1D Transport through a disordered BEC
 Nicolas Pavloff

Laboratoire de Physique Théorique et Modèles Statistiques Université Paris-Sud, Orsay

CENTRE NATIONAL
DE LA RECHERCHE de la recherc SCIENTIFIQUE
work in collaboration with N. Bilas:

- Phys. Rev. A 72, 033618 (2005)
- Phys. Rev. Lett. 95, 130403 (2005)
- Eur. Phys. J. D 40, 387 (2006)
and with P. Lebœuf, T. Paul and P. Schlagheck:
- Phys. Rev. A 72, 063621 (2005)
- cond-mat/0702591, to appear in P.R.L.

quasi-1D condensates :

harmonic radial confinement :

$$
V_{\perp}\left(\vec{r}_{\perp}\right)=\frac{1}{2} m \omega_{\perp}^{2} r_{\perp}^{2}
$$

W. Guérin et al., Phys. Rev. Lett. 97, 200402 (2006)

1D regime

$$
a: 3 \mathrm{D} \text { s-wave scattering length }(a>0)
$$

$$
\begin{equation*}
\frac{a^{2} m \omega_{\perp}}{\hbar} \ll n_{1} a \ll 1 . \tag{1}
\end{equation*}
$$

- The first inequality allows to avoid the Tonks-Girardeau regime and implies that the interaction energy between atoms is weak compared to the kinetic energy. It implies $L_{\phi} \ggg \xi \quad L_{\phi}=\xi \exp \left[\pi \sqrt{\frac{\hbar n_{1}}{2 m a \omega_{\perp}}}\right]$
- the second inequality allows to avoid the 3D-like transverse

Thomas-Fermi regime and implies that the chemical potential μ (measured relatively to the transverse ground state) is small compared to $\hbar \omega_{\perp}$.
(1) being fulfilled, one gets into the $1 D$ mean field regime where the system is described by $\psi(x, t)$ verifying

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \partial_{x}^{2} \psi+\left(U_{\mathrm{ext}}(x)+g|\psi|^{2}\right) \psi=i \hbar \partial_{t} \psi, \tag{2}
\end{equation*}
$$

where $|\psi|^{2}=n_{1}(x, t)$ is the longitudinal density of the condensate, and $g=2 \hbar \omega_{\perp} a=\hbar^{2} /\left(m a_{1}\right),-a_{1}$ being the 1D scattering length.

General considerations

- Mesoscopic physics with BECs : $\begin{aligned} & \text { interaction in phase coherent systems, } \\ & \text { non-linear transport. }\end{aligned}$
- Advantage : large range of interaction regimes :
\rightsquigarrow From "atom lasers" practicaly without interaction \rightarrow strongly correlated 1D systems
\rightsquigarrow simple theoretical framework (Bose-Hubbard/GPE)
- Situations of 1D transport :

\Longrightarrow Interferences
\Longrightarrow Bloch ocillations
\Longrightarrow Quantification of conductance
\Longrightarrow Strong and weak Localization
\Longrightarrow Josephson junctions
\Longrightarrow Superfluidity
\Longrightarrow solitons

Anderson Localization in 1D systems

LINEAR WAVES:

\hookrightarrow acoustic waves: 1983 C. H. Hodges \& J. Woodhouse, J. Acoust. Soc. Am. 74, 894 (1983)
$\hookrightarrow 3^{\text {rd }}$ sound in ${ }^{4}$ He films: $1988 \quad$ D. T. Smith et al., Phys. Rev. Lett. 88, 1286 (1988)
\hookrightarrow light: 1994
see also M. V. Berry \& S. Klein, Eur. J. Phys. 18, 222 (1997)

INTERACTING ELECTRONIC SYSTEMS :

\hookrightarrow importance of phase coherence: $L \simeq L_{\text {loc }}<L_{\phi}$
\hookrightarrow First experimental evidence:
Gershenson et al., Phys. Rev. Lett. 79, 725 (1997)

BEC SYSTEMS :

\hookrightarrow importance of the type
D. Clément et al., Phys. Rev. Lett. 95, 170409 (2005)
of disorder
C. Fort et al., Phys. Rev. Lett. 95, 170410 (2005)
T. Schulte et al., Phys. Rev. Lett. 95, 170411 (2005)

Scattering of an elementary excitation

it is a linear problem, one expects Anderson localization, i.e., the transmission through a disordered slab of length L scales as $T \sim \exp \left\{-L / L_{\mathrm{loc}}\right\} . L_{\mathrm{loc}}(\omega)$ is the localization length.

