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Bose-Einstein beams: Coherent propagation through a guide
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We compute the stationary profiles of a coherent beam of Bose-Einstein-condensed atoms propagating
through a guide. Special emphasis is put on the effect of a disturbing obstacle present in the trajectory of the
beam. The obstacle consider@tich as a bend in the guide, or a laser field perpendicular to the) heanits
in a repulsive or an attractive potential acting on the condensate. Different behaviors are observed when the
beam velocity(with respect to the speed of soynthe size of the obstacleelative to the healing lengthand
the intensity and sign of the potential are varied. The existence of bound states of the condensate is also

considered.
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[. INTRODUCTION to realize such an obstacle experimentally. The first is to

bend the guide: a potential proportional to the square of the
The field of Bose-Einstein condensati®EC) of atomic  local curvature is created. This potential is always attractive.
vapors is undergoing a rapid experimental development, pradn view of future applications of the atom laser to more com-
viding a rich new phenomenology and also allowing the testplicated geometries, the presence of bends seems unavoid-
ing of concepts that originated in other fiel@sainly in the  able and their study is therefore far from academic. The sec-
theory of superfluidity, in nonlinear optics, and in atomic ond possibility is to illuminate the beam with a detuned laser
physicg. Along these lines, the possibility of building atom field. Contrary to the case of a bend, attractive and repulsive
lasers by guiding condensed patrticles through various geonpotentials may be realized by varying the frequency of the
etries opens up the prospects of a rich variety of interferencdaser. This latter method also has the advantage of allowing a
transport, and/or coherence phenomena. Cold atoms have &letter control of the relative speed between the obstacle and
ready been propagated in various guiteee, e.g[1-4]and the beam(if using an acousto-optic deflecjor
references thereinmore and more efficient coherent sources In the case of attractive potentials, aside from the trans-
of atoms have recently been desigrieding various output mission modes there may also exist bound states in the
coupling schemes; see Ref§—9]) and continuous guided guide, in which condensed atoms are trapped without possi-
beams of condensed atoms will be accessible in the nedility of escape. These bound states are also analyzed here.
future (see the preparatory studl§0]). In the case of a bend we show that, due to the intra-atomic
The purpose of the present work is to explicitly determineinteractions, the bound state can support only a limited num-
the different propagating modes of a beam of condensed aber of condensed atoms, which is typically of the order of
oms through a guide, as a function of the various external00 for rubidium and sodium. However, this number can be
control parameters. We consider the simplest geometry, imade much larger for an attractive potential originating from
which a guide connects two reservoirs, and treat the case @f red detuned laser field.
atoms with a repulsive effective interaction, such as ru- The paper is organized as follows. In Sec. Il we set up the
bidium and sodium. First, the transmission through a straightheoretical framework and notation. Our approach for de-
guide is reevaluated: small amplitude density oscillationsscribing the condensate motion is based on a one-
cnoidal waves, and gray solitons are possible propagatindimensional1D) reduction of the Gross-Pitaevskii equation
modes. The main part of the paper is devoted to the study dfL1]. The solutions described here can in some instances be
coherent transmission modes in the presence of an obstackxplicitly written in an analytic form, for example, in terms
We find that, as a function of the speed of the incoming beanof elliptic functions. Although we use this opportunity in
and the size and depth of the perturbing potential, many difsome cases, we have chosen to keep the discussion at a quali-
ferent transmission modes exist. For example, some are soliative level. This allows us to cover a large range of experi-
tonlike modes(with a peak or a trough in the densitthat  mental situations and gives a global view of all the possible
are pinned to the obstacle. They may also have density osolutions in the different regimes of the control parameters.
cillations in the region of the obstacle. On the contrary, othelin Sec. Ill we study the existence of a bound state of the
modes are steplike shaped. In general, the modes may ebndensate created by an attractive potential. We determine
may not have a wake. The wake, however, always precedele maximum number of atoms the bound state can accom-
the obstacldit never occurs downstregm modate. In Secs. IV-VII we study the propagation of a con-
The obstacle is represented in our treatment by a potentialensate through a guide connecting two reservoirs. The
that acts on the condensate along the axis of the guide. It caamalysis relies on an interpretation of the Gross-Pitaevskii
be repulsive or attractive. There are at least two simple wayequation in terms of a fictitious classical dynamics. We focus
on different specific examples, starting with a straight wave-
guide without any potentia{Sec. IV). We then study the
*Unite Mixte de Recherche de I'Universit®aris XI et du  motion in the presence of an obstacle represented by an at-
CNRS (UMR 8626. tractive (Sec. V) and a repulsivéSec. V) square well. Sec-
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tion VII presents two alternative treatments for determining i

the transmission modes in the presence of an obstacle. The S= Ej d3fdt(‘1’*(9t‘1’—‘1’(91‘1’*)—J dee[v], 3
first one is a perturbative approach; the second approximates

the external potential by & function. Section VIII contains where&[ W] is the energy functional

an analysis of the results in view of future experimental re-
alizations. We present our conclusions in Sec. IX. Some 1.

technical aspects concerning the adiabatic approximation E[W]= d3r(§|V‘P|2+ 27-rasc|‘1'|4+(v||+vi)|\lf|2).
used for deriving the 1D reduction of the Gross-Pitaevskii @
equation are included in the Appendix.

a.. is the s-wave scattering length of the interatomic poten-
Il. AN EFFECTIVE ONE-DIMENSIONAL EQUATION tial (which is represented by & function interaction In all
the present work, we consider the case of repulsive inter-
tomic interactionsas.>0. The extremization ofS with
Lagrange multiplier e(n) imposing the normalization
d’r | W|?=n for eachx (more precisely for each) leads
o the following equation$11]:

We consider BEC atoms at zero temperature confined to
waveguide. Letx be the coordinate along the axis of the
guide (which is possibly bentandr, a perpendicular vector
giving the transverse coordinates. We work in the adiabati
regime where the local curvature(x) of the longitudinal
motion of the atoms is small. If the transverse extension of 1
the wave function is denoted Wy, , this is more precisely — §€f¢+(vi+4wascn|¢|2)¢=e(n)d: (5)
defined by the limitR, k<1 and|d«/dx|<1 (see the Ap-
pendiX. In this regime one can considerandr, as Carte-
sian coordinates, for instance, the volume elemgft is
approximatelydxd?r | . 1

It is consistent with the adiabatic approximation to make — S I+ (V) +e(n) g=id. (6)
an ansatz for the condensate wave functb(r,t) of the 2
form [11]

and

In Eq. (6) the nonlinear terme(n) (remember thatn
W (F,1)=h(x,1)(F, ;n) (1)  =|#1% is determined as a function affrom Eq.(5). In the
low-density limit agn<1 the nonlinearity in Eq.(5) is
where ¢ is the equilibrium wave function for the transverse Small. In this case, a perturbative solution of E5). leads to
motion, normalized to unity,fd?r |¢|?=1. ¢(x,t) de- 5
scribes the longitudinal motion, and the density per unit of é(n)=eot2asn/ay, @)
longitudinal length is , .
where ¢, is the eigenenergy of the ground statg of the
, ) ) transverse unperturbed HamiltonianiV2+V, , anda; 2
”(X't):f d*r [W*=p(x, D]~ =2m[|po|*d?r, . For a harmonic confining potential,
=, % is known as the oscillator length.
Notice that the transverse wave function depends parametri- In the opposite large-density limitagc>1 the Thomas-
cally on n(x,t). The adiabatic approximation is in fact a Fermi approximation holds, namely, the kinetic term in Eq.
local density approximation in the sense that one assume$) can be neglected. is obtained as a function ofthrough
that the transverse motion is not affected by densities ahe relation Ntr(€)=2asn, where Nt¢ is the integrated
points other thax. As noted in Ref[11] this corresponds to Thomas-Fermi density of statebl;e(e)=/(e—V,)0O(e
the assumption that the transverse scale of variation of the V,)d?r, /(2). For a harmonic confining potential this
profile is much smaller than the longitudinal ofed corre- reads
sponds indeed to the limR, k<1).
The beam is confined by a transverse potentig(r’,). €(nN)=2w, Vnag.+ €p. (8)
Keeping in mind experimental realizations, we often con-
sider below the particular case of a harmonic trapping We remark here that the Gross-Pitaevskii equation is valid
V., (F,)=2%0’r? (o, is the pulsation of the harmonic oscil- in the dilute gas approximation, when the 3D densify of
lator; we set units such th@t=m=1). As shown in the the gas satisfiesngDag’c<1 [12]. This reads herenag,
Appendix, within the adiabatic approximation the presence<(a, /as)?” (v=1 in the dilute regime and=1/2 for high
of a bend results in an attractive longitudinal potentgx) densitie$. a, /ag being typically of order 18) this condition

given by will be considered as always fulfilled, even at high longitu-
dinal densities, whenag>1.
V||(x)=—;<2(x)/8. (2 On the other hand, the weakly interacting 1D Bose gas

picture also breaks down at very low densities, in the Tonks
The Gross-Pitaevskii equations for the condensate argas regimgrecent references relevant to this discussion are
derived through a variational principle. One extremizes[13—16). This occurs in the regimena,.<(as./a,)?
the action ~10 8, which we thus discard from the present study.
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Equation(6), together with Eqs(7) and(8), are the main assume for simplicity that this happens in some finite region
results of this section. They provide an effective one-aroundx=0. With increasing number of atoms in the con-
dimensional equation for the description of the dynamics ofdensate the nonlinear effects come into play. The repulsive
the condensate along the guide. Notice that in general thimtra-atomic interaction increases the energy of the bound
nonlinear term in Eq(6) does not have the standard cubic state(as well as its spatial extensiprand there is a threshold
form of the one-dimensional Gross-Pitaevskii equation. Thidbeyond which this state disappears. Therefore for a suffi-
happens only in the low-density regineg.n<1 when the ciently large number of atoms no bound state is expected to
nonlinear potential7) is proportional tg| |2 occur. We now determine the threshold quantitatively by de-

