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Bose-Einstein beams: Coherent propagation through a guide

P. Leboeuf and N. Pavloff
Laboratoire de Physique The´orique et Mode`les Statistiques,* UniversitéParis Sud, Baˆtiment 100, F-91405 Orsay Cedex, France
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We compute the stationary profiles of a coherent beam of Bose-Einstein-condensed atoms propagating
through a guide. Special emphasis is put on the effect of a disturbing obstacle present in the trajectory of the
beam. The obstacle considered~such as a bend in the guide, or a laser field perpendicular to the beam! results
in a repulsive or an attractive potential acting on the condensate. Different behaviors are observed when the
beam velocity~with respect to the speed of sound!, the size of the obstacle~relative to the healing length!, and
the intensity and sign of the potential are varied. The existence of bound states of the condensate is also
considered.
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I. INTRODUCTION

The field of Bose-Einstein condensation~BEC! of atomic
vapors is undergoing a rapid experimental development,
viding a rich new phenomenology and also allowing the te
ing of concepts that originated in other fields~mainly in the
theory of superfluidity, in nonlinear optics, and in atom
physics!. Along these lines, the possibility of building ato
lasers by guiding condensed particles through various ge
etries opens up the prospects of a rich variety of interferen
transport, and/or coherence phenomena. Cold atoms hav
ready been propagated in various guides~see, e.g.,@1–4# and
references therein!; more and more efficient coherent sourc
of atoms have recently been designed~using various output
coupling schemes; see Refs.@5–9#! and continuous guided
beams of condensed atoms will be accessible in the
future ~see the preparatory study@10#!.

The purpose of the present work is to explicitly determ
the different propagating modes of a beam of condensed
oms through a guide, as a function of the various exter
control parameters. We consider the simplest geometry
which a guide connects two reservoirs, and treat the cas
atoms with a repulsive effective interaction, such as
bidium and sodium. First, the transmission through a stra
guide is reevaluated: small amplitude density oscillatio
cnoidal waves, and gray solitons are possible propaga
modes. The main part of the paper is devoted to the stud
coherent transmission modes in the presence of an obst
We find that, as a function of the speed of the incoming be
and the size and depth of the perturbing potential, many
ferent transmission modes exist. For example, some are
tonlike modes~with a peak or a trough in the density! that
are pinned to the obstacle. They may also have density
cillations in the region of the obstacle. On the contrary, ot
modes are steplike shaped. In general, the modes ma
may not have a wake. The wake, however, always prece
the obstacle~it never occurs downstream!.

The obstacle is represented in our treatment by a pote
that acts on the condensate along the axis of the guide. It
be repulsive or attractive. There are at least two simple w

*Unité Mixte de Recherche de l’Universite´ Paris XI et du
CNRS ~UMR 8626!.
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to realize such an obstacle experimentally. The first is
bend the guide: a potential proportional to the square of
local curvature is created. This potential is always attract
In view of future applications of the atom laser to more co
plicated geometries, the presence of bends seems una
able and their study is therefore far from academic. The s
ond possibility is to illuminate the beam with a detuned la
field. Contrary to the case of a bend, attractive and repuls
potentials may be realized by varying the frequency of
laser. This latter method also has the advantage of allowin
better control of the relative speed between the obstacle
the beam~if using an acousto-optic deflector!.

In the case of attractive potentials, aside from the tra
mission modes there may also exist bound states in
guide, in which condensed atoms are trapped without po
bility of escape. These bound states are also analyzed h
In the case of a bend we show that, due to the intra-ato
interactions, the bound state can support only a limited nu
ber of condensed atoms, which is typically of the order
100 for rubidium and sodium. However, this number can
made much larger for an attractive potential originating fro
a red detuned laser field.

The paper is organized as follows. In Sec. II we set up
theoretical framework and notation. Our approach for d
scribing the condensate motion is based on a o
dimensional~1D! reduction of the Gross-Pitaevskii equatio
@11#. The solutions described here can in some instance
explicitly written in an analytic form, for example, in term
of elliptic functions. Although we use this opportunity i
some cases, we have chosen to keep the discussion at a
tative level. This allows us to cover a large range of expe
mental situations and gives a global view of all the possi
solutions in the different regimes of the control paramete
In Sec. III we study the existence of a bound state of
condensate created by an attractive potential. We determ
the maximum number of atoms the bound state can acc
modate. In Secs. IV–VII we study the propagation of a co
densate through a guide connecting two reservoirs.
analysis relies on an interpretation of the Gross-Pitaev
equation in terms of a fictitious classical dynamics. We foc
on different specific examples, starting with a straight wa
guide without any potential~Sec. IV!. We then study the
motion in the presence of an obstacle represented by an
tractive~Sec. V! and a repulsive~Sec. VI! square well. Sec-
©2001 The American Physical Society02-1
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tion VII presents two alternative treatments for determin
the transmission modes in the presence of an obstacle.
first one is a perturbative approach; the second approxim
the external potential by ad function. Section VIII contains
an analysis of the results in view of future experimental
alizations. We present our conclusions in Sec. IX. So
technical aspects concerning the adiabatic approxima
used for deriving the 1D reduction of the Gross-Pitaevs
equation are included in the Appendix.

II. AN EFFECTIVE ONE-DIMENSIONAL EQUATION

We consider BEC atoms at zero temperature confined
waveguide. Letx be the coordinate along the axis of th
guide~which is possibly bent! andrW' a perpendicular vecto
giving the transverse coordinates. We work in the adiab
regime where the local curvaturek(x) of the longitudinal
motion of the atoms is small. If the transverse extension
the wave function is denoted byR' , this is more precisely
defined by the limitR'k!1 and udk/dxu!1 ~see the Ap-
pendix!. In this regime one can considerx and rW' as Carte-
sian coordinates, for instance, the volume elementd3r is
approximatelydxd2r' .

It is consistent with the adiabatic approximation to ma
an ansatz for the condensate wave functionC(rW,t) of the
form @11#

C~rW,t !5c~x,t !f~rW' ;n! ~1!

wheref is the equilibrium wave function for the transver
motion, normalized to unity,*d2r'ufu251. c(x,t) de-
scribes the longitudinal motion, and the density per unit
longitudinal length is

n~x,t !5E d2r'uCu25uc~x,t !u2.

Notice that the transverse wave function depends param
cally on n(x,t). The adiabatic approximation is in fact
local density approximation in the sense that one assu
that the transverse motion is not affected by densities
points other thanx. As noted in Ref.@11# this corresponds to
the assumption that the transverse scale of variation of
profile is much smaller than the longitudinal one~and corre-
sponds indeed to the limitR'k!1).

The beam is confined by a transverse potentialV'(rW').
Keeping in mind experimental realizations, we often co
sider below the particular case of a harmonic trapp
V'(rW')5 1

2 v'
2 r'

2 (v' is the pulsation of the harmonic osci
lator; we set units such that\5m51). As shown in the
Appendix, within the adiabatic approximation the presen
of a bend results in an attractive longitudinal potentialVi(x)
given by

Vi~x!52k2~x!/8. ~2!

The Gross-Pitaevskii equations for the condensate
derived through a variational principle. One extremiz
the action
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2E d3rdt~C* ] tC2C] tC* !2E dtE @C#, ~3!

whereE @C# is the energy functional

E @C#5E d3r S 1

2
u¹W Cu212pascuCu41~Vi1V'!uCu2D .

~4!

asc is the s-wave scattering length of the interatomic pot
tial ~which is represented by ad function interaction!. In all
the present work, we consider the case of repulsive in
atomic interactions,asc.0. The extremization ofS with
Lagrange multiplier e(n) imposing the normalization
*d2r'uCu25n for eachx ~more precisely for eachn) leads
to the following equations@11#:

2
1

2
¹W '

2 f1~V'14pascnufu2!f5e~n!f ~5!

and

2
1

2
]xx

2 c1~Vi1e~n!!c5 i ] tc. ~6!

In Eq. ~6! the nonlinear terme(n) ~remember thatn
5ucu2) is determined as a function ofn from Eq. ~5!. In the
low-density limit ascn!1 the nonlinearity in Eq.~5! is
small. In this case, a perturbative solution of Eq.~5! leads to

e~n!5e012ascn/a'
2 , ~7!

wheree0 is the eigenenergy of the ground statef0 of the
transverse unperturbed Hamiltonian2 1

2 ¹W '
2 1V' , and a'

22

52p* uf0u4d2r' . For a harmonic confining potentiala'

5v'
21/2 is known as the oscillator length.

In the opposite large-density limitnasc@1 the Thomas-
Fermi approximation holds, namely, the kinetic term in E
~5! can be neglected.e is obtained as a function ofn through
the relationNTF(e)52ascn, where NTF is the integrated
Thomas-Fermi density of statesNTF(e)5*(e2V')Q(e
2V')d2r' /(2p). For a harmonic confining potential thi
reads

e~n!52v'Anasc1e0 . ~8!

We remark here that the Gross-Pitaevskii equation is v
in the dilute gas approximation, when the 3D densityn3D of
the gas satisfiesn3Dasc

3 !1 @12#. This reads herenasc

!(a' /asc)
2/n (n51 in the dilute regime andn51/2 for high

densities!. a' /asc being typically of order 103, this condition
will be considered as always fulfilled, even at high longit
dinal densities, whennasc@1.