Elementary excitations are

- Phonons at low energy : $\hbar \omega=c p($ for $\hbar \omega \ll \mu)$,
- Free particles at high energy : $\hbar \omega=\mu+p^{2} / 2 m($ for $\hbar \omega \gg \mu)$.

slide 6

Accordingly one expects :

- $L_{\text {loc }} \propto \omega^{-2}$ at low energy (as for phonons)
- $L_{\text {loc }} \propto \omega$ at high energy (as for non interacting particles).

$$
L_{\mathrm{loc}} \propto \frac{(\hbar \omega / \mu)^{2}+1}{\sqrt{(\hbar \omega / \mu)^{2}+1}-1} \longrightarrow
$$

In the hydrodynamical limit $\hbar \omega \ll \mu$ one can get into the transverse Thomas-Fermi limit

$$
L_{\mathrm{loc}}=\left\{\begin{array}{c}
4 \\
\frac{1}{2}
\end{array}\right\} \frac{\xi^{2}}{r_{c}}\left(\frac{\mu}{\left\langle U_{\mathrm{dis}}\right\rangle}\right)^{2}\left(\frac{\mu}{\hbar \omega}\right)^{2}
$$

and even in the Tonks-Girardeau limit : $L_{\text {loc }}=\infty$!
N.Bilas \& N. Pavloff, Eur. Phys. J. D 40, 387 (2006)

Scattering of a dark soliton

One considers a dark soliton incident on a disordered region
N. Bilas \& N. Pavloff, Phys. Rev. Lett. 95, 130403 (2005)

The disordered potential reads ${ }^{a}$:

$$
\begin{equation*}
U(x)=\lambda \mu \xi \sum_{n} \delta\left(x-x_{n}\right), \tag{3}
\end{equation*}
$$

with x_{n} 's: uncorrelated random position of the impurities with mean density n_{i} $0=x_{1} \leq x_{2} \leq x_{3} \ldots$

[^0]One has $\left\langle U(x) U\left(x^{\prime}\right)\right\rangle-\langle U(x)\rangle\left\langle U\left(x^{\prime}\right)\right\rangle=\left(\frac{\hbar^{2}}{m}\right)^{2} \sigma \delta\left(x-x^{\prime}\right)$,
with $\sigma=n_{\mathrm{i}} \lambda^{2} / \xi^{2}$.

A dark soliton with velocity V has an energy $E_{\text {sol }}$

$$
E_{\mathrm{sol}}=\frac{4}{3} \mu\left(\frac{a_{1}}{\xi}\right)\left(1-\frac{V^{2}}{c^{2}}\right)^{3 / 2} .
$$

In the limit $\lambda \ll 1^{\mathrm{a}}$ and $V^{2} \gg \lambda c^{2} \mathrm{~b}$ a soliton scattering on a single impurity radiates an energy $E_{\text {rad }}^{+}+E_{\text {rad }}^{-}$with

$$
\left[\begin{array}{l}
\text { where for } v=V / c \in[0,1] \\
F^{ \pm}(v)=\frac{\pi}{16 v^{6}} \int_{0}^{+\infty} \frac{y^{4}\left(-v \pm \sqrt{1+y^{2} / 4}\right.}{d y} \frac{\sinh ^{2}\left[\frac{\pi y \sqrt{1+y^{2} / 4}}{2 v \sqrt{1-v^{2}}}\right]}{} \\
\text { N. Bias \& N. PavVoff, Phys. Rev. A 72, 033618 (2005) }
\end{array} .\right.
$$

[^1]In the limit $\xi \ll \frac{1}{n_{i}}$. the scattering of the soliton by the impurities can be treated as a sequence of independent events. This leads to

$$
\frac{d V}{d x}=\frac{c}{4 x_{0}} \frac{F^{+}(V / c)+F^{-}(V / c)}{\frac{V}{c} \sqrt{1-(V / c)^{2}}} \quad \text { with } \quad x_{0}=\frac{a_{1}}{\sigma \xi^{3}}
$$