We emphasize that E@6) relies on an adiabatic approxi- termining the maximum number of Bose-Einstein-condensed
mation. It is well known that in many instances this approxi-atoms the bound state can accommodate.
mation gives accurate results well beyond its strict domain of Near the threshold the state is very weakly bound, and the
validity. Two examples relevant in the present context aravave function extends over distances much greater than the
Refs.[17] and[18], where the propagation of wavesithout  range of the potentia¥ . Hence, in this limit it is legitimate
nonlinear effectswas studied in the extreme nonadiabaticto make the approximationV|(x)~\d(x), with X
case of waveguides with a discontinuous curvature and a:ffzvn(x)dx<0. This approximation is not contradictory
sudden constriction, respectively. The adiabatic approximawith the assumption of adiabaticity of the motion.
tion was nevertheless shown to be applicable in these sys- We look at stationary solutions of E@6) of the form
tems. On the basis of these examplsd of others one can  y(x,t) = A(x)exp(—iut), u being the chemical potential and
consider that the results presented here have a wide range Afa real function. In the regions where the potential is neg-
validity. ligible (i.e. for x 0 with the above replacement &f by a &

For practical purposes it will appear useful in the follow- function) Eq. (6) can be integrated once, giving an equation
ing to introduce a longitudinal healing lengéhdefined fora  for n(x):Az:
constant longitudinal density as ,

! n
1 — g—n+s(n)=,un where s(n)zf e(p)dp. (10
2—§Z=e(n)—eo- 9 0
With the convention defined in Sec. Il, the normalization is
This givesé=3a, (nas) 2 in the low-density regime and [ 7 n(x)dx=N, whereN is the total number of particles in
é=1%a, (nag) Y4 for high densities in a harmonic confining the bound state. The densitycan be shown to be an even
potential. function of x, and the matching condition at=0 reads

We now study in detail the different solutions of E). n’(0")=2xn(0) (the prime denoted/dx). Using Eq.(10)
Although the attractive potentiaV/|(x) appearing in the and these two conditions we arrive at a set of two equations
equation of motion was due to the presence of a bend in thdeterminingn(0) andu as functions o\ andN,
guide, our results are very general avi{x) could be of a
completely different physical origin. In particular, we will
consider in Sec. VI the case ofrapulsivepotential, which
cannot be produced by a bend.

)\2
-5 N(0)=e(n(0))= un(0) (1Y

and
I1l. BOUND STATES
n(0) (n/2)Yxdn N 12
We first study the existence of bound states in the guide —=N.
due to an attractive potentiad|(x). The existence of bound 0 Ve(n)—un
states n _the quantum mec_hanlcal motion of noninteracting. solving this system, one needs to know the explicit form
particles in a bent waveguide has been extensively consid-

ered in the pastsee, e.g.[19—21 and references thergirit of the functlor_ws(n). We will see that for realistic value; of
\ corresponding to an attraction issued from a bend in the
has been shown by Goldstone and Jaffe that at least one .
S . . uide the bound state can accommodate only a small number
bound state exists in two- and three-dimensional bent tub

[19] (cf. the discussion in the AppendixThe particle is of particles. In the case of a bend, it is thus sensible to con-

trapped because its energy is lower than the first Ioropagatincentrate on the low-density lim{see the estimate at the end

mode of the straight guide. In the case of a condensed bea Ot this section. Using EQ-Z(7), in the Iow-'densny regime we

we are interested in whether bound states occur in the pre aves(n) = eon+asn“/a; and we obtain

ence of interactions. 1{ (e 2
In the extreme dllgte I|m|gscr]—>0 Eq.(6). reduces to an L= €g— _( f V(x)dx+ a_SCN) _ (13)

ordinary one-dimensional Schidimger equation and the ex- 2 o 2

istence of a bound state i(x) is guaranteed by general

theorems of quantum mechani2]. Hence there exists a The first, negative, term inside the large parentheses is due to

state of the condensate whose energy is lower than the ethe attractive potential produced by the bdiefl Eq. (2)],

ergy €, of the first propagating mode of the guide. This statewhile the second one comes from intra-atomic repulsive in-

is localized in the region wher¥ is noticeable, and we teractions in the condensate. Equatids) clearly displays

L
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the existence of a threshold. When the number of atbins imposes flux conservation, namely, the product)v (x) is a
occupying the bound state increases, the chemical potentiabnstant that we denote kly,

u increases and eventually reaches the thresgphit which

the state disappears. This occurs for a number of atfdms D =n(X)v(x).

given by The real part gives a Schiimger-like equation foA(x),

2

at 2

+ 00
N, = Vi(x)dx|. 14 1. ®
max agc J_m H( ) (14) _EA + E(ﬂ)+V||+ﬁ A= uA. (17
For an arbitrary potential, ad— Np,y the spatial exten- In this section we consider the transmission modes of a

sion of the bound state diverges. Thus the approximation ofondensate through a straight waveguide with no obstacle.

V| by a é-function is well justified in that limit, and we This corresponds to solving E¢L7) with Vj=0. The modi-

expect Eq(14) to be very accurat23]. _ fications in the beam density and phase produced by the
The order of magnitude dfiax can be estimated by con- presence of an obstacle are considered in the following sec-

sidering a bend of constant radius of curvatBgeand bend-  tjgns. WhenV,=0, Eq.(17) can be integrated once, yielding
ing angle #. From Egs. (2) and (14) we get Ny ay

=a’ 6/(8asR.). For a guide withR,=5a, , #==/2, and 1, _ ®2
a, ranging from 1um to 10 um, Ny, ranges from 7 to 70 FATFW(N)=Eq with W(n)=—e(n)+pun+ .
atoms for a condensate 8fRb atoms é..=5.77 nm. For (18)
2Na, N, is doubled(since thes-wave scattering length of _ _ _ _
2Na isag.=2.75 nm). e(n) in Eq. (18) is the same as in Eq10) and E, is an

If the attractive potential originates from a red detunedintegration constant. This constant is denoted as a “classical

laser beam, using the estimate of Sec. \[Eq. (53)] one energy" becausg Eq18) has an interpretation in terms of
obtainsaLfi§V‘|(x)dx~ 10P (to be compared to the value classpal dyrlamlcs. It expresses the energy conservation of a
10~ that applies to a bendFrom this and from Eq(14) it onetd|mer_13|0nal H_amlltonlan system for a_flctl_tlous classical
follows that for rubidiumN, . can be as large as 1an this ~ Particle W'thz “position” A and *time” x moving in a poten-
case, however, one does not remain in the low-density reial W(n=A%, Eq being the total energy of the particle. The
gime where Eq(14) holds [this regime is valid ifn(0)ag. ;oluthnsA(x) thergfore c0|n<2:|de with the _classmal .solu-
<1, which from Egs.(11) and (14) gives N,,.,<a, /a.. tions in the po_tentlaW(nzA ). The che_m|cal potgntlaﬂ
~10%]. Working in the high-density regime instead, one ob-and the fluxd fix the shape of the potentigV(n), while E,

tains selects a “trajectory”’A(x) in this potential.
To clarify the physical meaning @&, consider the linear
3a% +oo 3 (i.e., noninteractingcasee(n)=0. Then the natural way to
NmaFﬁ f Vi(x)dx| . (150 write the solution(16) is a superposition of plane waves,
SC -

(X, t)=exp{ —iut} e explikx) + B exp( —ikx+i6)],
One gets from this equation a value N, of the order of (19

10%°. Note, however, that in this regime the high-density ap- , _
proximation is valid ax=0, but violated for largex (when wherek is the wave vector and an arbitrary phase. In terms

the density tends to zeroHence, without giving a precise ©Of the two real parameters and 3, the flux and the classical
order of magnitude, it is nevertheless clear from the previou§nergy are written®=k(a"~ g% and E¢=k"(a"+ g).
estimates that the maximum number of atoms the bound stafec! IS therefore a measure of the total intensity of the left and

can accommodate is very large in this case. right incoming beamsE,, can be varied while keeping
and u constantfand thereforéN(n) constant by changing

the amplitudesr and 8 simultaneously while preserving the
difference @?— B?).

