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Abstract. We consider two- and three-dimensional quantum billiards with discrete symmetries. 
The boundary condition is either Dirichlet or Neumann. We derive the first t e rm of the Weyl 
expansion for the level density projected onto the irreducible representations of the symmetry 
group. The formulae require only knowledge of the character table of the group and the 
geometrid pmperties (such as surface, perimeter etc ... ) of sub-parts of the billianl invariant 
under a group transformation. As an illushalion, the method is applied to the icosahedral billiard. 

Billiards have been studied extensively in the context of quantum chaos, both from the 
semi-classical point of view (periodic-orbit theory, see e.g. [ 9) and using random-matrix 
theory (for a review see 121). In these two approaches it is important to subtract the smooth 
paxt of the level density in order to study the oscillations (trace formula) or the short-range 
fluctuations (random matrices) around the average behaviour. The asymptotic behaviour 
of the smooth part of the level density-characterized by the Weyl expansion-is also of 
interest in a great variety of other physical and mathematical problems (see [34]).  

In this paper we study two- and three-dimensional billiards: a quantum particle is 
enclosed in a compact region of space, B, and we impose on its wavefunction, *, Dirichlet 
or Neumann boundary conditions on the frontier aB (as may or may not be a smooth 
manifold). Thus $I verifies the following equation: 

(A +kZ)*  = 0 inside B 
* = 0  on aB (Dirichlet) 
n.V*=O on aB (Neumann) . 

We will assume that f3 remains invariant under a discrete point group 8. Then the 
eigenfunctions and eigenvalues [knlnp0 can be classified according to the different 
irreducible representations (irreps) of the group. We label these irreps by an index (a), each 
has a dimension d'. Hence the total level density p(k) can be written as 

where r is the total number of non-equivalent irreps of G, and p'(k) is the density of levels 
belonging to irrep a, 

m 

'p ' (k)  = d u x S ( k - k : ) .  
n=O 
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p(k) (resp pu(k)) can be separated into a smooth function of k, $(k) (resp pa"()). plus 
an oscillating part, p"() (resp p(k)). The study of the oscillating part p" needs careful 
treatment and has been addressed in [9-121. Our aim is to write the first terms of an explicit 
Weyl expansion for pU(k): 

F'(k) p:(k) + pp(k) + . . . . (4) 
In 3D p;(k) is a volume term of order kZ, pi' is a surface term of order k and the 

next order is a constant (order zero ink) edge term 6;. In the following we specialize the 
periodic-orbit theory initiated in 191 to the simple case of zero-length trajectories and treat 
the boundary conditions by using the Balian and Bloch method [5j. Here we wiIl derive 
the formulae in the case of three-dimensional billiards and only state the two-dimensional 
results. .. 

The projector onto an irreducible invariant subspace (a) is written as [I31 

where is the order of the group, xoL(g) is the character of group element g in irrep (a) 
and U(g) is the operator representing the action of g in Hilbert space. The projected level 
density is then (see [9 ] )  

(6) 
2k p'(k) = --ImTr{PG(k+iO+)} 
R 

where G(k+iO+) is the retarded Green function of ow problem; for simplicity we will drop 
the argument in the following. According to the ideas of Balian and Bloch, G is written as 
the free Green function Go plus a correcting term: 

G Go + GI . (7) 
We will here only need the explicit expression of GI  for short trajectories near the 

boundary X3. In this case it can be approximated using the method of images: 

where E = f l  for Dirichlet or Neumann boundary conditions and T', is the symmetric 
of point T' with respect to the plane tangent to aB. Note that (8) is properly defined 
only if T and T' are close to each other and close to the boundary. Equation (8) is the 
leading correction (in the k expansion) to Go arising near the boundary. A more systematic 
expansion can be found in [5j. In the Balian-Bloch terminology, we only consider the first 
term of the multiple scattering expansion and, furthermore, restrict ourselves to zero-length 
orbits (or high wavevector). 

In three dimensions, Go contributes to the total level density with a volume term 
pO(k) = Vk2/4r2 (V being the volume of the billiard), GI gives the surface term h (k )  
and the next order p 2  is obtained by pursuing the multiplescattering expansion. We shall 
not consider higher orders in the expansion. Surprisingly enough, when computing the 
symmetry-projected terms (/sa", p y  and p;), we need not know the form of the Green 
function to a better approximation than (7) and (8). 

