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We study, using a density-functional approach, the properties of  the two- 
dimensional system formed by 3He atoms on the surface of  liquid 4He, as a 
function of  3He coverage Ns, at zero temperature. We find several types of  
surface states accessible to the 3He atoms. For small values of  Ns, the surface 
tension (7 is, as expected, linear in N 2 . For a coverage of  about half a monolayer, 
a new type of  surface state starts being occupied, and this produces a change 
in the slope of  ty as a function of  N 2 and, more clearly, a step in the surface 
specific heat, which increases by a factor of  almost two. Another step is predicted 
to occur for a coverage of  ~1.3 monolayer. Existing data are compatible with 
this structure of  surface states but are not numerous enough to prove or disprove 
the existence of  steps. 

1. I N T R O D U C T I O N  

The surface tension o- of  liquid 4He  at low temperatures depends 
strongly on the presence of small 3He impurities. For 3He concentrations 
less than one atomic layer, or decreases by almost 25%, compared to its 
value for pure 4He. This fact was correctly interpreted a long time ago by 
Andreev ~ as the signature of  the existence of  surface states with larger 
binding energy than that of  a 3He atom in the bulk of liquid 4He. When 
the temperature is sufficiently low, the ripplon contribution to the surface 
tension becomes negligible, and tr(T) exhibits the typical T2-dependence 
of  a two-dimensional Fermi gas (2-DFG). This system has been studied 
experimentally by several groups for various 3He coverages. 2-6 In addition 
to the surface tension, Edwards et al. 4"5 have also measured the velocity of  
"surface second sound,"  a compression mode of  the two-dimensional Fermi 
gas predicted by Andreev and Kompaneets.  7 
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The whole set of experimental data has been analyzed by Edwards et 
al. 4"5 using an extension of the original Andreev model to the case of 
(weakly) interacting particles. The quasiparticle energy spectrum is 
expressed as 

e ( k ) =  e o + - - k 2 +  NsV;  (1) 
2Mo 

where eo denotes the energy of  the Andreev ground state with respect to a 
free 3He atom in the limit of infinite dilution, Mo its (surface) effective 
mass, and k a momentum parallel to the surface which has a maximum 
value kf, related to the number of 3He atoms per unit surface Ns by 

N,- k} (2) 
2~- 

The quantity V~ characterizes the strength of the interaction between 
the surface 3He atoms. Expressions involving the three quantities Co, Mo, 
and V~ can be derived for the surface tension and the velocity of surface 
sound. In Ref. 4 the values resulting from the fit to the data was found to 
be (m3 denotes the bare mass of  a 3He atom) 

eo = ( -5 .08+0.03)  K 

Mo 
- - =  1.3+0.1 
m3 

V~ = (0.5±2)10 -31 erg cm 2 

= (3.6 ~: 14.5) K A 2 

whereas in Ref. 5, inclusion of data for smaller and larger 3He coverage 
lead to 

eo = ( -5 .02+0.03)  K 

Mo 
= 1.45+0.1 

m3 

V~ = (11.6 + 10.1) K A:  

The theoretical studies of this system have been often devoted to the 
limiting case of one 3He atom on the surface of liquid 4He. Of course in 
this limit one does not have to consider a quasiparticle interaction. The 
most popular approach is the Lekner-Feynman theory (see Refs. 8-12), 
where the properties of the system are described by the solution of a 
Schr6dinger equation in which only the asymptotic behaviors of the effective 
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potential experienced by the 3He atom are well determined (they are related 
to the properties of pure 4He). They provide a semiquantitative understand- 
ing of the surface states, except for the existence of an effective mass larger 
than the bare mass. 

In Ref. 13, Dalfovo and Stringari have addressed this question using 
a density functional method, already proposed for the description of pure 
3He and 4He as well as for homogeneous mixtures of  the two isotopes. 
Extension to spherical clusters has been discussed by Dalfovo. J4 They found 
values close to those quoted above (Co = -5 .4  K and M o / m  3 = 1.3) and the 
interesting result that there was an excited state (one node in the wavefunc- 
tion) with energy el = - 3 . 6  K and effective mass Ml/m3 = 1.7. It was also 
shown that the existence of this excited state was closely related to the 
shape of the density profile of pure 4He; the larger its surface thickness, 
the smaller the localization and the kinetic energy of the 3He atom--hence,  
more binding. The surface thickness of pure 4He was found to be 7 A in 
Ref. 15, in agreement with the microscopic calculations of large clusters of 
Ref. 16. This value is significantly larger than that used in the previous 
calculations of  Co, where only one bound state was obtained. 

A more elaborate density functional has recently been proposed, j7 
using a finite range interaction and incorporating hard-core effects, both 
features absent in Refs. 13-15. For homogeneous systems, however, it is 
identical to the functional used in Ref. 13. When generalized to helium 
mixtures and applied to the study of 3He impurity states on the bulk 
surface, 18 one obtains the same structure of states as in Ref. 13, with values 
for the energies and the effective masses: ( - 5 . 2 0 K ,  1.35m3) and 
(-3.16 K, 1.74m3), respectively; these differences with respect to Ref. 13 are 
due to the slightly smaller surface thickness obtained in Ref. 17 compared 
to Ref. 15, namely 5.8 A, but the general physical picture remains the same. 

At this point, one might object that the 4He surface profile of ---4 
used by Sherrill and Edwards12 or more recently by Anderson and Miller 19 
to study the 3He impurity states was deduced from a study of  the scattering 
of  4He atoms by the free surface. 5 However, it was clearly stated in Ref. 20 
that the scattering of 4He atoms was essentially determined by the asymptotic 
behavior of  the average field, which does not put strong constraints on the 
width of the density profile. Indeed, one can show that the model of Ref. 17, 
when applied to the scattering problem, gives results in excellent agreement 
with experiment. 21 Hence we feel that it is worth considering the possible 
consequences of a larger 4He surface thickness. 