From now on we concentrate on the stationary states of a For studying the shape &(n) in Eq. (18) in the pres-
beam of condensed atoms connecting two reservoirs. For thance of interactions it is customary to plati—dW/dn
purpose we look at the stationary solutigitsthe reference = €(n)+®?/(2n?) as a function of, as represented in the
frame of the laboratopyof Eq. (6) with  having a finite top part of Fig. 1. At low densities n(—0) the term

IV. TRANSMISSION MODES

value atx— =+ o, We write ®?/(2n?) dominates. At high densities the intra-atomic in-
teraction contained ir(n) takes over, and leads to a mono-
P(x,t)=exp{ —iuttA(x)explie(x)} (16)  tonic growth for large values afi [due to the repulsive in-

teractions, e(n) is an increasing function ofn]. At
with A and¢ real functions. Since the wave function extendsintermediate values there is a minimum at a density denoted
to infinity, the chemical potential satisfigs>¢,. The den- ng. The relevant casdeading to finite densities at infinity
sity isn=A2, and the beam velocity is=¢’. After factor-  corresponds tqu= e(no)+<b2/(2n§), and is shown in Fig.
izing out the phases, E@6) splits into two real equations 1. Then the derivative ofV(n) is zero for two densities;
corresponding to its imaginary and real parts. The formeandn,, with n;<ny<n,. The corresponding plot of the po-
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wave (and the whole spectrum of elementary excitatjass
better displayed by a slight modification of the procedure
used so far. Instead of the stationary an$a6r one looks for
| E, solutions of the forma(x,t)=exp{—iut}A(x—ut)expfi d(x
N ! —ut)}, whereu is a constant parameter, physically interpreted
! as the velocity of an arbitrary moving frame. Mass conser-
} vation now readsb=n(v —u) (® is the flux in the moving

V2
S AX)=As+ - [Ea=W(ny)]*2cogkx+6),  (21)
8
(5]
+ ; | L wherek?=d?W/dA?|, =4[®?/n;—c?(ny)] andn;=Af is
E M the constant density. This sinusoidal wave is reminiscent of a
w ' ! I sound wave, but sound waves are progressive whereas Eq.
n, n, n, : (21) describes a standing wave. The structure of the sound
|
|

W(n)
|

n. n frame and Eqgs.(17) and (18) keep the same form, witja
- " replaced byu +u?/2, all functions now depending oX= x
FIG. 1. Schematic behavior of the functioa@) + ®?/2n? (top  —ut and not merely orx. The constant solution(x)=n;

parh andW(n) (bottom part as a function ofh. n; (i=1 or 2 is  can now be given zero velocity (=0) if one choosesl
defined bye(n;) + ®%2n?= x and is a zero oW/dn; nyis azero  such thatu+®/n;=0 (this is of importance because one
of the second derivativd®W/dn?. For givenu and®, a beam of  wishes to study elementary excitations in a system al. st
uniform density has either a density [and a velocity higher than this case, a perturbative treatment of Ef8) for E; near
the sound velocitg(n,)] or a densityn, [and a velocity lower than W(n,) again gives a solution of the forrt21) with x re-
c(ny)]. Ata givenEy|, Niin andNpma, are the minimum and maxi- - placed byX. This is a progressive wave depending o
mum values of the density oscillatiof#/(Nmin) =W(Nmax) =Eall- = kx— w,t with »,=ku, and thus satisfying the Bogoliubov
dispersion relation
tentialW(n) is shown in the lower part of the figure. In order

to have a finite density at infinity one should also impose a de k2
bounded motion of the fictitious classical particle, and this wﬁzkz( nlﬁ +Z (22
results in the two additional conditionf) W(n;)<E ny

<W(n,) and(ii) n(x)<n, for any value ofx.

The different types of solutiolA(x) are therefore de- The long-wavelength limit of Eq22) corresponds indeed to
scribed by the different motions a classical particle undersound waves with a sound velocityn;) given by Eq.(20).
goes in a potentialW(n) at the allowed energie§.,. The |t is also possible to obtain in this way the dispersion relation
two simplest solutions correspond to the fixed points of theof the elementary excitations of a beam moving at constant
potential,n(x) =n, or n,, where the “classical” particle re- velocity v, [which is simply Eq.(22) Doppler shifted.
mains at rest. They correspond to constant density solutions. Note that our approach is unable to reproduce the de-
Since the densities are differemt,t>n,) and the flux has the crease of slope of the spectrum of elementary excitations that
same valueb, the velocitiesy; (j=1 or 2 of the condensed occurs in the high-density regime, for wave vecthrsf the
beam are also different, with,<v,. v, (v,) corresponds to order of the transverse extensiBn of the condensate. This
a beam velocity abovébelow) the speed of sound. To see effect, predicted in Refd.24,25 and observed numerically
this, we first note(see below that for a condensatat rest  in [26] goes beyond the quasi-1D approach: it occurs when
(i.e.,v=0) with uniform densityn(x)=n, the sound veloc- the excitation has a wavelength allowing exploration of side

ity c is defined by regions of the condensate that have lower local sound veloc-
ity. Hence, it cannot be reproduced by using the adiabatic
de ansatz(1).
cz(n)=nﬁ. (20 The structure of the stationary solutions for enerdies

close to(but lower tham W(n,) is totally different from the
sinusoidal waves we just discuss@dhich exist for E,

In the case of a moving condensate with uniform densjty =W(n,)]. The uniform solutionn(x)=n, coexists with a
one has a well defined velocity=®/n given by u=€e(n) solitary wave corresponding in the classical analogy to a mo-
+3v? [see Eq(17)]. From Egs(18) and(20), moreover, we tion along the separatrix located&g, = W(n,). This solitary
haved?W/dn?=[v2—c?(n)]/n. Sinced®W/dn? atn, (n,)  wave has constant density atx— =, and a trough whose

is positive (negative, it follows that v,>c(n;) [v,  minimum density satisfies the conditioW(n;,)=W(n,)
<c(ny)]. (cf. Fig. 2, top pant As the energy is lowered frornk,,

We now consider the density profile of the transmission=W(n,), density oscillations appear whose amplitude de-
modes in the vicinity of the constant solutiofix)=n,. For  creases ak., diminishes. These solutions are cnoidal waves
energiesE,, slightly higher thanW(n;) the stationary solu- (see, e.g.[27]) with periodic oscillation between two values
tions are sinusoidal waves of the form Nmin @Nd Njhax, as defined in Fig. 1. As the enerdy, is
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beam(sincev,>v,). As a consequence, radiation conditions
N require that the wake is always locatadeadof the obstacle
% (i.e., upstream in a frame where the disturbance is aj,rest
H

-y

with no long-range perturbation of the fluid on the down-
stream sidg28].

V. THE ATTRACTIVE SQUARE WELL

= Having recalled the different solutions existing in a
Ros straight waveguide, we now discuss the influence on the
=

transmission modes of a longitudinal potential representing a
0 motionless obstacle placed in the trajectory of the beam.
: ) Specifically, we consider a potentid(x) that vanishes ev-
1L i erywhere except in a finite regionsk< o where it takes the
& constant value-V, (Vy>0). If its origin is the presence of
Bos \/\/\/\/\/\ a bend, the square well potential corresponds to a waveguide
T with a constant curvature over a finite lengthkt@<o and
o straight elsewherg29]. Apart from considerations related to
-10 0 10 20 its physical origin, this model potential is of interest because
x/& ! potent :
it allows one to understand in a simple case the different

FIG. 2. Beam density along a straight guittegh-density re- stationary regimes occurring also in more complex poten-
gime) with v, /c,=0.7[lengths are given in units af(n,); see Eq.  tials.
(9)] Top Sohtary Wqu:Ed:W(nz)] Middle: cnoidal waves ex- An |mp0rtant pOInt fOI’ the detel’mlnatlon Of the transm'S'
isting for W(n;)<E¢<W(n,). Bottom: for E;;=W(n,) the cnoi-  Sion modes of the condensate along the guide is the bound-
dal wave deforms continuously to a sinusoidal small-amplitudeary conditions. As discussed at the end of the previous sec-
wave. tion, among all the possible stationary solutions that exist in

the presence of a scattering potential, the only physical ones

further reduced the density profile tends continuously to thare those that tend to a flat density downstream. Hence we
sinusoidal waves discussed above. This transition is illuseonsider density profiles tending to a flat densityxat
trated in Fig. 2, which is drawn in the high-density regime —o, with n(x— —)—n.,, and with anegativevelocity
for a transverse harmonic confining potenfiad., with e(n) v,.=®/n,. The sound velocity at infinityc,,=c(n.) will
given by Eq.(8)]. The same qualitative behavior is valid for also be chosen negative in all the following. This corre-
any density regime. sponds to a beam incoming from the right, unperturbed far

Figure 2 summarizes the possible density profiles of thelownstream by the presence\gf, and characterized by the
transmission modes of the condensate along a straight guidgvo parameters.. and n.. [or equivalently byu and @,
In the remaining sections we consider the modifications insince u=e(n..) +v2/2 and ®=n.v..]. Moreover, we will
duced by the presence of an obstacle in the flow of the consystematically express lengths in units gt=1{2[ e(n.,)
densate. Finding the transmission modes now reduces to Aeg]} Y2 [cf. Eq. (9)].
scattering problem in which two of the “free” modes dis-  \When V| is a square well, Eq(17) takes a particularly
cussed in this section are matched by the potential represerdimple form. Everything happens as for a straight wave-
ing the obstacle. The correct boundary conditions to be imguide, except thag in Eq. (17) is shifted tox+V, in the
posed are determined by the relative value of the phasgsgion 0<x=o. Hence, as in the case of a straight guide,
velocity one has an integral of motion, but it takes a different value in

each portion of space,

op(k)= 7 (23)

1
“A’2+W(n)=E_, x=<0,
with respect to the group velocity 2

k (9(1)k k k2 2 1 )2 0
vg(K) ok vp(k)| 1+ K2+ 4c2(n) . (24 EA +W(n)+Von=E;, O0=x=go,
Both functions start from the value(n) at k=0 and then 1
increase monotonically, with4(k)>v,(k) for any k>0. A2+ W(n)=E;;, o=x. (25)
For the stationary motion of an obstacle in a condensate at 2
rest,v, coincides with the velocity of the obstacle with re-
spect to the beam; this is the condition of stationarity. TheN(n) in Eq.(25) is defined as in Eq18). E;, EY, andE
energy transferred to the fluid propagates with a velogjty ~are the values of the integration constant in each region.
greater than the velocity of the obstacle with respect to thé&ince the solution is flat far downstregmhenx— —«) one
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(53

n(x)/n
W(n) and W,(n)

0.5

0

-5

0 x/E

FIG. 3. TypeB stationary solution in an attractive square well.