(TlGilT') = E(TIGo[T'I) (8) 

The contribution of Go to the level density (6) is (using (5)) 

and the non-oscillating part of this expression is given by the quasi-zero-length trajectories 
going from T to g r .  In 3D the elements of a point group G can be either symmetries with 
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respect to a plane, rotations or improper rotations (i.e. a product of elements of the two first 
types), and orbits going from P to gr do not all contribute at the same order in the Weyl 
expansion. 

(i) If g = e is the identity, then eT = T for all points in B and (9) gives the projected 
volume term p:(k) .  

(ii) If g is a symmetry with respect to a plane, it leaves invariant a surface of area S, 
(intersection of the plane of symmetry with B)  and then the corresponding term in (9) 
will contribute to f i p .  

(iii) If g is a rotation, its invariant points in  B are located on a segment of length L, and 
we will have an edge contribution to 6;. 
Terms arising from improper rotations in (9) do not contribute at order 3; and we wiU 

not consider them here. From equation (9) we can readily write the symmetry-projected 
volume term (the first term in the Weyl expansion): 

(d9' - 
IBI (10) P:(k) =~-Po(k ) .  

This formula is quite general and also holds for smooth potentials. A similar expression 
can be derived for continuous symmetry groups as well: the discrete sum in (5) is simply 
replaced by an integration on the invariant measure of the group. To fix the ideas, if 
we consider a system with 5-fold and I-fold degenerate levels, formula (IO) implies that, 
roughly speaking, the 5-fold degenerate levels will contribute 25 times more to the level 
density than the singly degenerate levels (due to the coefficient in (10)). This 
contribution comprises a trivial factor 5 coming from the degeneracy of the levels. But 
the factor 5 remaining (25 = 5 x 5) is more surprising: when choosing a level at random 
in the spectrum, the probability is approximatively five times bigger for drawing a 5-fold 
degenerate level than for a singly degenerate level. 

The contribution of GI to the level density (6) is of the same type as (9). There, 
similarly, the identity, symmetries with respect to a plane and rotations do not contribute 
at the same order. The identity gives a surface contribution (de)zpI/lBl (as for the volume 
term (10) arising from g = e in (9)). Symmetries conhibute to fi; and we will not consider 
the effects of rotations (contributing at higher order). The term following G I ,  as given by 
(8) in the multiple-reflexion expansion, contributes to the total level density at order A. 
Its contribution will be weighted by a factor (d")2/1G1 when projected onto a given irrep 
(this again comes from g = e in (5) while other elements of the group contribute at higher 
orders). 

Gathering all the contributions. we get for the~surface and edge terms: 

In equations (11) and (12) the integration must be restricted to quasi-zero-length 
trajectories. &grot indicates a sum restricted to the rotations of the group (the same 
convention holds for CEEGrym). To be specific we will compute one of the integrals in (1 I )  
and (12). Let us consider for instance the last term of the RHS of (1 1). The integral [d3r 
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can be separated into a surface integral 1 dx dy along the invariant symmetry plane plus a 
term sdz along the normal to this plane. Then the modulus 1187 - T I [  = Zlzl and the free 
Green function reads (see e.g. 1141) 

eiWr-rll e7jtlrl 

4allgr rll 8nlzl ' (13) -- (gTIGolT) = - 
Hence the integral over dx dy will give a factor S, (the area of the invariant surface) and 
the imaginary part of the integral over dz will give 

Thus the total surface projected term (11) reads 

We note that: (i) if a class of E contains one symmetry it is only formed by symmetries; 
(ii) x'(g)S, is a class function, i.e. it takes the same value for all symmetries belonging 
to the same class C (we note xe(C)Sc the value of the class function). Hence (15) can 
be written as a sum over those classes of the group which are formed by symmetries with 
respect to a plane (noted below) 

In equation (16) I&] is the number of elements of the group belonging to class C. 
Similar computations yield for the edge terms 

In equation (17) pC, is the angle of rotation, common (modulo an irrelevant sign) to all 
the rotations belonging to a given class C, and L, is the common length of the invariant 
segments. Here also we use the fact that if a class contains one rotation, then it contains 
only rotations. as, is the common perimeter of the surfaces invariant under the symmetries 
belonging to the same class (Le. as, is the perimeter of SJ. 