On the other hand, the weakly interacting 1D Bose g
picture also breaks down at very low densities, in the Ton
gas regime~recent references relevant to this discussion
@13–16#!. This occurs in the regimenasc!(asc /a')2

;1026, which we thus discard from the present study.
2-2
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BOSE-EINSTEIN BEAMS: COHERENT PROPAGATION . . . PHYSICAL REVIEW A64 033602
Equation~6!, together with Eqs.~7! and~8!, are the main
results of this section. They provide an effective on
dimensional equation for the description of the dynamics
the condensate along the guide. Notice that in general
nonlinear term in Eq.~6! does not have the standard cub
form of the one-dimensional Gross-Pitaevskii equation. T
happens only in the low-density regimeascn!1 when the
nonlinear potential~7! is proportional toucu2.

We emphasize that Eq.~6! relies on an adiabatic approx
mation. It is well known that in many instances this appro
mation gives accurate results well beyond its strict domain
validity. Two examples relevant in the present context
Refs.@17# and@18#, where the propagation of waves~without
nonlinear effects! was studied in the extreme nonadiaba
case of waveguides with a discontinuous curvature an
sudden constriction, respectively. The adiabatic approxi
tion was nevertheless shown to be applicable in these
tems. On the basis of these examples~and of others!, one can
consider that the results presented here have a wide ran
validity.

For practical purposes it will appear useful in the follow
ing to introduce a longitudinal healing lengthj defined for a
constant longitudinal densityn as

1

2j2
5e~n!2e0 . ~9!

This givesj5 1
2 a'(nasc)

21/2 in the low-density regime and
j5 1

2 a'(nasc)
21/4 for high densities in a harmonic confinin

potential.
We now study in detail the different solutions of Eq.~6!.

Although the attractive potentialVi(x) appearing in the
equation of motion was due to the presence of a bend in
guide, our results are very general andVi(x) could be of a
completely different physical origin. In particular, we wi
consider in Sec. VI the case of arepulsivepotential, which
cannot be produced by a bend.

III. BOUND STATES

We first study the existence of bound states in the gu
due to an attractive potentialVi(x). The existence of bound
states in the quantum mechanical motion of noninterac
particles in a bent waveguide has been extensively con
ered in the past~see, e.g.,@19–21# and references therein!. It
has been shown by Goldstone and Jaffe that at least
bound state exists in two- and three-dimensional bent tu
@19# ~cf. the discussion in the Appendix!. The particle is
trapped because its energy is lower than the first propaga
mode of the straight guide. In the case of a condensed be
we are interested in whether bound states occur in the p
ence of interactions.

In the extreme dilute limitascn→0 Eq. ~6! reduces to an
ordinary one-dimensional Schro¨dinger equation and the ex
istence of a bound state inVi(x) is guaranteed by genera
theorems of quantum mechanics@22#. Hence there exists a
state of the condensate whose energy is lower than the
ergye0 of the first propagating mode of the guide. This sta
is localized in the region whereVi is noticeable, and we
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assume for simplicity that this happens in some finite reg
aroundx50. With increasing number of atoms in the co
densate the nonlinear effects come into play. The repuls
intra-atomic interaction increases the energy of the bo
state~as well as its spatial extension!, and there is a threshold
beyond which this state disappears. Therefore for a su
ciently large number of atoms no bound state is expecte
occur. We now determine the threshold quantitatively by
termining the maximum number of Bose-Einstein-conden
atoms the bound state can accommodate.

Near the threshold the state is very weakly bound, and
wave function extends over distances much greater than
range of the potentialVi . Hence, in this limit it is legitimate
to make the approximationVi(x)'ld(x), with l
5*2`

1`Vi(x)dx,0. This approximation is not contradictor
with the assumption of adiabaticity of the motion.

We look at stationary solutions of Eq.~6! of the form
c(x,t)5A(x)exp(2imt), m being the chemical potential an
A a real function. In the regions where the potential is ne
ligible ~i.e. for xÞ0 with the above replacement ofVi by ad
function! Eq. ~6! can be integrated once, giving an equati
for n(x)5A2:

2
n82

8n
1«~n!5mn where «~n!5E

0

n

e~r!dr. ~10!

With the convention defined in Sec. II, the normalization
*2`

1`n(x)dx5N, whereN is the total number of particles in
the bound state. The densityn can be shown to be an eve
function of x, and the matching condition atx50 reads
n8(01)52ln(0) ~the prime denotesd/dx). Using Eq.~10!
and these two conditions we arrive at a set of two equati
determiningn(0) andm as functions ofl andN,

l2

2
n~0!5«„n~0!…2mn~0! ~11!

and

E
0

n(0) ~n/2!1/2dn

A«~n!2mn
5N. ~12!

For solving this system, one needs to know the explicit fo
of the function«(n). We will see that for realistic values o
l corresponding to an attraction issued from a bend in
guide the bound state can accommodate only a small num
of particles. In the case of a bend, it is thus sensible to c
centrate on the low-density limit~see the estimate at the en
of this section!. Using Eq.~7!, in the low-density regime we
have«(n)5e0n1ascn

2/a'
2 and we obtain

m5e02
1

2 S E
2`

1`

Vi~x!dx1
asc

a'
2

ND 2

. ~13!

The first, negative, term inside the large parentheses is du
the attractive potential produced by the bend@cf. Eq. ~2!#,
while the second one comes from intra-atomic repulsive
teractions in the condensate. Equation~13! clearly displays
2-3
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P. LEBOEUF AND N. PAVLOFF PHYSICAL REVIEW A64 033602
the existence of a threshold. When the number of atomN
occupying the bound state increases, the chemical pote
m increases and eventually reaches the thresholde0 at which
the state disappears. This occurs for a number of atomsNmax
given by

Nmax5
a'

2

asc
U E

2`

1`

Vi~x!dxU. ~14!

For an arbitrary potential, asN→Nmax the spatial exten-
sion of the bound state diverges. Thus the approximation
Vi by a d-function is well justified in that limit, and we
expect Eq.~14! to be very accurate@23#.

The order of magnitude ofNmax can be estimated by con
sidering a bend of constant radius of curvatureRc and bend-
ing angle u. From Eqs. ~2! and ~14! we get Nmax

5a'
2 u/(8ascRc). For a guide withRc55a' , u5p/2, and

a' ranging from 1mm to 10mm, Nmax ranges from 7 to 70
atoms for a condensate of87Rb atoms (asc55.77 nm!. For
23Na, Nmax is doubled~since thes-wave scattering length o
23Na is asc52.75 nm).

If the attractive potential originates from a red detun
laser beam, using the estimate of Sec. VIII@Eq. ~53!# one
obtainsa'*2`

1`Vi(x)dx'106 ~to be compared to the valu
1021 that applies to a bend!. From this and from Eq.~14! it
follows that for rubidiumNmax can be as large as 109. In this
case, however, one does not remain in the low-density
gime where Eq.~14! holds @this regime is valid ifn(0)asc
!1, which from Eqs.~11! and ~14! gives Nmax!a' /asc
;103#. Working in the high-density regime instead, one o
tains

Nmax5
3a'

4

16asc
U E

2`

1`

Vi~x!dxU3

. ~15!

One gets from this equation a value ofNmax of the order of
1020. Note, however, that in this regime the high-density a
proximation is valid atx50, but violated for largex ~when
the density tends to zero!. Hence, without giving a precis
order of magnitude, it is nevertheless clear from the previ
estimates that the maximum number of atoms the bound s
can accommodate is very large in this case.

IV. TRANSMISSION MODES

From now on we concentrate on the stationary states
beam of condensed atoms connecting two reservoirs. For
purpose we look at the stationary solutions~in the reference
frame of the laboratory! of Eq. ~6! with c having a finite
value atx→6`. We write

c~x,t !5exp$2 imt%A~x!exp$ iw~x!% ~16!

with A andw real functions. Since the wave function exten
to infinity, the chemical potential satisfiesm.e0. The den-
sity is n5A2, and the beam velocity isv5w8. After factor-
izing out the phases, Eq.~6! splits into two real equations
corresponding to its imaginary and real parts. The form
03360
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imposes flux conservation, namely, the productn(x)v(x) is a
constant that we denote byF,

F5n~x!v~x!.

The real part gives a Schro¨dinger-like equation forA(x),

2
1

2
A91F e~n!1Vi1

F2

2n2GA5mA. ~17!

In this section we consider the transmission modes o
condensate through a straight waveguide with no obsta
This corresponds to solving Eq.~17! with Vi[0. The modi-
fications in the beam density and phase produced by
presence of an obstacle are considered in the following
tions. WhenVi[0, Eq.~17! can be integrated once, yieldin

1

2
A821W~n!5Ecl with W~n!52«~n!1mn1

F2

2n
.

~18!

«(n) in Eq. ~18! is the same as in Eq.~10! and Ecl is an
integration constant. This constant is denoted as a ‘‘class
energy’’ because Eq.~18! has an interpretation in terms o
classical dynamics. It expresses the energy conservation
one-dimensional Hamiltonian system for a fictitious classi
particle with ‘‘position’’ A and ‘‘time’’ x moving in a poten-
tial W(n5A2), Ecl being the total energy of the particle. Th
solutionsA(x) therefore coincide with the ‘‘classical’’ solu
tions in the potentialW(n5A2). The chemical potentialm
and the fluxF fix the shape of the potentialW(n), while Ecl
selects a ‘‘trajectory’’A(x) in this potential.

