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Abstract:
The hydrogenatom in a uniform magnetic field is discussedas a real andphysical exampleof a simple nonintegrablesystem.The quantum

mechanicalspectrum shows a region of approximateseparabilitywhich breaksdown as we approachthe classical escapethreshold.Classical
dynamicsdependsonly on thescaledenergygiven as the true energydivided by the third root of thesquareof the field strength.The classical
transitionfrom regular motion below the escapethresholdto chaosnear the escapethresholdis accompaniedby a correspondingtransition in
statistical propertiesof the short ranged quantum spectralfluctuations. Spectral propertiesinvolving correlationson a longer rangedepend
sensitively on system-specificnonuniversalpropertiessuch asthe occurrenceof prominentperiodic classical orbits. Knowledgeof the classical
periodic orbits leadsto a quantitativeunderstandingof the low frequencypropertiesof the quantumspectraas summarizedin Gutzwiller’s trace
formula. Thesedevelopmentshave led to a deeperunderstandingof the long known “quasi-Landauresonances”and other modulationsin
photoabsorptionspectra.
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1. Introduction

Although the equationsof motion of classicalmechanicsare strictly deterministic,the actualpath
along which a complex classical systemevolves may dependextremely sensitively on the initial
conditionsso that the evolutionof the systembecomesdefactounpredictable.Sucha systemis saidto
behaveirregularlyor chaotically.The fact that classicalmotion can beirregularhasbeenknownat least
sincethe beginningof this century.Howeverin recentyearsit hasbecomeincreasinglyclear that even
seeminglysimple systemswith few degreesof freedomgenerallyshow chaoticbehaviour,andadvances
in computertechnologyhavemadeit possibleto studyirregularmotion in small systemsin considerable
detail. This hasmadechaosone of the fastestgrowing fields in physics.

Boundclassicalmotionin onespatialdegreeof freedomis alwaysperiodic if it is governedby a time
independentHamiltonian,i.e. if energyis conserved,andhenceone-dimensionalconservativesystems
cannot be chaotic. The same is true for N-dimensionalconservative systems,N> 1, if they are
integrable, i.e. if their Hamiltonian can be written in terms of N conservedactions.The simplest
conservativesystemscapableof exhibiting chaosaresystemsin N = 2 spatial dimensionswith no other
integral of motion besidesthe energy.Examplesarevarioustypes of single particle billards [1—3],the
Hénon—Heilespotential [4], various types of anharmonicallycoupled harmonicor anharmonicoscil-
lators [5, 6J, or the problemof a hydrogenatom in a uniform magneticfield (seefig. 1).

In contrastto the othersimplesystemsmentionedabove,the hydrogenatom in a uniform magnetic
field is not an abstractmodelsystembut a real physicalsystemthat can be andhasbeenstudiedin the
laboratory[7, 8]. When we studythe regular or chaoticnature of the classicaldynamicsor look for
manifestationsof classicalchaosin quantumspectrawe are, in thisexample,doingreal physicsandnot
only mathematicalphysics.Our objectsof studyaresometimesclassicaltrajectoriesor quantumspectra
generatedby computercodes,frequently howeverthey arereal spectraobservedin experiments.In
somecases,e.g. for the oscillationsin photoabsorptionspectrawhich havelong beenknownunderthe
nameof quasi-Landauresonances,a deeperappreciationof the classicaldynamics,andin particularof
the importantrole of isolatedunstableperiodic orbits embeddedin the chaoticpart of the phasespace,
hasled to adeeperunderstandingof the structureof complexspectra.In particular,wenow understand
why the experimentallyobservedquasi-Landaupeaks are relatedto closed classicalorbits in a way
resemblingaBohr—Sommerfeldquantizationcondition,evenin the classicallychaoticregion,wherethe
orbits are unstableand the observedpeaksdo not correspondto individually resolvedquantumstates.

The aim of this article is to give a reviewof recentwork on thehydrogenatom in a uniform magnetic
field, payingspecialattentionto the occurrenceof chaosin the classicaldynamicsandits manifestation

C 67
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Fig. 1. (a) Examplesof single particle billardsshowingchaoticclassicaldynamics;apoint particlemovesfreely in theenclosedareaandis reflected
by theshadedboundaries.(b) Equipotential lines of theHénon—Heilespotential f 41.
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in observedor observablequantumspectra.Chapter2 contains a descriptionof the systemand a
generaldiscussionof the propertiesof its quantum mechanical spectrum, including a comparison
betweencalculatedand observedspectra.Chapter3 containsa detaileddiscussionof the classical
dynamics while chapter 4 discusseshow the nature of the classical dynamics, in particular the
occurrenceof regular and chaoticmotion and the existenceof periodic orbits, manifestsitself in the
quantumspectra.

2. The quantum mechanicalhydrogen atom in a uniform magnetic field

2.1. Hamiltonian

The hydrogenatom in a uniform magneticfield is accuratelydescribedover a wide rangeof field
strengthsB by the simplenonrelativisticsingle-particleHamiltonian

H p2I2me— e2Ir + wl~+ ~mew2(x2+ y2). (1)

The direction of thefield is takenas thez-directionandme is the reducedmassof electronandnucleus.
The frequencyw in (1) is half the cyclotron frequency

w = = eB/2mec. (2)

At a field strengthof

B = B
0 = m~e

3cIh32.35 X i09 G = 2.35 X i05 T, (3)

the oscillator energy 11w equals the Rydberg energy ~2= mee4/(2112) 13.6eV. In terms of the

dimensionlessfield strengthparameter

y=BIB
0l1wIPJ~, (4)

relativistic corrections[91to the simplemodeldefinedby (1) are negligible for fields with y <10’~.On
the otherhand,the effectsof spin—orbit coupling [10]canbe neglectedfor fields with yn

3 > i0”, where
n is the principal quantumnumber. Effects relatedto the two-body (nucleusand electron) centerof
mass motion in the presenceof an externalmagneticfield havebeeninvestigatedby severalauthors
[10—14].It is possibleto separatea generalizedfield strengthdependentmomentum,which replacesthe
centerof mass momentumof the field-free two-body system. For fields with y > 100 the internal
dynamicsis considerablyinfluenced by the centerof mass motion, but for a vanishingtransversal
componentof the conservedgeneralizedmomentumthe effect can be accountedfor accuratelyby a
constantenergyshift which dependsonly on the magneticfield strengthand the azimuthalquantum
numberm [13].

The azimuthal quantumnumber m is a good quantumnumber as is parity, which is frequently
expressedin terms of the z-parity ir defined with respectto reflection at the xy-plane which is
perpendicularto the direction of the magnetic field. In each m~subspaceof Hilbert space the
Schrödingerequationdefinedby the Hamiltonian (1) remainsnonseparablein the two coordinatesz,
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parallel, and p = + y2, perpendicular,to the field. Leaving out the contribution of the normal
Zeemanterm wl~becauseit is constant,the stationarySchrödingerequationin a givenm~subspaceis
(in atomic units, which we will usethroughoutunlessstatedotherwise):

p — + + — (p2 + z2)hI2]~(p, z) = E~(p,z), (5)
2 pop Op Oz p

where ~!‘(p, z) is the cylindrical radial part of the full single-electronwave function ~P,

tII(p, z, 4) (1 I/~)W(p, z) eim4 . (6)

Thus the physical problemis that of a particle moving in an effective two-dimensionalpotential

V(p, z) = + m212p2— ii~p2+ z2. (7)

The potential (7) is illustrated in fig. 2 for m = 0.
Attempts to solve the Schrodingerequation(5) have a long history. Early accuratenumerical

calculationsof the energiesof low-lying statesare due to Praddaude[15], Smith etal. [16] and Simola
andVirtamo [17]. First accuratenumericalcalculationsgoing beyondthe lowestthreeor four statesin
eachm’~subspacewere performedby Clark andTaylor [18] who calculatedenergies,wave functions
and oscillatorstrengthsup to andbeyondthe onsetof the n-mixing regime(seesection2.2) at a field
strengthof y = 2 x i0~(correspondingto B = 4.7 T).

Reviewarticlesdealingwholly or in partwith theproblemof a hydrogenatomin a uniformmagnetic
field havebeenwritten by Garstang[10], Bayfield [19], Kleppneret al. [20], Gay[21], Clarket al. [22],
Delandeet a!. [23] andClark [24]. Highly accuratevaluesfor the ground stateenergyhavebeengiven
by Le Guillou and Zinn-Justin [25], and Rösneret al. [26] havegiven a comprehensivelist of the
energiesof the lowest four or five statesin variousm~subspacesat arbitraryfield strengths(seealso
Rech et al. [27], Cho et a!. [28], and Liu and Starace[29]). Some recentapproachesto solve the
problem for Rydberg statesin moderatefields involve higher order perturbationtheory [30—32],
diagonalizationin symmetry adaptedbasis sets[30, 33, 34], adiabaticsemiclassicalmethods[35, 36],
andan adiabaticquantumapproach[140].At very high fields, y > 1, the diamagneticterm proportional
to y2 dominatesthe entire spectrumandconvergentexpansionsin the Landaubasisarepracticable(see
section 2.2). In this region complete calculations of bound states [37] and extensive studies of
continuumstateshavebeenundertaken[31, 38—41].

p

~

Fig. 2. Equipotential lines of the potential (7) for azimuthalquantumnumberm 0.
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2.2. High field and low field regime

At very high fields the Schrödingerequation(5) is bestsolved[15—17,37, 38] by expandingthewave
function ~I’(p,z) in Landau states PNm(P), which are the normalized radial parts of the two-
dimensionalharmonicoscillatorwave functionscorrespondingto the oscillatorenergy11w = y

~P(p,z) = ~, cPNm(p)~PN(z). (8)

This leadsto a setof coupledchannelequationsfor the wave functions 111(z) in the various Landau
channels:

(~~ - Ny + (E - Em))~(Z) - V~N.(z)~(z)= 0. (9)

In (9) Em = (~m~+ l)y12 is the zero-point energyof the lowest Landaustate and defines the real
ionization thresholdin the correspondingm~subspace— as opposedto the zero-fieldthresholdat E = 0
in eq. (5). The potentialsin (9) are definedby

V~N(z)= Jdp P~m(P) —1 2 ~Nm(P) (10)
0

and do not dependon the sign of the azimuthalquantumnumberm. Analyticexpressionsfor V~N(z)
havebeengiven by FriedrichandChu [38]. Asymptotically (large zi) the diagonalpotentialsaregiven
by

V~N(z)=— 1 (i 2N+H + 1 ~ +O(z4)), (11)

where b = ~/~73is the oscillator width of the Landaustates. An efficient numericalprocedurefor
calculatingthe potentialsandsolving the coupledequations(9) for variousmagneticfield strengthscan
be obtainedby exploiting the fact that the potentialsonly dependon the field strengthvia a universal
scalingfactor 1/b [31, 42].

