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quasi-1D condensates :

quasi-1D condensate (I0TA)

longitudinal size ~ 10?um
g %
. radial confinement
transverse size ~ 1um pulsation & ol
tic t
(a) Hggnellc Zp optical guide
y / h : : .
; : armonic radial confinement :
=gy |7 1
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1.6 mm

W. Guérin et al., Phys. Rev. Lett. 97, 200402 (2006)
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1D regime a : 3D s-wave scattering length (a > 0)

a2m Wl

h

e The first inequality allows to avoid the Tonks-Girardeau regime and

< na< 1. (1)

implies that the interaction energy between atoms is weak compared to the

kinetic energy. It implies Ly >> & Ly = ¢€exp {w\/ fin g }

2maw_]_

e the second inequality allows to avoid the 3D-like transverse
Thomas-Fermi regime and implies that the chemical potential 1 (measured

relatively to the transverse ground state) is small compared to hw .

(1) being fulfilled, one gets into the 1D mean field regime where the system
is described by (z,t) verifying

2
_j_magw + (Uext (@) + g |91?) ¥ = ih e, (2)

where [|? = n1(z,t) is the longitudinal density of the condensate,

and g = 2hw, a = h*/(ma1), —a; being the 1D scattering length.
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General considerations

i . . interaction in phase coherent systems
e Mesoscopic physics with BECs : b y )

non-linear transport.

e Advantage : large range of interaction regimes :
~ From “atom lasers” practicaly without interaction — strongly correlated
1D systems
~+ simple theoretical framework (Bose-Hubbard/GPE)

e Situations of 1D transport :

v —> Interferences
\ — Bloch ocillations
_ . — Quantification of conductance
disordered region ) )
T | — U. (x) —> Strong and weak Localization
s — Josephson junctions

e / ; Sup erHUi dlty
—> SO 1 lt ons
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Anderson Localization in 1D systems

—> aCOU.StiC WaVvVes: 1983 C. H. Hodges & J. Woodhouse, J. Acoust. Soc. Am. 74, 894 (1983)

< 3" sound in *He films: 1988

D. T. Smith et al., Phys. Rev. Lett. 88, 1286 (1988)

< light: 1994

see also M. V. Berry & S. Klein, Eur. J. Phys. 18, 222 (1997)

— importance of phase coherence: L ~ L, < Ly

— Fll‘St eXpel‘lmental eVIdence Gershenson et al., Phys. Rev. Lett. 79, 725 (1997)

SN importance Of the type D. Clément et al., Phys. Rev. Lett. 95, 170409 (2005)

C. Fort et al., Phys. Rev. Lett. 95, 170410 (2005)
of disorder T. Schulte et al., Phys. Rev. Lett. 95, 170411 (2005)
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Scattering of an elementary excitation

it is a linear problem, one expects Anderson localization, i.e., the
transmission through a disordered slab of length L scales as
T ~exp{—L/Lioc}. Lioe(w) is the localization length.

Bogoliubov spectrum

Elementary excitations are

e Phonons at low energy :
hw = cp (for hw < p),

e F'ree particles at high energy :
hew = 1+ p° /2m (for hw > p).
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Accordingly one expects :

o L. X w 2 at low energy
(as for phonons)

e [i,c x w at high energy

(as for non interacting particles).

. (hw/p)? + 1
T (hw/m)Z 11

2 o 2 4 6
In(hw/ )

In the hydrodynamical limit hiw < p one can get into the transverse
Thomas-Fermi limit

D N S Q(ﬂ)Q
¢ % Tc <Udis> hw ’

and even in the Tonks-Girardeau limit :

N.Bilas & N. Pavloff, Eur. Phys. J. D 40, 387 (2006)
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Scattering of a dark soliton

One considers a dark soliton incident on a disordered region

N. Bilas & N. Pavloff, Phys. Rev. Lett. 95, 130403 (2005)

The disordered potential reads® :

15

8 U(z) = Ap§ E o(x—xn), (3)
cC 1 n
~
N_ . . .
’;TOS with x,’s: uncorrelated random position
= of the impurities with mean density n;
0—40 -20 0 20 40 60 80 O = T S X2 S I3...
X/ &
Cch. Y. S. Kivshar, S. A. Gredeskul, A. Sanchez & L. Vazquez, Phys.
Rev. Lett. 64, 1693 (1990)
One has o
with o
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A dark soliton with velocity V has an energy F.