To clarify the physical meaning ofEcl consider the linear
~i.e., noninteracting! case«(n)50. Then the natural way to
write the solution~16! is a superposition of plane waves,

c~x,t !5exp$2 imt%@a exp~ ikx!1b exp~2 ikx1 iu!#,
~19!

wherek is the wave vector andu an arbitrary phase. In term
of the two real parametersa andb, the flux and the classica
energy are writtenF5k(a22b2) and Ecl5k2(a21b2).
Ecl is therefore a measure of the total intensity of the left a
right incoming beams.Ecl can be varied while keepingF
and m constant@and thereforeW(n) constant# by changing
the amplitudesa andb simultaneously while preserving th
difference (a22b2).

For studying the shape ofW(n) in Eq. ~18! in the pres-
ence of interactions it is customary to plotm2dW/dn
5e(n)1F2/(2n2) as a function ofn, as represented in th
top part of Fig. 1. At low densities (n→0) the term
F2/(2n2) dominates. At high densities the intra-atomic i
teraction contained ine(n) takes over, and leads to a mon
tonic growth for large values ofn @due to the repulsive in-
teractions, e(n) is an increasing function ofn#. At
intermediate values there is a minimum at a density deno
n0. The relevant case~leading to finite densities at infinity!
corresponds tom>e(n0)1F2/(2n0

2), and is shown in Fig.
1. Then the derivative ofW(n) is zero for two densitiesn1
andn2, with n1<n0<n2. The corresponding plot of the po
2-4
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tentialW(n) is shown in the lower part of the figure. In orde
to have a finite density at infinity one should also impos
bounded motion of the fictitious classical particle, and t
results in the two additional conditions~i! W(n1)<Ecl
<W(n2) and ~ii ! n(x)<n2 for any value ofx.

The different types of solutionA(x) are therefore de-
scribed by the different motions a classical particle und
goes in a potentialW(n) at the allowed energiesEcl . The
two simplest solutions correspond to the fixed points of
potential,n(x)5n1 or n2, where the ‘‘classical’’ particle re-
mains at rest. They correspond to constant density soluti
Since the densities are different (n2.n1) and the flux has the
same valueF, the velocitiesv j ( j 51 or 2! of the condensed
beam are also different, withv2,v1 . v1 (v2) corresponds to
a beam velocity above~below! the speed of sound. To se
this, we first note~see below! that for a condensateat rest
~i.e., v[0) with uniform densityn(x)5n, the sound veloc-
ity c is defined by

c2~n!5n
de

dn
. ~20!

In the case of a moving condensate with uniform densityn,
one has a well defined velocityv5F/n given by m5e(n)
1 1

2 v2 @see Eq.~17!#. From Eqs.~18! and~20!, moreover, we
haved2W/dn25@v22c2(n)#/n. Sinced2W/dn2 at n1 (n2)
is positive ~negative!, it follows that v1.c(n1) @v2
,c(n2)#.

We now consider the density profile of the transmiss
modes in the vicinity of the constant solutionn(x)5n1. For
energiesEcl slightly higher thanW(n1) the stationary solu-
tions are sinusoidal waves of the form

FIG. 1. Schematic behavior of the functionse(n)1F2/2n2 ~top
part! andW(n) ~bottom part! as a function ofn. ni ( i 51 or 2! is
defined bye(ni)1F2/2ni

25m and is a zero ofdW/dn; n0 is a zero
of the second derivatived2W/dn2. For givenm andF, a beam of
uniform density has either a densityn1 @and a velocity higher than
the sound velocityc(n1)# or a densityn2 @and a velocity lower than
c(n2)#. At a givenEcl , nmin andnmax are the minimum and maxi
mum values of the density oscillations@W(nmin)5W(nmax)5Ecl#.
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A~x!5A11
A2

k
@Ecl2W~n1!#1/2cos~kx1u!, ~21!

wherek25d2W/dA2uA1
54@F2/n1

22c2(n1)# and n15A1
2 is

the constant density. This sinusoidal wave is reminiscent
sound wave, but sound waves are progressive whereas
~21! describes a standing wave. The structure of the so
wave ~and the whole spectrum of elementary excitations! is
better displayed by a slight modification of the procedu
used so far. Instead of the stationary ansatz~16! one looks for
solutions of the formc(x,t)5exp$2imt%A(x2ut)exp$if(x
2ut)%, whereu is a constant parameter, physically interpret
as the velocity of an arbitrary moving frame. Mass cons
vation now readsF5n(v2u) (F is the flux in the moving
frame! and Eqs.~17! and ~18! keep the same form, withm
replaced bym1u2/2, all functions now depending onX5x
2ut and not merely onx. The constant solutionn(x)5n1
can now be given zero velocity (v150) if one choosesu
such thatu1F/n150 ~this is of importance because on
wishes to study elementary excitations in a system at rest!. In
this case, a perturbative treatment of Eq.~18! for Ecl near
W(n1) again gives a solution of the form~21! with x re-
placed byX. This is a progressive wave depending onkX
5kx2vkt with vk5ku, and thus satisfying the Bogoliubo
dispersion relation

vk
25k2S n1

de

dnU
n1

1
k2

4 D . ~22!

The long-wavelength limit of Eq.~22! corresponds indeed to
sound waves with a sound velocityc(n1) given by Eq.~20!.
It is also possible to obtain in this way the dispersion relat
of the elementary excitations of a beam moving at cons
velocity v1 @which is simply Eq.~22! Doppler shifted#.

Note that our approach is unable to reproduce the
crease of slope of the spectrum of elementary excitations
occurs in the high-density regime, for wave vectorsk of the
order of the transverse extensionR' of the condensate. This
effect, predicted in Refs.@24,25# and observed numerically
in @26# goes beyond the quasi-1D approach: it occurs wh
the excitation has a wavelength allowing exploration of s
regions of the condensate that have lower local sound ve
ity. Hence, it cannot be reproduced by using the adiab
ansatz~1!.

The structure of the stationary solutions for energiesEcl
close to~but lower than! W(n2) is totally different from the
sinusoidal waves we just discussed@which exist for Ecl
*W(n1)#. The uniform solutionn(x)5n2 coexists with a
solitary wave corresponding in the classical analogy to a m
tion along the separatrix located atEcl5W(n2). This solitary
wave has constant densityn2 at x→6`, and a trough whose
minimum density satisfies the conditionW(nmin)5W(n2)
~cf. Fig. 2, top part!. As the energy is lowered fromEcl
5W(n2), density oscillations appear whose amplitude d
creases asEcl diminishes. These solutions are cnoidal wav
~see, e.g.,@27#! with periodic oscillation between two value
nmin and nmax, as defined in Fig. 1. As the energyEcl is
2-5
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further reduced the density profile tends continuously to
sinusoidal waves discussed above. This transition is il
trated in Fig. 2, which is drawn in the high-density regim
for a transverse harmonic confining potential@i.e., with e(n)
given by Eq.~8!#. The same qualitative behavior is valid fo
any density regime.

Figure 2 summarizes the possible density profiles of
transmission modes of the condensate along a straight g
In the remaining sections we consider the modifications
duced by the presence of an obstacle in the flow of the c
densate. Finding the transmission modes now reduces
scattering problem in which two of the ‘‘free’’ modes dis
cussed in this section are matched by the potential repres
ing the obstacle. The correct boundary conditions to be
posed are determined by the relative value of the ph
velocity

vp~k!5
vk

k
~23!

with respect to the group velocity

vg~k!5
]vk

]k
5vp~k!S 11

k2

k214c2~n!
D . ~24!

Both functions start from the valuec(n) at k50 and then
increase monotonically, withvg(k).vp(k) for any k.0.
For the stationary motion of an obstacle in a condensat
rest,vp coincides with the velocity of the obstacle with r
spect to the beam; this is the condition of stationarity. T
energy transferred to the fluid propagates with a velocityvg
greater than the velocity of the obstacle with respect to

FIG. 2. Beam density along a straight guide~high-density re-
gime! with v2 /c250.7 @lengths are given in units ofj(n2); see Eq.
~9!#. Top: solitary wave@Ecl5W(n2)#. Middle: cnoidal waves ex-
isting for W(n1),Ecl,W(n2). Bottom: for Ecl*W(n1) the cnoi-
dal wave deforms continuously to a sinusoidal small-amplitu
wave.
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beam~sincevg.vp). As a consequence, radiation conditio
require that the wake is always locatedaheadof the obstacle
~i.e., upstream in a frame where the disturbance is at re!,
with no long-range perturbation of the fluid on the dow
stream side@28#.

V. THE ATTRACTIVE SQUARE WELL

Having recalled the different solutions existing in
straight waveguide, we now discuss the influence on
transmission modes of a longitudinal potential representin
motionless obstacle placed in the trajectory of the bea
Specifically, we consider a potentialVi(x) that vanishes ev-
erywhere except in a finite region 0<x<s where it takes the
constant value2V0 (V0.0). If its origin is the presence o
a bend, the square well potential corresponds to a waveg
with a constant curvature over a finite length 0,x,s and
straight elsewhere@29#. Apart from considerations related t
its physical origin, this model potential is of interest becau
it allows one to understand in a simple case the differ
stationary regimes occurring also in more complex pot
tials.

An important point for the determination of the transm
sion modes of the condensate along the guide is the bo
ary conditions. As discussed at the end of the previous s
tion, among all the possible stationary solutions that exis
the presence of a scattering potential, the only physical o
are those that tend to a flat density downstream. Hence
consider density profiles tending to a flat density atx→
2`, with n(x→2`)→n` , and with anegativevelocity
v`5F/n` . The sound velocity at infinityc`5c(n`) will
also be chosen negative in all the following. This corr
sponds to a beam incoming from the right, unperturbed
downstream by the presence ofVi , and characterized by th
two parametersv` and n` @or equivalently bym and F,
since m5e(n`)1v`

2 /2 and F5n`v`#. Moreover, we will
systematically express lengths in units ofj5$2@e(n`)
2e0#%21/2 @cf. Eq. ~9!#.

