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Abstract:

The hydrogen atom in a uniform magnetic field is discussed as a real and physical example of a simple nonintegrable system. The quantum
mechanical spectrum shows a region of approximate separability which breaks down as we approach the classical escape threshold. Classical
dynamics depends only on the scaled energy given as the true energy divided by the third root of the square of the field strength. The classical
transition from regular motion below the escape threshold to chaos near the escape threshold is accompanied by a corresponding transition in
statistical properties of the short ranged quantum spectral fluctuations. Spectral properties involving correlations on a longer range depend
sensitively on system-specific nonuniversal properties such as the occurrence of prominent periodic classical orbits. Knowledge of the classical
periodic orbits leads to a quantitative understanding of the low frequency properties of the quantum spectra as summarized in Gutzwiller’s trace
formula. These developments have led to a deeper understanding of the long known “quasi-Landau resonances” and other modulations in
photoabsorption spectra.
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1. Introduction

Although the equations of motion of classical mechanics are strictly deterministic, the actual path
along which a complex classical system evolves may depend extremely sensitively on the initial
conditions so that the evolution of the system becomes de facto unpredictable. Such a system is said to
behave irregularly or chaotically. The fact that classical motion can be irregular has been known at least
since the beginning of this century. However in recent years it has become increasingly clear that even
seemingly simple systems with few degrees of freedom generally show chaotic behaviour, and advances
in computer technology have made it possible to study irregular motion in small systems in considerable
detail. This has made chaos one of the fastest growing fields in physics.

Bound classical motion in one spatial degree of freedom is always periodic if it is governed by a time
independent Hamiltonian, i.e. if energy is conserved, and hence one-dimensional conservative systems
cannot be chaotic. The same is true for N-dimensional conservative systems, N >1, if they are
integrable, i.e. if their Hamiltonian can be written in terms of N conserved actions. The simplest
conservative systems capable of exhibiting chaos are systems in N =2 spatial dimensions with no other
integral of motion besides the energy. Examples are various types of single particle billards [1-3}, the
Hénon-Heiles potential [4], various types of anharmonically coupled harmonic or anharmonic oscil-
lators [S, 6], or the problem of a hydrogen atom in a uniform magnetic field (see fig. 1).

In contrast to the other simple systems mentioned above, the hydrogen atom in a uniform magnetic
field is not an abstract model system but a real physical system that can be and has been studied in the
laboratory {7, 8]. When we study the regular or chaotic nature of the classical dynamics or look for
manifestations of classical chaos in quantum spectra we are, in this example, doing real physics and not
only mathematical physics. Our objects of study are sometimes classical trajectories or quantum spectra
generated by computer codes, frequently however they are real spectra observed in experiments. In
some cases, e.g. for the oscillations in photoabsorption spectra which have long been known under the
name of quasi-Landau resonances, a deeper appreciation of the classical dynamics, and in particular of
the important role of isolated unstable periodic orbits embedded in the chaotic part of the phase space,
has led to a deeper understanding of the structure of complex spectra. In particular, we now understand
why the experimentally observed quasi-Landau peaks are related to closed classical orbits in a way
resembling a Bohr—Sommerfeld quantization condition, even in the classically chaotic region, where the
orbits are unstable and the observed peaks do not correspond to individually resolved quantum states.

The aim of this article is to give a review of recent work on the hydrogen atom in a uniform magnetic
field, paying special attention to the occurrence of chaos in the classical dynamics and its manifestation

{a)
i ,j/
Fig. 1. (a) Examples of single particle billards showing chaotic classical dynamics; a point particle moves freely in the enclosed area and is reflected
by the shaded boundaries. (b) Equipotential lines of the Hénon—Heiles potential [4].
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in observed or observable quantum spectra. Chapter 2 contains a description of the system and a
general discussion of the properties of its quantum mechanical spectrum, including a comparison
between calculated and observed spectra. Chapter 3 contains a detailed discussion of the classical
dynamics while chapter 4 discusses how the nature of the classical dynamics, in particular the
occurrence of regular and chaotic motion and the existence of periodic orbits, manifests itself in the
quantum spectra.

2. The quantum mechanical hydrogen atom in a uniform magnetic field
2.1. Hamiltonian

The hydrogen atom in a uniform magnetic field is accurately described over a wide range of field
strengths B by the simple nonrelativistic single-particle Hamiltonian

H=p2m_—é’lr+ ol + im o’ (x> +y*) . (1)

The direction of the field is taken as the z-direction and m, is the reduced mass of electron and nucleus.
The frequency w in (1) is half the cyclotron frequency

w=j0,=eB2mc. (2)
At a field strength of
B=B,=mlec/h’=235%10°G=235x10"T, (3)

the oscillator energy %o equals the Rydberg energy % =m_e*(28*)=~13.6eV. In terms of the
dimensionless field strength parameter

y=BIB,=tw/R | (4)

relativistic corrections [9] to the simple model defined by (1) are negligible for fields with y <10* On
the other hand, the effects of spin—orbit coupling [10] can be neglected for fields with yn’ >107*, where
n is the principal quantum number. Effects related to the two-body (nucleus and electron) center of
mass motion in the presence of an external magnetic field have been investigated by several authors
[10-14]. It is possible to separate a generalized field strength dependent momentum, which replaces the
center of mass momentum of the field-free two-body system. For fields with y > 100 the internal
dynamics is considerably influenced by the center of mass motion, but for a vanishing transversal
component of the conserved generalized momentum the effect can be accounted for accurately by a
constant energy shift which depends only on the magnetic field strength and the azimuthal quantum
number m [13].

The azimuthal quantum number m is a good quantum number as is parity, which is frequently
expressed in terms of the z-parity 7 defined with respect to reflection at the xy-plane which is
perpendicular to the direction of the magnetic field. In each m”™ subspace of Hilbert space the
Schrodinger equation defined by the Hamiltonian (1) remains nonseparable in the two coordinates z,
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parallel, and p =\/x’ +y°, perpendicular, to the field. Leaving out the contribution of the normal
Zeeman term wl/, because it is constant, the stationary Schrodinger equation in a given m” subspace is
(in atomic units, which we will use throughout unless stated otherwise):

1( 14 4 o m -
[5 <— sl aE T ?) +iy’ = (p*+2%) 1/2]7’(10, 2)=E¥(p, 2), (5)

where ¥(p, z) is the cylindrical radial part of the full single-electron wave function ¥,
W(p, 2, 8) = (N Im)¥(p, )™ . (6)
Thus the physical problem is that of a particle moving in an effective two-dimensional potential

V(p,z)= sy p* + m2p> — 1N\ p* + 2*. (7

The potential (7) is illustrated in fig. 2 for m =0.

Attempts to solve the Schrodinger equation (5) have a long history. Early accurate numerical
calculations of the energies of low-lying states are due to Praddaude [15], Smith et al. [16] and Simola
and Virtamo [17]. First accurate numerical calculations going beyond the lowest three or four states in
each m” subspace were performed by Clark and Taylor [18] who calculated energies, wave functions
and oscillator strengths up to and beyond the onset of the n-mixing regime (see section 2.2) at a field
strength of y =2 X 107> (corresponding to B =4.7T).

Review articles dealing wholly or in part with the problem of a hydrogen atom in a uniform magnetic
field have been written by Garstang [10], Bayfield [19], Kleppner et al. [20], Gay [21], Clark et al. [22],
Delande et al. [23] and Clark [24]. Highly accurate values for the ground state energy have been given
by Le Guillou and Zinn-Justin [25], and Rosner et al. [26] have given a comprehensive list of the
energies of the lowest four or five states in various m” subspaces at arbitrary field strengths (see also
Rech et al. [27], Cho et al. [28], and Liu and Starace [29]). Some recent approaches to solve the
problem for Rydberg states in moderate fields involve higher order perturbation theory [30-32],
diagonalization in symmetry adapted basis sets [30, 33, 34], adiabatic semiclassical methods [35, 36],
and an adiabatic quantum approach [140]. At very high fields, y > 1, the diamagnetic term proportional
to y* dominates the entire spectrum and convergent expansions in the Landau basis are practicable (see
section 2.2). In this region complete calculations of bound states [37] and extensive studies of
continuum states have been undertaken [31, 38-41].

Fig. 2. Equipotential lines of the potential (7) for azimuthal quantum number m = 0.
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2.2. High field and low field regime

At very high fields the Schrodinger equation (5) is best solved [15-17, 37, 38] by expanding the wave
function ¥(p, z) in Landau states ®,,(p), which are the normalized radial parts of the two-
dimensional harmonic oscillator wave functions corresponding to the oscillator energy Aw =y

V(p,2)= 2 Py,()¥(2). (®)

This leads to a set of coupled channel equations for the wave functions ¥,,(z) in the various Landau
channels:

1 d m
(355 - Ny + (B B, - S Vi () ¥ () =0. 0)
In (9) E, =(|m|+1)y/2 is the zero-point energy of the lowest Landau state and defines the real

ionization threshold in the corresponding m™ subspace — as opposed to the zero-field threshold at E =0
in eq. (5). The potentials in (9) are defined by

Vi@ = dp 9y, () T Palo) (10)

and do not depend on the sign of the azimuthal quantum number m. Analytic expressions for V,.(z)
have been given by Friedrich and Chu [38]. Asymptotically (large |z|) the diagonal potentials are given
by

2N 1 b s
Vi) = - ﬁ (1- 2 lmle ] % +0i™), (11)

where b =1/2/y is the oscillator width of the Landau states. An efficient numerical procedure for
calculating the potentials and solving the coupled equations (9) for various magnetic field strengths can
be obtained by exploiting the fact that the potentials only depend on the field strength via a universal
scaling factor 1/b [31, 42].