The purpose of the present work is to investigate in a self-consistent 
framework the dependence on the 3He coverage of the various quantities 
characterizing the system (energies, effective masses, density profiles, 
average fields, surface tension, and surface specific heat) and to determine 
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a possible experimental signature of the existence of several types of Andreev 
states. We will use the functional of Ref. 13. As the fermions are treated in 
a mean-field approximation, it has the advantage of leading to differential 
equations rather than integro-differential equations rather than integro- 
differential equations, which would be the case with the method of  Ref. 18. 

Notice that the states we are interested in are different from those 
investigated by Krotscheck and coworkers 22.23 in thin mixture films. In these 
systems, the strong potential of the substrate plays an essential role in 
determining the impurity potential and modifies substantially the properties 
of the surface states. A study of the variation of the structure of aHe states 
with film thickness, in the limiting case of one 3He atom, is presented in 
Ref. 18, where it is shown that the asymptot ic  surface impurity potential is 
obtained only for 4He coverage larger than -0 .6  A-2, i.e., eight atomic 
layers, whereas coverages smaller than 0.3 atomic layers were considered 
in Refs. 22 and 23. Let us indicate here that the mean-field approach used 
in the present work is unable to produce the layered structure of thin films 
on a substrate. As mentioned above, the effective interaction from which 
the density functional is constructed misses the characteristic distance of 
the repulsive hard core, and its Fourier transform, diverging for large 
momenta, prevents the system from developing large oscillations of the 
density, even in a strong external field. This deficiency would be less 
important in the description of  the surface of thick films and has a minor 
effect for the bulk surface, so we expect the method to be as accurate here 
as it was in the description of  helium clusters 24 or the free surface of both 
isotopes.15 The ability of the present density functional to describe correctly 
the system was established by Dalfovo in Ref. 14 by a careful comparison 
with the Lekner-Feynman theory, in the case of 3He impurities on 4He 
droplets. 

The paper is organized as follows. The energy density functional is 
presented in Sec. 2.1. The coupled equations to be solved self-consistently 
are derived in Sec. 2.2. For small coverage, one can use perturbation theory 
to analyze how the presence of the interactions between the helium atoms 
affects the ideal behavior of the two-dimensional Fermi gas. This is done 
in Sec. 2.3, where we also discuss the connection between the present model 
and that of Edwards et al. 4 The numerical procedure is described in Sec. 2.4. 
Our results are presented in Sec. 3: evolution of  the 4He profile and of the 
mean-field experienced by the surface 3He atoms (3.1), 3He single-particle 
spectrum and wavefunctions (3.2), surface tension (3.3), and effective masses 
(3.4). When the second continuum starts being occupied, the density of 
states near the Fermi energy increases abruptly, and we analyze in Sec. 3.5 
the resulting effect on the surface specific heat of the system. In Sec. 4, a 
comparison is made with unpublished data by Edwards and coworkers and 
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with the heat capacity measurements on thick films by Gasparini and 
coworkers. Finally our conclusion are presented in Sec. 5. 

2. A MEAN-FIELD APPROXIMATION 

2.1. The Energy Density  Functional 

The functional has already been introduced in Refs. 13, 14, and 25, 
and we refer the reader to these papers and to Ref. 26 for a detailed 
discussion of  its structure. An effective interaction of Skyrme type 27 is used 
in a mean-field approximation in which the ground-state wavefunction is 
antisymmetric with respect to the exchange of  two 3He atoms and symmetric 
with respect to the exchange of  two 4He atoms. The resulting expression 
of  the energy of  an inhomogeneous mixture of liquid 3He and 4He at zero 
temperature appears as a functional of the number densities p3 and P4 and 
the kinetic energy densities ~3 and ~'4 

pa(r) = 2 ~ f d=kl~#~(r)l = (3) 

(4) 

1 IVp4(r)r (5) 
~(r)- ~ p~(r) 

where k denotes a momentum parallel to the surface. 
In Eqs. (3) and (4), the sum over the occupied states of  3He contains 

a discrete part corresponding to the different types of  bound states and an 
integral over the momentum parallel to the surface. Each type of  bound 
states constitutes a two-dimensional continuum labeled by an index i, to 
which corresponds a two-dimensional Fermi momentum k~. 

In the case of  pure 3He or pure 4He, the functional reduces to the form 
used in Refs. 15 and 24. The parameters are fixed by the experimental values 
of  the equilibrium density, the energy per particle, the compressibility, and 
the surface tension of  each system. In the case of homogeneous mixtures 
with small concentrations ofaHe atoms, it reduces to the functional proposed 
in Ref. 25. 

The form of  the functional is 

E = I dar~( r )  (6a) 
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h 2 h 2 
Yg(r) = 2m----~ "3 + 2m---~ 7-4 "~ U ( p 3 '  P4) q- d31VP312 

+ d41Vp412 + d34Vp3Vp4 (6b) 

where U([93,/94) is an algebraic function of the densities P3 and/94 given 
explicitly in the appendix. The functional involves the gradients of the 
number densities. In absence of a finite-range interaction, these terms are 
essential for a correct description of the surface properties; they also give 
rise to an effective mass depending on the number densities P3 and P4. This 
effective mass is parametrized in the form 

h 2 h2 ( P3(r) p4(r)/2 
2m3*(r)-2m3 1 p3c ~4~ / (6c) 

where p3c and p4c are constant; m3 (resp. m4) denotes the mass of a 3He 
(resp. 4He) atom. 

In view of the small difference existing between the 3He-3He and the 
4He-aHe effective interactions (d3 --- d4), the coefficient d34, which character- 
izes the 3He-4He interaction in the surface, was chosen in Ref. 14 as 

d34 = d 3 q- d 4 (7) 

where it was shown that the results did not depend much on its precise value. 
The functional is finally characterized by 15 parameters, some being 

better determined than the others. Ten of them are directly related to the 
pressure-density relation and the surface tension of pure 3He and 4He and 
to the density dependence of the effective mass of a 3He atom, which are 
well-known physical properties. Among the five remaining coefficients, four 
were fixed in Refs. 25 and 26 in order to reproduce several thermodynamic 
properties of homogeneous mixtures: excess volume parameter, 3He 
chemical potential, excess of enthalpy, and osmotic pressure. We have 
checked that our results are stable against small changes in these coefficients. 
Only changes in d34 may quantitatively affect the present results (see below, 
Sec. 3.3). However, for sake of coherence, we have kept the values used in 
previous studies. 