When Vi is a square well, Eq.~17! takes a particularly
simple form. Everything happens as for a straight wa
guide, except thatm in Eq. ~17! is shifted tom1V0 in the
region 0<x<s. Hence, as in the case of a straight guid
one has an integral of motion, but it takes a different value
each portion of space,

1

2
A821W~n!5Ecl

2 , x<0,

1

2
A821W~n!1V0n5Ecl

0 , 0<x<s,

1

2
A821W~n!5Ecl

1 , s<x. ~25!

W(n) in Eq. ~25! is defined as in Eq.~18!. Ecl
2 , Ecl

0 , andEcl
1

are the values of the integration constant in each reg
Since the solution is flat far downstream~whenx→2`) one

e

2-6
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hasEcl
25W(n`). The matching atx50 andx5s imposes

continuity of the density and of its derivative. This leads

Ecl
21V0n~0!5Ecl

0 5Ecl
11V0n~s!. ~26!

Different types of solution satisfying Eqs.~25! exist, depend-
ing whether the far downstream beam velocityv` is greater
or smaller than the speed of soundc(n`)5c` . We consider
these two different regimes separately.

A. Low beam velocity: v` Õc`Ë1

The first type of solution we consider is rather intuitive
employing a perturbative treatment~see Sec. VII!. It corre-
sponds to solutions with an increased density in the regio
the potential. In the following, we refer to these solutions
B solutions~whereB stands for bump!.

TheB solutions are found by looking for solutions with
density increasing whenx moves fromx52` toward the
origin. Since atx→2` the density has the constant valu
n` , and since we are imposingv` /c`,1, n` coincides with
the uniform density denotedn2 in Sec. IV, and Ecl

2

5W(n`). But unlike the solitary wave of Sec. IV in whic
the density decreases, in a type-B solution we move to the
right of n`5n2 along the separatrix~see Fig. 3! and theB
solution has a density peak instead of a trough.

Since the boundary conditions are fixed downstream, h
and in all the following we find it more convenient to inte
grate Eqs.~25! starting far in the rear of the obstacle, i.e
from left infinity ~remember that the beam is incident fro

FIG. 3. Type-B stationary solution in an attractive square we
The left plot displays the density profile. The two vertical solid lin
indicate the location of the square well. This plot corresponds
s52j and V0j250.5 in a low-density beam at velocityv` /c`

50.7 @the healing lengthj is defined as in Eq.~9! and is computed
at densityn`#. The right plot illustrates the behavior of the solutio
in the diagram„n,W(n)…. The solid curve representsW(n) and the
dashed oneW0(n). In the rear of the obstacle, the density evolv
from n` to n(0) in the potentialW(n) with a classical energyEcl

2

5W(n`), then fromn(0) to nmax,0 and back ton(0) in the poten-
tial W0(n) ~with energyEcl

0 ), and finally the upstream density goe
from n(0) to n` in W(n).
03360
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the right!. Starting from a valuen` at x52`, the density
has reached a valuen(0) at x50. From this point on the
equivalent ‘‘classical particle’’ moves in the potential

W0~n!5W~n!1V0n ~27!

at an energyEcl
0 5Ecl

21V0n(0). At x5s it evolves again in
W(n). Since to reach a finite density whenx→1` one
needs to haveEcl

1<W(n`)5Ecl
2 , from Eq.~26! this imposes

n(s)>n(0). But, if the inequality is strict, one hasEcl
1

,W(n`) and n(s).n(0)>n` : this case should be ex
cluded since from Fig. 1 one sees that this leads to a div
ing density at right infinity~the classical particle escapes
infinity!. Hence one should haven(0)5n(s), Ecl

15Ecl
2 and

the B solutions are even.
These solutions exist for any type of attractive squ

well. For a given beam~characterized byn` and v`) and
given values ofs andV0, the value ofA(0) is determined by
demanding that the amplitude varies fromA(0) to its maxi-
mum valueAmax,0 and back over a distances. Amax,0 is
determined as a function ofA(0) from the equationW0(A)
5Ecl

0 whose two smallest positive solutions are deno
Amin,0 and Amax,0 ~in all the following we denote with an
index ‘‘0’’ the quantities concerningW0 and defined as forW
in Fig. 1!. We have

s52E
A(0)

Amax,0 dA

A8
5A2E

A(0)

Amax,0 dA

AEcl
0 2W0~A!

. ~28!

For sufficiently smalls the only existingB solution is the
one described above. However, newB solutions appear as
the widths increases, because the ‘‘classical particle’’ befo
evolving back inW(n) has enough ‘‘time’’ to make one~or
several! oscillations inW0(n). The general density profile o
theB type increases fromn` at x52`, up tox50, and has
N maxima andN21 minima betweenx50 andx5s, with
N51,2,3 . . . We denote this aBN solution. Figure 3 corre-
sponds to aB1 solution. The behavior of aB2 solution is
illustrated in Fig. 4. For an arbitraryN, Eq. ~28! takes the
form

s52E
A(0)

Amax,0 dA

A8
12~N21!E

Amin,0

Amax,0 dA

A8
, ~29!

where Amin,0 and Amax,0 are, as indicated before, the tw
smallest positive solutions ofW0(A)5Ecl

0 . The width of the
potential below which a given solution disappears occ
when A(0)5An`5Amax,0 . In this case the solution is per
fectly flat for x<0 andx>s and is a portion of a cnoida
wave ~with N oscillations! in the region 0<x<s. For a
given V0, this forcess to be larger than the valuesN(V0),

s>sN~V0!5A2~N21!E
An`

Amax,0 dA

AEcl
0 2W0~A!

. ~30!

Other types of solution, different from theB family, exist
for a beam velocity lower than the speed of sound. Th
correspond to density profiles thatdecreasefrom the down-

o
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stream asymptotic valuen` asx moves from2` toward the
origin, with Ecl

25W(n`). Hence this type of solution is a
portion of a solitary wave in the rear of the obstacle. We re
to these solutions as theD solutions ~where D stands for
depressed!.

For a D solution, the density has a valuen(0),n` at x
50 and from there on the equivalent classical parti
evolves in the potentialW0. In the simplest case the partic
bounces once on the repulsive core at the origin, namely
density further decreases until it reaches a valuenmin,0 @sat-
isfying Ecl

0 5W0(nmin,0)# and then increases untilx5s.
Then the classical particle evolves inW(n) again, with an
energyEcl

1 that has to be lower than or equal toW(n`), and
this imposesn(s)>n(0) @cf. Eq. ~26!#. Note that here, con
trary to the case of theB solution, the strict inequality is
possible; it corresponds toEcl

1,W(n`) andn(s),n` , i.e.,
the upstream solution is a cnoidal wave. In the particu
case thatn(s)5n(0) the solution is even. A generic densi
profile with a cnoidal wave is represented in Fig. 5~a!, and
the even solution is represented in Fig. 5~b!.

For a given well depthV0 the simpleD solutions of Fig. 5
~which we denote as theD1 solutions, with one minimum in
the region of the potential! do not exist for all values ofs.
When the well becomes very large,s may exceed the period
of the oscillation of density in the well~i.e., the ‘‘time’’ pe-
riod of the ‘‘classical particle’’ evolving inW0). In that case
theD1 solution disappears. The limiting case correspond
n(0)5n`5n(s), i.e., to a flat density outside the region
the well having one oscillation in the region of the well. Th
upper limit is exactly the lower limits2(V0) below which
the B2 solution does not exist. As a consequence, whens
increases from a small value theD1 solution disappears a

FIG. 4. AB2 solution in an attractive square well. Left and rig
parts as in Fig. 3. The plot corresponds tos54j andV0j250.5 in
a low-density beam at velocityv` /c`50.7. The downstream den
sity evolves fromn` to n(0) in the potentialW(n) with a classical
energyEcl

25W(n`); then it makes a complete oscillation inW0(n)
starting from n(0) toward nmax,0 and ending again atn(s)5n
(0). Finally, the upstream density goes fromn(s) to n` in the
potentialW(n).
03360
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s5s2(V0) and becomes theB2 solution ~of the type illus-
trated in Fig. 4!, which is then allowed for any larger valu
of s. The point is that for aB solution, when changing from
potentialW to W0 in the (n,W) diagram, one can jump ar
bitrarily close to the separatrix ofW0, thus making the period
in the region of the potential as large as desired. Hence, o
a B solution exists for a givens, it exists also for any larger
value. For aD solution, however, the period inW0 is limited:
it takes its largest value if one enters and leaves the regio
the potentialW0 with a flat density@i.e., n(0)5n`5n(s)#.

The existence of theD1 solution fors,s2(V0) depends
on the value ofV0 and of the relative positions of the curve
W(n) and W0(n) in the (n,W) diagram. One regime is se
by small values ofV0 such that the conditionnmin,n1,0 is
satisfied, wherenmin is the smallest positive solution o
W(n)5W(n`) @see Fig. 1 in the caseEcl5W(n25n`)# and
n1,0 is the first zero ofdW0 /dn ~remember that we denot
with an index ‘‘0’’ the quantities concerningW0 and defined
as in Fig. 1 forW). In this case one can easily check that a
value of s smaller thans,s2(V0) corresponds to an ac
ceptableB1 solution. On the contrary, for larger values ofV0
for which nmin.n1,0 is satisfied there is a minimum widt
s1* (V0) below whichD1 solutions do not exist:

s1* ~V0!5A2E
Amin,0

Amax,0 dx

AEcl
0 2W0~n!

