Phase dislocations in the 2D scattering of microcavity polaritons

Nicolas Pavloff

L.P.T.M.S, Université Paris-Sud, CNRS

work in collaboration with **A.M. Kamchatnov** Institute of Spectroscopy Russian Academy of Sciences, Troitsk EPJ. D 69, 32 (2015)

also A. Amo, J. Bloch, A. Bramati, I. Carusotto, C. Ciuti, B. Deveaud-Plédran,
E. Giacobino, G. Grosso, A. Kamchatnov, G. Malpuech, N. Pavloff,
S. Pigeon, D. Sanvitto & D. D. Solnyshkov, arXiv:1401.7347

cavity polaritons

Garching 2015

Superfluidity - hydrodynamics

LKB group, Nat. Phys. (2009)

left :
$$V_{\text{flow}} > V_{\text{crit}}$$

right : $V_{\text{flow}} < V_{\text{crit}}$

Landau criterion :

Energy and momentum conservation: $\frac{M}{2}V^2 = \frac{M}{2}\left(\vec{V} - \frac{\vec{p}}{M}\right)^2 + \varepsilon(p).$ for $M \gg m$ this reads $\varepsilon(p) = \vec{V} \cdot \vec{p}$

emission of excitations possible only if

$$V > v_{
m L} = \min \, \left[rac{arepsilon(p)}{p}
ight]$$

LKB group, Science (2011)

Expected scenario in 2D: (neglecting damping and polarization effects)

Dark solitons : 1D objects: $V_{sol} < c$

in 2D, snake instability:

A controversy :

Lagoudakis' group at Southampton

Cilibrizzi et al. Phys. Rev. Lett. (2014)

 $k_0 = \sqrt{k^2 - 2 m U_0/\hbar^2}$ (possibly complex), $\vec{r} = (r, \varphi) = (x, y)$.

$$\tilde{B}_n = \frac{-k_0 J'_n(k_0 a) J_n(k a) + k J_n(k_0 a) J'_n(k a)}{k_0 J'_n(k_0 a) H_n^{(1)}(k a) - k J_n(k_0 a) H_n^{(1)'}(k a)} \stackrel{U_0 \to \infty}{\longrightarrow} - \frac{J_n(k a)}{H_n^{(1)}(k a)} ,$$

simple numerics $(n_{\max} \sim ka)$ ka = 4.5

top figure: hard disk below : attractive disk with $2ma^2U_0/\hbar^2 = -15$.

(units: $a \equiv 1$)

black lines: Im $\psi = 0$ yellow lines: Re $\psi = 0$

Wave singularity

model case:

$$\psi \cong (\alpha \, x - \mathrm{i} y) \, e^{\mathrm{i} k x}$$

 $\begin{aligned} & \text{Wave singularity} \quad \text{model case bis:} \\ & \psi = [x - \mathrm{i}k(y^2 - b)] \, e^{\mathrm{i}kx} \,, \quad b \in \mathbb{R} \\ & \text{vortices:} \quad (0, \pm \sqrt{b}) \,, \quad \text{saddles:} \quad \begin{cases} & (0, \pm \sqrt{b - k^{-2}}) & \text{for} \quad b > k^{-2}, \\ & (\pm \sqrt{b - k^2 b^2}, 0) & \text{for} \quad 0 \le b < k^{-2}. \end{cases} \end{aligned}$

Scenario of Nye, Hajnal and Hannay (1988):

Wave singularity 2D scattering $2ma^2U_0/\hbar^2 = -15$.

wavefronts:

0 and π : yellow ; $\pm \pi/2$: black : $\pm \pi/4$ and $\pm 3\pi/4$: purple.

Wave singularity 2D scattering $2ma^2U_0/\hbar^2 = -15$.

wavefronts:

0 and π : yellow ; $\pm \pi/2$: black : $\pm \pi/4$ and $\pm 3\pi/4$: purple.

 $\frac{\hbar^2 k^2}{2m}$

pole of the scattering amplitude:

$$k_0 J'_n(k_0 a) H_n^{(1)}(ka) = k J_n(k_0 a) H_n^{(1)'}(ka).$$
 Hence $k_0 a \simeq \text{zero of } J_n.$
 $ka \approx Q_0 a + \frac{1}{2} \frac{j_{n,s}^2}{Q_0 a}$, where $\begin{cases} Q_0^2 = 2m U_0 \hbar^2 , & \text{here } (Q_0 a)^2 = 60 , \\ j_{n,s} : s^{\text{th}} \text{ zero of } J_n \end{cases}$

 $\frac{\hbar^2 k_0^2}{2m} \bar{} \uparrow \bar{} \bar{}$

 U_0

Cross section

 $\left[U_0 > 0, (Q_0 a)^2 = 60\right]$

$$\psi \simeq e^{ikx} + \frac{f(\varphi)}{\sqrt{r}} e^{ikr} \to \sigma = \int_0^{2\pi} |f(\varphi)|^2 = \frac{4}{k} \sum_{n \in \mathbb{Z}} |\tilde{B}_n|^2 .$$

Low energy: $\tilde{B}_0 \simeq \frac{-1}{1+\frac{2i}{\pi}\ln(k/\kappa)}$ where $\ln\left(\frac{\kappa a e^{\gamma}}{2}\right) = \frac{1}{Q_0 a} \frac{I_0(Q_0 a)}{I'_0(Q_0 a)}$. (only *s*-wave)

Qualitative analysis of the linear regime

Quantitative analysis

A. Amo et al. arXiv:1401.7347

Cilibrizzi *et al.* PRL **113** (2014)
 Amo *et al.* Science **332** (2011)

Summary :

	$V_{\rm flow} \to 0$	elongated regions of low density	phase pattern
linear	σ diverges	around nodal points	dislocations
		sensible to details	
non-linear	superfluid	around oblique solitons	smooth phase jumps
		robust	

CONCLUSION :

linear physics: interesting *per se* (motion of dislocation, resonances), effects within experimental reach.

What about the linear \leftrightarrow non-linear transition ?

Still unclear :

A. Amo et al. Science 332 (2011)