2.2. The Mean-Fie ld  Equations 

The equilibrium configuration is obtained by minimizing the total 
energy of the system with respect to the function ~b4(r ) = ~/pa(r) and to the 
the wavefunctions 4~'k(r), under the constraints of normalization of the 
~b~k(r)'s and that P4 should go asymptotically, i.e., away from the surface, 
to the equilibrium density of pure 4He. One thus introduced Lagrange 
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multipliers ei,k(we do not write explicitly their dependence on Ns) and/-~4, 
and minimizes the form 

E-2~i f d2kei, kf I~k(r)12d3r--1~4f p4(r) d3r (8) 

By considering the bulk liquid, one sees that [£4 is just the chemical 
potential of pure liquid 4He. The resulting equations read as 

h 2 
- - r  ~'~m3~ v6~k-t- V3~; k=  ei, k~;  k (9a) 

h 2 
- -  ~264-1- V464 = [£464 (9b) 
2m4 

where the average field V3(r) (resp. Vn(r)) of  the 3He (resp. 4He) atoms are 
given by 

0 2 

V4(r ) = OU 2d472t04_ d3472p 3 r 3 (10b) 
OP4 OP4 \2m* ] 

We can now make use of the geometry of the problem. The translational 
invariance parallel to the surface allows one to look for solutions of the form 

1 ~b~k(r) =~-~ ~ik(z) e i(k.~x+k'y) (11) 

where we choose the z axis perpendicular to the surface. It follows from 
Eq. (3) that P3 will depend on z only (the same will be true for P4). Notice 
that 

N~=f+oo~°p3(z) d z _  (12) 

and that Eqs. (3 and 4) take the form 

,,1o 

• fo:' ~, i  t i  a, i2+k%~'"(z)F) (14) 

whereas Eq. (9a) can now be written as 

2m*(~) a~ ~ a~ ~ ~ V~(~)+2~(z)k~ ~(z) 
= ~ , ~ , p ~ ( ~ )  (15) 
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where k z = k 2 + k 2 is the magnitude of the momentum parallel to the surface. 
This equation shows that, as expected, ~o} k and ei, depends only on k. In 
this one-dimensional geometry, the Laplacian operators appearing in Eqs. 
(10a, b) can be replaced by second order derivatives. The equation for pg(z), 
derived from Eq. (9b) then reads as 

~12 1 [ 
• P4 - 2 "  " ! + V4 =/.~ 4 (16) 

2m4 4 \ p2 P4 / 

Once one has solved Eqs. (15) and (16), one can compute the surface 
tension of  the system as 

o-=f~°~Yf(z) d z - t z 3 N ~ - 1 z 4 f + ~ p 4 ( z ) d z _  _ (17) 

where ~3 denotes the chemical potential of the 3He atoms. If different types 
of  surface states are occupied, to each type of  states correspond a continuum 
in energy ei.k and one has of course 

ix3 = ei, k r, for all occupied i state (18) 

2.3. Connection with the Model of Edwards e t  al 4 

For small coverage, we only have to consider one continuum, namely 
that built on the ground state ~o °'° (no node in the wavefunction). The term 
in k 2 in Eq. (15) is small compared to the average field V3(z), so that 
first-order perturbation theory gives, for a given ks 

h 2 
CO,k---- eo o + _ .  k 2 (19a) 

• 2 M  o 

where 

h 2 h 2 
J.o~ ~°'°dz (19b) 2 M o -  _ ~P°'° 2 m3*(z-------7 

Equation (19a) is not in disagreement with Eq. (1) because the ground- 
state energy eo,o (as well as q~o.o) depends on Ns, as V3(z) and m*(z) do. 

Concerning the structure of the surface tension for small 3He coverage, 
one can proceed as follows. Let us evaluate the change do" in the surface 
tension when one increases the surface 3He density by dN,. We denote by 
603(z) (resp. 3p4(z)) the change in p3(z) (resp. p4(z)). Upon expanding or 
in powers of dN,, one obtains, to first order 

dtr~-- ~ p x a p 3 d z +  ~ p 4 a p 4 d z - d t z a N ~ - p . a d N - p . 4  t3pg(z) dz ( 2 0 )  
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where the variations of ~ are functional variations, equal, from Eqs. (15) 
and (16), to/z3 and J-£4 respectively. One is then left with 

do" - - N s  d/~3 (21) 

which proves that o- starts, for small Ns, as a quadratic function of/Vs. We 
show in the appendix that, in the same limit, o- can be written as 

,//,• 2 2 _{.. ~ 3 4  _{.. ~.44) N 2 (22a) 
O- - -  0" 4 - -  2---~00 Ns - ( ~ 3 3  

where the terms E33 , ~ 3 4 ,  and E44 are generated respectively by the 3He-3He, 
3He-4He, and 4He-4He interactions. When the second continuum is 
occupied, Eq. (22a) generalizes to 

O ' ~ O - 4 - - - -  • / - -  "rrn i' ~ f , /  _(Z33+E34+Z44)N, z (22b) 
2Mo \2~r]  2M1 \2~r]  

Formula (22a) is similar to the zero-temperature expression of  Ref. 4 
for the surface tension (see the discussion in the appendix). Here, however, 
we work with a more detailed model and through self-consistency we have 
an insight on the modification of the 4He profile as more 3He atoms are 
added to the surface as well as on the development of  the 3He mean field 
(see Sec. 3). 