, ~31!

FIG. 5. AD1 solution in an attractive square well. Left and rig
parts as in Fig. 3. Plot~a! is the generic case@with n(s).n(0)# and
~b! is the symmetric case wheren(s)5n(0). These plots corre-
spond tos52j and V0j250.1 in a low-density beam at velocity
v` /c`50.7. The right plot illustrates the behavior of the typic
solution @such as displayed in part~a!# in the diagram„n,W(n)….
The downstream density evolves fromn` to n(0) in the potential
W(n) with a classical energyEcl

25W(n`); then in W0 ~with an
energyEcl

0 ) from n(0) to the minimum densitynmin,0 and back to a
valuen(s) @larger thann(0)#. Finally, the upstream density osci
lates in the classical potentialW(n) as a cnoidal wave.
2-8
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whereEcl
0 5W(nmin)1V0nmin , Amin,0 and Amax,0 being so-

lutions ofW0(A)5Ecl
0 ~one hasAmax,05Amin). The limiting

cases5s1* (V0) is illustrated in Fig. 6. The situation for th
solutions of typeD1 is summarized in Fig. 7.

FIG. 6. TheD1 solution in a strongly attractive square well o
width just aboves1* (V0). Left and right parts as in Fig. 3. Th
density outside the well is composed of two half solitons. This p
corresponds toV0j250.5 ands.2.4j in a low-density beam a
velocity v` /c`50.7. The density evolves fromn` ~far down-
stream! to n(0)5nmin in the potentialW(n) with classical energy
Ecl

25W(n`). It then evolves inW0 from n(0) to nmin,0 and back.
Finally, the upstream density oscillates in the classical poten
W(n) from n(s)5nmin back ton` .

FIG. 7. Synoptic diagram of the evolution of the morphology
the D1 solution for a givenV0, ass increases. The insets displa
the density profilesn(x)/n` . Hatched regions indicate values ofs
for which the solution does not exist. For shallow potentials~for
which n1,0.nmin , upper part of the plot! theD1 solution exists for
any width s between 0 ands2(V0). For deep potential (n1,0

,nmin , lower part! it exists only if sP@s1* (V0),s2(V0)#. In both
cases~shallow or deep potentials! at s5s2(V0) the D1 solution
disappears and becomes aB2 solution.
03360
D solutions can oscillate in the region of the well, asB
solutions do. We denote byDN solution a type-D solution
with N minima. Contrary to the case ofBN solutions, there
exists a maximum width forDN solutions to occur. When the
DN solution disappears, it becomes aBN11 solution~exactly
as discussed above forN51). DN solutions are not neces
sarily even asBN solutions are; ahead of the obstacle~for
x>s) they typically consist of a cnoidal wave~see the dis-
cussion forN51 and Fig. 5!. In this case we do not conside
that the minima of the cnoidal wave outside the well increa
the indexN in the nameDN solution@for instance, the profile
of Fig. 5~a! corresponds to aD1 solution although an infinity
of minima occur upstream#. Furthermore,DN solutions have
the additional feature that they may not exist for values os
lower thansN(V0). This was explained above in detail fo
the caseN51. Figure 8 illustrates this generic behavior for
D2 solution.

As for N51, for this family there are generically two
main types of potential well, depending whethern1,0 is larger
~shallow potential! or smaller~deep potential! thannmin ~left
and right parts of Fig. 8, respectively!. In the case of a shal
low potential theD2 solution exists for any width below
s3(V0); this is not the case for deep potentials. We will n
comment on Fig. 8 in great detail, but we note that even
the simple case of a shallow potential interesting bifurcatio
occur. Let us focus on this case. For simplicity we disca
from the discussion solutions forming cnoidal waves u
stream~i.e., for x>s). Then, for small widths, the only pos
sible D2 solutions are even. For a certain width the minim
of density occur exactly atx50 andx5s @it is easy to see
that this width coincides withs1* (V0) defined in Eq.~31!#.
From there on, the previous even solutions still exist,
new solutions appear. They correspond to a portion of a s
ton with its minimum before the well and one portion
cnoidal oscillation inside the well~see Fig. 8, left part!. This
solution is degenerate in the sense that there exists a s
metrical equivalent solution~where the minimum of the soli-
ton occurs beyond the well!. It disappears whens
5s2(V0). For s just below this value, one has exactly on
soliton out of the well and one cnoidal oscillation inside t
well; hence the trough of the solitonic part of the solution
sent to infinity~a feature that is not clearly seen on Fig. 8 d
to numerical difficulties!. For larger values ofs one has to
oscillate more than once in the region of the well, but the
are D3 and notD2 solutions. On the other hand, the eve
solutions still exist untils5s3(V0). The situation is slightly
more complicated for deep potentials, but the basic ingre
ents are the same as for shallow potentials and we presen
different allowed density profiles in Fig. 8~right part! with-
out detailed discussion.

B. High beam velocity: v` Õc`Ì1

We now consider beam velocitiesv` larger ~in absolute
value! than c`5c(n`). In the language of Fig. 1,n` is in
this case of typen1 ~the minimum of the potential! andEcl

2

5W(n1). The only possible flat solution far in the rear of th
obstacle is a flat and constant density, namely,n(x<0)
5n` . The matching condition ~26! yields Ecl

15Ecl
2

t

al
2-9
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FIG. 8. Synoptic diagram of the evolution of the morphology of theD2 solution for givenV0, ass increases~see caption of Fig. 7!. For
s larger thans3(V0) the D2 solution disappears~it becomes aB3 solution!. The left part corresponds to a shallow well and the right p
to a deep well. For legibility, the cases denoted as ‘‘typical’’ have been taken to consist ahead of the obstacle~for x>s) of a portion of a
soliton ~whereas the most generic solutions are cnoidal waves!.
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1V0@n`2n(s)#. One should verify thatEcl
1>W(n15n`)

5Ecl
2 ~see Fig. 1! and this imposesn(s)<n` . This inequal-

ity is trivially satisfied, because the solution inside the wel
a cnoidal wave withnmax,05n` ~see Fig. 9!. If we denote by
n2 ~as in Sec. IV! the second zero ofdW/dn ~the first one
beingn15n`) one has also to verify thatEcl

1<W(n2). This
imposes

n~s!>ns,in f5n`2
1

V0
@W~n2!2W~n1!#. ~32!

Once this condition is fulfilled, the upstream solution is
cnoidal wave. Because these solutions have a constant d
stream density, we denote themC solutions.

Two different cases are to be considered. The first
simpler one corresponds tonmin,0.ns,in f . It occurs for high
beam velocity@whenW(n2)2W(n1) is large# and for shal-
low potentials~whenV0 is small!. In that case, the density o
the cnoidal wave inside the well oscillates betweennmin,0
and nmax,0 , and the matching atx5s is always possible.
The incoming wave~for x>s) is a cnoidal wave corre
sponding to oscillations of the ‘‘classical particle’’ in the p
tential W(n). This behavior is illustrated in Fig. 9~a!.

The other case corresponds tons,in f.nmin,0 . Then all the
widths are not acceptable, namely,s should be such tha
n(s).ns,in f . If one denotes byLa the length the density
takes to go from the valuens,in f to nmax,0 and by L0 the
period of the cnoidal wave in the well, one has

La5
1

A2
E

Ans,in f

Anmax,0 dA

AEcl
0 2W0~A!

and

L05A2E
Anmin,0

Anmax,0 dA

AEcl
0 2W0~A!

. ~33!
03360
n-

d

The allowed values ofs are in the intervals@0,La#ø@L0
2La ,L01La#ø@2L02La,2L01La#ø•••.

The region of validity of the first casenmin,0.ns,in f
can be evaluated analytically in the low-density regim
In this regime one obtains W(n2)2W(n15n`)
5n`F(v` /c`)/(4j2) where

F~z!5F z2

4 S 11A11
8

z2D 21GF5z2

4
112

3z2

4
A11

8

z2G .

~34!

This yields ns,in f /n`512F(z)/(4V0j2) ~we set z
5v` /c`). One also obtainsnmin,0 /n`5G(z,V0j2) where

G~z,V0j2!5
z211

2
12V0j22AS z211

2
12V0j2D 2

2z2.

~35!

The region of validity of the conditionns,in f,nmin,0 ~where
all the potential widths are acceptable! can be displayed in a
diagram (z5v` /c` ,V0j2). It corresponds to the region

12
F~z!

4V0j2
,G~z,V0j2!, ~36!

i.e., to the domain below the solid line in Fig. 10.

VI. THE REPULSIVE SQUARE WELL

In this section we consider a simple repulsive potent
namely, we takeVi(x) to be zero everywhere except in
finite region 0<x<s where it takes the constant valueV0
(V0.0). This type of potential cannot correspond to a be
in the guide, but it can be realized with a~blue detuned!
far-off-resonant laser field.
2-10
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Equation~25! still holds after changing the sign ofV0.
Equation ~26! holds also, but we rewrite it here with th
appropriate sign for future reference,

Ecl
22V0n~0!5Ecl

0 5Ecl
12V0n~s!, ~37!

and similarly one has here@instead of Eq.~27!#

W0~n!5W~n!2V0n. ~38!

