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Abshad  We study the semiclassical quantbtion of an ensemble of b i i i d s  with a small 
random shape deformation. We derive a rnce formula averaged over shape disorder. The 
results m illusmted by the study of supershells in rough metal clusters. 

1. Introduction 

Quantum billiards have been extensively studied as model systems having a chaotic or 
integrable classical dynamics (see e.g. [l]). They have also been considered as simple 
models for atomic nuclei or metal clusters. More recently they have been studied 
experimentalIy in ballistic microstructures [2, 31 and in microwave cavities 141. In most of 
the experimental studies only an average shape for the equivalent billiard is determined. For 
instance, metal clusters have an underlying ionic background which implies an unavoidable 
degree of roughness of order of the interatomic distance, i.e. of order of the Fermi 
wavelength. For microstructures the roughness is mainly due to the irregularities in the 
depletion layer which can be estimated of being also of order of the Fermi wavelength 
[5]. Moreover clusters are produced in large amounts in molecular beams and one has to 
consider an ensemble of shapes. Similarly one also frequently considers an ensemble of 
microstructures (typically - IO5) with a size dispersion ranging from 2% [6] up to 30% 
[31. 

The mean free path in the experiments quoted above is larger than the typical distances 
in the system, thus the billiard model is still meaningful. Nevertheless it should be corrected 
due to shape irregularities. In this paper we make an attempt to study this phenomenon 
by considering an ensemble of billiards (in any dimension) obtained by a random deviation 
from a fixed initial shape (hereafter denoted as the perfect or unperturbed shape). We speak 
below of rough or bumpy billiards. 

The paper is organized as follows: in sections 2 and 3 we derive a semiclassical trace 
formula averaged over the ensemble of rough billiards. As an illustration the method is 
applied in section 4 to study the supershell oscillations in rough metal clusters. We give 
our conclusions and make a comparison with previous works in section 5. 

2. Green function in the presence of shape disorder 

Modem semiclassics have made extensive use of trace formulae such as those derived by 
Gutzwiller in the context of quantum chaos (see [I] and references therein) or for quantum 
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billiards by Balian and Bloch 171. In these approaches the level density is obtained by 
computing the trace of the Green function G(TB, TA, k), solution of the Helmholtz equation 
with Dirichlet or Neumann boundary conditions. It is written in the semiclassical limit as a 
sum of contributions arising from the classical orbits of the system. In the case of a billiard 
it reads schematically: 

where the sum is taken over the classical trajectories going from point A to point B .  In 
(I)  k is the wavevector and it is related to the energy by Ak = (or hk = E / c  
for microwave cavities); p is a Maslov index and D(k) an amplitude characterizing the 
trajectory of length L considered. A genenl expression for z) can be found in [1,7]. 

Let us now treat the case of the rough billiard. We consider that the shape disorder 
is weak enough so that a point TC on the frontier of the bumpy billiard can be written 
unambiguously as 

TC = TC,, + h(Tc,)no (2) 

where TC, is a point of the frontier of the perfect billiard and no the normal at this point. 
h is a random displacement, the characteristics of which will be specified later. 

Let us branch the perturbation (2) starting from a perfect billiard. The direct orbit going 
from A to B without bouncing on the boundary is not affected. If the shape modification 
is small enough (this will be made mathematically precise later) orbits experiencing only a 
few bounces will not be drastically altered (see figure I). At first order in the semiclassical 
approximation  we^ will consider that only the change in length is of importance, because 
it appears in the rapidly oscillating term exp(ikL) of (1). The modification of the slowly 
varying amplitude D(k) is simply neglected. Long orbits, in conbast, experience many 
bounces and they may be completely different in the rough enclosure and the perfect 
billiard. They will also be drastically different from a bumpy billiard to another, and 
ensemble averaging will very efficiently damp their contribution. Hence it is legitimate in 
the semiclassical limit to work in a perturbative approach where the only extra contribution 
with respect to the perfect billiard is the modification of the length of the orbits in (1). The 
spirit of the present approach is very common (see e.g. [S-101) and the results are similar 
to those obtained by other techniques (see below). 

Figure 1. Classical orbits going from point A to point B with one bounce on the boundary. The 
bold curves correspond to the perfect billiard and the thin culyes to the bumpy billiard. Point 
CO (resp. point E )  is the point of specular r e k t i o n  on the perfect (resp. bumpy) enclosure. Oc, 
is the normal reflection angle at Co. C is the intersection of the normal at 4, with the bumpy 
boundary. 
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If we denote d by SL a modification in the length of an orbit due to suface roughness, 
using the notation in figure 1, for a single bounce trajectory one obtains 

SL = ( A E  + E B )  - (ACo + COB) Y (AC + CE) - (ACo + COB). (3) 
In (3) CO (resp. E )  is the point of specular reflection in the perfect (resp. bumpy) billiard. 