The left plot displays the density profile. The two vertical solid lines
indicate the location of the square well. This plot corresponds td"

o=2¢ and V£2=0.5 in a low-density beam at velocity., /c..
=0.7[the healing lengtl¥ is defined as in Eq9) and is computed
at densityn,,]. The right plot illustrates the behavior of the solution
in the diagram(n,W(n)). The solid curve represen®(n) and the

PHYSICAL REVIEW &4 033602

the righ. Starting from a valuen,, at x=—«, the density
has reached a valug(0) atx=0. From this point on the
equivalent “classical particle” moves in the potential

(27)

at an energye> =E_ +Von(0). At x=0 it evolves again in
W(n). Since to reach a finite density whe— +x~ one
needs to hav&_<W(n..)=E, from Eq.(26) this imposes
n(cg)=n(0). But, if the inequality is strict, one hak
<W(n,) and n(o)>n(0)=n,,: this case should be ex-
cluded since from Fig. 1 one sees that this leads to a diverg-
ing density at right infinity(the classical particle escapes to
infinity). Hence one should haveg0)=n(o), E;,=E_ and

the B solutions are even.

These solutions exist for any type of attractive square
well. For a given beanfcharacterized by, andv..) and
given values ofr andV,, the value ofA(0) is determined by
demanding that the amplitude varies fréx(0) to its maxi-
um valueAp 40 and back over a distance. Apaxo IS
determined as a function @&(0) from the equatioWy(A)
=EY whose two smallest positive solutions are denoted
Amino and Apaxo (in all the following we denote with an
index “0” the quantities concerningV, and defined as fov

Wy(n)=W(n)+Vgyn

dashed on&Vy(n). In the rear of the obstacle, the density evolvesin Fig. 1). We have

from n.. to n(0) in the potentiaM/(n) with a classical energi_,
=W(n..), then fromn(0) to Ny, @and back tan(0) in the poten-
tial Wy(n) (with energyESl), and finally the upstream density goes
from n(0) ton,. in W(n).

hasE;=W(n.). The matching ak=0 andx= o imposes
continuity of the density and of its derivative. This leads to

E_+Von(0)=E%=EJ+Von(o). (26)
Different types of solution satisfying Eq&5) exist, depend-
ing whether the far downstream beam velocity is greater
or smaller than the speed of souogh..)=c,.. We consider
these two different regimes separately.

A. Low beam velocity: v, /c,<1

The first type of solution we consider is rather intuitive if
employing a perturbative treatmefgee Sec. VI\. It corre-

sponds to solutions with an increased density in the region of

ZfAmaxO dA zfAmaxO dA (28)
o= —= —_—
AQ) A’ A©) VES—Wy(A)

For sufficiently smallor the only existingB solution is the
one described above. However, n@uysolutions appear as
the widtho increases, because the “classical particle” before
evolving back inW(n) has enough “time” to make onéor
several oscillations inWg(n). The general density profile of
the B type increases from,, atx= —o, up tox=0, and has
N maxima andN—1 minima betweenx=0 andx= o, with
N=1,2,3 ... We denote this By solution. Figure 3 corre-
sponds to &B; solution. The behavior of 8, solution is
illustrated in Fig. 4. For an arbitrari¥, Eq. (28) takes the
form

Amax,o dA Amax,O dA
0'=2f —+2(N—1)f e (29)

A(0) A’ Amin,O

the potential. In the following, we refer to these solutions as

B solutions(whereB stands for bump
The B solutions are found by looking for solutions with a
density increasing wher moves fromx= —o« toward the

where Aqino and Anaxo are, as indicated before, the two
smallest positive solutions &f/y(A) = ES, . The width of the
potential below which a given solution disappears occurs

origin. Since atx— — the density has the constant value WhenA(0)=Vn.=Ana,o. In this case the solution is per-

n.., and since we are imposing,/c.,<1, n,, coincides with
the uniform density denotedh, in Sec. IV, and E
=W(n.). But unlike the solitary wave of Sec. IV in which
the density decreases, in a tyBesolution we move to the
right of n,=n, along the separatrixsee Fig. 3 and theB
solution has a density peak instead of a trough.

fectly flat for x<0 andx=o¢ and is a portion of a cnoidal
wave (with N oscillationg in the region B<x<o. For a
given 'V, this forceso to be larger than the valuey(V,),

Ama dA
o= (Vo) = V2(N—1) f - *
oo

VEQ—Wo(A) 30

Since the boundary conditions are fixed downstream, here

and in all the following we find it more convenient to inte-
grate Eqs.(25) starting far in the rear of the obstacle, i.e.,
from left infinity (remember that the beam is incident from

Other types of solution, different from thg family, exist
for a beam velocity lower than the speed of sound. They
correspond to density profiles thaécreasefrom the down-
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FIG. 4. AB, solution in an attractive square well. Left and right 5
parts as in Fig. 3. The plot correspondsote: 4¢ andV,£2=0.5 in -5 0 X/ & 5 10 .
a low-density beam at velocity.,. /c..,=0.7. The downstream den-
sity evolves fromn.. to n(0) in the potentialW(n) with a classical FIG. 5. AD; solution in an attractive square well. Left and right

energyE; =W(n..); then it makes a complete oscillationWy(n)  parts as in Fig. 3. Plds) is the generic cagavith n(o)>n(0)] and
starting fromn(0) toward ny,axo and ending again am(o)=n  (p) is the symmetric case wherg¢)=n(0). These plots corre-
(0). Finally, the upstream density goes fronfo) to n.. in the  spond too=2¢ andVy£2=0.1 in a low-density beam at velocity
potentialW(n). v../c,,=0.7. The right plot illustrates the behavior of the typical
solution[such as displayed in paf®)] in the diagram(n,wW(n)).
The downstream density evolves fram to n(0) in the potential

stream asymptotic value, asx moves from—« toward the \ . & ! )
W(n) with a classical energ¥;=W(n..); then in W, (with an
0

origin, with E;; =W(n.,). Hence this type of solution is a energyE¢)) fromn(0) to the minimum density,;, o and back to a

portion of a sol_ltary wave in the rear of the obstacle. We refe(,aluen(g) [larger thann(0)]. Finally, the upstream density oscil-
to these solutions as the solutions (where D stands for | ias in the classical potenti@(n) as a cnoidal wave.

depressed

For aD solution, the density has a valug0)<n.. atx — ;— ;. (v.) and becomes thB, solution (of the type illus-
=0 and from there on the equivalent classical particleyateq in Fig. 4, which is then allowed for any larger value
evolves in the potentidlVy. In the simplest case the particle o , The point is that for @ solution, when changing from
bounces once on the repulsive core at the origin, namely, thﬁotentialw to W, in the (n,W) diagram, one can jump ar-
density f%rther decreases until it reaches a vailyg,o [sat-  pjtrarily close to the separatrix 8, thus making the period
isfying Eci=Wo(Nmino)] and then increases untt=o. i the region of the potential as large as desired. Hence, once
Then the classical particle evolves Wi(n) again, with an 3 B solution exists for a givewr, it exists also for any larger
energyE, that has to be lower than or equal\té(n..), and  value. For &D solution, however, the period W, is limited:
this imposes(o)=n(0) [cf. Eq.(26)]. Note that here, con- it takes its largest value if one enters and leaves the region of
trary to the case of th® solution, the strict inequality is the potential, with a flat density[i.e., n(0)=n.=n(o)].
possible; it corresponds ®;<W(n..) andn(o)<n.., i.e., The existence of th®, solution foro<o,(V,) depends
the upstream solution is a cnoidal wave. In the particulaion the value ol and of the relative positions of the curves
case thah(o)=n(0) the solution is even. A generic density W(n) andWy(n) in the (n,W) diagram. One regime is set
profile with a cnoidal wave is represented in Figa5and by small values o, such that the condition,,;;<<niq is
the even solution is represented in Figo)s satisfied, wheren;, is the smallest positive solution of

For a given well deptlV, the simpleD solutions of Fig. 5 W(n)=W(n..) [see Fig. 1 in the cage;=W(n,=n..)] and
(which we denote as th, solutions, with one minimumin  n, ; is the first zero ofdW,/dn (remember that we denote
the region of the potentiaddo not exist for all values ofr.  with an index “0” the quantities concerning/, and defined
When the well becomes very large,may exceed the period as in Fig. 1 folW). In this case one can easily check that any
of the oscillation of density in the weli.e., the “time” pe-  value of o smaller thano<o,(V,) corresponds to an ac-
riod of the “classical particle” evolving inV). In that case  ceptableB; solution. On the contrary, for larger values\af
the D, solution disappears. The limiting case corresponds tdor which n,;,>n, , is satisfied there is a minimum width
n(0)=n.=n(o), i.e., to a flat density outside the region of 4% (v) below whichD, solutions do not exist:
the well having one oscillation in the region of the well. This
upper limit is exactly the lower limitr,(Vy) below which Amaxo d

; X X
the B, solution does not exist. As a consequence, when (Vo) = \/Ef —_——
increases from a small value th®; solution disappears at Amino \VEc—Wo(n)

(31)
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1.5

D solutions can oscillate in the region of the well, Bs
solutions do. We denote bR, solution a typeb solution
with N minima. Contrary to the case & solutions, there
exists a maximum width foD, solutions to occur. When the
Dy solution disappears, it become®8g, ; solution(exactly
as discussed above fdi=1). Dy solutions are not neces-
sarily even asBy solutions are; ahead of the obsta¢fer
x= o) they typically consist of a cnoidal wavsee the dis-
cussion folN=1 and Fig. 5. In this case we do not consider
that the minima of the cnoidal wave outside the well increase
the indexN in the nameD solution[for instance, the profile
of Fig. 5(@) corresponds to B, solution although an infinity
of minima occur upstreaimFurthermorepP solutions have
the additional feature that they may not exist for values of
lower thanoy (Vo). This was explained above in detail for
s 0 x/E 5 the caseN=1. Figure 8 illustrates this generic behavior for a
D, solution.