The potentialW0(n) has, forV0 relatively small, the same
behavior asW(n), namely, one minimum atn1,0 and one
maximum atn2,0, with n1,n1,0,n0,n2,0,n2 ~the nota-
tions are defined in Sec. IV, see Fig. 1!. On the other hand
for largeV0 , W0 is a monotonically decreasing function ofn.
The transition between the two regimes occurs whenm
2V05e(n0)1F2/(2n0

2). Hence, the terms ‘‘low’’ or
‘‘large’’ V0 we just defined~we also speak below of ‘‘weak’
and ‘‘strong’’ potentials! are not intrinsic properties of th
potential, but depend on the chemical potentialm and on the
flux F of the incoming beam~this remark is made quantita
tive in Sec. VI A below!.

Among all the possible solutions, we choose again to
lect those corresponding to a flat density at left infin
@n(x)→n` as x→2`] with a negative velocity@v(x)

FIG. 9. A C solution in an attractive square well. Left and rig
parts as in Fig. 3. Both density plots in the left part concern
low-density beam, withv` /c`51.6 and a square well of width
s/j54.68174. Plot~a! is the generic case and corresponds
V0j250.1. For these values ofV0 and v` the condition~32! is
fulfilled for any s. Plot ~b! corresponds to a well of depthV0j2

50.5. The parameters have been chosen in this case such thaEcl
1

5W(n2) and theC solution is just about to disappear. The right pl
illustrates the behavior of the typical solution@corresponding to par
~a!# in the diagram„n,W(n)…. The density is constant and equal
n` for x<0 in W(n). From x50 to x5s the ‘‘classical particle’’
evolves inW0(n) ~with an energyEcl

0 ). Finally, the upstream den
sity oscillates in the classical potentialW(n) as a cnoidal wave.
03360
e-

→v`,0#. Under these conditions, the transmission mod
through repulsive potentials appear to be simpler than
attractive ones discussed in Sec. V, as we are now go
to show.

A. High beam velocity: v` Õc`Ì1

The stationary solutions of a supersonic beam encoun
ing a repulsive square well have important similarities w
the C solutions of Sec. V and will be given the same nam
For weak potentials@V0,m2e(n0)1F2/(2n0

2)# the solu-
tions exist whatever the value ofs, and their shape is very
similar to the transmission mode illustrated in Fig. 9~a!. The
main difference is that here one hasn(x)>n(0)5n` in the
region of the well~whereas the reverse inequality holds forC
solutions in an attractive well!.

On the other hand, for strong potentials the solution in
region of the well is not~as for weak potentials! a cnoidal
wave. In this region the density increases monotonica
from x50 up to x5s; then ‘‘classical’’ motion occurs in
W(n) and the upstream density profile further oscillates a
cnoidal wave. This means that there exists a maximum va
of s above which no solution can be found in a strong p
tential. Whens reaches this maximum value, the solution f
x>s is a portion of a soliton and the whole solution has
steplike shape going fromn`5n1 ~far in the rear of the
obstacle! up to n2 at x→1`. The behavior in this limiting
case is illustrated in Fig. 11. There is here a difference w
the case of a strong attractive square well: whens has ex-
ceeded this maximum value, no other stationary solution
pears for larger widths. The reason is that in an attrac

a

FIG. 10. Representation~for low-density beams! of the part of
the plane (v` ,V0) where theC solution is allowed for any potentia
width. The allowed region is located below the solid curve. We a
display on the same diagram the region whereC solutions are al-
lowed for any width of arepulsivepotential ~see Sec. VI A!. It
corresponds to the domain below the dashed curve for low-den
beams and below the dot-dashed one for high-density beams.
2-11
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square well, the solution in the region of the well is period
whereas it increases here without limit for large wells.

Due to the similarities with the case of an attractive p
tential, it is interesting here also to determine more precis
for which beams a stationary supersonic solution can
found ~for weak potentials! for all values ofs. An analytical
treatment is here possible in both the low- and high-den
regimes. The two cases can be treated on the same footin
introducing an indexn with n51 in the dilute regime and
n51/2 for high densities. One has

e~n!5e01
1

2j2 S n

n`
D n

and v25
nz2

2j2 S n`

n D 2

, ~39!

wherez5v` /c` . One then obtainsn0 /n`5z2/(n12) (n0 is
defined in Sec. IV, Fig. 1!. The condition for a repulsive
potential to be considered as weak is thusm2V0>e(n0)
1F2/(2n0

2)5e01(n0 /n`)n(11n/2)/(2j2). Sincem5v`
2 /2

1e(n`), this reads

V0j2<
1

2
1

nz2

4
2

1

2 S 11
n

2D z2n/(n12). ~40!

This region of weak potential corresponds in Fig. 10 to
domain below the dashed curve in the dilute regimen51,
and below the dot-dashed curve in the high-density reg
n51/2. As stated in the beginning of this section, the ter
weak or strong potential do not characterize an intrin
property of the well. Atv`5c` , for instance, all the poten
tials are ‘‘strong.’’

In view of future experimental studies of the system, it
also interesting to determine~in the regime of ‘‘strong poten-

FIG. 11. AC solution in a repulsive square well. The paramet
have been chosen in this case such thatEcl

15W(n2) and theC
solution is just about to disappear. Left and right parts as in Fig
The left plot concerns a low-density beam, withv` /c`.1.6, and a
square well of widths/j53 and depthV0j250.1. The right plot
illustrates the behavior of this solution in the diagram„n,W(n)….
The downstream density is constant and equal ton` . Fromx50 to
x5s the ‘‘classical particle’’ evolves inW0(n) ~with an energy
Ecl

0 ); then it evolves back inW(n), just on the separatrix.
03360
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tials’’ ! the critical value ofs after which noC solution can
be found. We denote this value byLr . Following a reasoning
similar to the one of Sec. V B one obtains

Lr5
1

A2
E

Anmin,0

Ans,sup dA

AEcl
0 2W0~A!

where ns,sup5n`1
1

V0
@W~n2!2W~n1!#. ~41!

In the low-density regimeLr can be expressed in terms of a
elliptic integral:

Lr

j
5E

0

F(z)/(4V0j2) dx

A2x@x21x~4V0j2112z2!14V0j2#1/2

.
1

V0j2 S F~z!

8 D 1/2

. ~42!

Note, of course, that Eq.~42! is meaningful only when the
condition~40! is violated.La in Eq. ~33! can also be defined
with a similar expression in the low-density regime. Bo
expressions are well approximated by the left part of E
~42!, meaning that one has 8(Lr /aV0j)2.F(z). We will see
below that this corresponds to approximating the potentia
a d function @cf. Sec. VII, Eq.~50!#.

B. Low beam velocity: v` Õc`Ë1

It is easy to check that in this case onlyD1 solutions can
be observed~there are no otherD solutions, andB solutions
are forbidden!. The downstream solution starts at left infini
from a densityn` which is of typen2 in the terminology of
Sec. IV.n(x) decreases from this value, and in the diagra
„n,W(n)… the fictitious classical particle evolves in the p
tential W0(n) during a ‘‘time’’ s, and then evolves inW(n)
again. Since one should verify thatEcl

1<W(n2)5Ecl
2 , from

Eq. ~37! this imposesn(s)<n(0). If the inequality is strict,
the solution forx.s is a cnoidal wave. Ifn(s)5n(0) the
final solution is a portion of a soliton.

Let us consider a strong potential first. If the well is na
row (s→0), there are two possible solutions, depend
whether, in the diagram„n,W(n)…, one ‘‘jumps’’ rapidly or
not from W to W0. This is illustrated on Fig. 12. Whens
increases, these two solutions merge and disappear. Thi
havior was already observed by Hakim in the case o
model repulsived potential@30#. Hakim showed~for the one
dimensional Gross-Pitaevskii equation, i.e., in the dilute
gime! that the solution that ‘‘jumps late’’ toW0 ~right part of
Fig. 12! is unstable, and argued convincingly that the othe
stable. The same situation is expected to occur here.

In the case of a weak potential there are also two type
solution, but they do not disappear whens increases. The
point is that one can have hereEcl

0 arbitrarily close to the
separatrix energyW0(n2,0), and the period of motion in the
potentialW0 can thus be made as large as desired. From
~37!, one hasEcl

0 5W0(n2,0) if n(0)5n0* with

s

.

2-12
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n0* 5n2,01
1

V0
@W~n2!2W~n2,0!#. ~43!

The expression ‘‘jumping soon’’~or ‘‘late’’ ! from W to W0
that we used in the discussion of strong potentials refers
a weak potential, to the case wheren(0).n0* @or n(0)
,n0* #. If n(0).n0* , the density remains larger thann2,0 and

FIG. 12. Schematic representation in the„n,W(n)… diagram of
the behavior ofD1 solutions in a strong repulsive square we
(v` /c`,1). The solid curve representsW(n) and the dashed on
W0(n). For this type of potential there are two possible solutio
for a given value of the widths ~as discussed in the text!. This is
illustrated by the figure, namely, the ‘‘time’’ the fictitious partic
spends in the potentialW0 is the same in the left and right plots. Fo
simplicity, the examples we give here are drawn in the particu
casen(0)5n(s).
e

d
e-

03360
or

reaches this value at its minimum in the limits→`. If
n(0),n0* , Ecl

0 .W0(n2,0), and the fictitious classical par
ticle evolves above the separatrix in the potentialW0. As in
the case of a strong potential, this solution is expected to
unstable. The other one is certainly stable since one
show that it is identical to the result of perturbation theory
the limit of a very weak potential.