The formulation (9) of the Schrödingerequation(5) showsthat we have, in eachm~subspace,a
systemof coupledCoulombic channelswhich are labelled by the Landau quantumnumber N =

0, 1, 2 The channelthresholds

E~~E~+Ny (12)

lie Ny above the real ionization thresholdEm in the respectivesubspace.The coupling potentials
V~N(z) fall off relatively slowly and are asymptoticallyproportionalto z-2IN-N I—i

For extremelylargefield strengthsthe energyyneededto excitea Landauoscillationperpendicular
to the magnetic field becomesvery large and the problem approachesthat of a one-dimensional
hydrogenatom parallelto the field [43]. The boundstatesarethendominatedby thecontributionfrom
the N = 0 channel,in which the motion of the electronperpendicularto the field is given by the lowest
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Landau state ~O,m’ and they form a nondegenerateRydbergseries converging to the respective

ionization thresholdEm [37]
Ep=E~~1I2(V~/hp)2, (13)

where t’ runs from zero to infinity for positive z-parity statesand from one to infinity for negative
z-parity states.The quantumdefectparameters~ in (13) areall negativeand convergeto zero in the
limit of infinite field strengths;note that the lowest state in each m~subspaceof positive z-parity
correspondsto ii =0 and becomesinfinitely bound in this limit.

At sufficiently high field strengths,y ~ 1, Landauexcitedstatescorrespondingto N> 0 all lie above
the ionization thresholdand form Rydbergseriesof autoionizing resonanceswhich convergeto the
respectiveLandauchannelthresholds(12). Theseresonancescan autoionizeby de-excitationof Landau
oscillationsperpendicularto the field [38]. The spectrumof bound and autoionizing statesin the

= 0~subspaceis illustrated in fig. 3 for y= 2, y= 1, and ‘y = 0.5.
As the field strengthis reducedfrom valuesaround y = 1, the Rydbergseriesassociatedwith the

different Landau channelsbegin to overlap and interfere. Near y = 0.3 the lowest autoionizing
resonances,which are characterizedby a jump through~rof the asymptoticphaseshift ~ of the open
channel(N = 0) wavefunction,crossthe ionization thresholdandbecomeperturbationsof the Rydberg
seriesof boundstates,which arecharacterizedby a jump throughunity of the correspondingquantum
defectsp..~,.This is illustratedin fig. 4 for them~= 0 + subspace.As the field strengthis reducedfurther,
moreandmoreRydbergseriesoverlapandthe spectrumbecomesincreasinglycomplicated.As long as
not too manyRydbergseriesoverlap,the problemmaybetreatedwith the techniquesof multichannel

8 -—

E~Em Nr2
(Ry) - — -

6- -

1=2.0

4 - —~— ——~-~——- —

- N=2 N=1 -

2 - -- —~—

N=2 Nr1

N=t

0 - —_- - --- - -~ - —

N=0 N=0 N~0

-2 - —

Fig. 3. Spectrumof bound and autoionizingstatesin them” = 0~subspacefor field strengthparametersy= 2.0, 1.0, 0.5 (from ref. [42]).
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m’~= 0~
I I I• 31 I I I I I 1~I~

‘in
~0.2 X~0.3I Y~0.5I

~ou~d~:s~aIs

I’ •I I I I I
-1.2 -1.0 -0.2 0 0.2 0.4 0.6 0.8 ~.0

E/R

Fig. 4. Quantumdefects~s of boundstatesand asymptoticphaseshifts of theopen channel(N = 0) wavefunction for variousvaluesof thefield
strengthparametery (from Friedrich and Chu [381).(E is the energyrelative to thresholdin Rydbergs.)

quantumdefecttheory [44, 45]. Figure 5 illustrates the multichannelstructureof the spectrumin the
m~= 1 + subspaceat y = 0.04. The top half of the figure showsthe quantumdefectsof the boundstates
(left half) and the asymptoticphaseshifts of the open channel(N = 0) wave functionsin the region
betweenthe ionization thresholdEm and the inelastic thresholdEmN=l = Em + y (right half). The
perturberof the boundstatesandthe resonancesabovethresholdform a Rydbergserieswhoseenergies

4 V~f) 5 6 810 __________________________

6 ~~~‘~‘
I~0-

I I I I I I I I I I I
-006 -0,04 -002 0 0.02 0.04 0.06 I

E~Em ~=io ~

2

-o ,-=~

*

——1.0 v
12~2 I —

3 12) 4 5 6 810
Veff

Fig. 5. Spectrum in the m” = 1 * subspaceat y = 0.04. The top half showsquantum defectsof theperturbedRydbergseriesof bound states
(E< E,,,) andthe asymptoticphaseshifts of theopenchannel(N = 0) wavefunction for energiesbetweenthe ionization thresholdandthe inelastic
threshold(first Landauthreshold).The bottomhalf of thefigure showsthequantumdefectsof the(perturbed)Rydbergserieswhichconsistsof the
bound-stateperturberin the left handpart of the top half andthe resonancesin the right handpart of thetop half. The horizontalbarsshowthe
absolutewidths of the perturberand the resonances,while the verticalbars showthe samewidths multiplied by thethird power of the effective
quantumnumberv~with respectto the inelastic threshold.Theserenormalizedwidths would be roughly constantin an unperturbedRydberg
seriesof autoionizingresonances.(From ref. [421.)(Energiesarein Rydbergs.)
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E~convergeto the inelastic, the N = 1, thresholdandcan be characterizedby a seriesof secondorder
quantumdefects~j~

2):

E~= EmN=l — 1/2(~~2~— I~(2))2. (14)

This series of perturbersand resonancesis in turn perturbed by a resonanceassociatedwith the
Rydbergseriesconverging to the N = 2 Landauchannelthreshold,and this affects the energies,as
shownby the jump throughunity of the secondorderquantumdefects142) in thelower partof fig. 5, as
well as the widths of the perturbersor resonances.The essentialfeaturesof the spectrumat y= 0.04
can be accuratelydescribedin the framework of three-channelquantumdefecttheory,the important
channelsbeingthe N=0, N= 1, andN=2 Landauchannels[31, 42, 46, 47].

At still lower field strengthsthe number of interfering Landauchannelsbecomesso large that a
descriptionin termsof the Landaubasis (8) becomesimpracticable.For low-lying boundstatesat low
fields the spectrumis close to that of the field-freehydrogenatom and the effect of the diamagnetic
interactioncan be treatedperturbatively [48—52].

At vanishing field strength the spectrum in each m” subspaceis degeneratedue to the 0(4)
symmetryof the pureCoulombproblem.This can be expressedin the conservationof the Runge—Lenz
vector

A = (—2h2m~E)”2[(pX L) — (mee2/r)r]. (15)

For small but finite values of the field strengththe quantity

.Z=4A2—5A~ (16)

is an invariant up to first orderin ~,2 In the perturbativeregimeit is appropriateto label the eigenstates
of 1~by an index k starting at k = 0 for the maximum eigenvaluewithin a given n-manifoldof states
degeneratein the zero-fieldlimit. In a given rn’T subspacek runsfrom 0 (for ~ = +1) or 1 (for IT = —1)
to its maximum value n — rn — 1 within a given n-manifold. For positive eigenvaluess of (16) the
eigenstateshaveapproximately°A(3) symmetryand arealmosteigenstatesof the angularmomentum-
type operatorA = (Ar, A~,l~)with eigenvaluesA(A + 1) of A2. These statesare called rotator states
andtheeigenvalueA is relatedto the label kby A = n — 1 — k. The energyshiftsof the rotatorstatesare
given approximatelyin the perturbativeregimeby [48, 51]

= ~y2n2(~A(A+ 1) + ~n2— 3m2+ ~). (17)

The eigenfunctionsof 1~with negativeeigenvaluess haveapproximately0(2)® 0(2) symmetryandcan
be describedby a two-dimensionalharmonicoscillatorwith anharmoniccorrections.The approximate
energyshiftsof thesevibrational statesare, againto first order in y2:

= ~gy2n2[(2o-+ Im~+ 1)2V’~n— 3(2o + m~+ 1)2 — m2 + 1], (18)

whereo- = 0, 1,2,... is given by 2o- = n — rn~— 1 — k or 2o- = n — m~—2— k, dependingon whether
n — mi — k is oddor even[48,51]. The accuracyof the formulae(17), (18) hasbeentestedby Wintgen
andby Wunner [31, 52].
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2.3. Regimeofapproximateseparability

The classification of states by the principal quantum number n and the “intrashell label” k is

definitely meaningful in the 1-mixing regime where the diamagnetic interaction is strong enough to
break rotational symmetry but still so weak that n-manifolds of states originating from different
principal quantum numbers n are separatedin energy. It is not a priori clear whether such a
classification remains meaningful in the n-mixing regime where neighbouring n-manifolds overlap. The
onset of the n-mixing regime occurs, when the lowest (k = n — mi — 1) vibrator state of the (n +

1)-manifold meets the highest (k = 0 or k= 1) rotator state of the n-manifold. From the leading terms
in (17) and (18) the onset of the n-mixing regime is given by

y2n716/5. (19)

It was observed in numerical diagonalizations of the Hamiltonian (1) that near degeneracies occurred
at the onset of n-mixing, the actual magnitudes of the avoided crossings between the lowest state of the
n + 1 manifold and the highest state of the n-manifold decreasing exponentially with n [53, 54]. This
was interpreted as evidence for an additional hidden symmetry related to a further constant of motion
and even as evidence for the existence of an approximately separable representation of the Hamilto-
nian. An additional (approximate) constant of motion valid for low fields was recognized by Solov’ev
[48] and Herrick [51] and is given by the combination (16) of components of the Runge—Lenz vector.
Solov’ev explained the small anticrossings of states as being a consequence of the fact that the states
involved in the crossing are not only approximately eigenstates of the adiabatic invariant (16) with very
different eigenvalues, but also correspond to different classes (rotator and vibrator) of eigenstates.

The above results stimulated an intensive search to find an approximately separable representation of
the Hamiltonian. Such a representation was explicitly constructed by Wintgen and Friedrich [33] via a

I I I I

-E(crrc’) m~

112 - -
n=31 —

K=28

n = 30
K= 10

113 - -

n 31K530

45 46 4.7 4.8 B IT)

Fig. 6. Energyeigenvaluesobtainedby sequentialdiagonalization.The dashedlines showthe results of diagonalizingthe Hamiltonianwithin
subspacesof statescharacterizedby agivenvalue of the intra-shelllabel k. The solid lines showthe exactresultsobtainedby allowing k-mixing.
(From ref. [331.)
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sequential diagonalization of the Hamiltonian, first amongst states corresponding to the same values of
k and subsequently including the residual interaction between states of different k. A natural basis for
such a calculation is obtained by transforming the Schrödinger equation via the introduction of
semi-parabolic coordinates into a Schrödinger equation for two azimuthally coupled harmonic oscil-
lators(correspondingto the unperturbedCoulombproblem[55]) plus a diamagneticpotential (see[33],
also Delandeand Gay [50]). In this representationthe matrix elementsof the diamagneticinteraction
depend only on the coupling constant (y/E)2 andnot on energyand field strengthindependently.
Matrix elementsleading to k-mixing are very small if at least one rotator state is involved. Appreciable
k-mixing matrix elements occur only between adjacent (~k= 2) vibrator states. Their consideration
becomes necessary when vibrator states belonging to different n-manifolds come close in energy. This
happens near y2n7 = 16 which lies well within the n-mixing regime (19).