FIG. 6. TheD; solution in a strongly attractive square well of ~ As for N=1, for this family there are generically two
width just aboves? (V). Left and right parts as in Fig. 3. The main types of potential well, depending whetingy, is larger
density outside the well is composed of two half solitons. This plot(shallow potentiglor smaller(deep potentialthann,;, (left
corresponds td/,¢£2=0.5 ando=2.4¢ in a low-density beam at and right parts of Fig. 8, respectivelyin the case of a shal-
velocity v../c,=0.7. The density evolves from., (far down-  low potential theD, solution exists for any width below
stream to n(0)=np, in the potentiaW/(n) with classical energy  g5(V,); this is not the case for deep potentials. We will not
E.i=W(n.). It then evolves W, from n(0) to nyino and back.  comment on Fig. 8 in great detail, but we note that even in
Finally, the upstream density oscillates in the classical potentiaihe simple case of a shallow potential interesting bifurcations
W(n) from n(o) =N, back ton.. . occur. Let us focus on this case. For simplicity we discard

0 ) from the discussion solutions forming cnoidal waves up-
whereE g =W(Nnin) +VoNmin, Amino @Nd Anaxo b€ING SO-  stream(i.e., forx=¢). Then, for small widths, the only pos-
lutions of Wo(A) =Eg; (0ne hasAnaxo=Amin). The limiting  sible D, solutions are even. For a certain width the minima
caseo= o7 (Vo) is illustrated in Fig. 6. The situation for the of density occur exactly at=0 andx= o [it is easy to see
solutions of typeD; is summarized in Fig. 7. that this width coincides witr} (V) defined in Eq.(31)].

From there on, the previous even solutions still exist, but
0 c,(V,) new solutions appear. They correspond to a portion of a soli-
| | > ton with its minimum before the well and one portion of
! /' ““““ cnoidal oscillation inside the welsee Fig. 8, left payt This
solution is degenerate in the sense that there exists a sym-

metrical equivalent solutiofwhere the minimum of the soli-

oo

n(x)/n

0.5

W(n) and W,(n)

typical

v

ton occurs beyond the well It disappears wheno
=0,(Vy). For o just below this value, one has exactly one
soliton out of the well and one cnoidal oscillation inside the
well; hence the trough of the solitonic part of the solution is
. sent to infinity(a feature that is not clearly seen on Fig. 8 due
0 c,(V,) 0,(V,) to numerical difficulties For larger values ofr one has to
kococee o oscillate more than once in the region of the well, but these

Ll

typical / are D5 and notD, solutions. On the other hand, the even
L solutions still exist untilo= o3(Vy). The situation is slightly

||
more complicated for deep potentials, but the basic ingredi-
ents are the same as for shallow potentials and we present the
different allowed density profiles in Fig. @ight par) with-

out detailed discussion.

FIG. 7. Synoptic diagram of the evolution of the morphology of
the D, solution for a givenV,, as o increases. The insets display B. High beam velocity: v, /c.>1
the density profiles(x)/n., . Hatched regions indicate values @f . . .
for which the solution does not exist. For shallow potentidts We now consider beam velocities, Iarger_(ln abs.oIL.Jte
which ny o>npn, upper part of the plotthe D; solution exists for Va_lue thanc,,=c(n..). In th language of F'g'_]n°° IS '[‘
any width o between 0 ando,(Vo). For deep potentialrg,  this case of type, (the minimum of the potentialand E,

<Npin. lower par it exists only if o[ o (Vo),02(Vo)]. In both =W(n,). The only possible flat solution .far in the rear of the
cases(shallow or deep potentidlsat o=o0,(V,) the D, solution  oObstacle is a flat and constant density, namelfx<0)
disappears and become®a solution. =n,. The matching condition(26) yields E:,=EC_|
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,(V,)
0 c,(V,) c,(V,) c,(V,) 0 s’ v, | s’wv,) o,
| | | T I Jeozss] bsca
| | - . B> [T e ] R >
[ \\\ //
\\ /
typical typical typical typical typical typical

| W | W
W NS D

FIG. 8. Synoptic diagram of the evolution of the morphology of Ehesolution for givenV,, aso increasegsee caption of Fig.)7 For
o larger thano;(V,) the D, solution disappear§t becomes &5 solution. The left part corresponds to a shallow well and the right part
to a deep well. For legibility, the cases denoted as “typical” have been taken to consist ahead of the @lostagter) of a portion of a
soliton (whereas the most generic solutions are cnoidal waves

+Vg[n.—n(c)]. One should verify thatE;=W(n,=n..) The allowed values otr are in the interval§O,L,]U[L,
=E_, (see Fig. 1and this imposea(s)<n... This inequal- —La,Lo+LaJU[2Lo—L,2Lo+L,]JU---.

ity is trivially satisfied, because the solution inside the well is  The region of validity of the first cas@mi,o™>ng,ins

a cnoidal wave witmp,,,0="n.. (see Fig. 9. If we denote by  can be evaluated analytically in the low-density regime.
n, (as in Sec. IV the second zero adW/dn (the first one In  this regime one obtains W(n,;)—W(n;=n.)
beingn,=n..) one has also to verify thd/;<W(n,). This ~ =N.F(v../c..)/(4£%) where

imposes

2 8 52 322 8
F(Z): —| 1+ 1+—2 -1 T+1_T 1+—2 .

N(o)=N, int= [W(nz) W(ny)]. (32 z z
(34)

Once this condition is fulfilled, the upstream solution is aThis vyields Nyint/N=1—F(2)/(4Vo£?) (we set z
cnoidal wave. Because these solutions have a constant down-, /c_). One also obtaingy;n o/N.. = G(z,V?) where
stream density, we denote thefnsolutions.

Two different cases are to be considered. The first and 722+1 722+1 2
simpler one corresponds Gy, o> Ny inf - It occurs for high — G(z,Voé?) = +2Voé? ( 5 +2Vo§2) -
beam velocityfwhenW(n,) —W(n,) is largg and for shal- (35)

low potentialsiwhenV, is smal). In that case, the density of

the cnoidal wave inside the well oscillates betwe®g,o  The region of validity of the condition,, ;,s<Nmino (Where
and npaxo, and the matching at=o is always possible. all the potential widths are acceptaptan be displayed in a
The incoming wave(for x=0) is a cnoidal wave corre- diagram ¢=uv../c..,Vo&2). It corresponds to the region
sponding to oscillations of the “classical particle” in the po-

tential W(n). This behavior is illustrated in Fig.(8). F(2) 5
The other case correspondsi;n:>Npino- Then all the 1- oy 5<G(z,Voé9), (36)
widths are not acceptable, namety, should be such that 0é

n(o)>n, ¢ If one denotes by , the length the density
takes to go from the valua, j s t0 Npayxe and by L, the
period of the cnoidal wave in the well, one has

i.e., to the domain below the solid line in Fig. 10.

VI. THE REPULSIVE SQUARE WELL

1 Mmaxo dA In this section we consider a simple repulsive potential,
= \/T(A namely, we takeV|(x) to be zero everywhere except in a
Vierint finite region O<x=<o where it takes the constant vali
dA (Vp>0). This type of potential cannot correspond to a bend

Lo= \/_f nmax.O (33 in the guide, but it can be realized with (Alue detuned

Mmino VEg Wo(A far-off-resonant laser field.
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FIG. 9. AC solution in an attractive square well. Left and right

parts as in Fig. 3. Both density plots in the left part concern a

low-density beam, withv,./c.,=1.6 and a square well of width

o/¢é=4.68174. Plot(a) is the generic case and corresponds to

Vo£2=0.1. For these values of, and v,. the condition(32) is
fulfilled for any o. Plot (b) corresponds to a well of depttiy&?
=0.5. The parameters have been chosen in this case suchjhat

=W(n,) and theC solution is just about to disappear. The right plot

illustrates the behavior of the typical solutifcorresponding to part
(@] in the diagram(n,W(n)). The density is constant and equal to
n,. for x<0 in W(n). Fromx=0 to x= ¢ the “classical particle”
evolves inWy(n) (with an energyE(c)'). Finally, the upstream den-
sity oscillates in the classical potentll(n) as a cnoidal wave.

Equation(25) still holds after changing the sign af,.
Equation (26) holds also, but we rewrite it here with the
appropriate sign for future reference,

Eo—Von(0)=EQ=Ej—Vn(o), (37
and similarly one has hefénstead of Eq(27)]
Wy(n)=W(n)—Vyn. (38

The potentialWy(n) has, forV, relatively small, the same
behavior asw(n), namely, one minimum ah, o and one
maximum atn,q, with n;<n; o<ny<n,,<n, (the nota-
tions are defined in Sec. IV, see Fig. On the other hand,
for largeV,, W, is a monotonically decreasing functionraf
The transition between the two regimes occurs when
—Vo=e(ng)+®?/(2n3). Hence, the terms “low” or
“large” V, we just definedwe also speak below of “weak”
and “strong” potential$ are not intrinsic properties of the
potential, but depend on the chemical potengizdnd on the
flux @ of the incoming beanfthis remark is made quantita-
tive in Sec. VI A below.

PHYSICAL REVIEW &4 033602
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FIG. 10. Representatiotior low-density beamsof the part of
the plane ¢.,,V,) where theC solution is allowed for any potential
width. The allowed region is located below the solid curve. We also
display on the same diagram the region whé€rsolutions are al-
lowed for any width of arepulsive potential (see Sec. VI A It
corresponds to the domain below the dashed curve for low-density
beams and below the dot-dashed one for high-density beams.

—0,<0]. Under these conditions, the transmission modes
through repulsive potentials appear to be simpler than the
attractive ones discussed in Sec. V, as we are now going
to show.