The formulation (9) of the Schrodinger equation (5) shows that we have, in each m” subspace, a
system of coupled Coulombic channels which are labelled by the Landau quantum number N =
0,1,2,.... The channel thresholds

E,n=E,+Ny (12)

lie Ny above the real ionization threshold E_ in the respective subspace. The coupling potentials
Vin:(2) fall off relatively slowly and are asymptotically proportional to Z AN

For extremely large field strengths the energy y needed to excite a Landau oscillation perpendicular
to the magnetic field becomes very large and the problem approaches that of a one-dimensional
hydrogen atom parallel to the field [43]. The bound states are then dominated by the contribution from
the N = 0 channel, in which the motion of the electron perpendicular to the field is given by the lowest
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Landau state @,,, and they form a nondegenerate Rydberg series converging to the respective
ionization threshold E,_ [37]

E=E —112(v-p,), (13)

where » runs from zero to infinity for positive z-parity states and from one to infinity for negative
z-parity states. The quantum defect parameters u, in (13) are all negative and converge to zero in the
limit of infinite field strengths; note that the lowest state in each m” subspace of positive z-parity
corresponds to » =0 and becomes infinitely bound in this limit.

At sufficiently high field strengths, y =1, Landau excited states corresponding to N >0 all lie above
the ionization threshold and form Rydberg series of autoionizing resonances which converge to the
respective Landau channel thresholds (12). These resonances can autoionize by de-excitation of Landau
oscillations perpendicular to the field [38]. The spectrum of bound and autoionizing states in the
m”=0" subspace is illustrated in fig. 3 for y=2, y=1, and y=0.5.

As the field strength is reduced from values around y =1, the Rydberg series associated with the
different Landau channels begin to overlap and interfere. Near y=10.3 the lowest autoionizing
resonances, which are characterized by a jump through = of the asymptotic phase shift & of the open
channel (N = 0) wave function, cross the ionization threshold and become perturbations of the Rydberg
series of bound states, which are characterized by a jump through unity of the corresponding quantum
defects u, . This is illustrated in fig. 4 for the m” = 0" subspace. As the field strength is reduced further,
more and more Rydberg series overlap and the spectrum becomes increasingly complicated. As long as
not too many Rydberg series overlap, the problem may be treated with the techniques of multichannel

Y g -
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(Ry) I~ — 1
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Fig. 3. Spectrum of bound and autoionizing states in the m”™ = 0" subspace for field strength parameters y =2.0, 1.0, 0.5 (from ref. [42]).
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Fig. 4. Quantum defects u, of bound states and asymptotic phase shifts of the open channel (N = 0) wave function for various values of the field
strength parameter y (from Friedrich and Chu [38]). (E is the energy relative to threshold in Rydbergs.)

quantum defect theory [44, 45]. Figure 5 illustrates the multichannel structure of the spectrum in the
m"=1" subspace at y = 0.04. The top half of the figure shows the quantum defects of the bound states
(left half) and the asymptotic phase shifts of the open channel (N =0) wave functions in the region
between the ionization threshold E, and the inelastic threshold E,, y_, = E +y (right half). The
perturber of the bound states and the resonances above threshold form a Rydberg series whose energies
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Fig. 5. Spectrum in the m” =1" subspace at y =0.04. The top half shows quantum defects of the perturbed Rydberg series of bound states
(E <E,,) and the asymptotic phase shifts of the open channel (N = 0) wave function for energies between the ionization threshold and the inelastic
threshold (first Landau threshold). The bottom half of the figure shows the quantum defects of the (perturbed) Rydberg series which consists of the
bound-state perturber in the left hand part of the top half and the resonances in the right hand part of the top half. The horizontal bars show the
absolute widths of the perturber and the resonances, while the vertical bars show the same widths multiplied by the third power of the effective
quantum number »') with respect to the inelastic threshold. These renormalized widths would be roughly constant in an unperturbed Rydberg

series of autoionizing resonances. (From ref. [42].) (Energies are in Rydbergs.)
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E, converge to the inelastic, the N =1, threshold and can be characterized by a series of second order
quantum defects p'”:

E, = Em,N=1 - 1/2(V(2) - #5,2))2 : (14)

This series of perturbers and resonances is in turn perturbed by a resonance associated with the
Rydberg series converging to the N =2 Landau channel threshold, and this affects the energies, as
shown by the jump through unity of the second order quantum defects >’ in the lower part of fig. 5, as
well as the widths of the perturbers or resonances. The essential features of the spectrum at y = 0.04
can be accurately described in the framework of three-channel quantum defect theory, the important
channels being the N=0, N=1, and N =2 Landau channels [31, 42, 46, 47].

At still lower field strengths the number of interfering Landau channels becomes so large that a
description in terms of the Landau basis (8) becomes impracticable. For low-lying bound states at low
fields the spectrum is close to that of the field-free hydrogen atom and the effect of the diamagnetic
interaction can be treated perturbatively [48-52].

At vanishing field strength the spectrum in each m” subspace is degenerate due to the O(4)
symmetry of the pure Coulomb problem. This can be expressed in the conservation of the Runge-Lenz
vector

A=(-2"m E)""*[(pX L) — (m €’Ir)r]. (15)
For small but finite values of the field strength the quantity
3=4A’-5A? (16)

is an invariant up to first order in y* In the perturbative regime it is appropriate to label the eigenstates
of 2 by an index k starting at k =0 for the maximum eigenvalue within a given n-manifold of states
degenerate in the zero-field limit. In a given m” subspace k runs from 0 (for = = +1) or 1 (for 7 = —1)
to its maximum value n — [m| -1 within a given n-manifold. For positive eigenvalues s of (16) the
eigenstates have approximately O, (3) symmetry and are almost eigenstates of the angular momentum-
type operator A=(A_, A ,l,) with eigenvalues A(A + 1) of A’ These states are called rotator states
and the eigenvalue A is related to the label k by A = n — 1 — k. The energy shifts of the rotator states are
given approximately in the perturbative regime by [48, 51]

AE™ = LyX(SAA+ 1) + 1n® = 3m> + B) | (17)

The eigenfunctions of ¥ with negative eigenvalues s have approximately O(2) ® O(2) symmetry and can
be described by a two-dimensional harmonic oscillator with anharmonic corrections. The approximate
energy shifts of these vibrational states are, again to first order in y*:

AE™ = £y°n’[(20 + |m| + 1)2V3n = 320 + |m| + 1) —m* + 1], (18)
where 0=0,1,2,. .. is given by 20 =n — |m|~1—k or 20 = n — |m| —2 — k, depending on whether

n —|m| — k is odd or even [48, 51]. The accuracy of the formulae (17), (18) has been tested by Wintgen
and by Wunner [31, 52].



46 H. Friedrich and D. Wintgen, The hydrogen atom in a uniform magnetic field — an example of chaos
2.3. Regime of approximate separability

The classification of states by the principal quantum number n and the “intrashell label” k is
definitely meaningful in the /-mixing regime where the diamagnetic interaction is strong enough to
break rotational symmetry but still so weak that n-manifolds of states originating from different
principal quantum numbers n are separated in energy. It is not a priori clear whether such a
classification remains meaningful in the n-mixing regime where neighbouring n-manifolds overlap. The
onset of the n-mixing regime occurs, when the lowest (k =n —|m|— 1) vibrator state of the (n +
1)-manifold meets the highest (k =0 or k = 1) rotator state of the n-manifold. From the leading terms
in (17) and (18) the onset of the n-mixing regime is given by

y’n’=16/5. (19)

It was observed in numerical diagonalizations of the Hamiltonian (1) that near degeneracies occurred
at the onset of n-mixing, the actual magnitudes of the avoided crossings between the lowest state of the
n + 1 manifold and the highest state of the n-manifold decreasing exponentially with n [53, 54]. This
was interpreted as evidence for an additional hidden symmetry related to a further constant of motion
and even as evidence for the existence of an approximately separable representation of the Hamilto-
nian. An additional (approximate) constant of motion valid for low fields was recognized by Solov’ev
[48] and Herrick [51] and is given by the combination (16) of components of the Runge-Lenz vector.
Solov’ev explained the small anticrossings of states as being a consequence of the fact that the states
involved in the crossing are not only approximately eigenstates of the adiabatic invariant (16) with very
different eigenvalues, but also correspond to different classes (rotator and vibrator) of eigenstates.

The above results stimulated an intensive search to find an approximately separable representation of
the Hamiltonian. Such a representation was explicitly constructed by Wintgen and Friedrich [33] via a

-E(em™) L O+

12

3

14

115

|
4.5 46 47 48 49 g M

Fig. 6. Energy eigenvalues obtained by sequential diagonalization. The dashed lines show the results of diagonalizing the Hamiltonian within
subspaces of states characterized by a given value of the intra-shell label k. The solid lines show the exact results obtained by allowing k-mixing.
(From ref. [33].)
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sequential diagonalization of the Hamiltonian, first amongst states corresponding to the same values of
k and subsequently including the residual interaction between states of different k. A natural basis for
such a calculation is obtained by transforming the Schrodinger equation via the introduction of
semi-parabolic coordinates into a Schrdodinger equation for two azimuthally coupled harmonic oscil-
lators (corresponding to the unperturbed Coulomb problem [55]) plus a diamagnetic potential (see [33],
also Delande and Gay [50]). In this representation the matrix elements of the diamagnetic interaction
depend only on the coupling constant (y/E)* and not on energy and field strength independently.
Matrix elements leading to k-mixing are very small if at least one rotator state is involved. Appreciable
k-mixing matrix elements occur only between adjacent (Ak =2) vibrator states. Their consideration
becomes necessary when vibrator states belonging to different n-manifolds come close in energy. This
happens near y°n’ = 16 which lies well within the n-mixing regime (19).