Although k can no longer be simply related to an eigenvalue of the operator (16) if n-mixing is
allowed, approximate separability and the classification according to the label k remain valid well within
the n-mixing regime. Figure 6 shows the exact eigenvalues of the Hamiltonian (solid lines) compared
with the eigenvalues obtained without k-mixing (dashed lines) in a region of energies and field strengths
corresponding to y2n7 10, which lies within the region of approximate separability. Approximate

E::6~ ‘m~ ~

0 0.01 0.02 0.03 -‘ 0.0/. 0 0.001 0.002 0.003 0.004 0.005

V
Fig. 7. (a) Overall view of thespectrumin the m~’= 1 * subspacefor arbitrary field strengthsup to y = 0.04. The vertical hatching indicatesthe
absolutewidths of the resonantstatesabovethreshold.The inelasticthresholdis theLandauchannelthresholdcorrespondingto N= 1 (ci. eq. 12)
(from ref. 1421). (b) Partof the boundstatespectrumclose to the zero-field thresholdE= 0 shownon an enlargedscale,at field strengthsup to
y 0.005. The numbersat the bottomstandfor then-quantumnumberandthe intra-shelllabel k in the regimeof approximateseparability.
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separability breaks down as we approach the zero-field threshold E 0, wherethe couplingconstant
(ylE)2 determining the effective strength of the diamagnetic interaction becomes infinite.

Figure 7a shows an overall view of the spectrum in the m~= 1~subsp ace for field strengthsranging
from zero up to y = 0.04, where the interpretation in terms of few interfering Rydberg series is valid
(see fig. 5). An enlarged view of the low-field region closer to thresholdis given in fig. 7b. At
sufficiently low field strengths and principal quantumnumbersapproximateseparabilitymanifestsitself
in very small anticrossings of levels originating from different n-manifolds in the zero-fieldlimit. For
decreasing values of Ely increasing level repulsion associated with the breakdownof approximate
separability leads to an increasingly irregular pattern and a “spaghetti”-like appearance of the
spectrum.

2.4. Comparisonof calculatedand observedspectra

Most experimentalwork on Rydbergatoms in a magneticfield hasconcentratedon atoms more
easilyaccessibleto experimentsthanhydrogen[56—59].In recentyears,Welgeet al. in Bielefeld have
performedextensivemeasurementsof photoabsorptioncrosssectionsof atomichydrogenin magnetic
fields up to 6 T. Becausethe numericalsolutionof the Schrödingerequationis mucheasierfor the pure
hydrogenatom, the experimentsof Welge et a!. have,apartfrom otherimportantcontributionsto the
central theme of this article, made a direct comparisonbetweencalculatedand observedspectra
possible[60, 61].

To get a feeling of the complexity of diamagneticRydberg spectrafig. 8 shows a part of the
calculatedspectrumcontaining statesbelonging to n-manifoldsnearn = 40 andm~= 0~,wherehigh

50

55

60 ~

~65

w

39
7

38

7

01 2 3 ~ B(T) 6

Fig. 8. Partof the boundstatespectrumin the m” = 0 subspaceshowing statesfrom n-manifoldsaroundn 40 at field strengthsup to 7 T.
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n=31 ,K=e

n=32 I I .14=14

=_33 14=26

Fig. 9. Comparisonof measured(top) and calculated(bottom) photoabsorptionlines for Am = 0 transitionsfrom the
2p,,

0 stateinto Rydberg
statesin them” = 0~subspaceat a field strengthof 6 T (from ref. [60]).

15

B = 6.0 Tesla m= 0 even parity

0- ~ ~ ~ ~ _~15 ~ ~12

ENERGY (cm’)

Fig. 10. Comparisonof measuredphotoabsorptioncrosssections(continuouscurve)with calculatedphotoabsorptionlinesfor thesametransitionsas
in fig. 9 at final State energiesjust below thezero-field threshold.(From Wunneret al. [61].)
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resolution experiments were performed. To seemanyof the spectralstructuresthe readeris invited to
hold the figure very flat beneathhis eyes andto turn the figure round.

Figure9 showsa comparisonof thecalculatedandthe measuredphotoabsorptionspectrafor iXm = 0
transitionsfrom the 2Pm=O stateinto the Rydbergstatesof them~= 0~subspaceat a field strengthof
6T (y = 2.55 X 10~).The energyrangesup to 92cmt below the zero-fieldthreshold,which lies well
within the n-mixing regimebut is still in the region of approximateseparability,wherethe individual
statescan be unambiguouslyassignedtwo quantumnumbers,n (correspondingto the hydrogenic
manifold from which the stateevolveddiabaticallyin the zero-field limit) and the intra-shell label k.
Figure 10 showsa comparisonof the sameexperimentalspectrumwith the final statesmuchcloserto
the zero-fieldthreshold.Figure 11 showssimilar spectrafor a larger rangeof final stateenergiesat a
slightly different field strengthof 5.96T. Figure 10 andthe lower two panelsin fig. 11 cover rangesof
final stateslying beyondthe region of approximateseparabilityandwell within the “spaghettiregion”
(seefig. 8).

50
theory (~)

50

II II .1 . .11 II~ .. I I III I. I

experiment

-80 -75 -70 -65 energy 1cm’)

50
theory (b)
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I iii. I] LI ~iJiil ~ii ..L~ ~IIL~kL ~I~II iiiLI..Li
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—40 -35 -30 -25 energy (cr64)

Fig. 11. Comparisonofcalculated(upperhalves)andmeasured(lowerhalves)photoabsorptionlines for theAm = 0 transittonsfrom the2p,,
0state

into Rydbergstatesin the rn’ = 0 subspaceat a field Strength of 5.96 T (from Holle et al. [61]).



H. Friedrich and D. Wintgen,The hydrogenatom in a uniform magneticfield — an exampleof chaos 51

Mostrecentcalculationsby Zeller et al. [61] haveextendedthe range for the spectrum at 5.96 T all
the way up to the zero-fieldthresholdE = 0. In all caseswe observestatefor stateagreementbetween
the measuredand calculatedspectra,at least within the limits of experimentalresolution.This is of
courseto be expectedas long aswe believethat the Hamiltonian(1) accuratelydescribesthephysicsof
the problemandas long as we makeno mistakesin measuringor calculatingthe spectra.Nevertheless
we feel it worth pointing out that the higher lying statesin figs. 10 and 11 correspondto roughly the
neighbourhoodof the 500th excited statein the m~= 0~subspace.These are to our knowledge the
mosthighly excitedstatesof a measuredcomplexspectrumthat havebeenuniquelyidentifiedby direct
comparisonwith an ab initio numericalcalculation.

3. Classicaldynamics

3.1. Scaling

The classical dynamics of the hydrogen atom in a uniform magnetic field is described by the
Hamiltonian (1). In terms of the scaled coordinates and momenta

F=y213r, j=y113p, (20)

we have, in cylindrical coordinates and atomic units

—2/3 1 —2 1 —2 ‘2 —2 1 -‘-2 —2 —2 —1/2y ~ +gp —(p +z ) . (21)

Exceptfor a similarity transformation,the classicaldynamicsat a given field strengthyandenergyE is

completelydescribedby the Hamiltonian H. Equation (21) shows that the classical dynamicsonly
dependson the scaled energyr,

e=Ey213 , (22)

and not on E and y separately. Figure 12b shows lines of constant scaled energy next to a part of the
quantum mechanical bound state spectrum in the m’~= 1 + subspacedrawnon the samescale(compare
fig. 7). By keeping r constant but simultaneously changing the energy E and field strength y we can
explore different regions of the quantum spectrum without changing the structure of the underlying
classical dynamics. At small (absolute) values of the energy the quantum spectrum becomes very dense,
while it becomes sparse for larger field strengths and binding energies. In the E—y plane, the region
close to E = 0, y= 0 correspondsto a small Planck’sconstant11 in comparisonwith typical classical
actions,whereas11 becomeseffectively larger and larger as we move along lines of constantscaled
energy towards larger field strengths. This can be expressedquantitatively via the commutation
relationsof the scaledquantummechanicaloperatorsassociatedwith the scaledclassicalvariables(20),
e.g.

[j~~,~]=iy”3h. (23)

At a fixed scaled energy e determining the classical mechanics the dependence of the quantum
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Fig. 12. (a) Partof the boundstatespectrumin them~’= 1 subspacepreviouslyshown in fig. 7b. (b) On thesamescale,lines of constantscaled
energys, along which the classicaldynamicsis invariant to within a similarity transformation.

mechanics on the magnetic field strength y can be accounted for by an effective field strength dependent
Planck’s constant y113h. Keeping r constant we can study the semiclassical limit by decreasingthe
magneticfield strength.

3.2. Regularization

A feature of the Hamiltonian H in (21) is its singularityat r= 0, which can be removed,e.g. by the
introduction of semi-parabolic coordinates [62, 67]. The new coordinates v and ~L are given by

(24)

andthe momenta

p
0=d~ldr, p~=d~ldr, (25)

aredefinedwith respectto the resealedtime r given by:

dt=2Fdr=(P
2+IL2)dr. (26)

The equations of motion generated by the Hamiltonian H in (21) at a fixed value of the scaled energy
are equivalentto the equationsof motion generatedby the Hamiltonian

(27)

at the fixed “pseudo energy” 2.
For negative (scaled) energies e<0 the Hamiltonian (27) representsharmonic oscillators with

frequencyw = (_
2e)L~

2,which are coupled by the term ~2IL2(~2+ IL2) originating from the diamagnetic
interaction. The quadratic potential vanishes at the zero-field threshold r = 0 (which is the sameas the
classical escape threshold for l~= 0). For positive energiesthe Hamiltonian corresponds to inverted
oscillatorscoupledby the diamagneticinteraction.
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There is a one-to-onecorrespondencebetweenthe classicaltrajectoriesgeneratedby the Hamilto-
nian H (21) and h (27), but they are not related by a canonical transformation. Because of the
coordinate dependent rescaling of time (26), two periodic orbits which have the same period in the
cylindrical representation(21) may havedifferent periods in the semi-parabolicrepresentation(27).

3.3. Poincarésurfacesofsection

The classicaldynamicsof the Hamiltonian(21) hasbeenstudiedby variousauthorsin recentyears
[62—71].A commonway to illustratethe classicalphasespacestructureis to look at Poincarésurfaces
of section,which eliminateredundantinformationfrom classicaltrajectories.At a fixed (scaled)energy
classical motion is confined to the energy shell, which is a three-dimensionalsubspaceof the
four-dimensionalphase space spannedby v, p0, IL and ~ The Poincaré surface of section is a
two-dimensionalslice in thethree-dimensionalenergysurface.The set of all intersectionsof atrajectory
with this surface(in a certain direction) containsmost of the information relatedto the particular
trajectory. Periodicorbits arecharacterizedby one or a finite (typically small) numbern of pointson
the surfaceof section,where they are called a fixed point or an n-cycle of the map. Regularorbits,
whosemotion is restrictedto two-dimensionalinvariant manifolds(calledtori) on the three-dimensional
energyshell, appearas an arrayof dotson the surfaceof section,which denselyfill a one-dimensional
subset of the two-dimensionalsurface. Irregular orbits densely fill a finite volume on the three-
dimensionalenergyshell andappearas irregularly but roughlyuniformly spatteredareason thesurface
of section.