Since A E  + EE is gn extremum of the length, at first order it can be computed replacing 
E by a nearby point. This has been done in the right-hand side of (3) where point~C was 
used, C being the intersection of the normal to the perfect billiard at CO with the bumpy 
frontier (see figure 1). This can easily be extended to orbits with n bounces and simple 
geometry yields 

where the sum is extended over all the bouncing points Cj of the classical trajectory on 
the boundary of the perfect billiard (&, is the normal angle of incidence at point Cj, see 
figure 1). 

Then the semiclassical Green function in the rough billiard is written as 

where the upper index 0 indicates that the sum is taken over the trajectories of the perfect 
billiard. 

Careful derivation puts the following limitations to the use of equations (4) and (5): 
(i) [ h [ / L  << lVhl << 1 or, in other words, L should be greater than the typical distance 

between two bumps, itself being greater than the amplitude of shape disorder. These 
restrictions ensure that replacing E by C in (3) is legitimate and that SL << L. 

(ii) k[hI2 < L ensures that using the approximate length L + 6L in the semiclassical 
formula yields corrections which are indeed small compared  to^ the main term (5). 

(iii) One sho& also make sure that diffractive corrections to the leading-order 
semiclassics can be safely neglected. Hence, the typical distance between two bumps 
([h[/[Vhl) should be larger than the wavelength (l/k). If not, the amplitude D(k) is 
significantly modified by the surface roughness. 

Keeping in mind the physical examples given in the introduction one sees that among 
the above restrictions only the ones involving Vh are not trivially satisfied. Indeed in the 
mse of a large shape disorder the distance between two bumps is of order of the amplitude 
of a bump (then V h  is of order 1) and also diffractive effects~will have to be taken into 
account. Hence (5) is rigorously applicable only for small roughness (characterized by 
the restrictions (i), (ii) and (iii)). Nevertheless we will see in section 3 that in this limit 
the effects of the surface roughness are already very noticeable. Hence one can argue that 
when (5 )  is no longer valid the associated oscillations in the level density are already almost 
completely damped (see (12)). 

We recall that (5) is only valid for short orbits. The contribution of long orbits in the 
bumpy billiard cannot be inferred from the motion in the perfect billiard. In order to have a 
formula rigorously applicable let us now damp the contribution of long orbits by performing 
an ensemble average of the Green function. The computation is straightforward and the 
average quantity reads 
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where x is the characteristic function of the rough shape [ll]. It is the Fourier transform 
of the probability density of the frontier displacement h: 

+a, 

x(s) = /- p(h)euh dh. (7) 

In (6) we have made the hypothesis that the bounces were separated by a distance larger 
than the correlation length of the shape disorder, i.e. p(h( rc , ) ,  . . . , h(rc,)) = p(h( rc , ) )  x 
. . . x p ( h ( r c , ) ) .  This restriction is not necessary but it simplifies the presentation. Following 
[IO] one could think of~deformations strongly violating this assumption: this would be the 
case, for instance, of an unperturbed circle going to a rough ellipse. In this case it will 
always be possible to use the present formalism if we consider the perfect ellipse as the 
unperturbed billiard. 

Most authors (see [ll]) choose a Gaussian distribution for h with standard deviation U: 

Note here that on the basis of equation (8) only one cannot check the validity of 
restrictions (i), (ii) and (iii) above; they mainly concem the correlation length of the random 
function h and not only the characteristic function x which is our unique ingredient. The 
restrictions will be fulfilled if U is smaller than the correlation length, itself being smaller 
than typical distances in the billiard. 

The physics embodied in equation (6) can be simply interpreted by noting that the 
wave propagates as in a perfect billiard with, at each bounce, an extra damping factor 
X(Pkcos&,) (i.e. exp(-2k2u2cos2€J~) in the Gaussian model (8)). The general form 
~(ZkcosBc,) is commonly obtained in Kirchhoff theory of wave scattering from rough 
surfaces [ll]. As anticipated this damps very efficiently the contribution of orbits 
experiencing many reflections. The quantity ku cos@, is known as the Rayleigh parameter 
1121 and characterizes to what extent an incident wave is sensitive to surface roughness; as 
one would intuitively expect, the sensitivity is at a maximum for perpendicular incidence 
(cos&, N 1) and short wavelengths (ka >> 1). 