If $v=V / c \rightarrow 1$ one has $F^{+}(v)+F^{-}(v)=\frac{4}{15}\left(1-v^{2}\right)^{5 / 2}$.
This yields :

$$
V(x)=c \sqrt{1-\frac{1-V_{\text {init }}^{2} / c^{2}}{1+\left(1-V_{\text {init }}^{2} / c^{2}\right) \frac{2 x}{15 x_{0}}}} .
$$

In these plots

$$
x_{0}=\frac{a_{1}}{\sigma \xi^{3}}
$$

$$
V(x) \simeq c\left(1-\frac{15 x_{0}}{4 x}\right)
$$

independent of $V_{\text {init }}$.

The soliton has disappeared when $\Delta N \sim 1$. This happens for a critical velocity $V_{\mathrm{cr}}=c\left[1-\left(\xi / 2 a_{1}\right)^{2}\right]^{1 / 2}$. Hence the distance covered by the soliton in the disordered region before decaying is

$$
L=30 a_{1}\left(\frac{a_{1}}{\xi}\right)^{2} \times \frac{1}{\sigma \xi^{3}}
$$

Partial Conclusion

(1) The soliton is accelerated until it reaches the speed of sound and disappears.
(2) Its decay is algebraic and not exponential.
(3) The length covered in the disordered region is independent of the initial velocity of the soliton (as is the traveling time).

A (nonlinear) beam incident on a disordered region of size L

What are the density profile, the transmission coefficient and the drag exerted on the obstacle when the velocity V of the beam with respect to the obstacle is finite?

How do these properties scale with L ?

In the frame where the beam is at rest :

$$
-\frac{\hbar^{2}}{2 m} \partial_{x}^{2} \psi+\left[U(x-V t)+g|\psi|^{2}\right] \psi=i \hbar \partial_{t} \psi
$$

Global Picture : conflict between superfluidity and localization

disorder of type (3) with $\lambda=0.5$ and $n_{\mathrm{i}} \xi=0.5 \quad\left(\mu \gg U_{\mathrm{typ}}\right)$.

Superfluid (and subsonic) regime
In this regime (stable with respect to time evolution), only local and stationary perturbations around the impurities.
Perfect transmission of the matter wave. No drag is exerted on the potential, but the flow is associated to a momentum

$$
P=\hbar \int \mathrm{d} x\left[n(x)-n_{0}\right] \partial_{x} S,
$$

where S is the phase of ψ.
This allows to determine the mass of the non superfluid component $M_{\mathrm{n}}=P / v_{\text {beam }}$. Defining $M=m n_{0} L$ perturbation theory yields

$$
\begin{aligned}
& \frac{M_{\mathrm{n}}}{M}=\frac{m^{2}}{2 \hbar^{4} \kappa^{3} L} \int_{\mathbb{R}^{2}} \mathrm{~d} y_{1} \mathrm{~d} y_{2} U\left(y_{1}\right) U\left(y_{2}\right)\left(1+2 \kappa\left|y_{1}-y_{2}\right|\right) \mathrm{e}^{-2 \kappa\left|y_{1}-y_{2}\right|} . \\
& M_{\mathrm{n}} / M \ll 1 \text { when }|\delta n(x)| \ll n_{0} .
\end{aligned}
$$

Supersonic stationary regime

Ohmic (\equiv perturbative) region

$\delta n(X) \simeq \frac{2 m n_{0}}{\hbar^{2} \kappa} \int_{-\infty}^{X} \mathrm{~d} y U(y) \sin [2 \kappa(X-y)]$,
where $X=x-V t$. This yields $\langle T\rangle \simeq 1-L / L_{\text {loc }}$ where

$$
\begin{equation*}
L_{\mathrm{loc}}(\kappa)=\frac{\kappa^{2}}{\sigma} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad \kappa=\frac{m}{\hbar}\left|V^{2}-c^{2}\right|^{1 / 2} \tag{5}
\end{equation*}
$$

probability distribution of T :
$P(T)=\frac{L_{\mathrm{loc}}}{L} \exp \left\{-(1-T) \frac{L_{\mathrm{loc}}}{L}\right\}$.
bottom plot $: L / L_{\mathrm{loc}}=0.1 \longrightarrow$

Anderson localization

$L>L_{\text {loc }}$: non perturbative. One can device a diffusion equation for T yielding (for $L \gg L_{\text {loc }}$)

$$
\langle\ln T\rangle=-L / L_{\mathrm{loc}}(\kappa),
$$

where $L_{\text {loc }}(\kappa)$ is given by Eqs. $(4,5)$.