2.4.  The  N u m e r i c a l  Procedure  

The set of Eqs. (15) and (16) are solved by iteration, using the Numerov 
method, after linearization in the form 

d%~ k 
dz: - W3~k  (23a) 

d2p4 
d z  2 = W 4 p  4 (23b) 

The functions W3 and W4 are calculated with the solutions ~ k  and P4 
obtained at step n; solving Eqs. (23a, b) provides ~ k  and P4 at step n + 1. 
One starts the calculations with a small 3He coverage, for which the initial 
guess for ~ k  is the ground-state wavefunction corresponding to ky = 0, and 
for p4, the density profile of  pure 4He. The solutions obtained after conver- 
gence for a given kr are used as initial guesses for the next value of kf. We 
have used a step in ky of 0.05 &-l .  

Two types of  integrals over k have to be performed (see Eqs. (13) and 
(14)), with weight k and k 3. We have checked that a four-point Gaussian 
integration formula (see ReL 28) provides an excellent accuracy. For each 
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value of ky,, Eqs. (15) and (16) have thus to be solved for 10 different values 
of  k, including the value k = 0 and the value of the Fermi momentum k = ky~. 

We shall now derive a relation that we use to test the convergence of 
the numerical solutions of  the set of Eqs. (15) and (16). We multiply Eq. 
(15) by d¢~k/dz, Eq. (16) by d p 4 / d z  , add them together and integrate from 
-oo to z (we choose to put the bulk liquid in the direction z < 0). One then 
sums over i and k. The following result is obtained 

h 2 
- +N IG' I + u(p3, p.) Z 

2m3" i ao ~" 2m4 4 P4 

,2 . t2 , !  [)'kdk e k2+ 
--  a3P3 -- d4P4  -- d340304 = ~/' d o  --77" i,k ¢P~ ~ 4 0 4  (24) 

This relation implies that the sum of the derivative terms appearing in 
the integrand of Eq. (8) are equal to the sum of the bulk terms. We now 
integrate Eq. (24) over z and define two quantities Iv and I t  by 

Iv = k 2 l ~ k l 2  -}" U ( p 3 ,  P4) -- ~ 4 P 4  
do 

f fJ~ k dk - - 2  - -  Ei, k (25a) 
i • 7/" 

Jo I 
h 2 1 p~2 ] 

-t 2m4 4 1o4 + d3Pt32J¢- d4p~2+ d34P'3O'4.j (25b) 

The equality of the two above expressions provides a strong test of the 
numerical accuracy of  the calculation. The convergence is characterized by 
the quantity 

Io-Is (26) 
rl-i~+I s 

For each value of Ns, one needs typically a hundred iterations in order 
to obtain a value of ~7 of the order of 10 -3. The convergence is better for 
small values of Ns. We have also checked that, for all the values of Ns 
considered, the relevant quantities have converged and are stable. 

3. RESULTS 

3.1. Mean Field and Densit ies 

The average field V3(z) experienced by the surface 3He atoms is 
presented in Fig. 1, where we have also plotted the 3He and 4He density 
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Fig. 1. 4He profile, 3He density, and mean-field experienced by the 3He atoms for 
various coverages. The labels 0, 1, 2, 3 refers respectively to Ns =0,  1.95 x 10 -2, 
3.98 x t0 -2, and 6.72 x 10 .2 ~-2 .  The 4He profile is drawn for cases 0, 2, and 3. 

profiles. In the interior of  the liquid V3(z) tends to the value of the chemical 
potential of  a 3He atom in the bulk of liquid 4He, V3(-oo) = -2.82 K. In 
the surface region V3(z) presents a well that admits different types of bound 
states (see below). One way of  characterizing the width of the well is to 
consider the distance w between the two points Zl and z2 verifying 

V3(Z|) : V3(z2) = 1( V3(_(~  ) + V3min) (27) 

V3m,, being the minimum of the well. As Ns increases, w increases, starting 
from a minimum value of  6.25 & for Ns = 0. This value is significantly larger 
than the value found by Saam 9 ( - 2  ~ )  or Chang and Cohen a| ( - 4  ~ ) ,  and 
this feature explains the existence of  excited states not found is previous 
studies. The mean field V3(z) opens, as expected, on top of the liquid, and 
w reaches a value of - 1 0  A for a coverage of about one atomic layer.* 

The 3He density profile follows the evolution of  the mean field. As 
V3(z) opens, the maximum of p 3 ( z )  m o v e s  towards positive values of  z. 
Through coupling and self-consistency, the density profile of  the 4He atoms 

* Following Edwards and Saam 5 we define one atomic layer to have a number per unit area 
N~ equal to (p0)2/3 =6.4X 10-2/~. -2, where po is the number density in pure liquid 3He. 
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changes as more 3He atoms are added to the system. Its surface thickness 
is defined as the distance between the points where the density has decreased 
by 10 and 90% with respect to the builk value. At N~ = 0 it is equal to 7/~, 
then it decreases a minimum value (5.9 ,~) for N s  ~- 0.035 A-2. For larger 
N~ the surface thickness increases. This is in agreement with the finding of 
Dalfovo 26 that the width of  the 3He-4He interface (calculated with the same 
density functional as used here) is larger than the surface thickness of pure 
4He. 

3.2. Eigenstates 

The single-particle energies ei, k are plotted in Fig. 2. Actually what we 
plot are (i) the values of  the energies ~,o corresponding to k = 0 in Eq. (15) 
and (ii) the value of the Fermi energy/~3 (see Eq. (18)). We find three types 
of  states, the wavefunctions of  which are shown in Fig. 3 (we only plot the 
wave functions corresponding to k = 0). A first series of states have no node 
in the wavefunction. The energy of  the lowest of these states eo,o increases 
linearly with N~ for N~ < 0.035 ~-2 .  For N~ -~ 0.035 ~-2 ,  the Fermi energy 
reaches the value E~,o of  the lowest energy of the second type of states (one 
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......°-°" 
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o°..°° ..°° 
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°°• °.. 