3. 'lkace formula in the bumpy billiard 

The next step in the derivation of a trace formula is to compute the level density by taking 
the trace of the Green function: 

(9) 
p ( k ) = - - h  d r G ( ~ , ~ , k ) = = - - h T r & ( k ) .  Usk  

In (9) the integral extends over the interior of the billiard and D is the dimension of 
space. &k) is the operator whose matrix elements in configuration space give G(rs,  rA, k) .  
ds accounts for a possible spin degeneracy (in this case ds = 2, ds = 1 otherwise). 

It is customary to separate the contribution of the quasi zero length orbits to which the 
semiclassical approximation (1) does not apply. These orbits contribute to the smooth part 
p(k) of the level density through the 'Weyl expansion' (see e.g. [13]). In three dimensions 
and for Dirichlet boundary conditions it reads 

n s x 

Vk2 Sk 

where V is the volume of the billiard and S its surface area. In the typical case of a bumpy 
sphere of radius R with disorder of type (8) the average ( p ( k ) )  is easily computed, one 
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obtains (V) = 4n(R3/3+u2R) and (S) = 4x(R2+u2). U is supposed to besmallcompared 
to R, thus surface roughness poorly affects the smooth part of the spectrum: for practical 
coinputations we will approximate (.ii(k)) by the value .ii(k) in the perfect billiard. We have 
given here a generic three-dimensional example but the same holds in any dimension. 

A quantity of primary interest is the oscillatory part f i (k)  of the level density. As shown 
by Gutzwiller [l] and Balian and Bloch [7], inserting the semiclassical Green function (1) in 
equation (9) and performing a non-trivial stationary phase analysis leads to a trace formula 
which reads schematically: 

The sum (11) extends over all the classical periodic orbits ( ~ 0 s )  of the system. As in 
(1) A(k) is a slowly varying amplitude and U a Malsov index characteristic of the PO of 
length L considered (see [ 1.71). Some pos may form continuous families, i.e. some orbits- 
forming a continuous set-may all have the same length and the same topology (such as 
the bouncing ball orbit in the stadium billiard or the POS in integrable enclosures). Rvo 
orbits of the same family differ only by their bouncing points. Each family is represented 
by a single term in the summation (11) but its amplitude is enhanced by additional powers 
of k with respect to the contribution of an isolated orbit. This is related in [14] to local 
(possibly global) continuous symmetries of the Hamiltonian. 

If one now wishes to write a trace formula for a rough billiard in contrast to what 
happens for the Green function, the form (11) of p”() is different in the bumpy and 
in the perfect billiard. The reason is that some POS may appear in continuous families 
and roughening destroys these families. This can be illustrated with the following two- 
dimensional example: consider a rectangular billiard of which one edge-the upper one 
say-has been modified to adopt a sinusoidal shape. One of the important continuous 
families of pos in the perfect rectangle-the vertical bouncing ball-is reduced in the 
bumpy rectangle to only a couple of orbits (those hitting the sinusoidal upper edge at 
points with horizontal tangent). Nevertheless the level densities of the two systems are 
certainly very similar if the edge deformation is small. This type of problem has been 
recently addressed in [IO, 151 and deserves careful treatment. For isolated orbits it might, 
in some cases, be explained semiclassicaly by the introduction of complex Pos in the trace 
formula (see the discussion in [7] and also 1161). However, we can bypass these kind of 
subtleties when ayeraging over disorder because it is legitimate to permute the trace and the 
average: (ImTrG(k)) = ImTr(G(k)). Hence ( f i (k ) )  can simply be computed by inserting 
the~average (G(T,  T, k)) in the trace (9). Since (G(T ,  T ,  k)) is evaluated by using the orbits 
of the perfect billiard, the saddle point can be performed in the usual manner and yields the 
average oscillating part of the level density: 

The index 0 in the summation indicates as before that all the quantities are evaluated 
in the unperturbed billiard. Hence n in (12) is the number of bounces of a Po in the perfect 
billiard, the 8’s are the normal angle of incidence. 

Formula (12) is the most important result of the paper. It is valid for rough b i l l ids  
in any dimension. It is interesting to note that when considering an integrable perfect 
billiard with an ergodic perturbation, the contribution of short orbits is correctly accounted 
for by equation (12), even without ensemble averaging. By ergodic, we mean that ‘any 
statistical average taken over many different parts of one shape realization is the same as an 
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average over many realizations’ [ll]. In the case of integrable unperturbed billiards, all the 
orbits occur in families and the spatial integration (9) over a continuous family is-by the 
hypothesis of ergodicity-equivalent to ensemble averaging (this was certainly not the case 
in the simplified example above of sinusoidal deformation of a rectangle billiard because 
sine is not an ergodic function). We recall that this is not correct for long orbits which may 
be very different in the bumpy and the perfect billiard, in this case ensemble average is 
necessary to damp the associated oscillations. 