VII. SIMPLE SOLUTIONS IN THE PRESENCE
OF AN OBSTACLE

The aim of this section is to study, by means of perturb
tion theory, some simple solutions of Eq.~17! valid for a
generic potentialVi(x). We will argue that near the speed o
sound this approach fails, and that in this regime any pot
tial can be approximated by ad peak. We will then study the
scattering modes of the condensate in the presence of
potential. It allows for a qualitative and simple understand
of the solutions obtained for more realistic potentials in t
previous sections. Some of the results presented here
already been obtained by Hakim@30#, who considered repul-
sive potentials only, in a slightly less general setting.

We again restrict the analysis to those transmission mo
tending to a flat density atx→2`, n(x→2`)→n` , with a
negative velocityv` . These are of the formA(x)5A`

1dA(x) ~with A`
2 5n`). Denoting byc` the sound velocity

at densityn` @Eq. ~20!#, a perturbative treatment of Eq.~17!
yields

dA914~v`
2 2c`

2 !dA52A`Vi~x!. ~44!

The solutions of Eq.~44! that tend to zero whenx→2` are
of the form

s

r

dA~x!55 2
A`

k E
2`

1`

Vi~y!exp$2kux2yu%dy when v` /c`,1

2A`

k E
2`

x

Vi~y!sin$k~x2y!%dy when v` /c`.1,

~45!
tes
s

.

wherek52uv`
2 2c`

2 u1/2.
Denoting bys the typical range of the potentialVi , in the

limit ks@1 the Green function of Eq.~44! is almost ad
peak and Eqs.~45! take the simple form

dA~x!5sgn~v` /c`21!
2A`

k2
Vi~x!. ~46!

This result may seem unnatural at large velocities. Inde
for a repulsive potential, for instance, the densityincreasesin
the region of the potential. This kind of behavior was alrea
found in Ref. @31#, where a very special potential was d
signed for which this phenomenon occurs at anyv` /c`.1.
d,

y

From Eq. ~46! we see that similar motional dressed sta
exist for any potential in the limit of very large velocitie
~whenks@1).

In the casev` /c`.1, an asymptotic evaluation of Eq
~45! yields far ahead of the obstacle~in the limit kx@1) an
amplitude of the form

dA~x!5
2A`

k
Im$eikxV̂i~k!%1

2A`

k2
Vi~x!1OS 1

k3D ,

~47!

where V̂i(k)5*2`
1`dx exp(2ikx)Vi(x) is the Fourier trans-

form of Vi(x). This shows that, forv` /c`.1, Eq.~45! cor-
2-13
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responds to aC solution. The fact that the upstream solutio
oscillates with a wave vectork corresponds to the stationarit
conditionvp(k)52v` ~see the end of Sec. IV!. The wake is
characterized by a wavelength 2p/k that depends on the ve
locity of the beam~it decreases whenuv`u increases!. This is
due to the particular form of the dispersion relation~22!, and
does not occur above the Landau critical velocity in liqu
helium, for instance, where the location of the roton mi
mum fixes the wavelength of the wake@32#.

When the beam velocity is lower than the speed of sou
for attractive~repulsive! potentials Eq.~45! describes aB1
(D1) solution. In the attractive case, for instance, the bu
density measured with respect to the constant densityn`

contains a number DN of atoms given by DN
5*2`

1`dn(x)dx'2(4n` /k2)*2`
1`dxVi(x). This formula di-

verges whenv` /c`→1 sincek→0. In that limit, however,
the perturbative treatment is not justified. Indeed, Eq.~45!
gives a sensible result only ifudAu!A` . Denoting byV0 the
typical value of the potentialVi , this reads

V0s/k!1 when ks!1,

V0 /k2!1 when ks@1. ~48!

These conditions are satisfied only if the beam velocityv`

and the sound velocityc` are not too close.
From Eqs.~45! we see that forv` /c`,1 the typical

length scale of variation ofdA is proportional tok21. If uv`u
approachesuc`u from below, this length scale diverges an
the spatial extension ofdA increases indefinitely. In this cas
it is legitimate to approximateVi by ad function. Hence, we
do not pursue the perturbative treatment any longer and
now to the study of solutions in ad-function-peak potential.

Consider a potential of the formVi(x)5ld(x) with l
positive or negative. A realisticVi can be approximated b
such a potential if its typical length scales is much lower
than the healing lengthj. In this case the approximation i
valid for any beam velocity. As discussed above, any pot
tial Vi can be approximated by ad function whenv` ap-
proachesc` , i.e., in the limitks!1.

The allowed transmission modes of Eq.~17! whenVi is a
d-function potential are very simple. They are obtained
joining together the solutions of two straight guides~see Sec.
IV !, one downstream (x,0), and the other upstream (x
.0), with the matching condition

A8~01!2A8~02!52lA~0!. ~49!

The integration constantEcl of Eq. ~18! changes discontinu
ously from the valueEcl

2 for x,0 to the valueEcl
1 for x

.0 (Ecl
65 1

2 @A8(06)#21W„n(0)…). Using Eq. ~49! these
two values are related throughEcl

15Ecl
21lA(0)@A8(02)

1A8(01)#.
Let us first consider the casev` /c`.1. We know from

Secs. V B and VI A that one should observeC solutions. One
has in this case a constant downstream densityn`5A`

2 and
Ecl

25W(n`). The matching condition imposesEcl
15Ecl

2

12l2n` andA8(01)52lA` . In order to have a finite so
lution at x51` one should moreover satisfyW(n`)<Ecl

1

03360
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<W(n2). This fixes an upper bound for the intensity of th
perturbation, given by 2l2n`<W(n2)2W(n`). This is the
criterion for observingC solutions. In the low-density limit
this relation takes the analytical form

8l2j2<FS v`

c`
D , ~50!

where the functionF is defined in Eq.~34!. It corresponds to
the region I of Fig. 13.

Let us now consider the casev` /c`,1. The first and
simpler solution is theB1 solution which occurs for attrac
tive potentials. The corresponding matching condition~49!
reads in this casen8(0)/n(0)522l. It can be fulfilled
whatever the value ofl (l,0) because the function
(n8/n)258n21@Ecl2W(n)# can be made arbitrarily large@it
grows as 8«(n)/n for largen#. The domain of existence o
B1 solutions corresponds to region II in Fig. 13.

D solutions can also be observed ifv` /c`,1. For l
.0 these are theD1 solutions whose behavior in th
„n,W(n)… diagram is illustrated in Fig. 12~in the case of a
depth of finite width though!. For l,0 these areD2 solu-
tions such as those shown in Fig. 8 fors→0. The limiting
case~beyond which these solutions disappear! is obtained for
two symmetric portions of solitary waves. The matchi
condition ~49! then fixes the maximum value ofulu, which
corresponds in both cases to

FIG. 13. Domains of existence of the different solutions occ
ring for a dilute beam in a potentialVi(x)5ld(x). Region I occurs
only for v` /c`.1 and corresponds toC solutions. Region II cor-
responds toB1 solutions and occupies the domain under the das
line ~it occurs only for attractive potentials and forv`/c`,1). Re-
gion III corresponds toD solutions:D1 solutions forl.0 andD2

solutions whenl,0.
2-14
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uluj5KS v`

c`
D

where K~z!5
1

4z
$28z4220z2111~118z2!3/2%1/2.

~51!

The corresponding domain is shown in Fig. 13~region III!.

VIII. EXPERIMENTAL CONSIDERATIONS

In view of future experimental observation of the differe
flows past an obstacle, we now evaluate the orders of m
nitude of the relevant dimensionless parameters identi
above. For concreteness we consider a beam such as th
in preparation at the ENS@33#: 87Rb atoms are guided alon
the x direction, with a harmonic transverse confineme
(v'52p3500 Hz anda'50.5 mm). The beam has a ve
locity v` of the order of 0.5 m/s and a fluxF varying from
104 to 108 at. s21. Hence the quantityn`asc varies from
1024 to 1. For a rough estimate of the order of magnitude
the relevant parameters, we will consider that this cor
sponds to the low-density limitn`asc!1. Then the healing
length@defined in Eq.~9!# and the speed of sound vary fro
j525 mm and c`520 mm s21 ~for n`asc51024) to j
50.25 mm andc`52 mm s21 (n`asc51). Note that the
beam velocity is much larger than the speed of sound~the
quantityv` /c` is of order 103 at least!.

If the obstacle is a bend of constant radius of curvatureRc

and opening angleu, V0521/(8Rc
2) and s5uRc . A rea-

sonable order of magnitude isRc55a' , leading toV0j2

5 1
200(j/a')2, which varies roughly from 1023 to 10. Foru

5p/2 one hass58a' and the obstacle can safely be treat
perturbatively because in this caseks;104@1 and Eq.~48!
is satisfied since

V0 /k2'1028!1.

For this configuration one thus expects profiles in agreem
with Eq. ~45! ~casev` /c`.1), i.e.,C solutions. Also, since
we are in the regimeks@1, Eq.~46! holds, meaning that the
wake ahead of the obstacle is very weak, and that there
decrease in the density in the region of the bend. Howe
this decrease is extremely small: it corresponds to a num
of atoms smaller than unity, and under these conditions n
ing noticeable is expected to occur in the bend.

The situation changes drastically if the obstacle is due
transverse laser beam because the potential can be
much stronger. It can, moreover, be attractive or repuls
depending on the laser’s frequency, and also the velocit
the obstacle relative to the beam can be modified by usin
acousto-optic deflector.