A. High beam velocity: v, /c.>1

The stationary solutions of a supersonic beam encounter-
ing a repulsive square well have important similarities with
the C solutions of Sec. V and will be given the same name.
For weak potential§ Vo< u— e(no) +®%/(2n2)] the solu-
tions exist whatever the value of, and their shape is very
similar to the transmission mode illustrated in Figa)9 The
main difference is that here one hag)=n(0)=n,, in the
region of the wel(whereas the reverse inequality holds @r
solutions in an attractive well

On the other hand, for strong potentials the solution in the
region of the well is notas for weak potentialsa cnoidal
wave. In this region the density increases monotonically
from x=0 up tox=g; then “classical” motion occurs in
W(n) and the upstream density profile further oscillates as a
cnoidal wave. This means that there exists a maximum value
of o above which no solution can be found in a strong po-
tential. Wheno reaches this maximum value, the solution for
X=o is a portion of a soliton and the whole solution has a
steplike shape going from.,=n; (far in the rear of the
obstaclé up ton, at x— +c0. The behavior in this limiting
case is illustrated in Fig. 11. There is here a difference with

Among all the possible solutions, we choose again to sethe case of a strong attractive square well: wiaehas ex-
lect those corresponding to a flat density at left infinity ceeded this maximum value, no other stationary solution ap-

[n(X)—n, as x——x] with a negative velocity[v(x)

pears for larger widths. The reason is that in an attractive
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25 tials”) the critical value ofo after which noC solution can
be found. We denote this value hy. Following a reasoning
.l | similar to the one of Sec. V B one obtains
= 1 f\‘/n(r,sup dA
= L= | e
15 3 V2 mine VEg—Wo(A)
= =
= g 1
= ; - where n, gyp="n..+ V—O[W(nz)—W(nl)]. (42
&
B . . .
In the low-density regimé&, can be expressed in terms of an
05 elliptic integral:
L fF(z)/(4VO§2) dx
X n ¢ Jo V2X[ X2+ X(4V£2+ 1 22) + 4V£2] 12
FIG. 11. AC solution in a repulsive square well. The parameters 1 (F(2) 2
have been chosen in this case such tB3t=W(n,) and theC = Voi? 8 (42
0

solution is just about to disappear. Left and right parts as in Fig. 3.

The left plot concerns a low-density beam, with/c..=1.6, and a ) .
square well of widtho/é=3 and depthV,£2=0.1. The right plot ~ NOte, of course, that Eq42) is meaningful only when the

illustrates the behavior of this solution in the diagrgmw(n)).  condition(40) is violated.L , in Eq. (33) can also be defined

The downstream density is constant and equal.toFromx=0to ~ With a similar expression in the low-density regime. Both

x=o the “classical particle” evolves inWy(n) (with an energy expressions are well approximated by the left part of Eq.

E2); then it evolves back iWw(n), just on the separatrix. (42), meaning that one has B(,V¢)2=F(z). We will see
below that this corresponds to approximating the potential by

square well, the solution in the region of the well is periodic,a § function[cf. Sec. VII, Eq.(50)].

whereas it increases here without limit for large wells.

Due to the similarities with the case of an attractive po-
tential, it is interesting here also to determine more precisely o .
for which beams a stationary supersonic solution can be Itis easy to check that in this case oridy solutions can
found (for weak potentialsfor all values ofo-. An analytical ~be observedthere are no othe solutions, andB solutions
treatment is here possible in both the low- and high-densitjre forbidden The downstream solution starts at left infinity
regimes. The two cases can be treated on the same footing Bm a densityn.. which is of typen;, in the terminology of
introducing an index» with »=1 in the dilute regime and Se€c. IV.n(x) decreases from this value, and in the diagram

B. Low beam velocity: v, /c..<1

v=1/2 for high densities. One has (n,W(n)) the fictitious classical particle evolves in the po-
tential Wy(n) during a “time” o, and then evolves ilV(n)
1{n\" 5 vz%(n.,\2 again. Since one should verify thef,<W(n,)=E_,, from
€(n):60+2—§2(a) dov :2_52(7) ., (89 Eq.(37) this imposesi(a)<n(0). If the inequality is strict,

the solution forx>¢ is a cnoidal wave. Ih(o)=n(0) the

wherez=uv../c... One then obtaing,/n..=z>*2) (n, is  final solution is a portion of a soliton. .
defined in Sec. IV, Fig. )1 The condition for a repulsive Let us consider a strong potential first. If the well is nar-
potential to be considered as weak is thus Vo=e(n,) "W (0—0), there are two possible solutions, depending
+®2/(2n2) = g+ (Ng/N..) (1 + v/2)/(2£2). Sincep=v2/2 whether, in the d|agra_1r(r_1,v_\/(n)), one “jumps” rapidly or
+e(n.,), this reads not from W to W,. This |s.|llustrated on Flg: 12. Wheor _
increases, these two solutions merge and disappear. This be-
1 vz2 1 v havior was already observed by Hakim in the case of a
Voé?= >t~ 5( 1+ 5) zZ?r(v2), (400 model repulsives potential[30]. Hakim showedfor the one
dimensional Gross-Pitaevskii equation, i.e., in the dilute re-
This region of weak potential corresponds in Fig. 10 to thegime) that the solution that “jumps late” t¥, (right part of
domain below the dashed curve in the dilute regimel,  Fig. 12 is unstable, and argued convincingly that the other is
and below the dot-dashed curve in the high-density regimétable. The same situation is expected to occur here.
v=1/2. As stated in the beginning of this section, the terms In the case of a weak potential there are also two types of
weak or strong potential do not characterize an intrinsicsolution, but they do not disappear whenincreases. The
property of the well. Ab..=c.., for instance, all the poten- point is that one can have hek?, arbitrarily close to the
tials are “strong.” separatrix energyVy(n,,), and the period of motion in the
In view of future experimental studies of the system, it ispotential\W, can thus be made as large as desired. From Eq.
also interesting to determirie the regime of “strong poten- (37), one ha:E&:Wo(nzvo) if n(0)=ng with
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reaches this value at its minimum in the limit—co. If
n(0)<ng, E2|>Wo(n2'0), and the fictitious classical par-
ticle evolves above the separatrix in the potentigl As in

the case of a strong potential, this solution is expected to be
unstable. The other one is certainly stable since one can
show that it is identical to the result of perturbation theory in
the limit of a very weak potential.

VIl. SIMPLE SOLUTIONS IN THE PRESENCE
OF AN OBSTACLE

W(n) and W (n)
W(n) and W (n)

The aim of this section is to study, by means of perturba-
tion theory, some simple solutions of E@L7) valid for a
generic potential/|(x). We will argue that near the speed of
sound this approach fails, and that in this regime any poten-
tial can be approximated by &peak. We will then study the

FIG. 12. Schematic representation in #fmeW(n)) diagram of  scattering modes of the condensate in the presence of this
the behavior ofD; solutions in a strong repulsive square well potential. It allows for a qualitative and simple understanding
(v./c.<1). The solid curve represen®§(n) and the dashed one of the solutions obtained for more realistic potentials in the
Wo(n). For this type of potential there are two possible solutionsprevious sections. Some of the results presented here have
for a given value of the widtlr (as discussed in the tgxfThis is already been obtained by Hak{r80], who considered repul-
illustrated by the figure, namely, the “time” the fictitious particle gjye potentials only, in a slightly less general setting.
spends in the potentidll/; is the same in the left and right plots. For We again restrict the analysis to those transmission modes
simplicity, the examples we give here are drawn in the particulartending to a flat density at— — %, n(x— —)—n,, , with a
casen(0)=n(c). negative velocityv... These are of the fornA(x)=A.,

1 + 8A(X) (with A2=n.,.). Denoting byc.. the sound velocity
g =n, g+ V—O[W(nz)—W(nz,o)]- (43) ;altitetljdesnsitynoc [Eq. (20)], a perturbative treatment of E(L7)

The expression “jumping soon{or “late” ) from W to W, 5A"+4(vi—ci)5A=ZAWVH(X)- (44)
that we used in the discussion of strong potentials refers, for

a weak potential, to the case when¢0)>ng [or n(0) The solutions of Eq(44) that tend to zero wher— —o are
<ng]. If n(0)>ng , the density remains larger thapgand  of the form

A, [+
_Tf_xvu(y)exp{—k|x—y|}dy when v./c.<1

SA(X)= (45)

2A., (x _
K fﬁxvu(y)sm{k(x—y)}dy when v,/c.>1,

wherek:2|v§c—c§,|1’z. From Eg.(46) we see that similar motional dressed states
Denoting byo the typical range of the potentis] , inthe  exist for any potential in the limit of very large velocities
limit ko>1 the Green function of Eq44) is almost a5  (whenko>1).
peak and Eq945) take the simple form In the casev../c,>1, an asymptotic evaluation of Eq.
(45) yields far ahead of the obstadlim the limit kx>1) an
amplitude of the form

2A,,
6A(x)=sgr(vx/cw—1)?VH(X). (46)