To fix the ideas we apply (12) to a bumpy sphere of radius R. The total average level 
density ( p )  Y p + (6) is plotted on figure 2 for two values of the surface roughness in the 
Gaussian model (8): U = 0.04R and 0.06R. The amplitude d(k)  for each PO in the perfect 
sphere can be found in [7]. Seventy-five Pos were included, with a maximum length of 
26 times the radius. More precisely in the terminology of [71 the maximum values of the 
parameters are f = 5 and p = 15 (t being the winding number of an orbit around the centre 
and p the number of bounces). We also indicate with black arrows the location of the first 
15 eigenlevels in the unperturbed sphere. One sees on the figure that in the lower part of the 
spectrum, the wavelength being large, surface irregularities do not perturb the eigenstates 
much and there is still a strong bunching of levels. This shell effect gradually disappears 
for increasing energies (when the wavelength becomes comparable with the amplitude of 
the disorder). 
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c 
A 50.0 
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.- 
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Q 0.0 
V Figure 2. Total average level density in bumpy sphere 

for (i = 0.04R (full curve) and U = 0.06R (bald 
curve). The broken curve represents the smooth term 
P(k) .  The b l x k  wows indicate the location of the 
first I5 eigenlevels in the perfect sphere. 

0.0 5.0 10.0 I50 
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4. Supershells in rough metal dusters 

In this section we illustrate the above results with the example of shell stlllcture in metal 
clusters. Rough clusters will be described by a simple model first introduced in [17]: N 
electrons are moving independently in a bumpy sphere. The radius R of the perfect sphere 
scales with N so that the mean electronic density is kept constant and equal to its bulk 
value : R = rSN1I3, rS being the Wigner-Seitz radius of the bulk material. The standard 
deviation from this average shape is of order of atomic distances i.e. of order rs. Note 
that such irregularities are to be taken into account even if the cluster is ‘liquid-like’: the 
mean velocity of the ionic cores is always by several orders of magnitude smaller than the 
typical electronic Fermi velocity. Hence, as far as electronic motion is concerned, the ionic 
cores can be considered as frozen and this automatically implies a certain degree of surface 
roughness. 
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In the unperturbed sphere, due to the high symmetry of the potential there is a strong 
bunching of levels leading to shell structure and magic numbers (see e.g. [18]). This shell 
structure is modulated when the cluster size grows (it first disappears, then increases, etc). 
This is called the ‘supershell structure’ and was first noticed in [7] and seen experimentally 
by the Copenhagen group [19]. We will here study this effect in a rough cluster. 

One of the most important observables when studying shell structure is the shell energy 
which is the oscillating part of the total energy. Shells are experimentally detected on a mass 
spectrum; roughly speaking clusters with relatively smaller total energy (corresponding to 
minima of the shell energy) are more stable and will be more numerous in a beam. This is 
also correlated with larger ionization potential, but for this observable shell effects decrease 
with cluster size, making its study more difficult. 

The Fermi wavevector kF and total energy EIof are defined by 

In (13) N(k) is the integrated level density or spectral staircase. As the level density, 
N can be written as the sum of a smooth quantity fl and an oscillating part fl. The same 
holds for kp and Etot considered as functions of N .  The smooth terms are defined by 

As explained before we will identify the average smooth quantities (&) and (&) with 
their value in the perfect sphere. On the basis of the Weyl expansion in the sphere and of 
(14) one obtains the following relations: 

and 

where a3 = 2ds/9n, a2 = -ds/4, a1 = 2ds/3z (see [13]). KF and EF are the bulk Fermi 
wavevector and Fermi energy: mrs = a3 

The average oscillating part is obtained by subtracting (16) from the average total term. 
It is computed using the following approximation: 

-113 and EF = h’~: f2m. 

The right-hand side of (17) can be considered as a simple first approximation of the 
exact result. It is made necessary by the difficulty mentioned above for estimating p(k) in 
an individual rough cluster. We can invoke the hypothesis of ergodicity of surface disorder 
to make this approximation sound: for a cluster such as that created in a molecular beam 
one can argue that the individual level density will have a pattem very similar to the one 
displayed in figure 2 (cf the discussion in section 3). Hence, although in a given cluster 
p(k)  is exactly a sum of delta p ia ,  the bunching of levels in an individual spectrum will 
disappear at the same wavelength as that predicted in the average ( p ( k ) ) .  