For 1~= 0 fig. 13 shows, in semi-parabolicrepresentation,Poincarésurfaces of section for the
hydrogenatom in a uniform magneticfield for six differentvaluesof the scaledenergyr: —0.8, —0.5,
—0.4, —0.3, —0.2, and —0.1 (from left to right andtop to bottom). The surfaceof sectionis definedby
IL = 0; the energyshell for IL = 0 mapsinto an areaboundedby the condition —2r~

2+ p~= 4, which
definesa circle of radius2 with respectto the coordinates\1~~jjandp,,. Time-reversalandreflection
symmetry allow us to derive from eachpoint on the surfaceof sectionthreerelatedones,compactly
written as (±V’~~~,±pj.~~

At r = —0.8 the systemis still very closeto its integrablelimit r—~—~, which correspondsto the
infinitesimally perturbed hydrogen atom: all orbits are regular and confined to tori which are
characterizedby a specific value of the adiabatic invariant**) .~, eq. (16). Note that even an
infinitesimal perturbationis strongenoughto changethe phasespacestructureof the hydrogenatom
completely.For a pure hydrogenatom the surfaceof sectionwould simply give concentriccircles and
each orbit would contribute with a fixed point. This reflects the unusual classical behaviour of a
hydrogenatom, whereall orbits are periodic and degeneratein periodand action. As a consequence
the KAM-theorem [72, 73] is not applicableand in fact, little is known about the behaviourof a
hydrogenatom undersmallperturbations.It is not self-evidentthat the systembehavesregularlyunder
the diamagneticperturbation.t~

*1 Thereis still anothersymmetry of the system,namelythe exchangesymmetry of t’ and ~e.This can be used in numericalcalculationsto

increasethenumberof sectionsand to acceleratethe calculations.
**) Strictly speakingthis is not correct, becausegenerally tori having a rational winding numberare replaced, evenunder an infinitesimal

perturbation,by a stablen-cyclesurroundedby elliptic islandsandan unstablen-cycleembeddedin astochasticlayer.However, thewidths of the
layersbecomeinfinitesimally small and henceinvisible in numericalcalculationswhen we approachthe integrablelimit.

~IThe anisotropic Kepler problem [74, 75] provides an example, where the hydrogen atom becomeschaotic even under a very small
perturbation.
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Fig. 13. Poincarésurfacesof sectionate= —0.8. —0.5. -0.4, —11.3. —11.2 and —11.1 (from left to right and top to bottom).Thesectionsare thev—p
planesdefinedb~~s= 0. Horizontal axesmeasure ~ verticalaxes measurep : theradiusat the circles is 2.
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The Poincarésurfaceof sectionfor r = —0.8 shows three important structures. The elliptic fixed
point in the centerof the surfaceof section,z = = 0, correspondsto the p 0 straight line periodic
orbit parallel to the field. The ellipses around this fixed point belong to quasiperiodicvibrational
motion. Theseare separatedfrom quasiperiodicrotationalmotion representedby the ellipses around
the fixed point in the upper andlower parts of the section.The positionsof thesetwo fixed pointsare
independentof r and are given by (0, ±\/~);they belong to the z 0 straight line periodic motion
perpendicularto the field. The separatrixdividing thesetwo regions of motion accumulatesin a
hyperbolicfixed point locatedat (±V’~,0) (for e= —co), which correspondsto the exactlycircular orbit
in the limit r—* —~. For historical reasonsthe straight line orbits perpendicularand parallel to the
direction of the magneticfield havecometo becalledI~andI,.. respectively.The almostcircular orbit is
labelledC. The labellingof rotatingandvibrating motion becomesclearwhen we transformthe phase
spaceportrait plotted for e= —0.8 in the (V~ii, p~)-coordinatesinto a “spherical” representation
defined by the radius R2= p~— 2sv2 (which actually correspondsto the pseudoenergyof the i-

oscillator,seee.g. DelandeandGay [76])andtheangle 11 = arctan~ Sucha representation
is given in fig. 14, which actuallyshowsthe samephasespacestructureas a physicalpendulumwith its
vibrating and rotatingmodes(see,e.g. ref. [73], p. 25).

As we increasethe scaledenergyr, irregular motion appearsfirst nearthe separatrix,as is clearly
visible in fig. 13 for e = —0.5. The separatrixis replacedby a stochasticlayer,which fills a finite areain
the surfaceof section.As wefurther increasethe scaledenergy,this layer increasesin size whereasthe
large islandsrelatedto rotating and vibrating regular motion becomesmaller and smaller. Some new
islandstructuresembeddedin the stochasticlayerappearcloseto the largeislands,but theydisappear
quickly as s is further increased.Finally, for s = —0.1, no regularstructureis visible on the surfaceof
sectionandthe classicalmotion is dominatedby global chaos.Someregularmotion is presentevenfor
r> —0.1 (seesection3.4), but the relatedelliptic islandsare so small that they arenot visible on the
scaleof fig. 13 and their actual overall size can be neglectedfor our purpose.

Haradaand Hasegawa[65]numericallymeasuredthe fraction of availablephasespace(i.e. the size
of the layer in fig. 13) in which the classicaltrajectoriesare irregular. The result is plottedin fig. 15.
Virtually, all of the phasespaceis regularfor scaledenergiesbelow r = —0.6. Arounds = —0.35 there
is a rathersuddendecreaseto zero in the regularfraction of phasespace.

4 ~-—-~

Fig. 14. Poincarésurface of sectionin a “spherical”representationat e= —0.8.
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Fig. 15. Fractionof regular orbits in thesurface of sectionas a function of scaledenergy.
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Fig. 16. Imageof the interval definedby v0, O~p~zV~ after (a) one, (b) two, and (c) threerecurrencesto the~s=0 surface.

While fig. 13 showsthe long time behaviourof a few trajectories(the surfaceof sectionfor E = —0.1
was e.g. obtainedby integrating a single trajectory for a long time), fig. 16 shows the short time
behaviour of a bunch of trajectories.Here the trajectoriesstarting on the line defined by z.’ 0,
0 ~ ~ V~in the IL = 0 surfaceare followed up to one (a), two (b) and three(c) recurrencesto the
IL = 0 section surface. While the single iteration structure (a) is still relatively simple, the double
iteration (b) is already rather complex and the structure is completely unsurveyableafter three
iterations(c). Figure 16c demonstratesthe build-up of a self-similar structurewith increasingiteration
depth. The multiply intertwinedloopsin a comparativelysmall region of phasespaceare responsible
for the extremely sensitive dependenceof the classical motion on the initial conditions: a small
deviationin phasespacecan lead us from one loop to a neighbouringloop so that e.g. reversingthe
motion can lead us to widely separatedpoints in phasespace.

3.4. Liapunovexponents,periodic orbits and bifurcations

One quantitativemeasurefor the degreeof chaoticity of an irregularclassicalorbit is its Liapunov
exponent, which characterizesthe rapidity of exponential divergence of nearby trajectories. A
practicableway of calculatingLiapunovexponentsis via the stability matrix as describedby Meyer [77].
For Hamiltonian flow in N spatial dimensionsthe stability matrix M(t

1, t2) is a 2N X 2N matrix which
governsthe infinitesimal deviationsz~x(t2)from a given orbit in phasespaceattime t2 as afunction of
arbitrary initial infinitesimal deviations~x(t1) at time t1: ~x(t2) = M iXx(t1). The LiapunovexponentA
is defined via the norm (any norm) IL(t1, t2) of M(t1, t2)

Alim~
1lnIL(t

1~t2). (28)
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The stability matrix obeysthe differentialequation

P1=J~—~M, M(t,t)= 1, ~=(_~1 ~)‘ (29)

which can be solved numerically in the general case and almost analytically if the potential in the
Hamiltonian has a simple analytic form [69, 77, 126].

The Liapunov exponent defined by eq. (28) is a unique function of the classicaltrajectory,i.e. all
points lying on a given trajectory have the same Liapunov exponent. It is particularly easy to calculate
for periodic trajectories,which only haveto be followed for one period T. As the stability matrix
M(0, T) is symplectic, its eigenvalues occur in pairs of product unity — they are either complex
conjugate pairs on the unit circle or a real number together with its inverse. If /3 is the eigenvalue of
M(0, T) with the maximumabsolutevalue,thenthe Liapunovexponentof the periodicorbit is given by
[69]

A=ln(1f31)IT. (28a)

For a stable periodic orbit A = 0 the eigenvalue /3 is a complex number, /3 = exp(21Tiv~).The winding
numberiç is the frequencyratio with which neighbouringtrajectorieswind aroundthe periodic orbit in
phasespace.A stableorbit appearsas an elliptic fixed point in aPoincarésurfaceof section.If A >0 the
orbit is unstableand appearsas a hyperbolic fixed point in the surface of section. For positive
eigenvalues/3 > 1 we havean ordinaryhyperbolicfixed point; for negativeeigenvalues/3 < —1 the fixed
point is called inversehyperbolicor a hyperbolic fixed point with reflection.

The Liapunov exponentof the straight-lineorbit I~perpendicularto the direction of the magnetic
field is illustrated in fig. 17 as a function of the scaledenergy.This orbit is stable(vanishingLiapunov
exponent)for energiesbelow e0 = —0.127268612. At thisvalueof the scaledenergythe last islandsof
stability still visible at r = —0.2 in fig. 13 vanishandglobal chaossetsin. The productof the Liapunov
exponentA and the period T of the orbit thengrows proportionalto the squareroot of (r — e~)[68],

A
2=A2T2=’13.53(e—es). (30)

— 0.15 —01 —0.05 0 0.05 0.1 t

Fig. 17. Liapunov exponentA (multiplied by theperiod T) for theperiodic straight line orbit perpendicularto thefield asa function of thescaled
energy(from ref. [68]).
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At e = 0 formula (30) yields A = 1.312, which should be comparedwith the exactvalue A = 1.317=

arcosh(2).For very largevaluesof the scaledenergy(e ~= 1) A increaseslogarithmically with r [136].
The productA = ATgives the rate of exponential divergence of neighbouring trajectories in units of the
period of the orbit and is the Liapunov exponent of the fixed point generated by the surface of section
map of the periodic orbit. In contrast to the Liapunov exponent A of the orbit, A is an invariant
property of the orbit anddoes not depend on whether the cylindrical or the semi-parabolic representa-
tion is used for the evolution of the classical trajectories.