The probability distribution reads
$P(\ln T)=\sqrt{\frac{L_{\text {loc }}}{4 \pi L}} \mathrm{e}^{-\frac{L_{\text {loc }}}{4 L}\left(\frac{L}{L_{\text {loc }}}+\ln T\right)^{2}}$.
figure drawn for $V / c=30 \longrightarrow$ bottom plot : $L / L_{\text {loc }}=2.4$

Picture in the supersonic regime:

- $L_{\text {loc }}$ has the same expression as for non-interacting particles with

$$
\begin{aligned}
\frac{m V}{\hbar}=k & \rightarrow \kappa=\frac{m}{\hbar} \sqrt{V^{2}-c^{2}}=\sqrt{k^{2}-\frac{1}{\xi^{2}}} \\
L^{*} & =\frac{1}{2} L_{\mathrm{loc}}(\kappa) \ln \left(\frac{V^{2}}{8 c^{2}}\right)
\end{aligned}
$$

Conclusion

Different types of set-ups lead to a large variety of phenomena :
\rightarrow Algebraic decay of a dark soliton.
\rightarrow Anderson localization: non-interacting elementary excitations or supersonic beams in presence of interaction.
\rightarrow For a beam : time dependent regime (for $L \geq L^{*}$) different regimes \Rightarrow different heating rates

Prospects

- near future:
\rightarrow elementary excitations :
\rightarrow Wave-packet :
influence of the longitudinal trapping
Bragg spectroscopy
- not too distant future:
\rightarrow Role of dimensionality (BKT/localization in 2D)
\rightarrow Phase coherence issues (in 1D or at finite T)

Experimental results

LENS - University of Firenze

- Study of discrete collective modes (dipolar and quadrupolar) in the transverse Thomas-Fermi regime.

10 milanoend part trumit

J. E. Lye et al., Phys. Rev. Lett. 95, 070401 (2005).
\hookrightarrow dipolar excitation $\left(\omega=\omega_{\text {long }}=2 \pi \times 8.74 \mathrm{~Hz}\right.$, the longitudinal trapping frequency) one observes a damping over a typical length
$L_{\text {loc }}^{\exp } \simeq 1 \mathrm{~mm}($ for $\langle U\rangle / \mu=0.06) . L_{\text {loc }}^{\exp } \gg L_{\text {long }}(\simeq 0.1 \mathrm{~mm})$.
\hookrightarrow In this regime the localization length reads :

$$
\begin{equation*}
L_{\mathrm{loc}}=\frac{\xi^{2}}{2 r_{c}}\left(\frac{\mu}{\langle U\rangle}\right)^{2}\left(\frac{\mu}{\hbar \omega}\right)^{2}\left(1-\frac{2\langle U\rangle}{\mu}\right)^{3} \tag{6}
\end{equation*}
$$

r_{c} being the correlation length of $U(x)$, defined as
$\int_{\mathbb{R}} \mathrm{d} x\left\langle U_{1}(x) U_{1}(0)\right\rangle=r_{c}\langle U\rangle^{2}$ where $U_{1}(x)=U(x)-\langle U\rangle$.
For $\omega=\omega_{\text {long }},(6)$ leads to $L_{\text {loc }}^{\text {theo }} \simeq 7 \mathrm{~mm}!!$

IOTA - Orsay-Palaiseau

- quasi-1D BEC, in the transverse Thomas-Fermi regime, with a length $L_{\text {long }}=300 \mu \mathrm{~m}$
$\langle U\rangle / \mu=0.2, r_{c}=5.2 \mu \mathrm{~m}$ and $\xi=0.16 \mu \mathrm{~m}$.