Although & can no longer be simply related to an eigenvalue of the operator (16) if r-mixing is
allowed, approximate separability and the classification according to the label k remain valid well within
the n-mixing regime. Figure 6 shows the exact eigenvalues of the Hamiltonian (solid lines) compared
with the eigenvalues obtained without k-mixing (dashed lines) in a region of energies and field strengths
corresponding to y’n’ =10, which lies within the region of approximate separability. Approximate

T T T T T T I T T
c
0061~
0.04
;
002 4
0
-002- 10 18ty 186>
007 1P=S 1 ) 1 L I ] ) -5t 90>, 7 194y | ) . 9
0 oo 002 003 y 004 0 0001 0002 0003 0004 0005

Y

Fig. 7. (a) Overall view of the spectrum in the m” = 1" subspace for arbitrary field strengths up to y =0.04. The vertical hatching indicates the
absolute widths of the resonant states above threshold. The inelastic threshold is the Landau channel threshold corresponding to N =1 (cf. eq. 12)
(from ref. [42]). (b) Part of the bound state spectrum close to the zero-field threshold E =0 shown on an enlarged scale, at field strengths up to
y=0.005. The numbers at the bottom stand for the n-quantum number and the intra-shell label & in the regime of approximate separability.
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separability breaks down as we approach the zero-field threshold E =0, where the coupling constant
(y/E)* determining the effective strength of the diamagnetic interaction becomes infinite.

Figure 7a shows an overall view of the spectrum in the m” = 1" subspace for field strengths ranging
from zero up to y =0.04, where the interpretation in terms of few interfering Rydberg series is valid
(see fig. 5). An enlarged view of the low-field region closer to threshold is given in fig. 7b. At
sufficiently low field strengths and principal quantum numbers approximate separability manifests itself
in very small anticrossings of levels originating from different n-manifolds in the zero-field limit. For
decreasing values of E/y increasing level repulsion associated with the breakdown of approximate
separability leads to an increasingly irregular pattern and a ‘“spaghetti”-like appearance of the
spectrum.

2.4. Comparison of calculated and observed spectra

Most experimental work on Rydberg atoms in a magnetic field has concentrated on atoms more
easily accessible to experiments than hydrogen [56-59]. In recent years, Welge et al. in Bielefeld have
performed extensive measurements of photoabsorption cross sections of atomic hydrogen in magnetic
fields up to 6 T. Because the numerical solution of the Schrodinger equation is much easier for the pure
hydrogen atom, the experiments of Welge et al. have, apart from other important contributions to the
central theme of this article, made a direct comparison between calculated and observed spectra
possible [60, 61].

To get a feeling of the complexity of diamagnetic Rydberg spectra fig. 8 shows a part of the
calculated spectrum containing states belonging to n-manifolds near n =40 and m™ =0", where high
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Fig. 8. Part of the bound state spectrum in the m” = 0" subspace showing states from n-manifolds around n =40 at field strengths up to 7T.
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Fig. 9. Comparison of measured (top) and calculated (bottom) photoabsorption lines for Am =0 transitions from the 2p,,_, state into Rydberg
states in the m” =0" subspace at a field strength of 6 T (from ref. [60]).
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Fig. 10. Comparison of measured photoabsorption cross sections (continuous curve) with calculated photoabsorption lines for the same transitions as
in fig. 9 at final state energies just below the zero-field threshold. (From Wunner et al. [61].)
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resolution experiments were performed. To see many of the spectral structures the reader is invited to
hold the figure very flat beneath his eyes and to turn the figure round.

Figure 9 shows a comparison of the calculated and the measured photoabsorption spectra for Am =0
transitions from the 2p, _, state into the Rydberg states of the m” =0" subspace at a field strength of
6T (y=2.55x10""). The energy ranges up to 92cm ' below the zero-field threshold, which lies well
within the n-mixing regime but is still in the region of approximate separability, where the individual
states can be unambiguously assigned two quantum numbers, n (corresponding to the hydrogenic
manifold from which the state evolved diabatically in the zero-field limit) and the intra-shell label k.
Figure 10 shows a comparison of the same experimental spectrum with the final states much closer to
the zero-field threshold. Figure 11 shows similar spectra for a larger range of final state energies at a
slightly different field strength of 5.96 T. Figure 10 and the lower two panels in fig. 11 cover ranges of
final states lying beyond the region of approximate separability and well within the “spaghetti region”
(see fig. 8).
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Fig. 11. Comparison of calculated (upper halves) and measured (lower halves) photoabsorption lines for the Am = 0 transitions from the 2p,, _, state
into Rydberg states in the m” = 0" subspace at a field strength of 5.96 T (from Holle et al. [61]).
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Most recent calculations by Zeller et al. [61] have extended the range for the spectrum at 5.96 T all
the way up to the zero-field threshold E = 0. In all cases we observe state for state agreement between
the measured and calculated spectra, at least within the limits of experimental resolution. This is of
course to be expected as long as we believe that the Hamiltonian (1) accurately describes the physics of
the problem and as long as we make no mistakes in measuring or calculating the spectra. Nevertheless
we feel it worth pointing out that the higher lying states in figs. 10 and 11 correspond to roughly the
neighbourhood of the 500th excited state in the m™ =07 subspace. These are to our knowledge the
most highly excited states of a measured complex spectrum that have been uniquely identified by direct
comparison with an ab initio numerical calculation.

3. Classical dynamics
3.1. Scaling

The classical dynamics of the hydrogen atom in a uniform magnetic field is described by the
Hamiltonian (1). In terms of the scaled coordinates and momenta

2/3 ~ -1/3

F=y"r, p=v p, (20)
we have, in cylindrical coordinates and atomic units
Yy PH=H=3p+ 11+ 025" + 57 — (57 + 27)7. (1)

Except for a similarity transformation, the classical dynamics at a given field strength y and energy E is
completely described by the Hamiltonian H. Equation (21) shows that the classical dynamics only
depends on the scaled energy e,

e=Ey ", (22)

and not on E and y separately. Figure 12b shows lines of constant scaled energy next to a part of the
quantum mechanical bound state spectrum in the m” = 1" subspace drawn on the same scale (compare
fig. 7). By keeping & constant but simultaneously changing the energy E and field strength y we can
explore different regions of the quantum spectrum without changing the structure of the underlying
classical dynamics. At small (absolute) values of the energy the quantum spectrum becomes very dense,
while it becomes sparse for larger field strengths and binding energies. In the E—y plane, the region
close to E=0, y=0 corresponds to a small Planck’s constant % in comparison with typical classical
actions, whereas #i becomes effectively larger and larger as we move along lines of constant scaled
energy towards larger field strengths. This can be expressed quantitatively via the commutation
relations of the scaled quantum mechanical operators associated with the scaled classical variables (20),

e.g.
1/3

[p., Z]=iy "h. (23)

At a fixed scaled energy & determining the classical mechanics the dependence of the quantum
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Fig. 12. (a) Part of the bound state spectrum in the m” = 1" subspace previously shown in fig. 7b. (b) On the same scale, lines of constant scaled
energy ¢, along which the classical dynamics is invariant to within a similarity transformation.

mechanics on the magnetic field strength y can be accounted for by an effective field strength dependent
Planck’s constant y'"*%. Keeping & constant we can study the semiclassical limit by decreasing the
magnetic field strength.

3.2. Regularization

A feature of the Hamiltonian H in (21) is its singularity at r =0, which can be removed, e.g. by the
introduction of semi-parabolic coordinates [62, 67]. The new coordinates v and u are given by

vi=F-7, u=7+7, (24)

and the momenta

p, =dv/dr, p, =du/dr, (25)
are defined with respect to the rescaled time 7 given by:

dt=2Fdr= "+ u)dr. (26)

The equations of motion generated by the Hamiltonian Hin (21) at a fixed value of the scaled energy
are equivalent to the equations of motion generated by the Hamiltonian

h=14p,+ 20207 + 5 pl + 11207 — o(v” + p') + §'u’ (0" + %) =2, (27)

at the fixed “pseudo energy” 2.

For negative (scaled) energies ¢ <0 the Hamiltonian (27) represents harmonic oscillators with
frequency w = (—2¢)""?, which are coupled by the term »’u’(»* + u”) originating from the diamagnetic
interaction. The quadratic potential vanishes at the zero-field threshold & = 0 (which is the same as the
classical escape threshold for I, =0). For positive energies the Hamiltonian corresponds to inverted
oscillators coupled by the diamagnetic interaction.
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There is a one-to-one correspondence between the classical trajectories generated by the Hamilto-
nian H (21) and h (27), but they are not related by a canonical transformation. Because of the
coordinate dependent rescaling of time (26), two periodic orbits which have the same period in the
cylindrical representation (21) may have different periods in the semi-parabolic representation (27).

3.3. Poincaré surfaces of section

The classical dynamics of the Hamiltonian (21) has been studied by various authors in recent years
[62-71]. A common way to illustrate the classical phase space structure is to look at Poincaré surfaces
of section, which eliminate redundant information from classical trajectories. At a fixed (scaled) energy
classical motion is confined to the energy shell, which is a three-dimensional subspace of the
four-dimensional phase space spanned by v, p,, u and p,. The Poincaré¢ surface of section is a
two-dimensional slice in the three-dimensional energy surface. The set of all intersections of a trajectory
with this surface (in a certain direction) contains most of the information related to the particular
trajectory. Periodic orbits are characterized by one or a finite (typically small) number n of points on
the surface of section, where they are called a fixed point or an n-cycle of the map. Regular orbits,
whose motion is restricted to two-dimensional invariant manifolds (called tori) on the three-dimensional
energy shell, appear as an array of dots on the surface of section, which densely fill a one-dimensional
subset of the two-dimensional surface. Irregular orbits densely fill a finite volume on the three-
dimensional energy shell and appear as irregularly but roughly uniformly spattered areas on the surface
of section.