Figure 18 shows the Liapunov exponentof the periodic orbit 1 parallel to the direction of the
magneticfield. This orbit is stablefor scaled energies below r = —0.391300824 andthengoesthrough
a sequenceof intervalsalternatingbetweenstability andinstability [68, 69, 71]. At the points,where I~.
becomesunstable,the orbit undergoesa bifurcation and gives birth to a seriesof non-straight-line
orbits,which were identifiedby Welge andcollaborators[7, 8] andAl-Laithy et al. [70] andhavebeen
labelled12, 13, 14,. . . (see also refs. [62, 67]). As the energyincreases,more andmoreof theseorbits
correspondingto more and more oscillationsaroundthe axis parallel to the field are born,and at the
escapethresholdr = 0 thereis an infinite sequenceof such orbits [681.Thefirst five orbits of the series
at the thresholdareshownin fig. 19. The straight-linetrajectoryI,, ceasesto be a periodic orbit above
the escapethreshold,whereit becomesan ionizing trajectory.The orbits 12, 13, 14, . . . are born stable,
but theysoonbecomeunstableandtheir Liapunovexponentsincreasemonotonicallywith energy.The
energydependenceof the Liapunovexponentsis illustratedin fig. 20. The pointsat which theorbits ‘2’

13, 14,. . . becomeunstablecorrespondto bifurcationpointswherestableorbits areborn. Theseorbits
do not havethe symmetryof the series~2’ 13, 14, . . . andno longer passthroughthe origin. The points
at which the straight line orbit I. regainsstability arebifurcation points at which unstableorbits are
born. A detaileddescriptionof the different possible scenariosof the birth (and death) of periodic
orbits at points of bifurcationor confluenceis given in ref. [78].

In a chaoticsystemthe Liapunov exponents(28) of the periodic orbits fluctuate around a mean
value,which is called the metric entropyhm of the system.This entropyis equalto or largerthanthe
topologicalentropy h~,which determinesthe proliferation of periodic orbits as a function of their
periods;the number N(T< T0) of orbits with periodsless than T0 increasesroughly proportionalto

AK

—05 -0,4 —03 -0.2 -0,1 0

Fig. 18. Liapunov exponentAK (calculatedin thecylindrical representation,which describesKepler ellipsesin the zero-field limit) of the periodic
orbit parallelto themagnetic field as function of scaledenergy.The orbit repeatedlybecomesunstableat points of bifurcation, where stable
nonstraight-lineorbits (correspondingto elliptical fixed points shownschematicallyin the inset) areborn.
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Fig. 19. Straightline orbit I~perpendicularto thedirectionof thefield andthefirst five nonstraight-lineperiodic orbits10,1 whichareborn out
of bifurcationsof the orbit I~parallelto thefield. This figure shows theshapesof the orbits at the escapethresholde = 0.
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Fig. 20. Liapunovexponents(calculatedin cylindrical representation)of thefirst six orbits of theseriesI~,I~,. . . shownin fig. 19. (Fromref. [69].)
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exp(h~T0)IT0[79]. This is illustrated in fig. 21. For reasonsdiscussedin section 4.4 below, it is
appropriatein the presentcase,wherethe classicaldynamicsis determinedby the scaledenergyr, to
order the periodic orbits not by their periodsT but by their (scaled)actionsS(e)definedin eq. (42).
Figure 21a shows, for e = —0.2, the Liapunov exponentsA = AT for 132 primitive periodic orbits
plotted against their scaledaction S. (A “primitive” periodic orbit is a periodic orbit which is not a
repetition of a shorterperiodic orbit.) The figure includesperiodic orbits with actionsup to S = 6. In
order to simplify the searchfor periodic orbits, we haveconfined out investigation to one-parameter
families by requiring the periodic orbits to obey at leastone of the following symmetries:(i) theypass
throughthe origin, (ii) theypassperpendicularlythroughone of the threesymmetryaxes, ~‘ = 0, IL = 0
or -‘ = IL~and(iii) they areselfretracingorbits (that is p~= p~= 0 somewhere).Figure 21a showsthat
thereare two stableperiodic orbits having a vanishingLiapunovexponent,but 130 unstableperiodic
orbits. The fact that there are so many unstableperiodic orbits is related to their exponential
proliferation in the chaoticpart of the phasespace(note that the fraction of the regular part of the
phasespaceis much largerthanthe fraction of regularorbits 2/132,seefigs. 13 and15). Fromfig. 21a
we estimatethe averageLiapunov exponent~A) of unstableperiodic orbits to be approximately1.2
timestheir action;thusthe entropyhm is roughlyunity. Although theorbits plottedin fig. 21acertainly
do not coverall the primitive periodic orbits of the systemup to S = 6, onecan expectthat theseorbits
havethe sameproliferation as all orbits together.Their proliferation is shownin fig. 21b, which gives
the numberof orbits with at leastoneof the abovesymmetryproperties.Note thatin the densepart of
the figure their numberincreasesexponentiallywith a slope compatibleto the value of the metric
entropyhm.
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Fig. 21. (a) Liapunovexponentsand (b) numberN of periodic orbits at a scaledenergyof e= —0.2 plotted againsttheir scaledactionsS [seeeq.
(42) in the text] for values of S up to six.
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4. Quantum mechanical observablesand chaos

4.1. General remarks on quantumchaos

In contrastto the unambiguouscharacterizationof chaosin classicalmechanics,it is as yet not clear,

how the conceptof chaosis to be sensiblyappliedin quantummechanics.A direct transpositionof the
conceptof diverging trajectoriesto quantummechanicsis impossible,becausetrajectoriescan only be
definedapproximatelywithin the uncertaintygovernedby Planck’sconstant.

The role of Planck’s constantin stifling chaos,or at least our classical notion of chaos,can be
illustrated with the help of fig. 12. Fig. 12b showsthe lines of constantscaledenergyalongwhich the
classical dynamicsis the sameto within a trivial similarity transformation.Moving along theselines
towardshigher field strengthsy, i.e. towardsa largereffectivePlanck’sconstanty”3h (seeeq. 23), the
quantumspectrumbecomessparserandsparseruntil we areleft with only oneboundstatecorrespond-
ing to the zero-pointmotion of the electronin the two-dimensionalpotential illustrated in fig. 2. This
happensnot only for negative (scaled)energiesbut also aroundthe zero-field threshold,wherethe
classicaldynamicsis definitely chaotic,andevenfor arbitrarypositiveenergiesr. The reasonfor thisis
that the real ionization thresholdEm = (ImI + 1)y/2 (seesection2.2) increasesmore rapidly thanthe
energy E = y213r along lines of fixed scaledenergy r, and E drops below the real threshold at
y = [2r/(ImI + i)]~.Since the binding energyof the ground state in a given m~subspace,i.e. its
separationfrom the real ionizationthreshold,increasesat most logarithmicallywith ‘y [15,25,26], there
is, for eachvalueof the scaledenergye, a critical field strength(dependingon m~and r) at which the
energyE equalsthe zero-point energyin the respectivem’~subspace.(There are no boundstatesat
higher field strengths.)Such a single bound statehas little to do with our classicalnotion of chaos.

At the other end, towards lower field strengthsand a smaller effective Planck’s constant, the
spectrumbecomesincreasinglydenseandcomplicated. In this region it is possibleand worthwhile to
studythe dependenceof the very complexspectraand otherquantummechanicalobservableson the
scaledenergyandto look for the manifestationof classicalchaosin quantummechanics.

4.2. Energy level statistics

Many model calculationshave, in recentyears,shown that the regular or chaotic nature of the
classical dynamicsof a boundsystemmanifestsitself in the statisticalpropertiesof the energylevel
spectrum[80—85].Energy spectracan be expressedin terms of the spectral staircasefunction N(E)
definedby

N(E)=~e(E—E~). (31)

The propertiesof the spectrumaredivided into a smoothpart Nav(E) related to the meanlevel density
nav(E)= dNav!dE, anda fluctuatingpart which accountsfor the differencebetweenN(E) andNav(E).
In order to eliminateeffectsdueto variationsof the smoothmeanlevel densityit is customaryto study
the fluctuationsin the unfolded spectrum

= Nav(Ei), (32)
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which has a constantmeanlevel densityequalto unity. Asymptotically (for largequantumnumbers)
the smoothpart Nas, is given by the semiclassicalrule, that each quantumstateof a d-dimensional
systemoccupiesa volume (2irh)d of the total phasespaceF.

Statistical measuresfrequently used in characterizinglevel fluctuationsare:
(i) The distribution P(s) of spacingss betweenadjacentlevels [nearestneighbourspacing(NNS)

distribution]. The probability P(s) ds is the probability for finding a separationof neighbouringlevels
betweens ands + ds.

(ii) The numberstatisticsn(L) of the distribution and the momentsassociatedwith it. Given an
interval [a, a + L] of lengthL, n(L) countsthe numberof levelswithin this spectralrange.Averaging
over the spectrumyields various momentsof the distribution such as the variance12(L), skewness
y1(L) and excessy2(L).

(iii) Spectralrigidity ~l3(L) of the spectrum.Givena substretch[a, a + L] of the spectrum,L13(L)
measuresthe meansquaredeviationof the spectralstaircasefunction from the beststraight line fit to it

a+L

~3(L; a) = mm J [N(�) - Ac - B]
2 d�. (33)

Note that through the transformation(32) we are dealing with spectrawhose averagepart is the
identity, Nav(�) = �, but for finite segmentsof the spectrumthe beststraight line fit maydependslightly
on a. Averagingover a gives the rigidity L1

3(L). ~ is relatedto the variance12 by a non-invertible
integraltransformation.

The functional forms of the measureslisted above are knownanalytically for somespecific model
spectra.Two kinds of spectraare particularly important: (a) (Uncorrelated)randomlevel spectra
(Poissonspectra),(b) randommatrix spectra.In the lattercaseonedistinguishesbetweenensemblesof
real symmetricrandom matrices (Gaussianorthogonalensemble— GOE) and ensemblesof complex
Hermiteanrandommatrices(Gaussianunitary ensemble— GUE). The GOE ensembleis the relevant
onefor the hydrogenatom in a uniform magneticfield, becausethe Hamiltoniansin eachm~subspace
(seeeq. 5) are representedby real symmetricmatrices.Spectrabelonging to the aboveclassesshare
universalfluctuation properties.Their NNS distributionsare given by an exponential

P(s) = eS (34)

for Poissonspectra,and approximatelyby a Wignerdistribution

P(s) = ~rse
2’~ (35)

for GOE spectra.Asymptotically (largeL) the spectralrigidity is given by

~
3(L) = L/15 for Poissonspectra (36)

and by

L13(L) (1 /ir
2) in L — 0.007 for GOE spectra. (37)

Analytic formulaefor the momentsof the level distributionsare morecomplicatedand can be found
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e.g. in Bohigas et al. [86]. A graphicalpresentationof them will be given in the discussionof the
results.

The physical motivationfor studying level fluctuationsaccumulatesin a conjecturewhich was first
formulated by Bohigas et al. [80], namely that the appearanceof universalfluctuation patternsin
quantumspectrais linked to the global structureof the underlyingclassicaldynamics: level spectraof
classicallychaoticsystemssharerandommatrix fluctuations,while integrablesystemsshowfluctuations
characteristicfor random(Poisson)spectra.