- 6 . 0  I I I 
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N 
Fig. 2. Var ia t ion  wi th  N s of  the lowest  energy of  each  type of  surface s ta tes  and  of  
the Fermi  energy.  C o n t i n u o u s  l ine: eo,o ; da shed  line: El,o ; do t -dashed  line: e2,o ; do t ted  
l ine: /-~3- 
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F i g .  3 .  Wavefunct ions  of  the three Andreev states for various coverages. As in F i g .  1 the curves 
are drawn for the cases N s = 0 ,  1 . 9 5  x 1 0  - 2 ,  3 . 9 8  x 1 0  - 2 ,  a n d  6 . 7 2  x 1 0  - 2  • - 2 .  In each frame 
the dashed lines are the wave functions of  the two other states for N ,  = 0 .  

node in the wavefunction).  The value of  e,.o appears not to depend on/Vs.  
That it is so is linked to the evolution o f  the average field V3(z). As Ns 
increases, the minimum V3~, becomes  less negative, and the deepest state 
eo.o is o f  course sensitive to this evolution. However  the excited state e,.o 
does not change because the well enlarges, and this enlarging happens to 
compensate  a smaller depth. 

This fact constitutes the main result of the present work: the excited 
state el.O found by Dal fovo  and Stringari does survive when N,  increases, 
so that a second type o f  continuum states is available to the 3He atoms. 
For a 3He coverage larger than =0 .035 /~ -2 ,  i.e., half a monolayer,  the 
density o f  states almost doubles.  Consequently the variations of/x3 with N~ 
is smaller. In this range, there are two Fermi momenta,  one for each 
continuum, and one has of  course 

k 2 k 2 
fo + f, = N~ ° + Ns, (28) 

N~ =27r 27r 
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The th i rd  type  o f  states ( two nodes  in the  wavefunc t ion ,  see Fig. 3) 
starts,  for  smal l  coverage,  wi th  an energy close to that  o f  an 3He a tom 
d i s so lved  in the  bulk.  However ,  as more  3He a toms  are a d d e d  to the surface,  
e2,o decreases  and  reaches  a va lue  o f  = - 3  K when  this state wou ld  start  
be ing  occup ied ;  f rom Fig. 2, this  is expec ted  to h a p p e n  for  Ns ~> 0.08 A-2 ,  
i.e., - 1 . 3  a tomic  layer.  

3.3 .  S u r f a c e  T e n s i o n  

The values  o b t a i n e d  by  Edwards  et  al. in Ref. 5, quo ted  in the  in t roduc-  
t ion,  are  r ep resen ted  as a s h a d e d  a rea  in Fig. 4. As the  au thors  d id  not  
ind ica te  the largest  coverage ,  the  curves are d rawn  in the  range  o f  Ref. 4, 
i.e. 0-< Ns <~ 0.02 ,~-2. As expec ted ,  the change  in the surface  t ens ion  Atr 
due  to the  3He impur i t i es  is a quadra t i c  func t ion  o f  Ns and  so are the  

numer i ca l  resul ts  ( con t inuous  l ine).  The ag reemen t  be tween  our  ca lcu la t ed  
values  and  the va lues  fi t ted to expe r imen t  is sa t i s fac tory ,  espec ia l ly  if  one 

0.24 

I---. 0.20 

7 0.16 
o< / J "  
h~ 0.12 / 

b 0.08 < 

004 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

N S ( ) 

Fig. 4. Surface tension vs. 3He coverage. The solid line represents the 
calculations of this paper. The dot-dashed line represents the Fermi 
gas contribution to the surface tension (ignoring the interaction term 
in Eq. (22a or b)). The results of the model of Edwards et aL 4 lie (within 
experimental error) in the dashed area. The extremities of the dashing 
correspond to the case V~=21.7K~ -2, Mo/m3=l .35  and V~= 
1.5 K ~-2 ,  Mo/m 3 = 1.55 which are the limits of experimental precision 
of Ref. 5. They stop at N~ = 0.02 ,~-2. 
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keeps in mind that the parameter d34 characterizing the 3He-4He interaction 
in the surface region was chosen according to Eq. (7) for sake of simplicity 
only and could be readjusted (a slightly larger value removes the remaining 
discrepancy). 

In order to indicate the amplitude of  the interaction terms to the surface 
tension, we have also plotted in Fig. 4 the simple Fermi gas result for Ao'. 
We see that the interaction represents 25-30% of the total value, and we 
find, in agreement with Edwards et aL, 4 that it contributes to the decrease 
of o" (see the discussion in the appendix). 

For 3He coverages such that the second continuum is occupied, a kink 
appears in la~l 1/2; the change Atr becomes smaller than would be if the 
second type of states did not exist. This can be understood within the ideal 
2-DFG model, where the surface tension, in the case of two types of states, 
can be written as 

7rh 2 [ k}0\2 7rh 2 / k 2 \ 2  
O" ~ O'4 -- ~ 0 0  ~ - ~  ) - -~11  / ~ )  (29) 

where M1 denotes the effective mass of a 3He in the second continuum, 
M1 -~ 1.6m3 (see below). Then, with the use of Eq. (28), one has 

We conclude that the existence of a continuum of surface states with 
one node in the wavefunction should manifest itself in the dependence of 
o- as a function of  3He coverage. We shall now see, however, that a clearer 
signature is obtained by considering thermal properties which, as is well 
known, are governed by the effective mass. 

3.4. Effective Masses  

For each 3He coverage, we first check the validity of the two- 
dimensional Fermi gas model, implying that the single-particle energies are 
of the form (19a). We define a k-dependent effective mass through the 
relation 

h:  
eg, k=eio+-~----,  k 2, O < - k < k f ~ , i = 0 , 1  (31) 

" 2mi, k 

The ratio m*k/m*i.o should not depend on k and be equal to 1 if the 
surface 3He atoms behaved as a Fermi gas. This is indeed the case, to a 
very good accuracy, for both types of surface states (for the largest coverage 
considered, one has 1 -- < I,,O,k/~ I~'1,,0, 0 -  < 1.07 and 1 - < m*l,k/m*l,o <- 1.01). Hence, 
one can characterize the single-particle spectrum by two effective masses 



30 N. Pavloff and J. Treiner 

Mo and MI,  independent of  k, referring respectively to the first and second 
continuum. Mo is calculated using Eq. (19b) and M1 by a similar equation, 
namely 