The formulae (lo), (16) and (17) (together with their ZD counterparts (18) and (19)) are 
the most important results of this paper. They allow us to compute the first terms of the 
symmetry-projected Weyl expansion knowing only the character table of the group and the 
surfaces, lengths and perimeters of sub-parts of B invariant under a given class of group 
transformations. Note that using elementary group-theoretical properties of the character 
table (see e.g. [13]) one recovers the total smooth level density when summing the different 
projected terms. 

In two dimensions, the present formalism allows us to determine the value of fi;(k) 
(which is now a surface term) and of pp(k) (the perimeter correction). The formulae read 

In equations (18) and (19) &(k) = Sk/Zlr (where S is the area of the billiard) is the total 
surface term and 6, (k) = E L / ~ R  (where L is the perimeter) the total perimeter term. L, 
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is the common length of the segments invariant under the symmetries belonging to the 
class considered. Note that similar results were obtained in [15] for a smooth potential (the 
two-dimensional quartic oscillator) using the Wigner-transform approach. 

An alternative method for deriving the above results would be to work in reduced 
configuration space, to find out for each irrep which are the boundary conditions on the 
elementary cell and to work out the corresponding Weyl expansion (as was done in [16], for 
instance). But for some symmetry groups the boundary conditions on the elementary cell 
relevant for each irrep can be cumbersome (see helow the example of the icosahedron) and 
also the corresponding Weyl expansion might not be known up to order ,E:&): some irreps 
lead to mixed Neumann-Dirichlet conditions or impose phase shifts when going from one 
boundary of the elementary cell to another (this is the case for the rather simple group C3"). 
The method presented here has the advantage of giving simple and easily applied formulae 
that do not require detailed knowledge of the reduced boundary condition. 

As an illustration let us consider a three-dimensional icosahedral billiard with Dirichlet 
boundary conditions. This billiard was studied in [17] as a model for faceted metal clusters. 
The first 565 quantum levels were determined numerically (counting the degeneracies this 
leads to 2094 available states). The total symmetry group of the icosahedron is Zh; to 
simplify the presentation we will consider here only its subgroup Z formed by 60 rotations. 
Z has five classes and five non-equivalent irreps, we will present only the results for one 
of the irreps which has dimension du = 3 (see table 1). In order to compare the numerical 
results with the predictions of (lo), (16) and (17) we focus on the cumulated level density, 

Table 1. Chancters of the classes of Z for the imp considered in the text. For the designntion 
of the classes we use the conventions of [181. L, is for each class (except for the identity) the 
length of the invariant segments. L, is given in units of the edge length. 

Classes I c, = { e )  12cs 12 c$ 15c2 2oc3 

From [6] we know the total-i.e. summed over all the irreps-terms GO, I?, and c2 
(the explicit expression is given in [17]). Z contains no symmetry and we can apply the 
formulae (16) and (17) if we know the length of the segments invariant under rotations (they 
are listed in table 1). The comparison of the numerical Ne-which is a staircase function- 
with its smooth approximation & + 8; + fi; (from (lo), (16) and (17)) is shown figure 1. 
The difference is also plotted in this figure; as expected it is of order zero in k, and the 
amplitude of the oscillations is of the order of the degeneracy d' = 3. A simple fit gives 
the value of the constant next order &(k) N 0.288. The same agreement is also obtained 
for the other irreps of Z or when studying the irreps of the total group z h .  It is interesting 
to note that the boundary conditions to be applied on the elementary cell when studying 
the different irreps of Z and Zh are very difficult to determine. The method exposed here 
uses the character table of the group which comprises the necessary information in an easily 
accessible form. 
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Figure 1. Bottom pm: Nu (k) (staircase function) and its smooth approximation rjn" + I?? + ??; 
as a function of k. k is given in units of the inverse length of the edge of the icosahedron. Top 
part: difference of the two quantities ANa = Nu - (I?; + Nf + I?;) as a function of Nu. The 
thin horizontal line is the mean value of ANm (= 0.288). The bottom plot is limited to the first 
30 levels for legibility. The upper pm concerns the first 100 levels (i.e. the fust 300 quantum 
states). 
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