In the secondhalf of 1986 threepapers[87—891appeared,in which statisticalpropertiesof the energy
level spectraof the hydrogenatom in a uniform magneticfield were studiedand comparedwith the
predictionsof statisticaltheories.In theseearliestpapers,the scaledenergywas not yet establishedas
the naturalparametergoverningthe classicaldynamics,so refs. [88, 89] studiedspectraat fixed field
strengths,which meantthat eachspectrumcovereda finite rangeof nonequivalentclassical systems.
References[87, 88] studied spectraat constantvaluesof the energydivided by the field strength,
becausethis is justthe inverseof the effective couplingstrengthin the quantummechanicaltreatment
(seesection2.3); constantE/y is actually not far from constantscaledenergy, in particular nearthe
zero-field threshold. Independentlyall threeinvestigationsconfirmed that the NNS distributionsare
close to a Poissondistribution for energieswhere the classicaldynamicsis regular, and close to a
Wigner distributionaroundthe zero-fieldthreshold,wherethe classicaldynamicsis chaotic.

More detailedstudies[90, 91], now at fixed valuesof the scaledenergy, investigatedthe transition
from the regular (Poisson)to the irregular (GOE) regime. As an example fig. 22 shows various
statisticalquantitiesat a scaledenergyof e = —0.1, wherethe classicaldynamicsis governedby global
chaos.From left to right and top to bottom the figure showsthe NNS distribution histogramP(s), the
cumulativespacingdistribution J~P(x) dx (which doesnot dependon the histogramstep size), the
spectralrigidity ~, the numbervariance12, the skewnessy1 andthe excessy2 all areshown together
with the Poissonandthe GOE predictions.The resultsshownareaveragesover eight differentspectra
from various m~subspaces(m = 0, 1, 2, 3; IT = +, —), exceptfor the spectral rigidity ~, which was
analyzed separatelyfor the two different z-parities, becausea noticeable parity dependencewas
observed.Altogether approximately3000 levels enteredthe analysis.

There is generallycloseoverall agreementbetweentheresultsshownin fig. 22 andthepredictionsof
random matrix theories, and this confirms the hypothesis of universal fluctuation patternsin the
quantumspectraof classicallychaoticsystems.However,therearesomedeviationsfor largevaluesof
L, in particularfor LI3 and 12. Thesearerelatedto a breakdownof universalitywhen L becomeslarger
than some correlation length Lmax~A semiclassicaltheory which accountsfor thesenonuniversal
departureshasbeendevelopedby Berry [92—94]on the basis of Gutzwiller’s periodic orbit theory (see
section4.4). It not only gives the sameresultsas the statistical theoriesfor L ~ Lmax, but alsopredicts
the correctasymptoticbehaviourfor L ~‘ Lmax, whererandommatrix theoriesfail.

For the spectralrigidity LI3 the semiclassicaltheory predictsasymptoticsaturation.Figure 23 shows
the calculatedspectralrigidity on a larger scaleof L-values, againanalyzedseparatelywith respectto
the z-parity. Obviously both curves saturateasymptotically, but they convergeto different values
correspondingto a parity splitting of 0.040(2).Again this can be understoodwithin the framework of
the semiclassicaltheory.The origin of the parity dependentsaturationvaluesare periodic orbits lying
on exactsymmetry lines of the Hamiltonian. Their influenceon the spectrumis different in subspaces
belonging to different quantum numbers associatedwith these discrete symmetries.*) A careful

*1 This is worked Out quantitativelyin section4.4.
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Fig. 22. Statisticalpropertiesof the quantummechanicalspectrumat aconstantscaledenergye = —0.1. From left to right and top to bottomthe
figure shows:theNNS distributionhistogram P(s), thecumulativespacingdistribution j~P(x)dx, thespectralrigidity L1~,thenumbervarianceA~,
the skewnessy

1 and the excessy.,.

semiclassicalanalysis[91] gives an asymptoticparity splitting of 0.043, which is quite closeto the value
observedin fig. 23.

Becauseof the scalingproperty of the classicalHamiltonianwe can studythe statisticalpropertiesof
the quantumspectraat fixed scaledenergyr (determiningthe classicaldynamics)andinvestigatetheir
dependenceon r as the classicaldynamicsgoes throughthe transition from regularity to irregularity.
Suchan analysisis shownin fig. 24 for the NNS distributionhistograms.Thereis a cleartransitionfrom
a Poisson-likedistributionat e = —0.4 to a Wigner distributionate = —0.1. In the transitionregionthe
histogramscan be approximatedfairly well by a Brody distribution [95]

P(s) = a(q + l)~~e~as4+’ a = [F((q + 2)!(q + ~))]~+1 (38)
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Fig. 23. Spectral rigidity (33) at e= —0.1 as a function of L.
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Fig. 24. NNS distributionsP(x) for scaledenergiesr varying from —0.4 to —0.1. Thesolid lines showattemptsto fit the histogramswith Brody’s
formula (38), the dashedlines representthe interpolationformula of Berry and Robnik [96].(From ref. [90].)
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which interpolatesbetweenthe regularPoissondistribution(q = 0) andthe irregular Wignerdistribu-
tion (q = 1) andis representedby the solid lines in fig. 24. Also shown in the figure areattemptsto fit
the histogramswith a distributionproposedby Berry and Robnik [96] (dashedlines), which is obtained
by the independentsuperpositionof a spectrumobeyingPoissonstatisticswith weightq anda spectrum
obeyingWigner statisticswith weight 1 — q. Although the ideabehindthe Berry—Robnik distribution
seemsvery reasonable,the fits were generally poor compared to fits obtained with the Brody
distribution. Onereasonfor thepoor performanceof theBerry—Robnikdistributionin the presentcase
is, that the levelsbelongingto the regularpart of the spectrumdo not obeya Poissondistribution,but
behavemore like the levelsof a two-dimensionalharmonicoscillator [91].

More detailedinvestigationsrevealthat the transitionfrom Poissonto Wigner statisticsin the NNS
distributionsis not assmoothas might be expectedfrom fig. 24. It seemsto be difficult if not impossible
to find a quantitativedescriptionof the NNS distributionsin the transitionregimebetweenregularity
andirregularity. The reasonfor thisis that the spectralstatisticscan dependsensitivelyon nonuniversal,
system-specificdetailsof the underlyingclassicaldynamics[91]. This can be seenmoreclearly in other
statisticalmeasuresshown in figs. 25 and 26.

1.0

,/‘ —0.30
~

Fig. 25. Spectral rigidity ~ as function of L for variousvalues of thescaledenergye. (From ref. [91].)

0

Fig. 26. Numbervariance ~ as function of L for threevalues of thescaledenergyr. (From ref. [91].)
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Figure 25 showsthe spectralrigidity LI3 for variousvaluesof the scaledenergye, togetherwith the
predictionsof the Poissonand the GOE cases.In the nonsaturatedregion L <5 one clearly seesthe
transitionfrom Poissonto randommatrix statisticsas r is increasedfrom —0.4 to —0.15. However,for
largervaluesof L, the spectralrigidity at r = —0.3 doesnot conform to the generaltrendand saturates
at a muchlargervaluethanthatobservedfor the other valuesof r. An evenmoredramaticdeviation
from the generaltrendis observedfor the numbervariance12 shownin fig. 26. At e = —0.3the number
variance 12(L) might be expectedto be a smoothly varying curve lying betweenthe corresponding
curvesfor e = —0.25 and r = —0.35; howeverit is a strongly oscillatingcurvewhich lies well abovethe
other two curvesfor L >3.

Thesedeviationsof variousstatisticalmeasuresfrom a smoothr-dependencenearr = —0.3 can be
readily explainedwithin the framework of Berry’s semiclassicaltheory as a consequenceof the
propertiesof certainstableperiodic orbits [91]. The extraordinaryfeaturesobservedat r = —0.3 can be
tracedto the stableperiodic orbit perpendicularto the field (Ii), which accidentallyhasa low rational
winding numberat this valueof e. This causesmanysystematicnear-degeneraciesin the regularpart of
the spectrum(seesection4.4), which naturally hasa strong influenceon the numberstatistics.

The statisticalanalysisin this chapterapplied to the fluctuating part in the densityof states.Other
physical quantitiescan also be considered.Recently Wunner et al. [1411studiedtransition strength
fluctuations(distribution of oscillator strength)and againfound good agreementwith randommatrix
predictions.The same is to be expectedfor the decaywidths of resonantstatesabovethe ionization
limit. Randommatrix theorIespredictvery narrow decaywidths asthe mostprobableones.A quantum
mechanicalmechanismto obtain such long-living stateswas given by Friedrich and Wintgen [46].
Recentexperimentsseemto confirm the existenceof thesenarrow states[142].

To summarize,the statistical measuresstudied in this sectionfollow the universalpredictionsof
statisticaltheoriesquitewell, as long as the level fluctuationsare analyzedon a small scale.Agreement
is good for local propertiesof the level fluctuations. On larger scaleshowever(global properties),
nonuniversalfeatures reflecting special propertiesof the underlying classical dynamics, become
dominantand may lead to extraordinarybehaviourof the statistical measures.It turns out that the
knowledge of the classicalperiodic orbits is useful and necessaryto understandthe complexspectra.
Theinfluenceof periodic classicalorbits on thepropertiesof quantumspectrais discussedquantitatively
in the next two sections.

4.3. History of the quasi-Landauphenomenon

Thediscoveryof almostequidistantpeaksin the photoabsorptionspectraof atomsin amagneticfield
[56] played a major role in generatingthe widespreadattentiongiven to the problemof atomsin
magneticfields in recentyears.Nearthe ionization thresholdthe separationof the peaksis roughly 1.5
timesthe cyclotronenergyhw~= 211w, which correspondsto the separationof the Landaustatesof free
electronsin a magneticfield, hencethe namequasi-Landauoscillations.

Solutions of the one-dimensionalSchrödinger equation for an electron moving in the plane
perpendicularto the magneticfield actuallygive energylevelswith a spacingof roughly 1.5 times 11w~,
as was soonfoundout on the basisof semiclassical(WKB) investigations[97—99].The earlysuccessof
this simpleexplanationof the spacingof the quasi-Landaupeaksled to the widespreadview that these
peakswere due to resonantphotoabsorptioninto individual quantumstatesin which the motion of the
electronis localizedin the planeperpendicularto the direction of the magneticfield [18, 57, 98—102].
This picturewas alsoconsistentwith absenceof quasi-Landaupeaksfor transitionsinto rn’

T subspaces
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with negativez-parity,becausethe negativeparitywave functionsall vanishin the planeperpendicular
to the field. It wasshownlater [67, 103], that the disappearanceof quasi-Landaustructurein subspaces
with negativez-parity is a propertyof the transitionoperatorinvolvedandnot of thefinal statedensity.

First ab initio quantumcalculationsof statesat the zero-fieldthresholdE = 0 and at field strengths
somewhathigher thanlaboratoryfield strengthsshowedthat the abovepictureof a quasi-Landaupeak
as due to a single quantum state with a dominant oscillator strength is at best a severe over-
simplification [104].The quasi-Landauregion is highly irregular, and it is in generalnot possible to
arrangethe spectrum in simple sequencesof bound (or resonant)states. On the other hand, the
experimentaldata on the quasi-Landau“resonances”showedsmoothlymodulatedcrosssectionsand
did not necessarilyimply anidentificationof the modulationpeakswith individual quantumstates.The
experimentallyobservedquasi-Landauoscillationscan in fact be relatedto the (classical)motion of the
electronin the planeperpendicularto the field without invoking the existenceof prominentindividual
quantumstatesat the peakpositions,as is describedbelow.

