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SHe atoms dissolved in superfluid 4He may form dimers (3He)2 in two- 
dimensional (2D) geometries. We study dimer formation in films of dilute 
SHe-4He mixture. After designing a schematic 3He-4He interaction potential 
we calculate the dimer binding energy for various substrates. It is shown that 
SHe impurity states localized near the substrate give rise to the largest 
magnitudes of the binding energies. 

1. INTRODUCTION 

3He atoms dissolved in bulk 4He have always been considered an 
ideal system for testing the Landau approach describing the macroscopic 
properties of quantum fluids in terms of elementary excitations (quasi- 
particles). 1 At low enough temperatures one can neglect the contribution of 
the excitations pertaining to superfluid 4He (phonons and rotons). The 
system is then described in terms of an interacting gas of 3He quasiparticles 
imbedded in the uniform background of superfluid 4He. A bare quasi- 
particle has a particle-like energy spectrum 2 with an effective mass larger 
than the bare mass. The quasiparticle interaction at long distances is the 
bare 3He-3He interatomic interaction renormalized by a phonon-induced 
term. 3 At small distances a strong repulsive core is predominant. However, 
the overall effect turns out to be attractive, as was demonstrated on the 
basis of theoretical calculations 4'5 and experimental data 6'7 on the s-wave 
scattering length a (a < 0). 
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Despite the fact that the effective attraction between two 3He 
quasiparticles is too weak to lead to a bound state in the bulk, such a 
bound state--a (3He)2 dimer--should certainly exist in helium systems 
with reduced dimensionality. 8'9 It is well known that in one and two 
dimensions any attractive potential satisfying the perturbation theory 
criterion gives rise to a bound state (see e.g., Ref. [ t0]) .  The result does 
not apply, however, in the case of a nonperturbative potential like the 
3He-3He interaction, with a strong repulsion at short distances. Never- 
theless, one can rigorously prove that spinless (3He)2 dimer must exist in 
quasi-2D and quasi-lD geometries (like films and narrow capillaries of 
4He) provided a is negative and the characteristic scale of confinement of 
the 3He atoms is much larger than the interaction range--which is of the 
order of hal (see [9] and appendix A). When the system is cooled down 
to temperatures lower than the corresponding binding energy, the single 
impurity quasiparticles form (3He)2 Bose-dimers, and the Fermi component 
of 3He is replaced by a new Bose quantum fluid of (3He)2 of reduced 
dimensionality. This phenomenon should strongly affect the macroscopic 
properties of dilute mixtures resulting in an extra superfluid transition, new 
features of the phase diagram, anomalous sound absorption, etc, 8 This is 
the reason why calculating the binding energy is the main issue in the 
theory of dimerized 3He-erie solutions. To be specific we will concentrate 
on dilute 3He-4He mixtures in various 2D geometries (i.e., in films on 
various substrates). 

In 4He films, 3He impurities are localized in the direction normal to 
the substrate over a characteristic width w which can be much smaller than 
the film thickness. When extrapolated to small w (of the order of a few 
atomic layers) the theory of Ref. [8, 9] provides an estimate for the binding 
energy which seems to be quite attainable for experimental studies. 
However, it is difficult to assess the accuracy of such an estimate because 
the theory in question certainly does not hold in such restricted geometry, 
i.e., in a real 2D situation (when w ~ a). In a pure 2D case one cannot a 
priori be sure if a bound state of two 3He atoms exists at all. Therefore, 
calculating the binding energy for various film thickness and different sub- 
strates may provide direct clue on which experimental conditions are best 
suited for the detection of (3He)2 dimers. Such calculations are the primary 
goal of this paper. Here we focus on two cases where 3He impurities adopt 
a 2D configuration: 

(i) The Andreev states of 3He at the free surface of 4He (see 
[11, 12, 13] and references therein). 

(ii) The 3He states localized at the interface between a 4He film and 
the substrate, as predicted in [14, 15]. 
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Case (ii) seems particularly favorable for the creation of dimers 
because 3He quasiparticles near the substrate have a large effective mass 
(due to the higher 4He density) and a narrow wave-function (localized 
within the first 4He liquid layer). The localization length (the width of the 
wave function in the direction across the film) is of the order of a few 
angstr6ms. In Sec. 2 some possible realizations of a quasi-2D ensemble of 
3He impurities in superfluid 4He films on various substrates are reviewed. 
In Sec. 3 we derive a schematic 3He-3He interaction and then evaluate in 
Sec. 4 the corresponding (3He)2 binding energy. We give our concluding 
remarks in Sec. 5. 