We consider a laser with powerP570 mW and a wave-
lengthlL varying from 780 to 790 nm~the atomic transition
corresponds to a wavelengthlA5780.2 nm and has a natu
ral width G512p MHz). The laser beam has a typical wai
s of the order of 50mm. Then one obtains for the transver
potential
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Vi~x!5V0 expH 2
2x2

s2 J where V05
\G2P

4pds2I S

, ~52!

d5vA2vL being the detuning andI S516 W m22 the satu-
ration intensity. This yields

V0s25
1

4p S G2

dv'
D S P

I Sa'
2 D ;6108. ~53!

In this case one is in the regimeks@1, with V0 /k2;1022

or 1021. Hence one is on the edge of applicability of th
perturbative approach. By changing the wavelength of
laser or its velocity with respect to the beam, one may en
into the nonperturbative regime. One can still findC solu-
tions for this type of potential if the parameters of the syst
remain in the appropriate region of Fig. 10.C solutions exist
for any value ofs if V0j2< 1

16 (v` /c`)4 in the case of an
attractive potential, and ifV0j2< 1

4 (v` /c`)2 in the case of a
repulsive potential@since v` /c`@1 we consider here the
asymptotic versions of Eqs.~36! and~40!#. By modifying the
value of the healing length and of the beam velocity the
conditions can easily be satisfied or violated~especially in
the case of repulsion!. In the region where these condition
are violated one can experimentally study the transition fr
a stationary flow~of type C) to a time dependent one. Fo
instance, it would be of great interest to study the modifi
tion of the drag at the transition.

Just at the boundary between the two regions, for a re
sive potential the density profile has the behavior shown
Fig. 11 @for an attractive potential the density profile corr
sponds to Fig. 9~b!#. The density has a steplike shape, a
the beam ahead of the obstacle has a velocity lower than
speed of sound. One has just at the transitions5Lr ~or La in
the case of an attractive potential! with 8(V0Lrj)2

.F(v` /c`).(v` /c`)4/4 ~see the end of Sec. VI A!. From
the estimate~53! this occurs forj/s;1022 or 1023. For a
laser, one can tune the waists by a factor of order 5, say
and, more important, by changing the density one c
modify the value ofj and indeed reach the appropriate r
gime. This would have a very important effect on the bea
since the velocity ahead of the obstacle would belower than
the speed of sound whereas it is of the order of 1 m s21

downstream. Accordingly, the density along the beam wo
go from n`5n2 to n1 ~see Fig. 11!. It is not difficult to see
that, in the dilute regime, in the limitv` /c`@1 one hasn2
.n1(v` /c`)2/4. Thus the downstream beam density is
vided by a factor of order 106 with respect to the upstream
one and, by conservation of the flux, the velocity is mu
plied by the same factor. The beam velocity ahead of
obstacle is then of the order of a few micrometers per s
ond.

IX. CONCLUSIONS

In this paper we have studied the different stationary p
files of a Bose-Einstein-condensed beam propaga
through a guide with an obstacle. The beam far downstre
is characterized by its velocityv` and densityn` ~or, equiva-
2-15
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P. LEBOEUF AND N. PAVLOFF PHYSICAL REVIEW A64 033602
lently, its healing lengthj). The obstacle is represented by
one-dimensional square well of depth6V0 and widths. Let
us denote byD the region along the guide where the pote
tial is different from zero. Our study allows us to identify th
relevant dimensionless parameters governing the flow ac
the obstacle. These aren`asc , v` /c` , s/j, and V0j2. By
varying these parameters one obtains a wide range of de
profiles ~we identify three main stationary families denot
asB, C, andD solutions!. We have numerically checked@34#
that similar results are obtained for potentials other th
square wells@such asVi(x)56V0 exp$2x2/s2% for instance#
and we thus believe that our analysis of the flow is qu
general.

The richest case occurs when the external potential is
tractive. In the subsonic regime~beam velocity lower than
the corresponding speed of sound! the simplest solution is a
symmetric density having a peak inD (B family!. These
solutions may have density oscillations inD, and are always
symmetric. Another type of transmission mode is a solito
like depressed solution pinned to the obstacle (D family!,
which may also have density oscillations inD and, unlike the
B family, a wake upstream. Finally, the supersonic transm
sion modes (C solutions! possess, in the simplest case,
density trough inD and are constant outside. They may a
have density oscillations inD and an upstream wake.

For a repulsive potential, in the subsonic regime the tra
mission modes are of typeD with no density oscillations in
D. In the supersonic case, the modes are of typeC but with
a density peak instead of a trough. Steplike solutions of
creasing density across the obstacle~with or without wake!
also exist. Specifically, we have identified an interesting~and
experimentally reachable! regime where the beam is almo
stopped by a repulsive obstacle and gains ahead of it se
orders of magnitude in density~see Sec. VIII!.

An important aspect of the problem that remains open
considerations related to the stability of the solutions. So
related work is in progress@34#. We just note here that th
limiting C solution shown in Figs. 9~b! and 11 can be turned
into a D solution by exchanging the downstream and
upstream behavior of the flow. However, these are part
continuous family of flow patterns and are probably unstab
The C solutions, on the other hand, as selected by the ra
tion condition~see the end of Sec. IV!, are the only accept
able ones forv` /c`.1. Another aspect concerns Bose gas
with attractive intra-atomic interactions, which may also
treated with our formalism. In this case the potentialW(n)
introduced in Sec. IV has a single well shape, and the n
ber of different transmission modes whose density tends
constant at the input of the guide is greatly reduced w
respect to the case of repulsive interactions considered h

We conclude by noting that a branch of BEC that is n
expanding is the nonlinear counterpart of transport exp
ments of mesoscopic physics in condensed matter. In
latter case the coherent transport of two-dimensional elec
gases through various geometries has been considere
great detail. Future developments of transport experimen
Bose condensates should extend those to nonlinear regi
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APPENDIX

In this Appendix we recall the conditions for existence
a bound state in a bend of an ordinary waveguide~i.e., with-
out nonlinear terms in the Schro¨dinger equation! and put the
adiabatic limit used in the text on firmer mathematic
grounds.

Let us consider a curveC, of parametric equationrWC(x), x
being a curvilinear abscissa alongC. The Frenet frame
( tW,nW ,bW ), the curvaturek(x), and the torsiont(x) are defined
by tW5drWC /dx, d tW/dx5knW , dnW /dx52k tW1tbW , anddbW /dx

52tnW .
We first introduce a curvilinear coordinate system. T

position of a point of space is specified by coordina
(x,y,z) through

rW~x,y,z!5rWC~x!1yNW 1zBW , ~A1!

where NW (x)5cosunW1sinubW, BW (x)52sinunW1cosubW, and
u(x) is defined throughdu/dx52t(x).

We then select a potential of the formV'(y,z). Note that
the choice of vectorsNW and BW for defining the transverse
coordinatesy andz is not irrelevant, i.e., the manner in whic
V' winds roundC does matter: it has to be the same as
way (NW ,BW ) winds aroundtW. Indeed, one can see that som
torsion may create a repulsive potential alongx, which could
cancel the localizing effect of the bend. This is avoided w
the type of coordinate dependence we have chosen. A sim
way of seeing this is by noticing that¹W has coordinates
(h21]x ,]y ,]z) in the (tW,NW ,BW ) frame @with h(x,y,z)51
2k(y cosu2zcosu)# and the force2¹W V'(y,z) thus has no
tangential component. It would have been more natura
define the (y,z) coordinates as in Eq.~A1! but using the
(nW ,bW ) vectors instead of (NW ,BW ). In this case, however, the
force 2¹W V'(y,z) would generically have a tangential com
ponent, which could spoil the localizing properties of t
bend. Note that the latter discussion is of course irrelev
for a potentialV' with circular symmetry~as any simple
experimental wave guide is expected to have!.

Denoting h85]xh and h95]xx
2 h, the Schro¨dinger equa-

tion for F5h1/2C reads

2
1

2 S 1

h2
]xx

2 1]yy
2 1]zz

2 D F1
h8

h3
]xF1F2

k2

8h2
2

5~h8!2

8h4

1
h9

4h3
1V'~y,z!GF5mF. ~A2!
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Note that in Eq.~A2!, as in the rest of the paper, we tak
\5m51. The choice of coordinates~A1! gives a volume
element d3r 5hdxdydz and F is thus normalized as
*dxdydzuFu251.

The adiabatic limit is defined byh→1, k@h8, k@Ah9.
In this limit Eq. ~A2! decouples into a longitudinal and
transverse equation. One obtains for the longitudinal eq
tion a potentialVi(x)52k2(x)/8, attractive in the region o
the bend. Since any attractive potential in one dimension
a bound state@22#, in this limit there exists a quantum sta
localized in the bend.

The theorem of Goldstone and Jaffe@19# establishes the
existence of a bound state for much more gene
waveguides, with arbitrary curvature. It was originally de
onstrated for sharp-wall waveguides, but the proof can
straightforwardly extended to the case of a smooth confin
R

-

ev

v.

ys

t
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potential. Hence we do not reproduce its derivation here.
just note that for some points of space, the coordinate sys
~A1! can be ambiguous. This imposes for the sharp-w
problem the requirement that the transverse size of the g
does not exceed the radius of curvature ofC. For the smooth
potential problem, the same restriction requires that the ty
cal range ofV' ~or equivalently the spatial extension off')
is lower than the radius of curvature ofC. Obviously this
condition is much weaker than the condition of adiabatic
Note also that the Goldstone-Jaffe theorem has the s
limitation as above, namely, some torsion may destroy
localizing effect of the bend and the wayV' winds around
the curveC is not irrelevant. A potentialV'(y,z) where the
coordinatesy andz are defined above@Eqs.~A1!# ensures the
applicability of the theorem.
int

e
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