For [, =0 fig. 13 shows, in semi-parabolic representation, Poincaré surfaces of section for the
hydrogen atom in a uniform magnetic field for six different values of the scaled energy ¢: —0.8, —0.5,
—0.4, —0.3, —0.2, and —0.1 (from left to right and top to bottom). The surface of section is defined by
u =0; the energy shell for x4 =0 maps into an area bounded by the condition —2v” + pi =4, which
defines a circle of radius 2 with respect to the coordinates V —2ev and p,. Time-reversal and reflection
symmetry allow us to derive from each point on the surface of section three related ones, compactly
written as (+V—=2ev, =p,).*

At ¢ = —0.8 the system is still very close to its integrable limit e— —, which corresponds to the
infinitesimally perturbed hydrogen atom: all orbits are regular and confined to tori which are
characterized by a specific value of the adiabatic invariant**’ 3, eq. (16). Note that even an
infinitesimal perturbation is strong enough to change the phase space structure of the hydrogen atom
completely. For a pure hydrogen atom the surface of section would simply give concentric circles and
each orbit would contribute with a fixed point. This reflects the unusual classical behaviour of a
hydrogen atom, where all orbits are periodic and degenerate in period and action. As a consequence
the KAM-theorem (72, 73] is not applicable and in fact, little is known about the behaviour of a
hydrogen atom under small perturbations. It is not self-evident that the system behaves regularly under
the diamagnetic perturbation.”

*) There is still another symmetry of the system, namely the exchange symmetry of » and x. This can be used in numerical calculations to
increase the number of sections and to accelerate the calculations.

*x) Strictly speaking this is not correct, because generally tori having a rational winding number are replaced, even under an infinitesimal
perturbation, by a stable n-cycle surrounded by elliptic islands and an unstable n-cycle embedded in a stochastic layer. However, the widths of the
layers become infinitesimally small and hence invisible in numerical calculations when we approach the integrable limit.

" The anisotropic Kepler problem [74, 75) provides an example, where the hydrogen atom becomes chaotic even under a very small
perturbation.
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Fig. 13. Poincaré surfaces of section at ¢ = —0.8, —0.5, ~0.4, —0.3, —0.2 and —0.1 (from left to right and top to bottom). The sections are the v—p,
planes defined by u =0. Horizontal axes measure V —2ev, vertical axes measure p,; the radius of the circles is 2.
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The Poincaré surface of section for ¢ = —0.8 shows three important structures. The elliptic fixed
point in the center of the surface of section, v = p, =0, corresponds to the p =0 straight line periodic
orbit parallel to the field. The ellipses around this fixed point belong to quasiperiodic vibrational
motion. These are separated from quasiperiodic rotational motion represented by the ellipses around
the fixed point in the upper and lower parts of the section. The positions of these two fixed points are
independent of & and are given by (0, +V2); they belong to the z =0 straight line periodic motion
perpendicular to the field. The separatrix dividing these two regions of motion accumulates in a
hyperbolic fixed point located at (£V2,0) (for & = —), which corresponds to the exactly circular orbit
in the limit e— —. For historical reasons the straight line orbits perpendicular and parallel to the
direction of the magnetic field have come to be called I, and I, respectively. The almost circular orbit is
labelled C. The labelling of rotating and vibrating motion becomes clear when we transform the phase
space portrait plotted for e = —0.8 in the (V—2ew, p,)-coordinates into a “‘spherical” representation
defined by the radius R*=p> —2e»® (which actually corresponds to the pseudoenergy of the »-
oscillator, see e.g. Delande and Gay [76]) and the angle ¢ = arctan p,/(V —2e&v). Such a representation
is given in fig. 14, which actually shows the same phase space structure as a physical pendulum with its
vibrating and rotating modes (see, e.g. ref. [73], p. 25).

As we increase the scaled energy &, irregular motion appears first near the separatrix, as is clearly
visible in fig. 13 for e = —0.5. The separatrix is replaced by a stochastic layer, which fills a finite area in
the surface of section. As we further increase the scaled energy, this layer increases in size whereas the
large islands related to rotating and vibrating regular motion become smaller and smaller. Some new
island structures embedded in the stochastic layer appear close to the large islands, but they disappear
quickly as ¢ is further increased. Finally, for £ = —0.1, no regular structure is visible on the surface of
section and the classical motion is dominated by global chaos. Some regular motion is present even for
£>—0.1 (see section 3.4), but the related elliptic islands are so small that they are not visible on the
scale of fig. 13 and their actual overall size can be neglected for our purpose.

Harada and Hasegawa [65] numerically measured the fraction of available phase space (i.e. the size
of the layer in fig. 13) in which the classical trajectories are irregular. The result is plotted in fig. 15.
Virtually, all of the phase space is regular for scaled energies below ¢ = —0.6. Around & = —0.35 there
is a rather sudden decrease to zero in the regular fraction of phase space.

0-

Fig. 14. Poincaré surface of section in a “spherical” representation at & = ~(.8.
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Fig. 16. Image of the interval defined by »=0, 0=<p, <VZ after (a) one, (b) two. and (c) three recurrences to the g =0 surface.

While fig. 13 shows the long time behaviour of a few trajectories (the surface of section for ¢ = —0.1
was e.g. obtained by integrating a single trajectory for a long time), fig. 16 shows the short time
behaviour of a bunch of trajectories. Here the trajectories starting on the line defined by » =0,
0=p,=V2in the u =0 surface are followed up to one (a), two (b) and three (c) recurrences to the
n =0 section surface. While the single iteration structure (a) is still relatively simple, the double
iteration (b) is already rather complex and the structure is completely unsurveyable after three
iterations (c). Figure 16¢c demonstrates the build-up of a self-similar structure with increasing iteration
depth. The multiply intertwined loops in a comparatively small region of phase space are responsible
for the extremely sensitive dependence of the classical motion on the initial conditions: a small
deviation in phase space can lead us from one loop to a neighbouring loop so that e.g. reversing the
motion can lead us to widely separated points in phase space.

3.4. Liapunov exponents, periodic orbits and bifurcations

One quantitative measure for the degree of chaoticity of an irregular classical orbit is its Liapunov
exponent, which characterizes the rapidity of exponential divergence of nearby trajectories. A
practicable way of calculating Liapunov exponents is via the stability matrix as described by Meyer [77].
For Hamiltonian flow in N spatial dimensions the stability matrix M(¢,, t,) is a 2N X 2N matrix which
governs the infinitesimal deviations Ax(r,) from a given orbit in phase space at time ¢, as a function of
arbitrary initial infinitesimal deviations Ax(¢,) at time ¢,: Ax(t,) = M Ax(t,). The Liapunov exponent A
is defined via the norm (any norm) u(t,, t,) of M(t,,t,)

A= lim
o~

In w(t,, t,) . (28)
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The stability matrix obeys the differential equation

2
m=gZEM,  Meo-1, =), (29)
which can be solved numerically in the general case and almost analytically if the potential in the
Hamiltonian has a simple analytic form [69, 77, 126].

The Liapunov exponent defined by eq. (28) is a unique function of the classical trajectory, i.e. all
points lying on a given trajectory have the same Liapunov exponent. It is particularly easy to calculate
for periodic trajectories, which only have to be followed for one period T. As the stability matrix
M(0, T) is symplectic, its eigenvalues occur in pairs of product unity —they are either complex
conjugate pairs on the unit circle or a real number together with its inverse. If 8 is the eigenvalue of
M(0, T) with the maximum absolute value, then the Liapunov exponent of the periodic orbit is given by
[69]

A=In(|B|)/T. (28a)

For a stable periodic orbit A = 0 the eigenvalue B is a complex number, B = exp(2#iy, ). The winding
number v, is the frequency ratio with which neighbouring trajectories wind around the periodic orbit in
phase space. A stable orbit appears as an elliptic fixed point in a Poincaré surface of section. If A >0 the
orbit is unstable and appears as a hyperbolic fixed point in the surface of section. For positive
eigenvalues 8 > 1 we have an ordinary hyperbolic fixed point; for negative eigenvalues 8 < —1 the fixed
point is called inverse hyperbolic or a hyperbolic fixed point with reflection.

The Liapunov exponent of the straight-line orbit I, perpendicular to the direction of the magnetic
field is illustrated in fig. 17 as a function of the scaled energy. This orbit is stable (vanishing Liapunov
exponent) for energies below e, = —0.127 268 612. At this value of the scaled energy the last islands of
stability still visible at ¢ = —0.2 in fig. 13 vanish and global chaos sets in. The product of the Liapunov
exponent A and the period T of the orbit then grows proportional to the square root of (¢ — ¢,) [68],

A =AT*=1353(e - 5,) . (30)
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Fig. 17. Liapunov exponent A (multiplied by the period T) for the periodic straight line orbit perpendicular to the field as a function of the scaled
energy (from ref. [68]).
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At ¢ =0 formula (30) yields A =1.312, which should be compared with the exact value A =1.317=
arcosh(2). For very large values of the scaled energy (¢>1) A increases logarithmically with £ [136].
The product A = AT gives the rate of exponential divergence of neighbouring trajectories in units of the
period of the orbit and is the Liapunov exponent of the fixed point generated by the surface of section
map of the periodic orbit. In contrast to the Liapunov exponent A of the orbit, A is an invariant
property of the orbit and does not depend on whether the cylindrical or the semi-parabolic representa-
tion is used for the evolution of the classical trajectories.

Figure 18 shows the Liapunov exponent of the periodic orbit I, parallel to the direction of the
magnetic field. This orbit is stable for scaled energies below ¢, = —0.391 300 824 and then goes through
a sequence of intervals alternating between stability and instability [68, 69, 71]. At the points, where I,
becomes unstable, the orbit undergoes a bifurcation and gives birth to a series of non-straight-line
orbits, which were identified by Welge and collaborators {7, 8] and Al-Laithy et al. [70] and have been
labelled L,, I, I,, . .. (see also refs. [62, 67]). As the energy increases, more and more of these orbits
corresponding to more and more oscillations around the axis parallel to the field are born, and at the
escape threshold € = 0 there is an infinite sequence of such orbits [68]. The first five orbits of the series
at the threshold are shown in fig. 19. The straight-line trajectory I ceases to be a periodic orbit above
the escape threshold, where it becomes an ionizing trajectory. The orbits I,, I,, I,, . . . are born stable,
but they soon become unstable and their Liapunov exponents increase monotonically with energy. The
energy dependence of the Liapunov exponents is illustrated in fig. 20. The points at which the orbits I,
I,, I,, ... become unstable correspond to bifurcation points where stable orbits are born. These orbits
do not have the symmetry of the series I,, I,, 1,, ... and no longer pass through the origin. The points
at which the straight line orbit I regains stability are bifurcation points at which unstable orbits are
born. A detailed description of the different possible scenarios of the birth (and death) of periodic
orbits at points of bifurcation or confluence is given in ref. [78].