2. 3HE IMPURITIES IN 4HE FILMS 

We assume in the following that inhomogeneities of the substrate in 
the x - y plane parallel to the surface play a negligible role and we impose 
translational invariance on the helium densities (3He and 4He). This does 
not imply that possible corrugation of the surface is neglected. Indeed, in 
that case, 4He atoms will certainly fill the dips of the surface until it is more 
or less flat; the effective substrate to be considered is then a mixture of the 
original substrate and these helium atoms, the effect of which is to weaken 
the potential. 

The first question to address is to determine the state of liquid helium 
on a given substrate. The different situations to expect, as a function of 
increasing attractive strength of the substrate potential, are the following: 
non wetting, wetting with prewetting, 16 and solidification of one or two 
layers. We limit our study to cases where no solid layer forms near the sub- 
strate: there is a clear qualitative change of 3He impurity states when 4He 
solidifies; the 3He atoms occupy substitutional states in solid 4He and 
move through the lattice via tunneling processes (see e.g., Ref. [ 17]). Our 
continuous description of the solid misses this phenomenon, since the 
coupling of 3He atoms with the 4He matrix is represented here through a 
density dependent 3He effective mass fitted on properties of liquid mixtures 
(see details in Ref. [14]). 

Hence, in order to specify the validity of our approach we need a 
criterion assigning a solid or liquid character to each of the first 4He layers. 
This has been done in Ref. [ 18] where different substrates were charac- 
terized by their interaction with helium through two coefficients C 3 and D 

4( )3 C3 
V~ub(Z) = 2 - - ~  ? (1) 
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Fig. 1. Phase diagram of 4He on various snbstrates at zero temperature (from [18]). The 
dotted line is the wetting line. 16 

Here D is the depth of the attractive part of Vs,,b(Z) and C3 charac- 
terizes the van der Waals tail. According to Ref. [ 18 ] one can draw in the 
C 3 -  D plane the lines corresponding to solidification of the first and 
second layer (see Fig. 1). For  completeness, we have also reproduced, from 
Ref. [ 16], the line separating the non-wetting region from the wetting one. 
Notice that the criterion used in [ 18 ] is only approximate and also that 
there are large uncertainties in the parameters of the potentials (up to 

30 % on D). 19 As an extreme case, for hydrogen the value C3 = 1000 KA 3 
extracted from different experiments (see [20] and references therein) is 
significantly larger than the theoretical value of 360 KA 3 from Ref. [ t9].  
So, the predictions are uncertain for cases close to a line: it may well be 
that the first layer does solidify on Mg, and that the second layer solidifies 
on MgO, Cu, and Ag. 

We now come to the 3He impurity states. Calculations were performed, 
as in Ref. [14],  in the limit of one 3He atom. When considering finite 
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3He coverage, each state generates a 2D Fermi disc, characterized by a 2D 
Fermi momentum. Also, through self-consistency, the 4He profile, the SHe 
average field--and consequently the single particle states--depend on the 
SHe coverage (see Ref. [ 13] for a study of finite SHe coverage on the 4He 
bulk surface). We shall neglect these effects in the following discussion, 
which is valid for small 3He coverage only. 

Variation of the density functional with respect to the impurity wave 
function ~b leads to the following equation 

d (  h e dO) 
dz 2m~-(z d7 -~ Next(Z) r ~-- 8 ~b(z) (2) 

Uoxt(Z ) is the 3He mean field, see Ref. [ 14]. It comprises a term due 
to 3He-4He interaction plus the substrate potential Vsub. The density- 
dependent effective mass is parametrized as: 

h a h2 ( fi4(r)~ 2 
1 (3) 

2m*(r) 2m 3 fl4c / 

where P4c = 0.062 ~ 3 and fi4(r) is the local 4He density averaged over a 
sphere of radius 2.38 A (see Ref. [ 14]). This parametrization is fitted to the 
pressure dependence of the SHe effective mass in bulk liquid 4He.21 

Then the effective mass M* of the 3He impurity in a given state is 
defined by: 

h 2 ~. +~ h 2 
2M* = J-co dz ~ q~2(z) (4) 

One can check that an energy close to that obtained through Eq. (2) 
can be recovered from the effective hamiltonian containing the constant 
effective mass M* 

H= ~ ~P--~, + U~t(z) (5) 
2M 

where Nex t is the effective 3He potential appearing already in Eq. (2). 
Fig. 2 shows the results for the 4He density profile and the 3He wave 

function near a Cs and a Li surface. Numerical results for other substrates 
are displayed in Table 1. The existence of 2D 3He states near a weakly 
binding surface, although somewhat counter-intuitive, appears as a general 
feature of these interfaces. 
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Fig. 21 4He liquid density (dotted line), 3He substrate state wave-function (with 
arbitrary units) and 3He average field on a Cs substrate (less attractive) and Li sub- 
strate (more attractive). 

