t > 0.

This induces a correlation signal along the lines of slopes

(V0−c(p)u )/(V0+c
(p)
d ) (resulting from correlations between

phonons emitted along the u(p) and d1(p) outgoing chan-

nels), (V0 − c
(p)
u )/(V0 − c

(p)
d ) (u(p)|out − d2(p)|out corre-

lations), and (V0 − c
(p)
d )/(V0 + c

(p)
d )(d2(p)|out − d1(p)|out

correlations). These are the three slopes marked by dashed
lines in fig. 5. These large-distance correlation lines are
accompanied by diffractive corrections building an oscilla-
tory pattern in their vicinity (see, e.g., the discussion in
ref. [29]). Of course the lines with inverse slopes are also
present (they correspond to the exchange x↔ x′ in fig. 5).
The fact that, in the present setting, such a pattern is ob-
served in the correlation of polarization fluctuations but

1In vicinity of the horizon one should take into account evanescent
modes for accurately evaluating the correlation signal. This makes
the computation cumbersome although poorly instructive. This is
the reason why in figs. 4 and 5 we exclude the regions where |x| or
|x′| are lower than 10 ξ

(p)
u .

2As clear from eq. (7) and fig. 2, V0 − c
(p)
u is the ω → 0 limit of

the group velocity of outgoing upstream polarization quasiparticles.
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not in the correlation of density fluctuations is a strong
demonstration that this signal is intrinsically connected
to Hawking radiation and requires the occurrence of a
horizon.
The experimental detection of the polarization signal

described in the present work is simple in the case of a
polariton condensate because the pseudo-spin of the de-
caying polaritons is commuted into right or left circular
polarization of the emitted photons. Also, the high repe-
tition rate achieved in this type of experiment should make
it possible to obtain a good statistics leading to a precise
evaluation of the correlation signal. For atomic conden-
sates, on the other hand, the imaging techniques may rely
on Stern-Gerlach and time-of-flight analysis or dispersive
optical measurements [34] (for a review, see, e.g., [35]).
Finally we note that the present treatment of vac-

uum fluctuations in a stationary configuration, which is
valid for a stable/conservative atomic condensate, does
not immediately apply for a nonequilibrium polariton con-
densate. Indeed polaritons have a finite lifetime and the
vacuum fluctuations such as described in the present sta-
tionary situation strictly speaking disappear, because no
ingoing mode issued from infinity is able to reach the hori-
zon. The fluctuations of the system are now triggered
by fluctuations inside the excitonic reservoir and by the
losses. A related view concerns the dispersion relation
plotted in fig. 2: Because of damping, the frequency of the
normal modes typically acquire an imaginary part, and
long-wavelength density modes even become completely
diffusive (see, e.g., the review [36]). However, one can
show, within a simple model of nonresonant pumping with
gain and loss, that these damping effects which are indeed
present in the density channel, only weakly affect the po-
larization mode [37] and we thus expect that the results
of the present work should be also observable in future
experiments on out-of-equilibrium polariton condensates.
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[31] Schützhold R. and Unruh W. G., Phys. Rev. D, 81

(2010) 124033.
[32] Parentani R., Phys. Rev. D, 82 (2010) 025008.
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