=

3/2 —

E 4 al 1 V2 / |-U805
a=zi\e) T s
)

Luo

o

Vi '

In the limit A < 1 # and V? > )\ ¢? P a soliton scattering on a single
impurity radiates an energy E q T Eo.q with
(~ where for v = V/c € [0, 1] N

- + oo y4 <—v:|:\/1—|—y2/4>

16 v6 /0 w \/ 2

v 1 4
inh2 {Wy +y</ ]

2’0\/1—1}2

\__ N. Bilas & N. Pavloff, Phys. Rev. A 72, 033618 (2005) _J

Erad % >\2 Fj:(V/C) ) F:I:(U) =

@ This ensures that the impurity only weakly perturbs the constant density profile.

This ensures that the scattering process can be treated perturbatively.
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In the limit the scattering of the soliton by the impurities
can be treated as a sequence of independent events. This leads to
av FH(V F=(V
av _ ¢ (V/e)+ F~(V/e) with xozﬂ
dr  4zg  YV.\/1—(V/ec)? o &?

If v =V/c— 1 one has F*(v)+ F~(v) = = (1 —2)2)5/2.
This yields :

1— V2 /c2
V4 _ 1 — init
(55) C\/ 1+ (1 _V?Ht/c2) 21

51‘0
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0 20 40 60 80 100
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X/[X

In these plots

ai

For z > xo one has

15330
~ 1—
Vi) =e(1- 520,

independent of Vinit.
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The soliton has disappeared when AN ~ 1. This happens for a critical velocity
Ver = ¢[1 — (€/2a1)?]*/2. Hence the distance covered by the soliton in the
disordered region before decaying is

ai 2 1
L =30a; | — X —.
§ o&?

(1) The soliton is accelerated until it reaches the speed of sound and

Partial Conclusion

disappears.
(2) Its decay is and not exponential.

(3) The length covered in the disordered region is independent of the
initial velocity of the soliton (as is the traveling time).
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A (nonlinear) beam incident on a disordered region of size L

n(x)

Ux) V=0

] -

| L |

incident

transmitted <
- reflected
. —
finite V

In the frame where the beam is at rest :

7,—L2

What are the density profile,
the transmission coeflicient
and the drag exerted on the
obstacle when the velocity V/
of the beam with respect to
the obstacle is finite 7

How do these properties

scale with L7

02+ [U@ Vi) + gleP|w = ihow,

2m
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Global Picture : conflict between superfluidity and localization

2000
1500
time—dependent
NS
~ 1000
-l
superfluid
500
o
0 05 1 2 4 6 8 10 12 14

V/c

disorder of type (3) with A = 0.5 and n;§ = 0.5 (> Uyyp)-
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Superfluid (and subsonic) regime

In this regime (stable with respect to time

evolution), only local and stationary per-

turbations around the impurities.

Perfect transmission of the matter wave. <
No drag is exerted on the potential, but

the flow is associated to a momentum

P = h/dx[n(x) — o]0z S, " x=Vt)E"”

where S is the phase of .
This allows to determine the mass of the non superfluid component
M,, = P/Vpeam - Defining M = mngL perturbation theory yields

3 7 / dy1dysU (y1)U (y2) (1 + 2k|y1 — yo|Je 2117wzl
M 2h4/€3L R2

M, /M < 1 when |dn(x)| < ng.
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Supersonic stationary regime

L
Ohmic (= perturbative) region w
I o Vo 4 O Nl U(x)

V—>»

mmn X
5n(X) = 21210 / dy U(y) sinf2r(X—y)] |

2k J_ 1 . | .
: . - @ 4
where X = x — Vit. This yields 0.98 non interacting —
(T) ~ 1 — L/Lj,. where e i 1
5 0.96 — —
K ™
Ligc(k) = — . (4) - interalcting U
O I L
O'940 50 100
L/¢&
and m:%‘v2—02|1/2 . (D)
probability distribution of T :
Lioc Lioc S
P(T) = 2 exp{—(l—T) 1 } : o

bottom plot : L/Li,c = 0.1 —
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Anderson localization

L > Lo : non perturbative. One
can device a diffusion equation for
T yielding (for L > Lioc)

(InT) = —L/Lioc(K) ,
where L. (k) is given by Egs. (4,5).

The probability distribution reads

L ocC 2
P(nT) = \/ Lioe —g= (s +1n7)

figure drawn for V/c = 30 —
bottom plot : L/Ljo. = 2.4

1_ [ [ [ I I l I :

- (b) -

.k i

— L _

V

O 1 | | | | | | | |
0 5000 10000

L/¢&
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Picture in the supersonic regime :

L
I'~1- Lﬁ)c T ~ exp{— L{;C} (T) ~ 5%
| | | :
0 Lioe L* L
time >
dependent

e [, has the same expression as for non-interacting particles with

1
m—V:k—wf:T\/VQ—CQZ k2—€—2.

h h
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Conclusion

Different types of set-ups lead to a large variety of phenomena :

— of a dark soliton.