The physics behind this feature is best understood by considering 
a Lekner approach to the problem. In this variational method, the ansatz 
for the wave function ~ of N -  1 4He atoms and one 3He atom is taken 
as 

RJ(1, 2,..,, N) = r  ~t~o(1, 2,..., N) (6) 

where ~b denotes the wave function of the impurity and R~0 the ground state 
wave function of N 4He atoms. Variation of the average energy of the 
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TABLE I 

Energy (e), effective mass (M*) and half-width (w) of the 3He impurity state on 
various substrates and for the Andreev state. In the case of H2, the value 
C3= 1000 K~k 3 extracted from different experiments 2~ is different from the 

theoretical value of 360 KA 3.19 

Substrate C3 [K ]k3] D [K] e [K] M * / m  3 w [A] 

Cs 673 4.4 -4.74 1.51 2.0 
Rb 754 5.0 - 4.23 1.78 1.9 
K 812 6.3 -4.15 1.84 1.8 
Na 1070 10.4 -4.04 2.02 1.4 
Li 1360 17.1 -4.17 2.28 1.2 

Mg 1780 32.0 -5.00 2.90 0.9 
H2 360 28.0 -5.51 2.41 0.9 

1000 28.0 -5.00 2.61 0.9 
4He free surface -5.20 1.35 3.6 

system with respect to ~ results in a one-body Schr6dinger equation 
(without effective mass effects) 

h 2 
~"(z)  + L - -  - -  Uext(Z) ~b(z) = e ~b(z) (7) 

2m3 

where Ue~t is an external field due to both  the substrate and the 4He 
environment,  

(m4) 
L + 1 r4(z ) § § (8) Next(Z) -- 2m3 ~b4(z) m3 -- gsub(Z) 

Here ~b4(z ) - - x / / ~ z ) ,  /~/4 is the 4He chemical potential,  r4(z) the kinetic 
energy density in the 4He g round  state and Vsub(Z ) is the substrate poten- 
tial. 

In the case of  a free surface originally considered by Lekner, g s u  b ~---0; 

then Eq. (8) provides a mechanism for the formation of  the pocket  of  
potential at the surface: the kinetic energy density r4 goes to zero faster 
than the term in ~b~. For  a numerical study, one assumes that  re(Z) can be 
parametr ized in term of the local density p4(z). The simple following form 
was proposed  in Refs. [22, 24] 

(p4(r)~ n h 2 A(b4(r ) 
r4(r) = z~ \ ~ - - o  / 2m 4 ~b4(r) (9) 

where the value ro = 13.3 K is chosen so that  the binding energy of  a 3He 
a tom in the bulk 4He is - 2 . 8  K; Po is the saturation density of  liquid 4He 
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and the value n = 1.76 has been related to the excess volume parameter and 
the compressibility in dilute 3He-4He mixtures. 22 

The effective potential U~r~t resulting from the Lekner theory for a film 
of 0.6 ~ - 2  on a Mg substrate in shown in Fig. 3. The average field U~xt 
obtained using the density functional theory is shown for comparison; One 
sees that the Lekner field is slightly more attractive at the surface; the 
corresponding energy of the Andreev state is found to be -5 .24 K (using 
the bare 3He mass) whereas the density functional result is -5.27 K, with 
M* = 1.34 m3 (the experimental result being e = ( -5 .02 +_ 0.03) K and 
M*/rn3 = 1.45 _+ 0.1, see Ref. [23 ]). Close to the substrate the average fields 
given by the two theories show similar qualitative behaviour, with attrac- 
tive wells in correspondence with the oscillations of the 4He density. The 
Lekner field is more attractive than the density functional one, and leads 
to e = -14,1 K (using the bare mass), while the density functional theory 
gives e=  - 5  K, with M* =2.9m 3. We believe that the density functional 
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Fig. 3. 4He film (0.6 atoms per A a, i.e., 7.7 3 field on a atomic layers) and He mean magnesium 
substrate. The solid line is the density functional mean field U~X t and the dashed line is the 
result of Lekner's approach r g e x  t - 
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Fig. 4. Infinite 4He film and 3He mean field on a cesium substrate. The solid line is the Density 
z Functional mean field Uex t and the dashed line is the result of  Lekner's approach Uex t. 

results are more reliable, since the model is fitted to a larger number of 
bulk mixture properties. The case of a semi-infinite liquid in contact with 
a Cs substrate is shown in Fig. 4. The Lekner  value is e =  -6 .3  K, com- 
pared to the density functional value e = -4 .74  K, with M* = 1.51m 3. 

Note that the Lekner result could be improved by a modification of 
the parametrisation of Eq. (9). Here we only want to point out that sub- 
strate states are not specific to the density functional method, but emerge 
from the general features of the substrate-helium interface. 