2A., e 2A., 1
SA(X)= Tlm{e V||(|()}+ FV”(X)-F (@] E )
This result may seem unnatural at large velocities. Indeed, (47)
for a repulsive potential, for instance, the dengiigreasesn
the region of the potential. This kind of behavior was already R
found in Ref.[31], where a very special potential was de- where VH(k)=ff§dxexp(—ikx)\/H(x) is the Fourier trans-
signed for which this phenomenon occurs at anyc,.>1.  form of V|(x). This shows that, fov../c..>1, Eq.(45) cor-
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responds to & solution. The fact that the upstream solution 2.5
oscillates with a wave vectércorresponds to the stationarity
conditionv ,(k) = —v.. (see the end of Sec. )VThe wake is
characterized by a wavelengthrgk that depends on the ve-
locity of the beantit decreases whejw .| increases This is
due to the particular form of the dispersion relati@2), and
does not occur above the Landau critical velocity in liquid
helium, for instance, where the location of the roton mini- 15
mum fixes the wavelength of the waka?2]. g
When the beam velocity is lower than the speed of sound &
for attractive(repulsive potentials Eq.45) describes &8, >8 ’
(D) solution. In the attractive case, for instance, the bump
density measured with respect to the constant demsity
contains a number AN of atoms given by AN
= [TZon(x)dx~—(4n../k?) [ TZdxV|(x). This formula di- 05
verges when . /c,—1 sincek—0. In that limit, however,
the perturbative treatment is not justified. Indeed, &) !
gives a sensible result only|ifA| <A... Denoting byV, the

typical value of the potentia¥|, this reads - -0.5 E_,OX 0.5 1
Voolk<1l when ko<1,
FIG. 13. Domains of existence of the different solutions occur-
VO/k2<1 when ko>1. (48 ring for a dilute beam in a potenti®(x) =\ 5(x). Region | occurs

only for v, /c.>1 and corresponds tG solutions. Region Il cor-
These conditions are satisfied only if the beam velogity responds td; solutions and occupies the domain under the dashed
and the sound velocitg,, are not too close. line (it occurs only for attractive potentials and fog/c,.<1). Re-
From Egs.(45 we see that fow./c..<1 the typical gion lll corresponds t® solutions:D; solutions forA>0 andD,
length scale of variation oA is proportional tk . If |[v,] ~ solutions wher\ <0.
approachesc.,| from below, this length scale diverges and

the spatial extension afA increases indefinitely. In this case <wn,). This fixes an upper bound for the intensity of the
itis legitimate to approximat¥| by a é function. Hence, we perturbation, given by ®2n.,<W(n,)—W(n..). This is the

do not pursue the perturbative treatment any longer and tUr@iterion for observingC solutions. In the low-density limit
now to the study of solutions in &function-peak potential. i relation takes the analytical form

Consider a potential of the form(x)=\d(x) with A
positive or negative. A realisti¥/; can be approximated by
such a potential if its typical length scateis much lower v
than the healing lengt. In this case the approximation is 8)\2§2$|:(_°°), (50)
valid for any beam velocity. As discussed above, any poten- ¢
tial V| can be approximated by & function whenv., ap-
proaches.., i.e., in the limitko<1. o ] ]
5-function potential are very simple. They are obtained bythe region I of Fig. 13.

oo

joining together the solutions of two straight guidese Sec. Let us now consider the case./c,<<1. The first and

IV), one downstreamx<0), and the other upstreanx ( Simpler solution is théB; solution which occurs for attrac-
>0), with the matching condition tive potentials. The corresponding matching conditidf)
reads in this case’(0)/n(0)=—2\. It can be fulfilled

A’(07)—A'(07)=2)\A(0). (49 whatever the value of\ (A<0) because the function

_ , , _ (n'/n)2=8n"1E,—W(n)] can be made arbitrarily lardé
The integration constar;ﬁd of Eq. (18) changes dIfCOhtlnu- grows as &(n)/n for largen]. The domain of existence of
ously fr+omlthe valuefc, for x<0 to the valueEg, for x g ‘sojutions corresponds to region I in Fig. 13.
>0 (Eg=z[A'(07)]7+W(n(0))). Using Eq. (49 these D solutions can also be observeduf,/c.,<1. For A
two values are related through;=E+AA(O)[A'(07) >0 these are theD, solutions whose behavior in the
+A’(07)]. (n,W(n)) diagram is illustrated in Fig. 18n the case of a
Let us first consider the case,/c..>1. We know from depth of finite width though For A\<0 these ar@z solu-
Secs. V B and VI A that one should obse@esolutions. One  tions such as those shown in Fig. 8 for0. The limiting
has in this case a constant downstream demsity A and  case(beyond which these solutions disappéambtained for
E,=W(n.). The matching condition imposeE;=E;  two symmetric portions of solitary waves. The matching
+2\%n,, andA’(0%)=2\A... In order to have a finite so- condition (49) then fixes the maximum value k|, which
lution atx=+2 one should moreover satisi/(n..)<E_ corresponds in both cases to
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rzp

PREYEI (52

Ve 2
|)\|§:K(C—) V| (X) =V, ex -2 where Vo=
o o2 47d0°l g

1
where K(z) =4—{— 8z*— 2072+ 1+ (1+82%)%312 5= w— w, being the detuning ank=16 W m 2 the satu-
z ration intensity. This yields

(51)
, 1/[T?\[ P
The corresponding domain is shown in Fig. &8gion IlI). Voo T4 sw, || 12 ~=*10. (53
S4L
VIIl. EXPERIMENTAL CONSIDERATIONS In this case one is in the reginier>1, with Vo/k?~10 2

: : : : or 10 . Hence one is on the edge of applicability of the
In view of future experimental observation of the different erturbative approach. By changing the wavelength of the
flows past an obstacle, we now evaluate the orders of MaYaser or its velocity with respect to the beam, one may enter
above. For concreteness we consider a beam such as the q
in preparation at the ENB3]: 8’Rb atoms are guided along
the x direction, with a harmonic transverse confinemen
(w, =27X500 Hz anda, =0.5 um). The beam has a ve-
locity v., of the order of 0.5 m/s and a fluk varying from
10* to 1¢® at.s 1. Hence the quantityr.as. varies from
10 “ to 1. For a rough estimate of the order of magnitude o
the relevant parameters, we will consider that this corre
sponds to the low-density limit,as.<1. Then the healing
length[defined in Eq(9)] and the speed of sound vary from
£=25 um and c,=20 ums ! (for n,a,=10 %) to ¢
=0.25 um andc,=2 mm s! (n,as,.=1). Note that the
beam velocity is much larger than the speed of so(thd
quantityv../c., is of order 16 at leas}.

remain in the appropriate region of Fig. XDsolutions exist
tfor any value ofo if Voé?<&(v./c.,)* in the case of an
attractive potential, and No&2<%(v../c.,)? in the case of a
repulsive potentialsincev../c,.>1 we consider here the
fasymptotic versions of Eqé36) and(40)]. By modifying the
value of the healing length and of the beam velocity these
conditions can easily be satisfied or violat@bpecially in
the case of repulsignin the region where these conditions
are violated one can experimentally study the transition from
a stationary flow(of type C) to a time dependent one. For
instance, it would be of great interest to study the modifica-
tion of the drag at the transition.
) . Just at the boundary between the two regions, for a repul-
If'the obstacle is a bend of constant radius of curvaRie  jye potential the density profile has the behavior shown in
and opening angl#, Vo=—1/(8R;) and o=6R.. A féa"  Fig. 11[for an attractive potential the density profile corre-
sonlable or(ger of magnitude B.=5a, , leading toVy¢ sponds to Fig. @)]. The density has a steplike shape, and
= z200(é/,)?, which varies roughly from 10° to 10. Foré  the heam ahead of the obstacle has a velocity lower than the
= /2 one hasr=8a, and the obstacle can safely be treatedspeed of sound. One has just at the transitienL, (or L in
pertur_ba_ttively because in this cadse~ 10> 1 and Eq.(49) the case of an attractive potenjiawith 8(V,L,¢)?
is satisfied since =F(v./C.)=(v./C.)*4 (see the end of Sec. VHAFrom
5 s the estimatg53) this occurs foré/o~10"2 or 10 3. For a
Vo/k*~10"°<1. laser, one can tune the waistby a factor of order 5, say,
and, more important, by changing the density one can
For this configuration one thus expects profiles in agreemerthodify the value of¢ and indeed reach the appropriate re-
with Eq. (45) (casev../c.,>1), i.e.,C solutions. Also, since gime. This would have a very important effect on the beam,
we are in the regimko>1, Eq.(46) holds, meaning that the since the velocity ahead of the obstacle woulddyeer than
wake ahead of the obstacle is very weak, and that there istde speed of sound whereas it is of the order of 1 s
decrease in the density in the region of the bend. Howevedownstream. Accordingly, the density along the beam would
this decrease is extremely small: it corresponds to a numbejo fromn..=n, to n; (see Fig. 11 It is not difficult to see
of atoms smaller than unity, and under these conditions noththat, in the dilute regime, in the limii../c..>1 one haq,
ing noticeable is expected to occur in the bend. =n,(v./c.)?/4. Thus the downstream beam density is di-
The situation changes drastically if the obstacle is due to gided by a factor of order fowith respect to the upstream
transverse laser beam because the potential can be magge and, by conservation of the flux, the velocity is multi-
much stronger. It can, moreover, be attractive or repulsivglied by the same factor. The beam velocity ahead of the

depending on the laser’s frequency, and also the velocity ddbstacle is then of the order of a few micrometers per sec-
the obstacle relative to the beam can be modified by using agnd.

acousto-optic deflector.