In a chaotic system the Liapunov exponents (28) of the periodic orbits fluctuate around a mean
value, which is called the metric entropy A _ of the system. This entropy is equal to or larger than the
topological entropy h,, which determines the proliferation of periodic orbits as a function of their
periods; the number N(T < T,) of orbits with periods less than T, increases roughly proportional to
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Fig. 18. Liapunov exponent A, (calculated in the cylindrical representation, which describes Kepler ellipses in the zero-field limit) of the periodic
orbit parallel to the magnetic field as function of scaled energy. The orbit repeatedly becomes unstable at points of bifurcation, where stable
nonstraight-line orbits (corresponding to elliptical fixed points shown schematically in the inset) are born.
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Fig. 19. Straight line orbit I, perpendicular to the direction of the field and the first five nonstraight-line periodic orbits 1,, I, . . . which are born out
of bifurcations of the orbit I, parallel to the field. This figure shows the shapes of the orbits at the escape threshold £ =0.
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Fig. 20. Liapunov exponents (calculated in cylindrical representation) of the first six orbits of the series I,, 1, . . . shown in fig. 19. (From ref. [69].)
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exp(h,T,)/T, [79]. This is illustrated in fig. 21. For reasons discussed in section 4.4 below, it is
appropriate in the present case, where the classical dynamics is determined by the scaled energy ¢, to
order the periodic orbits not by their periods T but by their (scaled) actions S(e) defined in eq. (42).
Figure 21a shows, for £ = —0.2, the Liapunov exponents A= AT for 132 primitive periodic orbits
plotted against their scaled action S. (A “‘primitive” periodic orbit is a periodic orbit which is not a
repetition of a shorter periodic orbit.) The figure includes periodic orbits with actions up to §=6. In
order to simplify the search for periodic orbits, we have confined out investigation to one-parameter
families by requiring the periodic orbits to obey at least one of the following symmetries: (i) they pass
through the origin, (ii) they pass perpendicularly through one of the three symmetry axes, v =0, u =0
or v =, and (iii) they are selfretracing orbits (that is p, = p, = 0 somewhere). Figure 21a shows that
there are two stable periodic orbits having a vanishing Liapunov exponent, but 130 unstable periodic
orbits. The fact that there are so many unstable periodic orbits is related to their exponential
proliferation in the chaotic part of the phase space (note that the fraction of the regular part of the
phase space is much larger than the fraction of regular orbits 2/132, see figs. 13 and 15). From fig. 21a
we estimate the average Liapunov exponent {A) of unstable periodic orbits to be approximately 1.2
times their action; thus the entropy h_, is roughly unity. Although the orbits plotted in fig. 21a certainly
do not cover all the primitive periodic orbits of the system up to S =6, one can expect that these orbits
have the same proliferation as all orbits together. Their proliferation is shown in fig. 21b, which gives
the number of orbits with at least one of the above symmetry properties. Note that in the dense part of
the figure their number increases exponentially with a slope compatible to the value of the metric
entropy h_.
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Fig. 21. (a) Liapunov exponents and (b) number N of periodic orbits at a scaled energy of & = ~0.2 plotted against their scaled actions § [see eq.
(42) in the text] for values of § up to six.
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4. Quantum mechanical observables and chaos
4.1. General remarks on quantum chaos

In contrast to the unambiguous characterization of chaos in classical mechanics, it is as yet not clear,
how the concept of chaos is to be sensibly applied in quantum mechanics. A direct transposition of the
concept of diverging trajectories to quantum mechanics is impossible, because trajectories can only be
defined approximately within the uncertainty governed by Planck’s constant.

The role of Planck’s constant in stifling chaos, or at least our classical notion of chaos, can be
illustrated with the help of fig. 12. Fig. 12b shows the lines of constant scaled energy along which the
classical dynamics is the same to within a trivial similarity transformation. Moving along these lines
towards higher field strengths v, i.e. towards a larger effective Planck’s constant y'"*# (see eq. 23), the
quantum spectrum becomes sparser and sparser until we are left with only one bound state correspond-
ing to the zero-point motion of the electron in the two-dimensional potential illustrated in fig. 2. This
happens not only for negative (scaled) energies but also around the zero-field threshold, where the
classical dynamics is definitely chaotic, and even for arbitrary positive energies &. The reason for this is
that the real ionization threshold E, = (|m|+ 1)y/2 (see section 2.2) increases more rapidly than the
energy E =1y’ along lines of fixed scaled energy &, and E drops below the real threshold at
y=1[2¢/(Jm|+1)]’. Since the binding energy of the ground state in a given m” subspace, i.e. its
separation from the real ionization threshold, increases at most logarithmically with vy [15, 25, 26], there
is, for each value of the scaled energy &, a critical field strength (depending on m™ and &) at which the
energy E equals the zero-point energy in the respective m” subspace. (There are no bound states at
higher field strengths.) Such a single bound state has little to do with our classical notion of chaos.

At the other end, towards lower field strengths and a smaller effective Planck’s constant, the
spectrum becomes increasingly dense and complicated. In this region it is possible and worthwhile to
study the dependence of the very complex spectra and other quantum mechanical observables on the
scaled energy and to look for the manifestation of classical chaos in quantum mechanics.

4.2. Energy level statistics

Many model calculations have, in recent years, shown that the regular or chaotic nature of the
classical dynamics of a bound system manifests itself in the statistical properties of the energy level
spectrum [80-85]. Energy spectra can be expressed in terms of the spectral staircase function N(E)
defined by

NE)=2,&(E—-E,). (31)

The properties of the spectrum are divided into a smooth part N, (E) related to the mean level density
n,(E)=dN, /dE, and a fluctuating part which accounts for the difference between N(E) and N, (E).
In order to eliminate effects due to variations of the smooth mean level density it is customary to study
the fluctuations in the unfolded spectrum

€ =N,(E), (32)
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which has a constant mean level density equal to unity. Asymptotically (for large quantum numbers)
the smooth part N, is given by the semiclassical rule, that each quantum state of a d-dimensional
system occupies a volume (27#)” of the total phase space T

Statistical measures frequently used in characterizing level fluctuations are:

(i) The distribution P(s) of spacings s between adjacent levels [nearest neighbour spacing (NNS)
distribution]|. The probability P(s) ds is the probability for finding a separation of neighbouring levels
between s and s + ds.

(i1) The number statistics n(L) of the distribution and the moments associated with it. Given an
interval [a, « + L] of length L, n(L) counts the number of levels within this spectral range. Averaging
over the spectrum yields various moments of the distribution such as the variance 2,(L), skewness
¥,(L) and excess y,(L).

(iii) Spectral rigidity A,(L) of the spectrum. Given a substretch [a, a + L] of the spectrum, 4,(L)
measures the mean square deviation of the spectral staircase function from the best straight line fit to it

A(L; )= % min f [N(e) — Ae — B de . (33)

Note that through the transformation (32) we are dealing with spectra whose average part is the
identity, N, (€) = €, but for finite segments of the spectrum the best straight line fit may depend slightly
on a. Averaging over a gives the rigidity A,(L). 4, is related to the variance 3, by a non-invertible
integral transformation.

The functional forms of the measures listed above are known analytically for some specific model
spectra. Two kinds of spectra are particularly important: (a) (Uncorrelated) random level spectra
(Poisson spectra), (b) random matrix spectra. In the latter case one distinguishes between ensembles of
real symmetric random matrices (Gaussian orthogonal ensemble - GOE) and ensembles of complex
Hermitean random matrices (Gaussian unitary ensemble — GUE). The GOE ensemble is the relevant
one for the hydrogen atom in a uniform magnetic field, because the Hamiltonians in each m” subspace
(see eq. 5) are represented by real symmetric matrices. Spectra belonging to the above classes share
universal fluctuation properties. Their NNS distributions are given by an exponential

P(s)=¢e"’ (34)
for Poisson spectra, and approximately by a Wigner distribution
P(s)=lmse ™" (35)

for GOE spectra. Asymptotically (large L) the spectral rigidity is given by

A,(L)=L/15 for Poisson spectra (36)
and by
A(L)=(1/m*)In L —0.007 for GOE spectra . (37)

Analytic formulae for the moments of the level distributions are more complicated and can be found
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e.g. in Bohigas et al. [86]. A graphical presentation of them will be given in the discussion of the
results.

The physical motivation for studying level fluctuations accumulates in a conjecture which was first
formulated by Bohigas et al. [80], namely that the appearance of universal fluctuation patterns in
quantum spectra is linked to the global structure of the underlying classical dynamics: level spectra of
classically chaotic systems share random matrix fluctuations, while integrable systems show fluctuations
characteristic for random (Poisson) spectra.

In the second half of 1986 three papers [87-89] appeared, in which statistical properties of the energy
level spectra of the hydrogen atom in a uniform magnetic field were studied and compared with the
predictions of statistical theories. In these earliest papers, the scaled energy was not yet established as
the natural parameter governing the classical dynamics, so refs. [88, 89] studied spectra at fixed field
strengths, which meant that each spectrum covered a finite range of nonequivalent classical systems.
References [87, 88] studied spectra at constant values of the energy divided by the field strength,
because this is just the inverse of the effective coupling strength in the quantum mechanical treatment
(see section 2.3); constant E/y is actually not far from constant scaled energy, in particular near the
zero-field threshold. Independently all three investigations confirmed that the NNS distributions are
close to a Poisson distribution for energies where the classical dynamics is regular, and close to a
Wigner distribution around the zero-field threshold, where the classical dynamics is chaotic.