To summarize, we stress here is that the mechanism by which an 
Andreev state is generated at the free surface of liquid helium is also 
operating at the liquid substrate interface. On a free surface, a 3He impurity 
is bound by 5 K (Andreev state), i.e., by 2.2 K more than in the bulk. Now 
a weak binding substrate perturbs the energetics of the free surface in two 
competitive ways, namely: i) the wall produces a readjustment of the 4He 
density profile, which reduces the width of the 3He wave function, and this 
tends to increase the energy of the state (to make it less bound); ii) 
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however the attractive substrate potential acts on the 3He atom also and 
tends to decrease the energy of the 3He state. Clearly, if the perturbation 
is small enough, the gap of 2.2 K between the unperturbed surface energy 
and the bulk energy will not vanish, therefore a bound state has to remain 
at the liquid-wall interface. 

That the argument remains valid also in the case of Mg, wich 
produces quite a marked layering of the fluid, may seem surprising. 
Whether we reach in that case the limit of the model remains to be seen 
by comparing with more microscopic calculations or with experiment. 

As discussed in [14] the existence of a substrate state allows one 
understand some unexplained temperature dependence of third sound 
velocities reported in Ref. [25]. Several experimental tests of its existence 
were proposed in Ref. [14,15 ]. Recently, experimental evidence was 
reported that 3He impurities have a bound state at the 4He liquid-solid 
interface, 26 with a binding energy in fair agreement with the prediction of 
Ref. [ 15]. In the following we focus on one of the most exciting conse- 
quences: the possible formation of (3He)2 dimers with a sizeable binding 
energy. 

3. A SCHEMATIC 3HE-3HE INTERACTION 

The next step in evaluating the dimer binding energy is to choose a 
sensible effective interaction between the 3He quasiparticles. The require- 
ments are three-fold: (1) the long range attraction is the bare term reduced 
by a factor ~2 where ~ is the excess volume parameter in 4He (see [ 3, 27 ] 
and below); (2) as mentioned in the introduction, the short distance term is 
repulsive and equal to the bare potential; (3) the effective potential should 
reproduce the s-wave scattering length a of 3He in 4He (a ~_ -0.97 ~., see 
Ref. [6]). 

Let us start with the first requirement; it will lead us to postulate a 
generic form for the effective potential. Our derivation of the energy of two 
3He atoms imbedded in 4He is patterned on the approach of Ref. [27]. We 
consider two 3He atoms located at points rl and r2. Atom i ( i=  I, 2) 
occupies a volume f~3 centered at ri (we denote it as ~"~3[ri]) of which the 
4He atoms are expelled (see Fig. 5). So, if the total volume of the sample 
is s the 4He's will occupy a volume ~'-~'=~')--~')3[rt]--~3[r2]~ If P4 
is the mean 4He density, then one can consider that each 4He atom 
occupies a volume f~4--1/,04 and the excess volume parameter is by 
definition 

~'~3 - -  ~ '~4 (lO) 
f~4 
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[ rz ] 
] 

Fig. 5. Schematic representation of the behaviour of two 3He atoms situated at points r~ and 
r2 in bulk liquid 4He. Atom i ( i= 1, 2) occupies a volume f]3[ri] of which the 4He's are 
expelled (see the text). The shaded zone represents the volume occupied by liquid 4He. 

The total potential energy of the system is 

E = E 3 3  + E 3 4  + E ~  ( l l a )  

with obvious notations (for instance E34 is due to the 3He-4He interaction). 
E can be separated into a constant (i.e., position independent) term C st 
plus a term which is an effective 3He-3He potential: 

E =  CSt+ v~d l r l - r21)  ( l lb )  

The separation (1 lb) is made unambiguous by imposing that Vef f goes 
to zero at large distance (when the two 3He impurities are far apart). 

Let us now study the contributions of E33, E34 and E44 to the effective 
potential Veff. 

If two helium atoms interact via the bare Lennard-Jones potential 
~/'LJ, E33 is simply 

E33 ----= Vrj(lrl - r2 l) (12) 
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where the explicit form of Vj~j is 