Then (&) can be computed with the following scheme: one first determines ( k ~ )  by 
numerical inversion of the first term of equation (13) (with ( p )  replacing p )  and the integral 
of the second term is then computed numerically. One can also evaluate the asymptotic 
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behaviour of the integrals (13) to get an analytical expression. For this puTose the exact 
Fermi wavevector in written as kF = & f i F ,  _where ,CF is given by (15) and kp is supposed 
to be small. Then performing on N = N + N a first-order limited expansion one gets 

Since N(kF) = fl(&) = N by definition (see (13, 14)) one obtains 

This expression can be evaluated by keeping only the leading order of fl (obtained by 
integration of (11)) and neglecting the oscillatory term at the denominator. Then averaging 
over disorder yields: 

Then the shell energy &:,,, is computed from the difference between the total energy and 
its smooth part: 

In (21) we replaced the integrals by their large N approximations. The dominant 
contribution is obtained by integrating by parts the integral appearing in the last term of 
(21); this cancels due to relation (19). After averaging over disorder the next order reads: 

3 (k)  is a primitive of N(k) which has been estimated at first order on the right-hand 
side of equation (22). This formula gives an accurate approximation of the value of (.J?tol) 
computed numerically; the result is shown in figure 3 for the Gaussian model (8) and for 
several values of the surface roughness (u/rs = 0, 0.1, 0.2 and 0.3). The broken curve 
corresponds to equation (22) and the full curve to numerical evaluation of the integrals 
(13), (17). Here the integration adds an extra smoothing compared to figure 2 and one does 
not need to take into account so many orbits; the figure includes 35 pos up to a length 
L = 12R. In fact a very reasonable result can be obtained with only the seven shortest 
orbits; however, we have included more orbits here to have an accurate description of the 
shell effect in the supershell region N'I3 n. 8. 

We see in figure 3 that the shell structure is very sensitive to surface irregularities in 
the small amplitude. Nevertheless roughness reduces all oscillations without modifying the 
qualitative features of the supershells. Hence the present approach legitimates the usual 
explanation of supersbell effects in rough metal clusters as being due to the interference 
of the square and triangular orbits L7.191, although these orbits might not exist in an 
individual cluster. Including temperature effects and quantitatively comparing them with 
the experimental results could fix an order of magnitude for the irregularities of the surface 
of large metal clusters. A very rough estimate based on separation energies for small clusters 
gives the value U - 0.2rs 1201. 
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5. Discussion 

In this paper we have studied the,oscillating part of the leyel density in billiards with small 
size shape irregularities and we have derived a semiclassical trace formula averaged over 
shape disorder. The important feature of the level density is the gradual disappearance of 
the oscillations with increasing energy: when the wavelength is of order of the typical size 
of the surface defects this induced a shift in the eigenenergies which leads after averaging 
to a st&ctureless level density. 

The same type of approach has recently been, used to study, within the semiclassical 
approxim&ion, the role of families of orbits broken by a small perturbation of an initial 
shape having a local continuous symmetry. The authors of [15] studied the bouncing ball 
orbit in a deformed stadium billiard and in [lo] a general trace formula is derived accounting 
for the role of broken families. In the present work, the main difference is the inclusion of 
an ensemble average yielding a formula which is also valid for isolated orbits. Moreover 
averaging damps the contribution of long orbits to which the simple perturbation technique 
(4), (5) does not apply. This averaging method is motivated by the experimental techniques 
of mesoscopic and cluster physics. 

The method has been applied to study supershell oscillations in metal clusters using a 
model accounting for the irregularities of the surface due to the underlying ionic structure. 
It is also of interest in ballistics microstructures with shape irregularities [ZI]. 

The problem of surface roughness of metal clusters has recently been addressed using 
another approach: in [22] the effect of disorder is represented via addition to the Hamiltonian 
of a random matrix perturbation (cf [23]). The results for the average level density and 
shell oscillations are qualitatively very similar to what is presented here. In addition the 
authors of [22] argue that these effects could explain experimental shifts in the measured 
mass distribution. Note that in [22] and also in the present study the effects of temperature 
are indirect: although the usual temperatures reached in experiments are small compared to 
the Fermi energy (one remains in the very degenerate limit ~ B T  << E F )  they are sufficient to 
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induce a disorder of the ionic arrangement which has a sizeable effect on the shell structure. 
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