We consider a laser with pow&=70 mW and a wave-
length\ | varying from 780 to 790 nnfthe atomic transition
corresponds to a wavelengkh=780.2 nm and has a natu-  In this paper we have studied the different stationary pro-
ral widthT'=127 MHz). The laser beam has a typical waist files of a Bose-Einstein-condensed beam propagating
o of the order of 5Qum. Then one obtains for the transverse through a guide with an obstacle. The beam far downstream
potential is characterized by its velocity,, and densityn., (or, equiva-

IX. CONCLUSIONS
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varying these parameters one obtains a wide range of densifyitful exchanges.

profiles (we identify three main stationary families denoted
asB, C, andD solutions. We have numerically checkg@4]
that similar results are obtained for potentials other than
square wellsuch asv(x) =*V, exp{—x%/o?} for instancé In this Appendix we recall the conditions for existence of
and we thus believe that our analysis of the flow is quitea bound state in a bend of an ordinary waveguice, with-
general. out nonlinear terms in the Schtimger equatiopand put the
The richest case occurs when the external potential is afidiabatic limit used in the text on firmer mathematical
tractive. In the subsonic regim@eam velocity lower than grounds. R
the corresponding speed of solitde simplest solution is a Let us consider a curvg, of parametric equationc(x), x
symmetric density having a peak i (B family). These being a curvilinear abscissa alor@ The Frenet frame
solutions may have density oscillationsAn and are always (f,ﬁ,ﬁ), the curvaturec(x), and the torsiorr(x) are defined
symmetric. Another type of transmission mode is a solitonyy t=dr./dx, dt/dx=«n, dn/dx= — xt + 7b, anddb/dx
like depressed solution pinned to the obstadle family), =—m.

which may also have density oscillationsArand, unlike the —\ve first introduce a curvilinear coordinate system. The

B family, a wake upstream. Finally, the supersonic transmisposition of a point of space is specified by coordinates
sion modes € solutiong possess, in the simplest case, a(x,y,z) through

density trough iPA and are constant outside. They may also
have density oscillations iA and an upstream wake. r(x,y,2)=rc(X)+yN+zB, (A1)
For a repulsive potential, in the subsonic regime the trans-

mission modes are of typ@ with no density oscillation_s N\ here N(x) = cosén+sin b, B(x)=—sinon+coséb, and
A. In the supersonic case, the modes are of @dmut with 0(x) is defined throughl 6/dx= — 7(x).
a density peak instead of a trough. Steplike solutions of in- "\ i then select a potential of the fovh (y,z). Note that
creasing density across the obstaléth or without wake . ice of vectorsi and B for defining the transverse
also exist. Specifically, we have identified an interestamgd . : . . 9 . ;

' coordinatey andzis not irrelevant, i.e., the manner in which

experimentally reachableegime where the beam is almost V1L winds roundC does matter: it has to be the same as the

stopped by a repulsive obstacle and gains ahead of it several N >
ordzfs of r);agni?ude in densitgee Seg VI way (N,B) winds aroundt. Indeed, one can see that some

An important aspect of the problem that remains open aréOrSIon may create a repulsive potential alo_mgvmch .COUId .
considerations related to the stability of the solutions. Som gancel the Iocal|z_|ng effect of the bend. This is avoided Wlth
. . : e type of coordinate dependence we have chosen. A simple
related work is in progresi34]. We just note here that the

limiting C solution shown in Figs.®) and 11 can be turned way of seeing this is lgya ”9“0'”9 thal has coordinates
into a D solution by exchanging the downstream and the(h™ *dx.,dy,d;) in the (t,N,B) frame [with h(x,y,z)=1
upstream behavior of the flow. However, these are part of a «(y cos#—zcosé)] and the force-VV, (y,z) thus has no
continuous family of flow patterns and are probably unstabletangential component. It would have been more natural to
The C solutions, on the other hand, as selected by the radigdefine the ¥,z) coordinates as in EqAL) but using the
tion condition(see the end of Sec. )Vare the only accept- (ﬁ,B) vectors instead oflﬁ,l%). In this case, however, the
able ones fov ., /c,,>1. Another aspect concerns Bose gaseSorce _v)VL(va) would generically have a tangential com-
with attractive intra-atomic interactions, which may also beponent, which could spoil the localizing properties of the
treated with our formalism. In this case the potentin) bend. Note that the latter discussion is of course irrelevant
introduced in Sec. IV has a single well shape, and the numfor a potentialVV, with circular symmetry(as any simple
ber of different transmission modes whose density tends to experimental wave guide is expected to have
constant at the input of the guide is greatly reduced with Denotingh’=4d,h and h”= 42 h, the Schrdinger equa-
respect to the case of repulsive interactions considered hergon for ® =h'2¥ reads

We conclude by noting that a branch of BEC that is now

APPENDIX

expanding is the nonlinear counterpart of transport experi- 1/ 1 . ) h' k2 5(h")2
ments of mesoscopic physics in condensed matter. In the — 5| — dit dyyt 7, o+ —3&X<I>+ oo a
latter case the coherent transport of two-dimensional electron h 8h 8h
gases through various geometries has been considered in b

great detail. Future developments of transport experiments of +—+V, (V,2) | ®=pd. (A2)
Bose condensates should extend those to nonlinear regimes. 4h®
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Note that in Eq.(A2), as in the rest of the paper, we take
Ai=m=1. The choice of coordinateé®\1) gives a volume
element d®r=hdxdydz and ® is thus normalized as
fdxdydz®|?=1.
The adiabatic limit is defined bg—1, «>h’, «>h".

In this limit Eqg. (A2) decouples into a longitudinal and a
transverse equation. One obtains for the longitudinal equ . . .
tion a potentiaV(x) = — k?(x)/8, attractive in the region of cal range oV, (or equivalently the spatial extension ¢t )

the bend. Since any attractive potential in one dimension ha$ 0Wer than the radius of curvature Gf Obviously this
a bound stat¢22], in this limit there exists a quantum state condition is much weaker than the condition of adiabaticity.
localized in the bend. Note also that the Goldstone-Jaffe theorem has the same
The theorem of Goldstone and Jaffed] establishes the limitation as above, namely, some torsion may destroy the
existence of a bound state for much more generalocalizing effect of the bend and the wa# winds around
waveguides, with arbitrary curvature. It was originally dem-the curveC is not irrelevant. A potentiaV/, (y,z) where the
onstrated for sharp-wall waveguides, but the proof can beoordinatey andz are defined aboviEgs.(A1)] ensures the
straightforwardly extended to the case of a smooth confiningpplicability of the theorem.

potential. Hence we do not reproduce its derivation here. We
just note that for some points of space, the coordinate system
(A1) can be ambiguous. This imposes for the sharp-wall
problem the requirement that the transverse size of the guide
does not exceed the radius of curvatureoFor the smooth
aQotential problem, the same restriction requires that the typi-

[1] J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Scattering in Two-Dimensional Systef@pringer-Verlag, Ber-

Lett. 82, 2014(1999. lin, 1999. .
[2] N. H. Dekkeret al,, Phys. Rev. Lett84, 1124(2000. [22] L. Landau and E. M. LifchitzMeécanique QuantiquéEditions
[3] M. Key et al, Phys. Rev. Lett84, 1371(2000. Mir, Moscow, 1988.
[4] D. Mlller, E. A. Cornell, D. Z. Anderson, and E. R. |. Abra- [23] Careful derivation shows that E¢L3) is applicable forN=0
ham, Phys. Rev. A1, 033411(2000. in the limit o~ ?>V,, whereV, and o are typical orders of
[5] M.-O. Meweset al, Phys. Rev. Lett78, 582(1997). magnitude for the depth and range\g{(x), respectively. This
[6] B. P. Anderson and M. Kasevich, Sciern2@2 1686(1998. condition corresponds to shallow potentials with a zero point
[7] E. W. Hagleyet al, Science283 1706(1999. energy much larger tha¥. If this condition is fulfilled for
[8] I. Bloch, T. W. Hansch, and T. Esslinger, Phys. Rev. L&2, N=0, increasingN increases the spatial extension of the
3008(1999; Nature(London 403 166 (2000. bound state and makes the approximation even better justified.
[9] I. Bloch et al,, Phys. Rev. Lett87, 030401(2001). WhenN tends toN,,., the approximation is valid for any type
[10] E. Mandonneet al,, Eur. Phys. J. 010, 9 (2000. of potential(not necessarily shallow
[11] A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick, Phys. Rev[24] E. Zaremba, Phys. Rev. 37, 518 (1998.
A 58, 2417(1998. [25] S. Stringari, Phys. Rev. A8, 2385(1998.
[12] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. [26] P. O. Fedichev and G. V. Shlyapnikov, Phys. Rev.63
Mod. Phys.71, 463(1999. 045601(2002).
[13] M. Olshanii, Phys. Rev. LetB1, 938(1998. [27] G. B. Whitham, Linear and Nonlinear WavegJohn Wiley,
[14] J. H. Thywisseret al, Eur. Phys. J. D7, 361(1999. New York, 1974.
[15] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys.[28] H. Lamb, Hydrodynamic§Cambridge University Press, Cam-
Rev. Lett.85, 3745(2000. bridge, 1997.
[16] V. Dunjko, V. Lorent, and M. Olshanii, e-print [29] As discussed at the end of Sec. Il, such bendings have been
cond-mat/0103085. treated successfully for linear waves in Rdf7] with an adia-
[17] D. W. L. Sprung and Hua Wu, J. Appl. Phyal, 515(1992. batic approximation of the typél).
[18] F. Kassubek, C. A. Stafford, and H. Grabert, Phys. ReB9B  [30] V. Hakim, Phys. Rev. E55, 2835(1997.
7560(1999. [31] C. K. Law, C. M. Chan, P. T. Leung, and M.-C. Chu, Phys.
[19] J. Goldstone and R. L. Jaffe, Phys. Rev4g 14 100(1992. Rev. Lett.85, 1598(2000.
[20] H. Wu, D. W. L. Sprung, and J. Martorell, Phys. Rev4B 11 [32] L. P. Pitaevskii, JETP Lett39, 423(1984.
960 (1992. [33] D. Guay-Odelin (private communication

[21] J. T. Londergan, J. P. Carini, and D. P. MurdoBlnding and  [34] P. Leboeuf and N. Pavloffunpublishegl

033602-17