6 ] 
(t3) 

with Vo = 10.22 K and a = 2.556/k. 
The cross term E34 is 

d3r d3r (14) 
E34: fQ' VLj(II'I--rl)'~4-JF fg2' VLj(IF2--rl) ~'~ 

In the r.h.s, of (14) the two integrals are equal. Let us focus on the first 
one for instance. The integration domain can be separated into two con- 
tributions: t2 '=  ( f 2 - Q 3 [ r l ] ) - Q 3 [ r 2 ] .  The first subdomain describes the 
energy due to the introduction of atom 1 alone in the 4He matrix. It 
corresponds to the "dressing" of the bare 3He particle and plays no role in 
the quasiparticle interaction (i.e., it does not depend on I r~-  r21 and can 
be included in the constant term of Eq. ( l lb)) .  The second subdomain 
describes the interaction of particle 1 with fictitious 4He atoms occupying 
~23[r2] and brings a contribution to Vefr, since it depends of the respective 
position of the 3He impurities. Hence E34 contributes to V~fr( Ir 1 - r2 [ ) with 
the following term (the factor 2 comes from the sum of the two equal 
integrals appearing in (14)): 

E34-,,,*-2 f~ g L / l r , - r l )  d3r - 2  623 
3[r2] ~'~4 ~ ~44 gLJ(Irl--r21) (15) 

In the last term of (15) we have replaced the integral by an approx- 
imate form valid only if J r1-  r2l is large compared with the characteristic 
radius of f~3. If not, the dressing of the quasiparticles might affect one 
another (see below). 

The term E44 is 

1 ffn d3r d3r' 
E44=~ ,• gLs(Ir--r ' l )  f~--]- f~---]- (16) 

As above, the integration domain can be separated into several sub- 
domains. The position dependent part of E44 gives a contribution to V~ff 
which represents the interaction of fictitious 4He atoms occupying the 
volumes ~r~3[rl] and ~"~3[r2] 

d3ra3 , 
E44 ~'"r VLj(lr--r'[) -- VLe(]rl--rz[ ) (17) 
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As in (15) the last term of Eq. (17) is a long distance approximation. 
Gathering the contributions (12, 15, 17) we see as stated in the begin- 

ning of this section that the long range quasi-particle interaction is equal to 
the bare interaction reduced by a factor 0~ 2. Essentially the same result was 
obtained in [ 3 ] using thermodynamical arguments in momentum space. In 
the terminology of Ref. [ 3 ] the contribution of E33 + E34 would correspond 
to the direct part of the effective interaction and E44 would give the 
phonon-induced term. Of course, derivations based on excluded volume 
arguments such as in [3] or as presented here (from [27]) are only valid 
for long wavelengths, i.e., for large distances between the 3He atoms. 
Working in real space has the advantage of providing a simple way to 
build an effective interaction sensible also at short distance: if the two 
atoms get closer one can mimic the interaction of the dressed particles by 
introducing a correlation term g(r) describing phenomenologically effects 
such as the disturbance of the 4He cloud around a 3He atom by the 
other particle. We choose for the correlation function the following form 
( r= l r l - r 21 ) :  

g(r) = exp { - ( ~ )  5 } (18) 

Then the contribution of E34 to V~ff is approximatively given by its 
long range approximation (the r.h.s, of (15)) multiplied by a factor g(r). 
Similarly the contribution of E44 is multiplied by g2(r), leading to a total 
effective interaction 

V~r)--- [1 - ( 1  + c~) g(r)] 2 VLr(r) (19) 

The short range and long range behavior of the effective interaction 
(19) follow the requirements (1) and (2) stated in the beginning of this 
section. Requirement (3) will be fulfilled by a correct choice of the free 
parameter r c in(18). The value rc=3.684~, gives the correct s-wave 
scattering length a = -0.97 A (see Ref. [6] ). The potential V~ff is shown on 
Fig. 6 where it is compared to the bare Lennard-Jones interaction. We have 
checked that working with a more realistic bare interaction such as the 
Aziz potential [ 28 ] does not affect the qualitative picture presented below. 
Also the potential in films should be different from the bulk interaction: at 
the free surface for instance, ripplon--and not phonon--exchange should 
dominate the long range behaviour. Or equivalently, the excess volume 
parameter should be replaced by an "excess surface parameter". We will 
not discuss this effect in the paper. 

In order to test the sensibility of the final results to the effective inter- 
action we designed another potential ~'eff having the required properties 
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and roughly imitating at long range the potential derived by Owen using 
the hypernetted chain approximation. 29 The potential was chosen to be: 

/~  /a\7 (2re Ve~(r)=ev~176 c~ ~ ) j  (20) 

This form obviously fulfills requirements (1) and (2) above. The 
parameters C and R are chosen so that V~ff has a zero at r = 4 ~ as in 
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Owen's results (this imposes R = 5.776 A) and that the s-wave scattering 
length has the correct value (this fixes C =  1.145). The corresponding ~'erf 
is plotted on Fig. 6. Note that the potential of Ref. [29] is much deeper 
than ~'~ff (it has a minimum at approximatively 19 K) and this would 
favour dimer's creation. On the other hand Owen uses no effective mass 
and this goes against binding. Hence we cannot directly compare our 
approach with the one of Ref. [29]; Owen's work is taken here only as an 
inspiration for designing a new potential in order to test the sensitivity of 
our results to the effective 3He-3He interaction. 