- If $\omega=\omega_{\text {long }}=2 \pi \times 6.7 \mathrm{~Hz}$ (dipole), one gets $L_{\text {loc }}=6 \mathrm{~mm}$!
- But if $\omega=8 \times \omega_{\text {long }}$, then $L_{\text {loc }} \sim 275 \mu \mathrm{~m}<L_{\text {long }}$.

Bright soliton incident on a disordered potential

attractive effective interaction $\left(a_{1} \rightarrow-a_{1}\right)$. A bright soliton is characterized by 2 parameters : N and V. It has an energy $E_{\text {sol }}$ with

$$
\frac{E_{\mathrm{sol}}}{N}=\frac{1}{2} m V^{2}-\frac{1}{3} \frac{\hbar^{2}}{m a_{1}^{2}} N^{2} .
$$

if $m V^{2} \gg \hbar^{2} N^{2} /\left(m a_{1}^{2}\right): V \sim C^{\text {st }}$ and N decreases exponentially. if $m V^{2} \ll \hbar^{2} N^{2} /\left(m a_{1}^{2}\right): V$ and N tend to a $C^{\text {st }}$.
Y. S. Kivshar, S. A. Gredeskul, A. Sánchez \& L. Vázquez, Phys. Rev. Lett. 64, 1693 (1990).

BEC in presence of disorder ?

- In the case of strong disorder :
\hookrightarrow phase transition at $T=0 \rightarrow$ "Bose glass" : non-superfluid.
\hookrightarrow The system can no longer be described by GPE.
- Here we consider only the case of weak disorder.
\hookrightarrow only slightly decreases the condensate and the superfluid fraction K. Huang \& H. F. Meng, Phys. Rev. Lett. 69, 644 (1992); S. Giorgini, L. Pitaevskii \& S. Stringari, Phys. Rev. B 49, 12938 (1994).
\hookrightarrow more precisely, for $U(x)=\lambda \mu \xi \sum \delta\left(x-x_{n}\right)$, the depletion of the condensate is proportional to $n_{\mathrm{i}} \xi \lambda^{2} \ll 1$ here.
G. E. Astrakharchik \& L. P. Pitaevskii, Phys. Rev. A 70, 013608 (2004)
T. Paul, P. Lebœuf, P. Schlagheck \& N. Pavloff, cond-mat/0702591

Diffusion equation for the transmission

First integral in regions where $U(x) \equiv 0$ (between x_{n} and x_{n+1} say)

$$
\frac{\xi^{2}}{2}\left(\frac{\mathrm{~d} A}{\mathrm{~d} X}\right)^{2}+W[A(X)]=E_{\mathrm{cl}}^{n}
$$

where $A=|\psi| / \sqrt{n_{0}}, E_{\mathrm{cl}}^{n}$ is a constant and $W(A)=\frac{1}{2}\left(A^{2}-1\right)\left(1+v^{2}-A^{2}-v^{2} / A^{2}\right)$. From the final $E_{\mathrm{cl}}^{N_{\mathrm{i}}}$ one computes the transmission ${ }^{a}$

$$
T=\frac{1}{1+\left(2 \kappa^{2} \xi^{2}\right)^{-1} E_{\mathrm{cl}}^{N_{\mathrm{i}}}} .
$$

[^2]

Upper panel: $W(A)$ (drawn for $v=V / c=4$). $A_{0}(=1)$ and A_{1} are the zeros of $\mathrm{d} W / \mathrm{d} A$. The fictitious particle is initially at rest with $E_{\mathrm{cl}}^{0}=0$. The value of E_{cl} changes at each impurity. The lower panel displays the corresponding oscillations of $A(X)$, with two impurities (vertical dashed lines) at $x_{1}=0$ and $x_{2}=4.7 \xi$.

slide 27

[^0]: $a_{\text {cf. Y. S. Kivshar, S. A. Gredeskul, A. Sánchez \& L. Vázquez, Phys }}$ Rev. Lett. 64, 1693 (1990)

[^1]: $\mathrm{a}_{\text {This ensures that }}$ the impurity only weakly perturbs the constant density profile.
 $\mathrm{b}_{\text {This ensures that }}$ the scattering process can be treated perturbatively.

[^2]: $a^{\text {P. Lebœuf, N. Pavloff \& S. Sinha, Phys. Rev. A 68, } 063608}$ (2003)