More detailed studies [90, 91], now at fixed values of the scaled energy, investigated the transition
from the regular (Poisson) to the irregular (GOE) regime. As an example fig. 22 shows various
statistical quantities at a scaled energy of € = —0.1, where the classical dynamics is governed by global
chaos. From left to right and top to bottom the figure shows the NNS distribution histogram P(s), the
cumulative spacing distribution [; P(x) dx (which does not depend on the histogram step size), the
spectral rigidity 4,, the number variance 3,, the skewness vy, and the excess v,; all are shown together
with the Poisson and the GOE predictions. The results shown are averages over eight different spectra
from various m” subspaces (m=0,1,2,3; 7=+, —), except for the spectral rigidity 4,, which was
analyzed separately for the two different z-parities, because a noticeable parity dependence was
observed. Altogether approximately 3000 levels entered the analysis.

There is generally close overall agreement between the results shown in fig. 22 and the predictions of
random matrix theories, and this confirms the hypothesis of universal fluctuation patterns in the
quantum spectra of classically chaotic systems. However, there are some deviations for large values of
L, in particular for A; and 2,. These are related to a breakdown of universality when L becomes larger
than some correlation length L_, . A semiclassical theory which accounts for these nonuniversal
departures has been developed by Berry [92-94] on the basis of Gutzwiller’s periodic orbit theory (see
section 4.4). It not only gives the same results as the statistical theories for L < L_, , but also predicts
the correct asymptotic behaviour for L > L_ . , where random matrix theories fail.

For the spectral rigidity A, the semiclassical theory predicts asymptotic saturation. Figure 23 shows
the calculated spectral rigidity on a larger scale of L-values, again analyzed separately with respect to
the z-parity. Obviously both curves saturate asymptotically, but they converge to different values
corresponding to a parity splitting of 0.040(2). Again this can be understood within the framework of
the semiclassical theory. The origin of the parity dependent saturation values are periodic orbits lying
on exact symmetry lines of the Hamiltonian. Their influence on the spectrum is different in subspaces
belonging to different quantum numbers associated with these discrete symmetries.*) A careful

*) This is worked out quantitatively in section 4.4.
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Fig. 22. Statistical properties of the quantum mechanical spectrum at a constant scaled energy £ = —0.1. From left to right and top to bottom the
figure shows: the NNS distribution histogram P(s), the cumulative spacing distribution [ P(x) dx, the spectral rigidity 4,, the number variance 3,
the skewness 7y, and the excess 7,.

semiclassical analysis [91] gives an asymptotic parity splitting of 0.043, which is quite close to the value
observed in fig. 23.

Because of the scaling property of the classical Hamiltonian we can study the statistical properties of
the quantum spectra at fixed scaled energy ¢ (determining the classical dynamics) and investigate their
dependence on ¢ as the classical dynamics goes through the transition from regularity to irregularity.
Such an analysis is shown in fig. 24 for the NNS distribution histograms. There is a clear transition from
a Poisson-like distribution at £ = —0.4 to a Wigner distribution at ¢ = —0.1. In the transition region the
histograms can be approximated fairly well by a Brody distribution [95]

Pis)=a(g+1)s'e™™", a=[[((g+2)/(g+ )", (38)
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Fig. 23. Spectral rigidity (33) at ¢ = —0.1 as a function of L.
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Fig. 24. NNS distributions P(x) for scaled energies ¢ varying from ~0.4 to —0.1. The solid lines show attempts to fit the histograms with Brody’s
formula (38), the dashed lines represent the interpolation formula of Berry and Robnik [96]. (From ref. [90].)
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which interpolates between the regular Poisson distribution (g = 0) and the irregular Wigner distribu-
tion (g = 1) and is represented by the solid lines in fig. 24. Also shown in the figure are attempts to fit
the histograms with a distribution proposed by Berry and Robnik [96] (dashed lines), which is obtained
by the independent superposition of a spectrum obeying Poisson statistics with weight g and a spectrum
obeying Wigner statistics with weight 1 — g. Although the idea behind the Berry—Robnik distribution
seems very reasonable, the fits were generally poor compared to fits obtained with the Brody
distribution. One reason for the poor performance of the Berry—Robnik distribution in the present case
is, that the levels belonging to the regular part of the spectrum do not obey a Poisson distribution, but
behave more like the levels of a two-dimensional harmonic oscillator [91].

More detailed investigations reveal that the transition from Poisson to Wigner statistics in the NNS
distributions is not as smooth as might be expected from fig. 24. It seems to be difficult if not impossible
to find a quantitative description of the NNS distributions in the transition regime between regularity
and irregularity. The reason for this is that the spectral statistics can depend sensitively on nonuniversal,
system-specific details of the underlying classical dynamics [91]. This can be seen more clearly in other
statistical measures shown in figs. 25 and 26.
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Fig. 26. Number variance 3, as function of L for three values of the scaled energy . (From ref. [91]))
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Figure 25 shows the spectral rigidity 4, for various values of the scaled energy ¢, together with the
predictions of the Poisson and the GOE cases. In the nonsaturated region L <5 one clearly sees the
transition from Poisson to random matrix statistics as ¢ is increased from —0.4 to —0.15. However, for
larger values of L, the spectral rigidity at ¢ = —0.3 does not conform to the general trend and saturates
at a much larger value than that observed for the other values of . An even more dramatic deviation
from the general trend is observed for the number variance 3, shown in fig. 26. At ¢ = —0.3 the number
variance 3,(L) might be expected to be a smoothly varying curve lying between the corresponding
curves for e = —0.25 and & = —0.35; however it is a strongly oscillating curve which lies well above the
other two curves for L > 3.

These deviations of various statistical measures from a smooth e-dependence near € = —0.3 can be
readily explained within the framework of Berry’s semiclassical theory as a consequence of the
properties of certain stable periodic orbits [91]. The extraordinary features observed at ¢ = —0.3 can be
traced to the stable periodic orbit perpendicular to the field (I,), which accidentally has a low rational
winding number at this value of . This causes many systematic near-degeneracies in the regular part of
the spectrum (see section 4.4), which naturally has a strong influence on the number statistics.

The statistical analysis in this chapter applied to the fluctuating part in the density of states. Other
physical quantities can also be considered. Recently Wunner et al. [141] studied transition strength
fluctuations (distribution of oscillator strength) and again found good agreement with random matrix
predictions. The same is to be expected for the decay widths of resonant states above the ionization
limit. Random matrix theories predict very narrow decay widths as the most probable ones. A quantum
mechanical mechanism to obtain such long-living states was given by Friedrich and Wintgen [46].
Recent experiments seem to confirm the existence of these narrow states [142].

To summarize, the statistical measures studied in this section follow the universal predictions of
statistical theories quite well, as long as the level fluctuations are analyzed on a small scale. Agreement
is good for local properties of the level fluctuations. On larger scales however (global properties),
nonuniversal features reflecting special properties of the underlying classical dynamics, become
dominant and may lead to extraordinary behaviour of the statistical measures. It turns out that the
knowledge of the classical periodic orbits is useful and necessary to understand the complex spectra.
The influence of periodic classical orbits on the properties of quantum spectra is discussed quantitatively
in the next two sections.

4.3. History of the quasi-Landau phenomenon

The discovery of almost equidistant peaks in the photoabsorption spectra of atoms in a magnetic field
[56] played a major role in generating the widespread attention given to the problem of atoms in
magnetic fields in recent years. Near the ionization threshold the separation of the peaks is roughly 1.5
times the cyclotron energy fiw, = 2fw, which corresponds to the separation of the Landau states of free
electrons in a magnetic field, hence the name quasi-Landau oscillations.

Solutions of the one-dimensional Schrodinger equation for an electron moving in the plane
perpendicular to the magnetic field actually give energy levels with a spacing of roughly 1.5 times fw,,
as was soon found out on the basis of semiclassical (WKB) investigations [97-99]. The early success of
this simple explanation of the spacing of the quasi-Landau peaks led to the widespread view that these
peaks were due to resonant photoabsorption into individual quantum states in which the motion of the
electron is localized in the plane perpendicular to the direction of the magnetic field [18, 57, 98-102].
This picture was also consistent with absence of quasi-Landau peaks for transitions into m” subspaces
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with negative z-parity, because the negative parity wave functions all vanish in the plane perpendicular
to the field. It was shown later [67, 103], that the disappearance of quasi-Landau structure in subspaces
with negative z-parity is a property of the transition operator involved and not of the final state density.

First ab initio quantum calculations of states at the zero-field threshold E =0 and at field strengths
somewhat higher than laboratory field strengths showed that the above picture of a quasi-Landau peak
as due to a single quantum state with a dominant oscillator strength is at best a severe over-
simplification [104]. The quasi-Landau region is highly irregular, and it is in general not possible to
arrange the spectrum in simple sequences of bound (or resonant) states. On the other hand, the
experimental data on the quasi-Landau “‘resonances” showed smoothly modulated cross sections and
did not necessarily imply an identification of the modulation peaks with individual quantum states. The
experimentally observed quasi-Landau oscillations can in fact be related to the (classical) motion of the
electron in the plane perpendicular to the field without invoking the existence of prominent individual
quantum states at the peak positions, as is described below.