4. (3HE)2 D I M E R S  

The Hamiltonian describing two 3He quasiparticles in the film has the 
form: 

P~ ' P22 - V e d l r l - r 2 l ) +  U~xt(zl)+ Uext(Z2) (21) 

where Uex t is the 3He mean field due to both the substrate and the 4He film 
(such as shown on Figs. 2, 3 and 4) and M* the 3He effective mass for the 
surface (Andreev) or substrate state (cf. Table I). It should be pointed out 
that the 3He particles described by Eq. (21) may, in general, be in two dif- 
ferent localized states in the z-direction, i.e., may belong to two different 
2D continua. In this case the effective masses of both quasiparticles in the 
Hamiltonian (21) may be quite different. As explained earlier we restrict 
ourselves to considering the case of two 3He particles in the same state 
concerning motion along the z-axis, since it provides the largest binding 
energy. In Eq. (21) and in the following V~ff is used as a generic notation 
valid for both potentials V~fr and ~'eff. The description might in general 
be improved by phenomenoligically introducing a 3He concentration- 
dependent effective mass M* within the local density functional approach 
to 3He-aHe mixtures. 13 However the uncertainty in evaluating the dimer 
binding energy are such that this correcting term goes beyond the accuracy 
of the theory (see below). 

We make the following ansatz for the wave function of the two 3He 
atoms: 

1 
q/(rl, r2) =~-~ e iKII Rtl2"(rll ) ~b(Zl) ~b(z2) (22) 

Eq. (22) describes two fermions with opposite spins. RLI is the center 
of mass coordinate in the (x, y) plane. For a dimer at rest (as we consider 
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in the following) the corresponding momentum Kll is zero. The variable rlt 
is the relative coordinate in the plane. We have separated the (x, y) and z 
direction. The functions ~b(zl) and ~b(z2) describe the motion along the 
z-axis. We assume (which is exact to the first order of perturbation theory) 
that they are of the type shown on Fig. 2, not being affected by the coup- 
ling between the two atoms. So the main point here is that the interaction 
between 3He atoms just slightly disturbs the motion in the z-direction but 
entirely changes the relative motion in the plane and leads to a bound 
state. In other words a perturbation theory can be applied for describing 
the normal motion only but the transverse dynamics of particles should 
be determined from the exact Schr6dinger equation. In practice this 
means that one has to solve the 2D Schr6dinger equation with a potential 
averaged over the unperturbed wave functions of 3He quasiparticles in the 
z coordinate. The function ~b is determined by the solution the equation: 

[ • +  Uox,(Z)] ~(z)=~}(z). 
2M 

(23) 

where Pz is the z component of the momentum (z = zj. or zJ :  

p~ p2 P21 + Pz2 +P~I+_~_.~ 2 2 

2M* + ~ * - 2 M *  ~ 2M 2# 
(24) 

with M and/z being respectively the total effective mass (2M*) and the 
reduced mass (M*/2). Then writing the Schr6dinger equation for the entire 
wave function q~, multiplying by ~*(z j  ~b*(z2) and integrating over the 
variables Zl and z2, one easily finds: 

where 

�9 

[P~I q_ < V~ff(rll)) x(r11)=EdimZ(rll ) (25) /2~ 

< V~ = f ~2(Zl) ~2(z2) Voff(rl - r J  clzl dz2 (26) 

According to our perturbation scheme, all the z-dependence has been 
removed from Eq. ((25). The substrate and the 4He density play an indirect 
role, through the determination of # (i.e., M*) and the z-wave function. 

It appears that for all the cases we are interested in (the Andreev state 
or the substrate state) the z-wave function can be represented to a fairly 
good approximation by a simple gaussian (characterized by its half-width). 
In order to explore the sensitivity of the dimer binding energy to the two 
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most relevant parameters, namely the effective M* and the width of the 
3He wave function, rather than considering only the substrates listed in 
Table 1, we will give results for various values of M* and normalized 
gaussians for ~U(z) with various half width. 

In the limit of a large half-width, although common perturbation 
theory cannot be directly applied when looking for the solution of the 
Schr6dinger equation, one can use the Fermi renormalization technique 
(see [ 30 ] and appendix A) to obtain the binding energy with a logarithmic 
accuracy: 

h 2 (  M* ) e x p  M* L, al IEdim I -~ M,r---~o _, (27) 

where ro is a quantity of the order of the interaction potential range, M~' 
is the effective mass of a 3He quasiparticle in bulk 4He, and L is defined 
as: 

Here L is of the order of the half-width, w, and it is a measure of the 
spatial extension of the z-wave function. The result above is valid only for 
large values of L/[al (see Appendix). One can see from Eq. (27) that in this 
limit the requirements of Sec. 3 are enough to determine the order of 
magnitude of the dimer binding energy. 