Oneway of correlatingmodulationsin the crosssectionswith closedclassicalorbits is the pictureof a
wavepacketrecurringto its startingpoint aftereachtraversalof the closedorbit. The modulationpeaks
are due to constructiveinterferenceon recurrence,and this occurswhen the “resonancecondition”

S(E)=~—~-~’5~pdr=n (39)

is fulfilled [105—108].This resonanceconditionis not a quantizationconditiondefining the energiesof
individual quantumstates,but it can determinethe positionsof modulationpeaksin crosssectionsor
spectraldensities.This generalpictureis not only applicableto the quasi-Landaumodulationsof atoms
in a magneticfield, but also to a variety of otherphysicalsystemsshowingsimilarly modulatedspectra,
e.g. atoms in externalelectric fields [109, 110, 126, 143], negativelychargedions in external fields
[111—114],the spectraof the H3 [115]and the H20 molecules[134].

The interest in the quasi-Landauphenomenonreceived a boost after 1986, when Welge and
collaboratorsstudying photoabsorptionspectraof atomic hydrogen reporteda new series of more
closely lying peaksfor transitionsinto m~subspaceswith negativez-parity [7]. Thesepeakscould be
relatedvia the resonancecondition (39) to the first orbit 12 of the seriesof non-straight-lineperiodic
orbits shownin fig. 19. Fourier transformingthe measuredcrosssectionssoonrevealeda wholeseries
of modulation frequencies,and thesewere correlatedwith the other orbits of the series[8].

4.4. Gutzwiller’s traceformula

A quantitativedescriptionof how periodic classicalorbits influencequantummechanicalobservables
is providedby a theorydevelopedby Gutzwiller [79, 116—118], Balianand Bloch [119]and Berry and
.coworkers[120—122].This theory is a semiclassicalapproximationof Feynman’spathintegralformalism
[123].The quantummechanicalspectraldensity

n(E)= ~ 8(E — E1) (40)

is written as the sum of a smooth part flav(E), the mean level density, and a fluctuating part. The
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fluctuatingpart is given explicitly as a sum over the periodic orbits of the classicalsystem:

n(E)— nav(E)= —Im ~ a~1exp{2ITij[Sr(E) — ILr]} . (41)

The label r runsover all primitive orbits andthe labelj = 1, 2, 3,. . . countsthe numberof traversalsof
the periodic orbit; ILr is an appropriateMorse index for the phase,which is analogousto the Maslov
index familiar in semiclassicalquantizationand dependson the focussingof trajectoriesclose to the
periodic orbit [122].

The beautyof eq. (41) is that it appliesirrespectiveof whetherthe systemis regularand the orbits
stable,or whetherthe systemis chaoticandthe orbits unstable.The informationaboutthe stability of
an orbit is containedin the amplitudefactorsan. For a stableperiodic orbit thesefactorsoscillateor
behaveas apowerin j, dependingon whetherthe orbit is isolatedin phasespaceor is embeddedon a
(resonant)torus [120—122].For unstableperiodic orbits the amplitudefactorsa,.i decayexponentially
with j (seebelow). Thecontributionof aprimitive periodicorbit r togetherwith all its repetitionsto the
densityof statesis thus a moreor lesspronouncedpeakwhenSr — IL~is awholenumber.Exceptfor the
modification due to the Morse index, this is preciselythe resonancecondition (39). However, the
contributionof a single periodic orbit in the traceformula (41) doesnot lead to singularities(individual
quantumstates)in the densityof states.*) -

Formulaeof the type (41) apply not only to the energylevel densitybut also to other quantum
mechanicalobservablessuch as the photoabsorptioncrosssectionsfrom a low-lying state[124—126]or
expectationvalues of operatorshaving a classicalcounterpart[127].

The resonancecondition(39) (ignoringfor simplicity the Morse index) can beexpressedin termsof
the scaledcoordinatesand momenta(20)

1 £~ — 1/3 1 ,i:: 1/3S(r)=~_~-j.ipdr=~ ~—~jpdr=y n; (42)

S(r) is the scaledaction and dependsonly on thescaledenergywhichdeterminesthe classicaldynamics.
Thescaledresonancecondition(42) meansthat the modulationsrelatedto a given periodic orbit r are,
at fixed valuesof the scaledenergyE, locatedat

Y~”
3=~7E=flISr(E), (43)

i.e. they areequidistanton a scalelinear in ~, -1/3 Equation(43) shows that a comparisonof classical
and quantummechanicsis most appropriatelydone by studyingspectraat fixed valuesof the scaled
energyr andas functionsof yt13. Modulationpeaksassociatedwith a given periodic orbit r arethen
equidistantand separatedby the inverse scaledaction 1!S~(e).In the Fourier-transformedspectra
dependingon aconjugatevariable, which we call ~ for simplicity, suchregularmodulationsappear
as prominentpeakssituatedat

(44)

*) Note however,that using thetrace formula (41) asdirectquantizationformulafor stableand isolatedorbitscan approximatetheregularpart
of thespectrumvery accurately!
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In contrast,studyingquantumspectraasfunctionsof the (non-scaled)energyE at fixed field strengthsy
involves averagingover a range of scaledenergiesdetermining the classical dynamics, andFourier
transformingsuch spectraleadsto broadenedpeaksin the time domain,the locationsof the peaks
beinggiven by the periodsof the orbits.Thesepeaksmay be washedout, however,becausetheperiods
of the orbits dependon the energy.

Powerspectra(i.e. squaredFourier amplitudes)of thefluctuatingpart of the energylevel densityare
shownin fig. 27 for variousm~subspacesat the scaledenergyr = —0.2. The powerspectrado indeed
show severalsharppeakswhichcan be correlatedwith classicalorbits.A remarkablefeaturein fig. 27 is
that the power spectrain the differentm~’subspacesare almostidentical, althoughthe details of the
underlyingspectraareof coursequite different. The reasonfor the similarity of the powerspectrais,
that the scaledazimuthalquantumnumber~I = /

3rn becomesnegligibly smallin the densepart of the
spectrum (small field strengths)so that the classical dynamics becomesindependentof m. (Note
however,that the peakat S = 1.58 is strongfor m = 0, lesspronouncedfor m = 1 andalmostabsentin
the rn = 2 subspaces.This point will be discussedlater in this section.)

For a more quantitativeanalysisit is useful to recall the derivationof the traceformula (41). The
densityof statescan be expressedas the trace of the Green’sfunction

n(E)= —Im[(1IIT) Tr G(E)] . (45)

The Green’sfunction is the Laplacetransformof the time evolution propagatorK,

G(E) = — ~ f e~~K(t)dt, (46)

m”= 0+

I “~I~ - 2
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Fig. 27. SquaredFouriertransformsof the fluctuatingpart of thecumulative level density in variousin” subspaces.
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K(t) = ~ (47)

In Feynman’sformulationof quantummechanics[123]the propagatoris expressedas a pathintegral,

K(q’, q”, t) =j~~[q] ~(I/~)W[~] (48)

whereW= f~L(q, q) dt is the actionwritten as the time integraloverthe Lagrangian.The semiclassical
approximationconsistsin evaluatingthe integralsby the methodof stationaryphase,which yields
significant contributions to the densityof statesfrom the classical periodic orbits only. These orbits
contributesinusoidalcorrectionsto the meanlevel density12av’ which is given by the size of the energy
shell in phasespace

~ ~ ~ exp[ij(S~/h—ILrIT/2)]
n(E) = nav(E) — Im ~ irh ~ [det(M~— 1)]1/2 . (49)

Equation(49) is the so-called trace formula in which the sums run overall primitive periodicorbits r
with periodsT~andactionsSr andoverall repetitions]of the primitive orbits. ILr is the respectiveMorse
index and Mr is the 2 x 2 stability matrix describingthe time evolutionof transversedisplacementsoff
the periodic orbit.~~The eigenvaluesof Mr define the type of fixed point of the periodic orbit in the
Poincarésurfaceof section.The determinantis given, dependingon the type of fixed point, by

det(M’ —1) = 4sinh2(jA/2), hyperbolic,

= —4 cosh2(jA /2), inversehyperbolic, (50)

= —4 sin2(jirvj, elliptical,

A = AT is the Liapunov exponentof an unstableorbit in the Poincarémap, and v~is the w[nding
numberof a stableorbit (seesection3.4).

Two modificationsare necessaryif the Hamiltonian hasdiscretesymmetriesandif we are studying
spectrain subspacesof eigenfunctionsof thesesymmetries.Firstly, the Green’sfunction hasto be
adaptedto the symmetriesbefore taking the trace in eq. (45). As a consequence,periodic orbits can
contributee.g. with half-integertraversals(correspondingto j = 1/2, 3/2, 5 /2, . . .), if the orbits are
invariantunder thesesymmetry transformations.* *) Secondly,periodic orbits which areselfretracing
along symmetry lines contribute differently to different discrete subspaces.This can be seen by
expandingthe amplitudesof e.g. an unstableorbit, eq. (50)

1 = e~”2~”t 51

2sinh(jA/2) k=0

Equation (51) gives the decomposition of the amplitude in (50) into the various harmonic excitations

*) M, is obtainedfrom the full 4 x 4 monodromymatrix (29) by an orthogonaltransformation1116].
**) Generally, if the underlyingpotentialhasa C,,-symmetrythensymmetry-invariantperiodic orbits can contributewith thenth part of their

total length. In our casen = 2, see eq. (1).
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k perpendicular to the orbit. (~1)” definesthe “local” parity of the transversalexcitations.If thislocal
parity coincideswith an exact discretesymmetry of the Hamiltonian, viz, the symmetryorbits itself,
then the amplitude (51) has to be split into its odd and even parts by resumming over odd and even
values of k separately.In the presentsystem,the straight line orbits perpendicularandparallel to the
field (I~andI,~)aresuchselfretracingorbits alongsymmetrylines.The lattermodification is the reason
why the peakatS = 1.58 in fig. 27 becomeslesspronouncedwith increasingazimuthalquantumnumber
m.*) This peakis correlatedto the periodic orbit I,, parallelto the field, which is unstableat e = —0.2.
Since the scaledazimuthalquantumnumber~ = y ‘~3mtendsto zerofor high excitations,the classical
dynamicsis quite generallyindependentof m. The main effect of the azimuthalquantumnumberis its
influenceon the behaviourof the wavefunctionsnear = 0, which is given by ~1i~ ~H. Thus onehasto
sum over odd or evenk � m in eq. (51). The correspondingamplitudesthen differ by a factor

ar’) = (_1)m e_mPla~~~7O). (52)

The minus sign appliesbecausethe fixed point is inversehyperbolic.Thus the peak belongingto the
orbit parallel to the field becomes exponentially damped with increasing rn.