One way of correlating modulations in the cross sections with closed classical orbits is the picture of a
wave packet recurring to its starting point after each traversal of the closed orbit. The modulation peaks
are due to constructive interference on recurrence, and this occurs when the ‘‘resonance condition”

S(E)=ﬁ§pdr=n (39)

is fulfilled [105-108]. This resonance condition is not a quantization condition defining the energies of
individual quantum states, but it can determine the positions of modulation peaks in cross sections or
spectral densities. This general picture is not only applicable to the quasi-Landau modulations of atoms
in a magnetic field, but also to a variety of other physical systems showing similarly modulated spectra,
e.g. atoms in external electric fields [109, 110, 126, 143], negatively charged ions in external fields
[111-114], the spectra of the H; [115] and the H,O molecules [134].

The interest in the quasi-Landau phenomenon received a boost after 1986, when Welge and
collaborators studying photoabsorption spectra of atomic hydrogen reported a new series of more
closely lying peaks for transitions into m” subspaces with negative z-parity [7]. These peaks could be
related via the resonance condition (39) to the first orbit I, of the series of non-straight-line periodic
orbits shown in fig. 19. Fourier transforming the measured cross sections soon revealed a whole series
of modulation frequencies, and these were correlated with the other orbits of the series [§].

4.4. Gutzwiller’s trace formula
A quantitative description of how periodic classical orbits influence quantum mechanical observables
is provided by a theory developed by Gutzwiller [79, 116-118], Balian and Bloch [119] and Berry and

coworkers [120-122]. This theory is a semiclassical approximation of Feynman’s path integral formalism
[123]. The quantum mechanical spectral density

n(E)=2 8(E — E)) (40)

is written as the sum of a smooth part n_(E), the mean level density, and a fluctuating part. The
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fluctuating part is given explicitly as a sum over the periodic orbits of the classical system:

n(E) - n,(E)=~Im 2 a, exp{2mij[S,(E) - ]} (41)

The label r runs over all primitive orbits and the label j=1,2,3, ... counts the number of traversals of
the periodic orbit; u, is an appropriate Morse index for the phase, which is analogous to the Maslov
index familiar in semiclassical quantization and depends on the focussing of trajectories close to the
periodic orbit [122].

The beauty of eq. (41) is that it applies irrespective of whether the system is regular and the orbits
stable, or whether the system is chaotic and the orbits unstable. The information about the stability of
an orbit is contained in the amplitude factors a,;. For a stable periodic orbit these factors oscillate or
behave as a power in j, depending on whether the orbit is isolated in phase space or is embedded on a
(resonant) torus [120-122]. For unstable periodic orbits the amplitude factors a,; decay exponentially
with j (see below). The contribution of a primitive periodic orbit r together with all its repetitions to the
density of states is thus a more or less pronounced peak when S, — u, is a whole number. Except for the
modification due to the Morse index, this is precisely the resonance condition (39). However, the
contribution of a single periodic orbit in the trace formula (41) does not lead to singularities (individual
quantum states) in the density of states.*’ i

Formulae of the type (41) apply not only to the energy level density but also to other quantum
mechanical observables such as the photoabsorption cross sections from a low-lying state [124-126] or
expectation values of operators having a classical counterpart [127].

The resonance condition (39) (ignoring for simplicity the Morse index) can be expressed in terms of
the scaled coordinates and momenta (20)

s o 1
S(e)= zlﬁ § pdr=y'" 7 § pdr=y"n; (42)

S| () is the scaled action and depends only on the scaled energy which determines the classical dynamics.
The scaled resonance condition (42) means that the modulations related to a given periodic orbit r are,
at fixed values of the scaled energy ¢, located at

y 3 =VEelE=nlS (¢), (43)
i.e. they are equidistant on a scale linear in y ~'’>. Equation (43) shows that a comparison of classical
and quantum mechanics is most appropriately done by studying spectra at fixed values of the scaled
energy ¢ and as functions of y ~''>. Modulation peaks associated with a given periodic orbit r are then
equidistant and separated by the inverse scaled action 1/S,(¢). In the Fourier-transformed spectra
depending on a conjugate variable, which we call y'’* for simplicity, such regular modulations appear
as prominent peaks situated at

¥y =S§(e) . (44)

*) Note however, that using the trace formula (41) as direct quantization formula for stable and isolated orbits can approximate the regular part
of the spectrum very accurately!
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In contrast, studying quantum spectra as functions of the (non-scaled) energy E at fixed field strengths y
involves averaging over a range of scaled energies determining the classical dynamics, and Fourier
transforming such spectra leads to broadened peaks in the time domain, the locations of the peaks
being given by the periods of the orbits. These peaks may be washed out, however, because the periods
of the orbits depend on the energy.

Power spectra (i.e. squared Fourier amplitudes) of the fluctuating part of the energy level density are
shown in fig. 27 for various m” subspaces at the scaled energy e = —0.2. The power spectra do indeed
show several sharp peaks which can be correlated with classical orbits. A remarkable feature in fig. 27 is
that the power spectra in the different m™ subspaces are almost identical, although the details of the
underlying spectra are of course quite different. The reason for the similarity of the power spectra is,
that the scaled azimuthal quantum number 7 = y'">m becomes negligibly small in the dense part of the
spectrum (small field strengths) so that the classical dynamics becomes independent of m. (Note
however, that the peak at § = 1.58 is strong for m = 0, less pronounced for m =1 and almost absent in
the m =2 subspaces. This point will be discussed later in this section.)

For a more quantitative analysis it is useful to recall the derivation of the trace formula (41). The
density of states can be expressed as the trace of the Green’s function

n(E) = —Im[(1/7) Tr G(E)] . (45)

The Green’s function is the Laplace transform of the time evolution propagator K,

: f eV MEK (1) dt (46)

0
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Fig. 27. Squared Fourier transforms of the fluctuating part of the cumulative level density in various m” subspaces.
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K(t) = e /MH (47)

In Feynman’s formulation of quantum mechanics [123] the propagator is expressed as a path integral,

K(¢ 0= | 9lqle"™, (48)

q

where W= [ L(q, ¢) dt is the action written as the time integral over the Lagrangian. The semiclassical
approximation consists in evaluating the integrals by the method of stationary phase, which yields
significant contributions to the density of states from the classical periodic orbits only. These orbits
contribute sinusoidal corrections to the mean level density n,,, which is given by the size of the energy
shell in phase space

av?

w(E) = n..(E) ~ Im 2 iT, Z explij(S,/h — p,m/2)] (49)

hisi [deyM!-1)]'"?

Equation (49) is the so-called trace formula in which the sums run over all primitive periodic orbits r
with periods T, and actions S, and over all repetitions j of the primitive orbits. u, is the respective Morse
index and M, is the 2 X2 stablhty matrix describing the time evolution of transverse displacements off
the periodic orb1t *) The eigenvalues of M, define the type of fixed point of the periodic orbit in the
Poincaré surface of section. The determinant is given, depending on the type of fixed point, by

det(M’ — 1) = 4 sinh’(jA/2), hyperbolic
= —4cosh’(jA/2),  inverse hyperbolic, (50)
= —4sin’(jm,), elliptical ,

A= AT is the Liapunov exponent of an unstable orbit in the Poincaré map, and v, is the winding
number of a stable orbit (see section 3.4).

Two modifications are necessary if the Hamiltonian has discrete symmetries and if we are studying
spectra in subspaces of eigenfunctions of these symmetries. Firstly, the Green’s function has to be
adapted to the symmetries before taking the trace in eq. (45). As a consequence, periodic orbits can
contribute e.g. with half-integer traversals (corresponding to j=1/2, 3/2, 5/2,...), if the orbits are
invariant under these symmetry transformations.**> Secondly, periodic orbits which are selfretracing
along symmetry lines contribute differently to different discrete subspaces. This can be seen by
expanding the amplitudes of e.g. an unstable orbit, eq. (50)

©

—(k+1/2)jA
2 smh( jAI2) ZO : (51)

Equation (51) gives the decomposition of the amplitude in (50) into the various harmonic excitations

*) M, is obtained from the full 4 X 4 monodromy matrix (29) by an orthogonal transformation [116).
**) Generally, if the underlying potential has a C,,-symmetry then symmetry-invariant periodic orbits can contribute with the nth part of their
total length. In our case n=2, see eq. (1).
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k perpendicular to the orbit. (—1)* defines the “local” parity of the transversal excitations. If this local
parity coincides with an exact discrete symmetry of the Hamiltonian, viz. the symmetry orbits itself,
then the amplitude (51) has to be split into its odd and even parts by resumming over odd and even
values of k separately. In the present system, the straight line orbits perpendicular and parallel to the
field (I, and 1..) are such selfretracing orbits along symmetry lines. The latter modification is the reason
why the peak at § = 1.58 in fig. 27 becomes less pronounced with increasing azimuthal quantum number
m.* This peak is correlated to the periodic orbit I, parallel to the field, which is unstable at e = —0.2.
Since the scaled azimuthal quantum number m = y” m tends to zero for high excitations, the classical
dynamics is quite generally independent of m. The main effect of the azimuthal quantum number is its
influence on the behaviour of the wave functions near p = 0, which is given by ¢« p | Thus one has to
sum over odd or even k= m in eq. (51). The corresponding amplitudes then dlffer by a factor

a" = (=1)"e " a"™" . (52)
The minus sign applies because the fixed point is inverse hyperbolic. Thus the peak belonging to the
orbit parallel to the field becomes exponentially damped with increasing m.

The same decomposition of the amplitude has to be performed for the periodic orbit I, perpendicular
to the field. However, at ¢ = —0.2 this does not affect the heights of the related peaks in the power
spectrum, because the orbit is stable at this scaled energy. Expanding the sine in eq. (50) yields
amplitudes which differ only in phase

- + | —27ijy,
ayla;;=e . (33)

Thus the peaks in the power spectrum are of the same magnitude for the orbit I,, in agreement with fig.
27. This is different of course when the orbit becomes unstable, e.g. at ¢ = —0.1, where I, corresponds
to an inverse hyperbolic fixed point in the surface of section and the Liapunov exponent of the Poincaré
map is A =0.6080. Thus eq. (51) predicts modulations with amplitudes differing by a; j/a;; ;= —0.544;
the value found by Fourier-transforming the spectra belonging to different z-parities is in fact —0.54.
This connection between the quantum mechanical spectrum and the properties of the classical orbits
means that we can determine the Liapunov exponent of the periodic orbit (with an accuracy of 1%) and
the type of fixed point in the Poincaré surface of section by solving the linear Schrodinger equation
without having to follow the nonlinear evolution of the classical dynamics.