2M, = . ~'~'°(z) ~ ¢~'°(z) dz (32) 

Notice that Mo and M1 depend on Ns, so that the 2-DFG model is 
valid for a Fermi gas the characteristics of which are different for each 3He 
coverage. The dependence of  the effective masses on Ns are shown in Fig. 5. 
We note that in the range of 3He coverages studied in Ref. 4, i.e., 0 -  Ns ~< 
0.02 A-2, the calculated values of M o / m  3 vary from 1.29 to 1.45. These 
values are to be compared to the "experimental" one quoted in the introduc- 
tion. The quotation marks indicate here that the effective mass is not a 
primary quantity measured but a quantity derived through a model that did 
not considered its possible Ns dependence. We find that Mo is almost a 
linear function of Ns, whereas M1 stays constant up to Ns --- 0.02 A-2 and 
then increases for larger values of the 3He coverage. On the other hand, 
the effective mass of the second excited state is found to decrease from a 
value of 2.23m3 for N~ = 0  to 2m3 for one atomic layer. This is due to the 
constant decrease of  the corresponding energy, indicating that this state 
becomes more localized in the surface region as N~ increases. 

2.2 - " - ' - ' - - ~  

2.o ~ 

1.6 

1.4 J i=O 

0.00 0.02 0.04 0.06 

Fig. 5. Effective masses of the Andreev states (see Eqs. (19b) and 
(32)). 

1.8 
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3.5. Specific Heat 

At low temperature, the thermodynamic properties of an ideal two- 
dimensional Fermi gas are characterized by the level density parameter a, 
defined by 

,7/-2 
a =-~-g  (33) 

where g is the single particle level density at the Fermi energy. Using Eq. 
(1), one finds, taking into account the spin degeneracy 

=k__f[de(k)] -1 _ M o  (34) 
g 7r L dk J k=kf 71"h2 

In the case where the single-particle spectrum is not purely that of a 
Fermi gas, i.e., if one considers a possible slight k-dependence of the 
effective mass (see Sec. 3.4 above) then Eq. (34) is replaced by 

g = ~'h - - - T  2m~,k d-----k- k=k I 

where toO,k* is defined by Eq. (31). The correction brought by using Eq. (35) 
instead of  Eq. (34) was found to be small: 3% for Ns - 1 atomic layer. 

Equation (34) shows that for an ideal 2-DFG, g does not depend 
explicitly on the surface density. We have seen however in the preceeding 
subsection that the effective masses did depend on Ns, so that the specific 
heat at constant volume per unit area 

Cv = 2aT (36) 

shows a linear increase with/Vs. This can be seen in Fig. 6 for Ns ~< 0.035 A-2. 
For N~ ~> 0.035/~-2, Eq. (34) must be generalized to the case of two continua. 
The single-particle level density is just the sum of the two single-particle 
level densities, so that one now has 

= Moq. M1 (37) 
g = g0q" gl ~ h 2  ~ h  2 

The resulting curve is shown in Fig. 6 (in order to compare with 
experimental data, we plot C v / T  as a function of/~3). Due to the almost 
doubling of  the density of states when the second continuum starts being 
filled, there is a discontinuity of  the surface specific heat of the system. The 
values of C v / T  jumps suddenly from 0.10K -~ to 0.22 K -~ for N ~ -  
0.035/~-2. Although we have not calculated systems with N~ > 0.067/~-2, 
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Fig. 6. Surface specific heat divided by temperature (extrapolated to 
zero temperature) as a function of the 3He chemical potential. The 
position of the discontinuities in Cv/T are indicated by the vertical 
dotted lines. The experimental points and the error bars are taken 
from Ref. 31. 

we indicate in Fig. 6 the effect expected from the occupation of the second 
type of excited states. The value of the effective mass Mff  m3 was taken to 
be 1.98, obtained for the lowest of these states for Ns = 0.067 ~-2.  

Let us conclude this section by a brief comparison of our results with 
the work of Guyer, McCall, and Sprague. 29 This study was motivated by 
the observation of steps in the magnetization of thin mixture films. 3° 
However, neither the substrate potential nor the 3He-4He interaction are 
included in the model, which is meant essentially to describe the develop- 
ment of a self-bound 3He film. This is justified when the 3He film is thick 
enough so that the presence of liquid 4He becomes negligible. It is clearly 
not valid for small 3He coverage, where the 3He impurity acts like a probe 
of the 4He profile. A connection between the model of Guyer et al., and 
the present work can be made by considering the evolution of the energies 
of the impurity states. From our Fig. 2, it appears that only the second 
excited state has an energy decreasing with increasing 3He coverage, as 
predicted in Ref. 30. Thus both models connect for coverage such that the 
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2D continuum built on this second excited state is being filled, i.e., for 
Ns > 1.3 atomic layer. It follows that the first step in C v / T  (or in the 
magnetization) is not due to the mechanism described in Ref. 30 but reflects 
directly properties of  the 4He ground state, in agreement with a Leckner 
understanding of  the problem. 

Another question related to the model of Ref. 29 is the maximum 
coverage N~ "ax that the surface can support, at T =  0, before 3He atoms 
dissolve into the bulk. With one surface surface state with energy - 5  K and 
effective mass 1.45 rn3, N ~  ax is of  the order of one atomic layer. 5 In Ref. 29, 
by construction, there is no limitation to this quantity. In the present work, 
from Fig. 2, one extrapolates that the Fermi energy will reach the value 
-2.80 K before a new state appears in the potential well. Hence N~ 'ax is of 
the order of  1.5-2 atomic layers, larger than the value quoted in Ref. 5 but 
still finite. It is only after saturation of the bulk states (with 6% of 3He 
atoms) that the film on top of the liquid would develop again, following 
the scheme of Guyer et al. 