The samedecompositionof the amplitudehasto be performedfor theperiodic orbit I~perpendicular
to the field. However,at r = —0.2 this doesnot affect the heightsof the relatedpeaksin the power
spectrum, becausethe orbit is stable at this scaled energy. Expandingthe sine in eq. (50) yields
amplitudes which differ only in phase

a~
1/a~1= e

2’~’~~. (53)

Thus the peaks in the power spectrum are of the samemagnitudefor the orbit I~,in agreementwith fig.
27. This is different of course when the orbit becomes unstable, e.g. at £ = —0.1, whereI~corresponds
to an inversehyperbolicfixed point in the surfaceof sectionandthe Liapunovexponentof the Poincaré
map is A = 0.6080. Thus eq. (51) predictsmodulations with amplitudes differing by a

1111a111= —0.544;
the value found by Fourier-transformingthe spectrabelonging to different z-paritiesis in fact —0.54.
This connection between the quantum mechanical spectrum and the properties of the classical orbits
meansthat we can determinethe Liapunovexponentof the periodicorbit (with an accuracyof 1%) and
the type of fixed point in the Poincarésurfaceof section by solving the linear Schrädingerequation
without havingto follow the nonlinearevolution of the classicaldynamics.

The effect of symmetrizationof the Green’sfunction on the spectracan be illustratedby contrasting
the power spectrashown in fig. 27 with power spectraderivedfrom parity-mixed level sequencesas
shown in fig. 28. ‘Although the orbit I~perpendicularto the field hasthe shortestscaledaction,

= —0.2) = 1.03305, of all periodic orbits, the powerspectrain fig. 27 show a sharppeakat the
smaller value y 1/3 = 0.62 in eachm~subspace.This value correspondsto the scaledaction for half a
traversalof the almost circular orbit (C) (the numericalvalue is ~ = 0.61730), which is symmetric
undera coordinaterotation throughthe angleIT. This peakvanishesexactlyin the Fourier transformof
the parity-mixedspectrumcontainingall levelsof the m~r= 0~andthe rn’

T = 0 subspacestogether(fig.
28). In fig. 28, the almost circular orbit manifestsitself only at scaled actionsS~= 1.23460, 2S~=
2.46920,.. . correspondingto full traversalsof the orbit.

The peaksin fig. 27 can be fully accountedfor by the trace formula. Eachpeakcan be associated

*) This modification also causesthe observedparity dependencesof the statisticalmeasuresdiscussed~nsectIon4.~.
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Fig. 28. SquaredFourier transformof the fluctuatingpart of theenergylevel density for thespectrumconsistingof all levels of them” = 0* and
in” = 0 subspacestogether.

with a classical periodic orbit, and for each periodic orbit (with a scaled action in the range covered by
the abscissa) there is a corresponding peak in the Fourier transformed spectra. The locations of the
peaks agree with the directly calculated scaled actions of the classical orbits typically to within a few
parts in i04. (For further details see ref. [128].)Thus the semiclassical trace formula provides a simple,
elegant and powerful way of quantitatively explaining the quantum spectra in the low frequency
domain.

Having established the idea that quantum spectra can be decomposed into oscillating contributions
associated with classical periodic orbits, one might try to use the classical orbits to calculate the
quantum level density. In order to obtain the full semiclassical spectrum one would have to sum over all
periodic orbits including arbitrarily long periods or rather large scaled actions. To do this numerically is
a hopeless task. In order to obtain a complete knowledge of the periodic orbits one needs to know the
symbolic organization of the periodic orbits [129]or at least an algorithm to find all of them. Until very
recently such coding schemes existed only for some Hamiltonian systems without bifurcations [74, 130,
135]; the symbolic organization of the periodic orbits for the hydrogen atom in a uniform magnetic field
has been worked out in ref. [136].However even in the limit of including all periodic orbits in the trace
formula, it is not clear whether the sum would really reproduce all the delta-function spikes associated
with the true quantum levels [122, 137]. The reason for this is that the trace formula is certainly not
absolutely convergent. Presumably it is not convergent at all so that it can be used as an asymptotic sum
only [138]. Incorporating the symbolic organization of the periodic orbits together with refined
summation techniques may however give the analytic continuation of the trace formula. This is
indicated by some recent work in refs. [129, 139].

The complicationsof a summationover all periodic orbits can be avoidedif we include only the
simplestorbits in an attempt to generatea finite resolution density of states,the resolution being
determinedby the longest period (the largestscaledaction) amongstthe orbits included. Figure 29a
showsthe minimal versionof sucha calculation[131].Only the two simplestperiodic orbits, I~andC,
areincludedandtheir contributionsfrom up to onefull traversalyield the thin solid line. The smoothed
fluctuating part of the exact quantummechanicalspectrumis shown as the thick solid line (for more
details see ref. [131]). Figure 29a shows that this minimal calculation basedon only two classical
periodic orbits is able to reproducethe gross structureof the quantumspectrumwith remarkable
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Fig. 29. Finite resolutionspectra(thin solid lines)obtainedon thebasisof (a) thetwo shortestperiodicorbits and(b) including periodicorbitswith
scaledactionsup to three.The vertical lines in thecentreof the figure showthe energiesof the first few quantumstates(from ref. [13i]).

accuracy.Figure 29b shows the results of a more involved calculation where the sum in the trace
formula includes all periodic orbits with scaled actions less than 5max = 3. This resultsin nineteen
contributions from thirteen primitive orbits. Again close agreement with the smoothed quantum
spectrum is observed, now on a finer scale.

Figure 29 demonstrates that the trace formula is able to reproduce a finite-resolution density of
states. In spectral regions where the resolution becomes finer than the mean separation of states, the
peaksappearingin the level densityaredue to individual resolvedquantumstates.This is the casefor

- 1/3 <4.5 in the figure. The exact quantum eigenvalues agree with the peakpositionsto within a few
per cent of the mean level spacing, even down to the ground state. This is somewhat surprising, because
one does not necessarily expect semiclassical theories to be accurate near the ground state [131]. In
addition, excited levels up to the ninth eigenvalue are predicted quite accurately by the simple sum
including only thirteenclassicalorbits.

Periodic orbit analyses of quantum spectra have been performed not only for the density of states,
but also for calculated [67, 107, 108, 126] and measured [7, 8, 132, 133] photoabsorption cross sections.
These cross sections depend on dipole transition matrix elements involving an initial wavefunction
which, compared to the wavefunctions of the highly excited final states, are confined to a region very
close to the origin (i.e. the nucleus). In the appropriatesemiclassicaltreatmentonly suchclassicalorbits
areimportantwhich startat theorigin. Recall that, becauseof the Coulombicnatureof the potentialat
the origin, all orbits which recur to the origin retracetheir pathand are henceperiodic. A complete
listing of all periodic orbits passing through the origin and with scaled actionsup to S = 4 at the
zero-field threshold e = 0 is given in ref. [67].

Gutzwiller’s trace formula for the fluctuating part of the level density, and corresponding formulae
for (the fluctuating part of) other observables such as photoabsorption cross sections, establish a
connectionbetweenperiodic classical orbits and quantummechanicalspectra.In particular, isolated
periodic orbits with short periods or small (scaled)actionslead to peaks in the quantummechanical
spectra, and the positions of the peaks are determinedby a resonancecondition resemblinga
semiclassicalquantizationcondition. The observedcorrelationbetweenso-called“quasi-Landaureso-
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nances”andclassicalperiodic orbits thushasa soundtheoreticalfoundationwhich reachesdeeperthan
early interpretationsbasedon one-dimensionalWKB calculations.

To arriveata semiclassicalunderstandingof “chaotic” wavefunctionsis amuchhardertask(seee.g.
refs. [144,145]). A theorybasedon Gutzwiller’s ideahasbeendevelopedrecentlyby Bogomolny[146].
Investigationscurrently in progressfor the hydrogenatom in a magneticfield again indicatethat the
periodic orbits play an essentialrole in understandingthe complexstructureof the wavefunctions[141,
147, 148].

5. Summary

The hydrogenatom in a uniform magneticfield is a uniquely simple exampleof a real physical
systemshowing all the featurescurrently causingexcitementin the field of small dynamicalsystems
exhibiting classicallychaoticdynamics.

The quantummechanicalSchrödingerequationhasbeensolvednumericallywith high accuracyfor
arbitrary field strengthsand energiesvery closeto or up to (dependingon field strength)the zero-field
threshold.Within the accuracyof experimentalmeasurements,the calculatedspectrareproducespectra
observedin photoabsorptionexperiments,andthis connectionto a real laboratorysystemgives added
weight to all conclusions drawn from a theoretical or numerical analysis.

In the plane spanned by the energy E and the field strength ‘y there is a perturbative regime of low
field strengthsand excitationenergies,wherethe quantummechanicallevelsin eachm’T subspacecan
be labelledby the quantumnumbern of the manifoldof unperturbed(i.e. field-free) hydrogenicstates
from which theyevolve, and an intra-shell label k counting the states in each manifold. In this region
the Hamiltonianis approximatelyseparableandthe label k is associatedwith an additionalapproximate
integralof the motion. The region of approximateseparabilityactuallyextendswell into the n-mixing
regime,wherevarious n-manifoldsoverlap.Approximateseparabilitybreaksdown as we approachthe
zero-fieldthresholdatE = 0, regardlessof field strength.At very high field strengths,wherethe energy
of a Landauexcitationperpendicularto the direction of the magneticfield becomescomparableto or
largerthanthe Rydbergenergy,the systembecomessimpleragainandcan be accuratelydescribedby
an expansionin coupledLandauchannels.

Theclassicaldynamicsof the hydrogenatom in a uniform magneticfield doesnot dependon energy
E and field strengthy separatelybut is determined,to within a trivial similarity transformation,solely
by the scaledenergy£ = Ely213. Near the field free limit £—* —~ the classicalmotion is regularand
confined to invariant tori. Around £ —0.35 thereis a comparativelysuddentransition to irregular
(chaotic) motion, with the last elliptical islands of regularity disappearingat £ = —0.127268 612.
Increasing chaoticity is expressed in an increasing fraction of irregularorbits in phasespaceandalso in
increasingLiapunovexponentsand increasingnumbersof periodic orbits.

The classicaltransitionto chaosis accompaniedby correspondingtransitionsin statisticalproperties
of the quantum spectra. Fine scale quantities such as nearestneighbourspacingsshow the expected
transitionfrom the expectations associated with random level spectrain theclassicallyregularregion to
spectraassociatedwith random matrix ensemblesin the classically chaotic region. For statistical
quantitiesdependingon correlationsof somewhatlonger rangein the spectra,thesetransitionsare
howevernot at all uniform andshow asensitivedependenceon systemspecific non-universalproperties
such as the occurrenceof prominentsimple periodic classicalorbits.

A knowledgeof the periodic classicalorbits of the systemis importantfor understandingthe general
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structureof the quantumlevel spectraand of other observablequantitiessuch as photoabsorption
spectra. The connection betweenquantum spectra and periodic classical orbits is quantitatively
expressedin Gutzwiller’s trace formula. Finite resolution spectra can already be describedquite
accuratelyusing the knowledge of only a small number (two) of simple periodic orbits with short
periodsor small actions.We now understand,that the modulationpeaksin photoabsorptionspectra,
which have long been known under the name “quasi-Landauresonances”are, together with the
multitudeof morerecentlydiscoveredfurthermodulations,simply a manifestationof the occurrenceof
prominentunstableperiodic orbits in the classicallychaoticregion.
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