The effect of symmetrization of the Green’s function on the spectra can be illustrated by contrasting
the power spectra shown in fig. 27 with power spectra derived from parity-mixed level sequences as
shown in fig. 28. Although the orbit I, perpendicular to the field has the shortest scaled action,
S (e=-02)= 1 033 05, of all perrodlc orbits, the power spectra in fig. 27 show a sharp peak at the
smaller value y'"> =0.62 in each m” subspace. This value corresponds to the scaled action for half a
traversal of the almost circular orbit (C) (the numerical value is 1S = 0.617 30), which is symmetric
under a coordinate rotation through the angle . This peak vanishes exactly in the Fourier transform of
the parity-mixed spectrum containing all levels of the m” =0" and the m" =0~ subspaces together (fig.
28). In fig. 28, the almost circular orbit manifests itself only at scaled actions S. =1.23460, 2§, =
2.469 20, . . . corresponding to full traversals of the orbit.

The peaks in fig. 27 can be fully accounted for by the trace formula. Each peak can be associated

*) This modification also causes the observed parity dependences of the statistical measures discussed in section 4.3,
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Fig. 28. Squared Fourier transform of the fluctuating part of the energy level density for the spectrum consisting of all levels of the m” =0" and
m™ =0" subspaces together.

with a classical periodic orbit, and for each periodic orbit (with a scaled action in the range covered by
the abscissa) there is a corresponding peak in the Fourier transformed spectra. The locations of the
peaks agree with the directly calculated scaled actions of the classical orbits typically to within a few
parts in 10, (For further details see ref. [128].) Thus the semiclassical trace formula provides a simple,
elegant and powerful way of quantitatively explaining the quantum spectra in the low frequency
domain.

Having established the idea that quantum spectra can be decomposed into oscillating contributions
associated with classical periodic orbits, one might try to use the classical orbits to calculate the
quantum level density. In order to obtain the full semiclassical spectrum one would have to sum over all
periodic orbits including arbitrarily long periods or rather large scaled actions. To do this numerically is
a hopeless task. In order to obtain a complete knowledge of the periodic orbits one needs to know the
symbolic organization of the periodic orbits [129] or at least an algorithm to find all of them. Until very
recently such coding schemes existed only for some Hamiltonian systems without bifurcations {74, 130,
135]; the symbolic organization of the periodic orbits for the hydrogen atom in a uniform magnetic field
has been worked out in ref. [136]. However even in the limit of including all periodic orbits in the trace
formula, it is not clear whether the sum would really reproduce all the delta-function spikes associated
with the true quantum levels [122, 137]. The reason for this is that the trace formula is certainly not
absolutely convergent. Presumably it is not convergent at all so that it can be used as an asymptotic sum
only [138]. Incorporating the symbolic organization of the periodic orbits together with refined
summation techniques may however give the analytic continuation of the trace formula. This is
indicated by some recent work in refs. [129, 139].

The complications of a summation over all periodic orbits can be avoided if we include only the
simplest orbits in an attempt to generate a finite resolution density of states, the resolution being
determined by the longest period (the largest scaled action) amongst the orbits included. Figure 29a
shows the minimal version of such a calculation [131]. Only the two simplest periodic orbits, I, and C,
are included and their contributions from up to one full traversal yield the thin solid line. The smoothed
fluctuating part of the exact quantum mechanical spectrum is shown as the thick solid line (for more
details see ref. [131]). Figure 29a shows that this minimal calculation based on only two classical
periodic orbits is able to reproduce the gross structure of the quantum spectrum with remarkable
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Fig. 29. Finite resolution spectra (thin solid lines) obtained on the basis of (a) the two shortest periodic orbits and (b) including periodic orbits with
scaled actions up to three. The vertical lines in the centre of the figure show the energies of the first few quantum states (from ref. [131]).

accuracy. Figure 29b shows the results of a more involved calculation where the sum in the trace
formula includes all periodic orbits with scaled actions less than S, =3. This results in nineteen
contributions from thirteen primitive orbits. Again close agreement with the smoothed quantum
spectrum is observed, now on a finer scale.

Figure 29 demonstrates that the trace formula is able to reproduce a finite-resolution density of
states. In spectral regions where the resolution becomes finer than the mean separation of states, the
peaks appearing in the level density are due to individual resolved quantum states. This is the case for
y~'? < 4.5 in the figure. The exact quantum eigenvalues agree with the peak positions to within a few
per cent of the mean level spacing, even down to the ground state. This is somewhat surprising, because
one does not necessarily expect semiclassical theories to be accurate near the ground state [131]. In
addition, excited levels up to the ninth eigenvalue are predicted quite accurately by the simple sum
including only thirteen classical orbits.

Periodic orbit analyses of quantum spectra have been performed not only for the density of states,
but also for calculated [67, 107, 108, 126] and measured [7, 8, 132, 133] photoabsorption cross sections.
These cross sections depend on dipole transition matrix elements involving an initial wavefunction
which, compared to the wavefunctions of the highly excited final states, are confined to a region very
close to the origin (i.e. the nucleus). In the appropriate semiclassical treatment only such classical orbits
are important which start at the origin. Recall that, because of the Coulombic nature of the potential at
the origin, all orbits which recur to the origin retrace their path and are hence periodic. A complete
listing of all periodic orbits passing through the origin and with scaled actions up to S=4 at the
zero-field threshold ¢ =0 is given in ref. [67].

Gutzwiller’s trace formula for the fluctuating part of the level density, and corresponding formulae
for (the fluctuating part of) other observables such as photoabsorption cross sections, establish a
connection between periodic classical orbits and quantum mechanical spectra. In particular, isolated
periodic orbits with short periods or small (scaled) actions lead to peaks in the quantum mechanical
spectra, and the positions of the peaks are determined by a resonance condition resembling a
semiclassical quantization condition. The observed correlation between so-called “quasi-Landau reso-
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nances” and classical periodic orbits thus has a sound theoretical foundation which reaches deeper than
early interpretations based on one-dimensional WKB calculations.

To arrive at a semiclassical understanding of “chaotic”” wavefunctions is a much harder task (see e.g.
refs. [144, 145]). A theory based on Gutzwiller’s idea has been developed recently by Bogomolny [146].
Investigations currently in progress for the hydrogen atom in a magnetic field again indicate that the
periodic orbits play an essential role in understanding the complex structure of the wavefunctions [141,
147, 148].

5. Summary

The hydrogen atom in a uniform magnetic field is a uniquely simple example of a real physical
system showing all the features currently causing excitement in the field of small dynamical systems
exhibiting classically chaotic dynamics.

The quantum mechanical Schrodinger equation has been solved numerically with high accuracy for
arbitrary field strengths and energies very close to or up to (depending on field strength) the zero-field
threshold. Within the accuracy of experimental measurements, the calculated spectra reproduce spectra
observed in photoabsorption experiments, and this connection to a real laboratory system gives added
weight to all conclusions drawn from a theoretical or numerical analysis.

In the plane spanned by the energy E and the field strength vy there is a perturbative regime of low
field strengths and excitation energies, where the quantum mechanical levels in each m” subspace can
be labelled by the quantum number n of the manifold of unperturbed (i.e. field-free) hydrogenic states
from which they evolve, and an intra-shell label & counting the states in each manifold. In this region
the Hamiltonian is approximately separable and the label k& is associated with an additional approximate
integral of the motion. The region of approximate separability actually extends well into the n-mixing
regime, where various n-manifolds overlap. Approximate separability breaks down as we approach the
zero-field threshold at E =0, regardless of field strength. At very high field strengths, where the energy
of a Landau excitation perpendicular to the direction of the magnetic field becomes comparable to or
larger than the Rydberg energy, the system becomes simpler again and can be accurately described by
an expansion in coupled Landau channels.

The classical dynamics of the hydrogen atom in a uniform magnetic field does not depend on energy
E and field strength y separately but is determined, to within a trivial similarity transformation, solely
by the scaled energy e = E/y”>. Near the field free limit é— —o the classical motion is regular and
confined to invariant tori. Around &= —0.35 there is a comparatively sudden transition to irregular
(chaotic) motion, with the last elliptical islands of regularity disappearing at &= —0.127 268 612.
Increasing chaoticity is expressed in an increasing fraction of irregular orbits in phase space and also in
increasing Liapunov exponents and increasing numbers of periodic orbits.

The classical transition to chaos is accompanied by corresponding transitions in statistical properties
of the quantum spectra. Fine scale quantities such as nearest neighbour spacings show the expected
transition from the expectations associated with random level spectra in the classically regular region to
spectra associated with random matrix ensembles in the classically chaotic region. For statistical
quantities depending on correlations of somewhat longer range in the spectra, these transitions are
however not at all uniform and show a sensitive dependence on system specific non-universal properties
such as the occurrence of prominent simple periodic classical orbits.

A knowledge of the periodic classical orbits of the system is important for understanding the general
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structure of the quantum level spectra and of other observable quantities such as photoabsorption
spectra. The connection between quantum spectra and periodic classical orbits is quantitatively
expressed in Gutzwiller’s trace formula. Finite resolution spectra can already be described quite
accurately using the knowledge of only a small number (two) of simple periodic orbits with short
periods or small actions. We now understand, that the modulation peaks in photoabsorption spectra,
which have long been known under the name ‘“quasi-Landau resonances” are, together with the
multitude of more recently discovered further modulations, simply a manifestation of the occurrence of
prominent unstable periodic orbits in the classically chaotic region.
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