4. COMPARISON WITH EXPERIMENT FOR 3HE COVERAGE 
LARGER THAN 0.02 ~-z 

As mentioned in the introduction, the most accurate set of data 4 
concerns simultaneous measurements of  surface tension and surface second 
sound, for coverage smaller than 0.02 A.-2. We have already seen that our 
model gives a fairly good agreement with these data, which should be 
considered a prerequisite for any prediction concerning larger coverage. 
Less data are available in the domain of coverage where steps are predicted 
to occur in the surface specific heat, but we shall now see that the physical 
picture developed in the present work allows one to reinterpret existing 
data in a sense which confirms its validity. 

The experimental points included in Fig. 6 are unpublished measure- 
ments by Crum, Edwards, and Sarwinski, taken from the Ph.D. thesis of 
Crum. 3~ The points are obtained from the surface entropy S divided by the 
temperature T, extrapolated to zero temperature; this quantity is identical 
to Cv/T, and an overall agreement in the general trend is obtained between 
theory and experiment (we have taken the energy of a 3He atom in the bulk 
as a common reference for the theoretical and experimental values). The 
comment accompanying the figure in Ref. 31 was: "The fact that S / T  is 
not constant for large /~3 indicates that the two-dimensional gas model is 
not valid for large surface densities." Our results suggest an alternative 
interpretation, which explains the rise of C v / T  for/J,3 larger than - 4  K: 
Indeed, the data are consistent with the existence of a simple Fermi gas up 
to/-~3--- - 4  K (the small slope of  the curve is due to the dependence of the 
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effective mass on the 3He coverage N~); for larger values of Ns, the data 
are consistent with the superposition of two, then three Fermi gases built 
on the different types of surface states. Notice that the experimental points 
are not numerous enough, in the range of coverage where we predict the 
occurence of steps in C v / T ,  either to confirm or disprove their existence. 
More experiments are here needed for a definite answer. 

Another body of  information on the structure of 3He impurity states 
is provided by the specific-heat measurements of Gasparini and 
coworkers 32-34 on mixture films. The data are analyzed in Ref. 33 with a 
model allowing for several surface states, and values are obtained for the 
energies and effective masses of the first two states, as functions of 3He 
coverage and film thickness; the authors indicate that the energy difference 
Ae is better determined than each energy separately. As mentioned in the 
introduction, thin films are strongly perturbed by the substrate potential, 
and bulk states are subject to a finite size quantization. However the thickest 
films considered in Ref. 33 are of more than 40 A, so that the substrate 
potential in the surface region is completely negligible; also, in these thick 
films, surface states are not expected to be sensitive to the finiteness of the 
film; hence they are certainly representative of the bulk surface, and this 
is confirmed by the results of  Ref. 18. Now from Fig. 14 of Ref. 33, it appears 
that for thick films and for a coverage of 0.28-0.29 atomic layer, i.e., 0.18 A-2, 
the energy difference Ae is in the range 1.7-1.8 K. It is suggested in Ref. 33 
that Ae should tend to an asymptotic value of 2.2 K, equal to the difference 
between the energy of  a 3He atom dissolved in the bulk and the impurity 
state energy of - 5  K, as determined by Edwards et al. However, we do not 
see any physical effect able to increase Ae by 0.4-0.5 K, when going from 
a film of 45 A_ (for which the Nucleopore substrate potential is of the order 
of  a millikelvin at the surface) to the bulk surface. To the contrary, the data 
are compatible with, and indeed point to the persistence, on the bulk surface, 
of  the mentioned value of  1.7-1.8 K. The present calculations, for the same 
3He coverage of 0.28-0.29 atomic layer, predicts a value Ae = 1.45 K. The 
discrepancy may not be really significant, in view of the fact that the more 
elaborate theory of Ref. 19 gives, for Ns = 0, a value of Ae larger than the 
present one by 0.25 K. If the present interpretation is correct, then the heat 
capacity measurements of  Refs. 32-34 provide the first evidence, not fully 
recognized at the time, that the 4He bulk surface accommodates at least 
two 3He impurity states. 

5. CONCLUSIONS 

In the present paper, we have studied, using a self-consistent mean-field 
approach, the structure of the surface states of 3He atoms on liquid 4He at 
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zero temperature. We have found that three types of surface states are 
accessible to the 3He impurities; the corresponding wave functions differ 
in the direction perpendicular to the surface, having no node, one node 
and two nodes. In the limit Ns ~ 0, the energies and effective masses of  the 
two lowest states of  each kind are respectively (-5.44 K, 1.29m3), (-3.61 K, 
1.60m3). The third state has an energy close to that of a 3He atom dissolved 
in the bulk and an effective mass of 2.23m3. When Ns increases, the lowest 
energy is pushed up as the average field becomes less attractive, but the 
enlarging of the well is such that the energy of the first excited state remains 
roughly constant while that of  the second excited state decreases slightly. 

For 3He coverage up to Ns --- 0.035 A-2 (i.e., half a monolayer of  3He 
atoms) the first continuum only is occupied. We find that, to a good accuracy, 
the single-particle spectrum follows the law of a two-dimensional Fermi 
gas model, the ground-state energy depending linearly on N~. We also find 
that the effective mass for each type of  state increases with Ns ; in the range 
O-- < N~ ~< 0.02 ~ - 2  the effective mass associated with the first continuum 
increases from M o / m  3 = 1.29 to 1.45, which covers the range of values 
extracted from experiment using a model which does not allow for such a 
dependence of Mo on N~. 

For values of Ns ~> 0.035/~-2, the second type of  continuum states 
(which have one node in the direction perpendicular to the surface) starts 
being occupied. Two effects result from the second continuum (i) the surface 
tension shows a kink as a function of 3He coverage Ns and, more clearly, 
(ii) the surface specific heat shows a discontinuity due to the fact that the 
single particle density of  states increases by a factor of almost two. A second 
step is predicted to occur when the continuum built on the second excited 
state starts being occupied, i.e., for -1 .3  atomic layers. The existence of  
several surface states implies that the 4He surface can support m o r e  3 H e  

atoms than usually assumed before they start penetrating into the bulk 
liquid by occupying bulk states. By extrapolating our results, we find that 
N ~  ax is of  the order of  1.5 to two atomic layers, i.e. at least half a monolayer 
more than quoted in Ref. 5. 