In the opposite limit of very localized states--such as those we are 
primarily interested in--our numerical results show a great sensitivity of 
the binding energy to the details of the potential (the results for Edi m as  a 
function of the half-width for different effective masses are shown on Fig. 7 
for Veff and on Fig. 8 for ~'o~). For instance, for M*/m3 ~- 3.1 and w -~ 0.5 A 
the binding energies estimated with Ve~ and F-elf differ from each other by 
two orders of magnitude. Under these conditions an accurate quantitative 
prediction would be illusive. We just note that if V~ mimics accurately the 
exact quasiparticle interaction, it would be very difficult to observe the 
formation of (3He)2 bound states in experiment. On the other hand, if 
the effective potential ~'off can be applied in the case in question, then for 
a magnesium substrate (M*/m3 =2.9 and w=0.9 A) the dimer binding 
energy would be Edi m = --1.1 inK, which is a reachable temperature with 
modern experimental techniques. A problem might occur though because 
the first 4He layer on a Mg substrate could be solid (see the discussion in 
Sec. 2). The next candidate for dimer formation would then be hydrogen. 
Using the two potentials designed in Sec. 3 we could not get a reasonable 
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Fig. 7. Eai~ as a function of w computed with Veff for the effective masses M*/m 3 = 3.1, 3.15 
and 3.2. 

dimer binding energy, mainly because M* in this case is not large enough. 
However, other pseudo-potentials might give a different result. 

Note also that the dimer binding energies are very sensitive to the 
exact value of the s-wave scattering length. This can be seen in the large L 
(or equivalently large w) limit from Eq. (27). We verified numerically that 
this is also true for small L: taking the outdated value a = - 1 . 5  
we obtained (using ~'eff) a dimer binding energy on magnesium E d i  m = 

-6 .3  inK. Hence experimental information on dimer binding could give 
valuable insight on the exact value of a. 

Although not quantitatively predictive, our study allows us never- 
theless to draw a very clear qualitative picture. In highly compressed 
substrate layers the 3He effective mass is large. This reduces the kinetic 
energy and favours the creation of (3He)2 bound states. The small spatial 
extension of the wave function in these layers is also favorable to the 



Bound State of 3He in 3He-4He Mixture Films 677 

0.0 

I i 

-2.0 

E[ 
I I 

-o 

- 4 . 0  

- m* = 2.9 m / 

~ m* = 2.95 m 

- 6 . 0  i I I 

0 .0  0.5 1.0 1.5 

Fig. 8. Edim as a function of w computed with ~',ff for the effective masses M*/m3 = 2.8, 2.9 
and 2.95. Note the change of energy scale with respect to Fig. 7. 

format ion of  dimers as can be seen from Eq. (27) and Fig. 7 and 8. F r o m  
these figures one can also see that  there is an optimal width of  the order 
of  0.5 A. It is interesting to note that  the more  attractive the substrate, the 
closer one approaches this value (see Table I). The proper  way to observe 
dimers would then be to choose a substrate for which the first 4He layer 
in close to being solid but still remains liquid. 

5. C O N C L U D I N G  R E M A R K S  

After having classified various substrates according to their ability to 
solidify one or  two layers of  a multilayer helium film, we have concentrated 
on cases in which helium remains liquid. In  addit ion to the already known 
Andreev states we have shown that  3He impurities were able to form a new 
2D Fermi system near the substrate. After designing a sensible schematic 
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interaction we have computed the binding energy of (3He)2 dimers in the 
limit of small 3He concentration. We found that for attractive substrates 
(such as magnesium or hydrogen) there was a reasonable hope to form 
dimers with sizeable binding energy. Note here that the binding energy of 
dimers in Andreev surface states is extremely small according to all our 
estimates, so the observation of (3He)2 dimers would be a direct con- 
sequence of the existence of 3He substrate states. 

In this paper the quantitative calculation of the dimer binding energy 
was based on a semi-empirical effective interaction and the one-particle 
wave functions obtained within a density-functional approach. It would be 
very useful to carry out the appropriate calculations with the help of other 
theoretical approaches (e.g., Ref. [32]). This would allow a better under- 
standing of the accuracy of the present computations. 