— Anderson localization: non-interacting elementary excitations or

supersonic beams in presence of interaction.

is renormalized in presence of interaction

— For a beam : | time dependent regime (for )

different regimes = different heating rates
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Prospects

e near future:

o influence of the longitudinal trapping
— elementary excitations :

Bragg spectroscopy

— Wave—packet . L. Sanchez-Palencia et al. cond-mat/0612670

e not too distant future:
— Role of dimensionality (BKT /localization in 2D)

— Phase coherence issues (in 1D or at finite 7))
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Experimental results
LENS - University of Firenze

e Study of discrete collective modes (dipolar and quadrupolar) in the
transverse Thomas-Fermi regime.

" Dipolar oscillations

position (um)

0
PO misconde par Imme

0 100 200

t (ms)

J. E. Lye et al., Phys. Rev. Lett. 95, 070401 (2005).
— dipolar excitation (w = wjong = 27 x 8.74 Hz, the longitudinal
trapping frequency) one observes a damping over a typical length

Ly7P ~ 1 mm (for (U)/pu=0.06). L;_” > Liopne (~ 0.1 mm).

loc
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— In this regime the localization length reads :

r. being the correlation length of U(x), defined as
Jr dz (U1 (2)U1(0)) = r(U)? where Uy (z) = U(z) — (U).

For w = Wieng, (6) leads to L ~ 7 mm !!
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IOTA - Orsay-Palaiseau

e quasi-1D BEC, in the transverse Thomas-Fermi regime, with a
length Lione = 300 pm

{U)/up=0.2, 7. =52 pm and £ = 0.16 pm.

o If w= wong =27 x 6.7 Hz (dipole), one gets Lij,c = 6 mm !

e But if w = 8 X Wigng, then Lige ~ 275 pm < Ligpg.
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Bright soliton incident on a disordered potential

attractive effective interaction

(a1 — —ay). A bright soliton is n=N’/(4a,)
characterized by 2 parameters : a1
N and V. It has an energy Fgg Né
with Z0s v
Bt 1oy 1 o
N 2 3 ma? —

L=2a, /N

if mV?> h*°N?/(ma?): V ~ C% and N decreases exponentially.
if mV?<h?*N?/(ma?): V and N tend to a C.

Y. S. Kivshar, S. A. Gredeskul, A. Sidnchez & L. Vizquez, Phys. Rev. Lett. 64, 1693 (1990).
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BEC in presence of disorder ?

e In the case of strong disorder :
— phase transition at T'= 0 — “Bose glass” : non-superfluid.

— The system can no longer be described by GPE.

e Here we consider only the case of weak disorder.

— only slightly decreases the condensate and the superfluid fraction

K. Huang & H. F. Meng, Phys. Rev. Lett. 69, 644 (1992); S. Giorgini, L. Pitaevskii & S. Stringari, Phys. Rev. B 49, 12938 (1994).
— more precisely, for U(z) = Ap &> 6(x — x,), the depletion of the
condensate is proportional to n; £ \> < 1 here.

G. E. Astrakharchik & L. P. Pitaevskii, Phys. Rev. A 70, 013608 (2004)
T. Paul, P. Lebeeuf, P. Schlagheck & N. Pavloff, cond-mat/0702591

slide 25



Diffusion equation for the transmission

First integral in regions where U(x) = 0

(between x,, and x,4+1 say)

¢ (day’ o
= (94)  wiapo) = m
where A = [¢|//no, E7} is a constant and
W(A) = 2(A% —1)(1 +v? — A2 — 02 /A?).

From the final Eé\{l one computes the trans-

mission®

1T = :
1 + (2/432 52)—1EN1

cl

@ p. Lebceuf, N. Pavioff & S. Sinha, Phys. Rev. A 68, 063608
(2003)

W(A) 5

o

P

(5 X/E é 10

Upper panel: W (A) (drawn for v = V/c = 4).
Ag(= 1) and Aq are the zeros of dW /dA. The
fictitious particle is initially at rest with Egl = 0.
The value of E | changes at each impurity. The lower
panel displays the corresponding oscillations of A(X),
with two impurities (vertical dashed lines) at x1 = 0O
and xo = 4.7 §&.
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Transmission

stationary

-
1 3 T T T T T T T T T :
0.1 'f =
| | | | | : |
0 1 1 | | . ol \'l :.'.1.:“ .I '." 1‘.. I.\:\ | | 1 | | | 1 1 1 \:
0 500 1000 1000 2000 3000
exponential algebraic
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