The physical picture emerging from the present work provides an 
explanation for the rise in C v / T  observed by Edwards and coworkers 3~ 
from surface-tension measurements. It suggests also a new interpretation 
to the heat capacity measurements in thick mixture films by Gasparini and 
c o w o r k e r s .  32-34 The fact that these data were not considered at the time as 
an indication that the bulk surface could accommodate at least two 3He 
impurity states may simply be due to the lack of  a theoretical model 
predicting such a structure. This structure of  states should also produce 
steps in the magnetization of  the system, as observed in thin films by Hallock 
and c o w o r k e r s .  3° 
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A direct experimental confirmation of the present analysis would also 
provide indirect indication on the width of the surface profile of pure liquid 
4He; as indicated in the introduction, the presence of several surface states 
is linked to a value of the surface width of the order of 6 to 7 A. 

A P P E N D I X  

We derive here Eq. (22). Let us write explicitly the density functional 
of Eqs. (6a and b). The function U(p3, P4) appearing in Eq. (6b) reads as 

U(p3,p4) 1~_ 2--1 2: 1~ 2+y 3-  = ~03P3"t-~C3P3l, P3"~t" pn)"/3"}"~C3 P3 -t- b34P3P4-l- c34f13P4( f13-.l.- p4) 734 

1 2 1 2 d- ~b 4/94 -t- ~c 4/94(/93 q- t94) "Y4 (A.1) 

The mean-field equations are given in 10a and b. We can multiply Eq. 
(10a) by ~b~ k, sum over i and integrate over k, multiply Eq. (10b) by p4, 
add them together and integrate over all space to obtain 

t;12 ~12 
' [ f d3r~m3,1.3+ F O + 0 ] "3 LP3 ~ p  3 P4 ~ 4 J  (2--~3~) 

+ b3p2+22 ya C3'02(p3q-f14)Y3+2+ 2 Y3 ~3p~+V3+2d3[Vp312 

-I- 2634p3P4 -t- 2d34Vp3VP4 -I- (2 + ')/34) c34P3P4( P3 -[- p4) y34 

- -  b4p]+ c4p4(p3+p~,t)~'4+Rd41VP412 + 
8m4 P4 i 

I 

= ~4 P4 d 3 r +  - -  •i,k 
• 77" 

(A.2) 

By comparing with Eq. (A.1) and Eq. (17), one gets 

+ b34P3P4 + c34 ( 1 + 734)P3P4( P3 + P4) v34 + d34p~p~4 

1_ 2 C4-  / 
+ "~ b4p 4 -~ ~ ( l JF "y4)p42( 03 "}- P4) Y4 + d4p~ 2 (A.3) 
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The first two terms in the right-hand side correspond to the ideal 2-DFG 
model, as can be easily checked using Eq. (19a). For low coverage, one 
considers only the lowest states, with energy Co,k; thus 

grokdk tz3Ns = fk, okdk eo,o+2__~o,k 2 [ hEk~\ k2_~C 
"----~--eO,k-- -- ~eo,o+ 2-~o, ) 27 r ao do "/r 

h 2 
= - ¢r 2 m----~ N~ (A.4) 

Next, by considering the case Ns = 0, one recognizes in Eq. (A.3) the 
surface tension 0-4 of pure liquid 4He. Since we know from Eq. (21) that 
0--¢4 is a quadratic function of Ns for low Ns, one can write 

h 2 2 O" = 0" 4 -- 71" ~ N~ - (~33 + ~34 "~- ~44) N 2 (A.5) 
zmo 

with obvious notations. In the work of Edwards et al., 4"5 the different 
components of the interaction contribution are represented by a single 
effective surface 3He-aHe interaction coefficient written as V;, which 
appears also in Eq. (1). It is formally equivalent to the term in b3 of the 
present functional. 

The different coefficients ~33, ~34, and E44 are numerically calculated 
in the following way. Having solved the mean-field equations for a given 
coverage, we perform a scaling on the equilibrium densities /93 and/94 in 
the form 

/93(Z) -'> O/3/93(Z ) 

p4(Z) --~/90(Z) + 0'4(/94(Z) --/9°(Z)) 

where p°(z) represents the surface profile of pure 4He. We then introduce 
these scaled densities into Eq. (17). This produces a function 0"(0"3, a4) 
which is a quadratic form in 0"3 and 0"4 

( h 2 ~ . r 2 2  ~ -~ .r2 2 2  
0"(a3, 0"4)=0"4 - E33"[-gT-"~-~. ~ lVsO13-2.,a40"30"41Vs-E44014N s (A.6) 

2too / 

when the first continuum only is occupied, and 

[ ~2 (k~o~2 ~i~2 / k 2 \ 2  "] 
~ - - / ' v q  / 0"~ 0"(0"3, 0"4) = 0"4-- ~'33 "q- "/l'2~mo ~ \ G /  "~ 2m* \2~r] ] 

-- ~340"3 0"4N2s - ~440"2N 2 (m,7) 

when the second continuum also is occupied. The E's are determined from 
Eqs. (A.6) and (A.7) through a quadratic fit of the function o-(0"3, 0"4). We 
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find that the sum ~-~-~33-1-~34-~-~?~44 is always positive and contributes to 
decrease or. This is in agreement with the result of  Ref. (4). One cannot 
hope to extract these three coefficients from experiment; rather we want to 
point out here that, besides the contribution due to the 3He-3He effective 
interaction, other effects of  the same order of magnitude contribute to E. 
The sign of  Y~ results of  a balance between the negative rearrangement terms 
(~'~33 and ~44) and the positive interaction term (~34)" 

The method exposed above is strictly valid only for weak coverages. 
However, formulas (A.6) and (A.7) give a reasonable fit to the total surface 
tension up to Ns -~ 0.06 A-2.  In our approach the E's depend on Ns (whereas 
in Ref. (4) V~ does not). The total sum ~ (which is to be compared to V~/4) 
varies from 10.2 KA 2 to about 1 K ~  2 for Ns = 0.067 A,-2. 
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