We hope that these results will motivate experimental study of the 
substrate 3He states as was proposed earlier in [14, 15]. The eventual 
formation of (3He)2 dimers would be a very interesting consequence of the 
existence of these states leading to an amazingly rich phase diagram. An 
experimentalist could face an extra Kosterlitz-Thouless phase transition, 
liquefaction of (3He)2 or polymerization of 3He, crossover from a Bose 
gas  Of dimers to a 2D Fermi fluid (with strong pair correlation) upon 
increasing .the 3He concentration, etc. [8, 9, 33, 34, 35, 36]. The dimer 
binding energy is a cornerstone characteristic of all these phenomena which 
are exciting objectives for experimental and theoretical studies. 

A natural continuation of the present work would be to study the 
binding of two dimensional clusters of 3He atoms. Although Fermi 
statistics favours droplets with even numbers of 3He atoms, there might be 
no upper limit for N, and our results could be a hint of the existence of a 
2D liquid phase of 3He. On the basis of a regular arrangement in two 
dimensions (with 6 nearest neighbours per atom l we estimate the satura- 
tion energy of the liquid phase to be (in the most favourable case) of the 
order of 5 to 6 mK. This is to be related to the recent finding of Brami 
et al. [37] whose variational results lead to propose at low temperature a 
new "self-condensed" fluid phase for pure 3He films on graphite. As the 
presence of 4He favours the formation of 3He dimers it could also favour 
the formation of a liquid phase. 

A P P E N D I X  A 

In this appendix we derive the expression (27) for the dimer binding 
energy Edi m using the Fermi renormalization technique (see [ 30]). Accord- 
ing to this method we introduce a weak two-particle pseudo-potential 
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Vf(r) which is assumed to meet the perturbation theory criterion. Let us 
emphasize that such an pseudo-potential has nothing to do with the inter- 
action between quasiparticles which, indeed, cannot be treated in terms of 
a perturbation theory at all. 

The pseudo-potential Vy is supposed to result in the true scattering 
amplitude when calculated within the Born approximation: 

~va b M  ~ t" 
a= J Vf(r) d3r (A1) 4gh 2 

where M *  is the effective mass of a 3He quasiparticle in bulk 4He 
(M~' = 2.38 m3). The idea of the method is to carry out all calculations in 
the framework of a perturbation theory for V s and then to express the final 
formulae through the true s-wave scattering length a only by .means of 
the renormalization (A1). Thus the method works while all obtained 
expressions contain the pseudopotential I~ F only in the integral form (A1). 

The solution of the Schr6dinger equation, i.e., of Eq. (25) with Vf 
replacing Veff, may be expressed in the form (see e.g., Ref. [10, 31]) 

h e [ h 2 ~ dp -~ ] 
Edi m - -  2/zro2 exp - -~ fo ( Vf> p (A2) 

where ro ~ lal is of the order of the interaction range and (VF) is defined 
by (26) with V I replacing V~ff. Let us recall once again that the 
pseudopotential V F is assumed to meet the criterion of a perturbation 
theory: for instance the integral entering Eq. (A2) should converge. 
Denoting this integral as I one can write: 

where 

F(z) = f I~b(t - z/2)l 2 I~b(t + z/2)[ 2 dt 

(A3) 

(A4) 

Let the quantity w be a characteristic localization range in the z-direc- 
tion for the wave function ~b (w describes the half-width introduced in 
Sec. 4). If the localization length is sufficiently large, w >> ro, one can easily 
find that 

1 f Vj(rl d3r with I=2rcL z - F ( 0 )  = f I~b(t)14dt (A5) 
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Clearly L is of the same order as w (if~b 2 is a normalized gaussian of half- 
width w, then L = w ,r 4). Combining Eq. (A5) and the renormalization 
relation (A1) yields: 

Edi m - -  M , r 2  exp M* (A6) 

In (A6) we have replaced the reduced mass by its value for the state 
~(z) considered: #-= M*/2. We see that the binding energy is expressed in 
terms of the true scattering amplitude and does not contain a pseudopoten- 
tial in any explicit form. Thus using the Fermi method is completely 
justified in the limiting case w > r 0. Note, however, that it is difficult to 
determine exactly the quantity r0 (see [31])  which could, in general, be 
pseudo-potential dependent. On the other hand, its order of magnitude is 
known (r 0 ~ ]a[) and, in fact, it does not enter the exponential factor which 
determines the dominant behavior of Eaim- 

In the limiting case w ~ r o the integral I obviously reduces to 

I =  f Vf(p) p dp (A7) 

and the binding energy explicitly depends on what kind of a pseudopoten- 
tial is chosen. It means that the renormalization method is no longer valid 
and the 2D Schr6dinger equation with the real interaction potential should 
be solved to find the binding energy. In this paper we have chosen to 
perform the calculation of Edi m by means of semi-empirical pseudopoten- 
rials which gave rise to reasonable estimates for quantities measured in 
experiment (see Sec. 2). 
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