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Breakdown of superfluidity of an atom laser past an obstacle

Nicolas Pavloff*
Laboratoire de Physique The´orique et Mode`les Statistiques, Universite´ Paris Sud, Baˆtiment 100, F-91405 Orsay Cedex, France

~Received 27 March 2002; published 19 July 2002!

The one-dimensional flow of a continuous beam of Bose-Einstein condensed atoms in the presence of an
obstacle is studied as a function of the beam velocity and of the type of perturbing potential~representing the
interaction of the obstacle with the atoms of the beam!. We identify the relevant regimes: stationary/time-
dependent and superfluid/dissipative; the absence of drag is used as a criterion for superfluidity. There exists a
critical velocity below which the flow is superfluid. For attractive obstacles, we show that this critical velocity
can reach the value predicted by Landau’s approach. Besides, for penetrable obstacles, it is shown that super-
fluidity is recovered at large beam velocity. Finally, enormous differences in drag occur when switching from
repulsive to attractive potential.
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I. INTRODUCTION

The rapid progresses in the technology of guiding c
atoms~using hollow optical fibers@1#, magnetic guides@2#,
and microchips@3#! opens up the prospect of similar studi
of guided Bose-Einstein condensed beams, i.e., of gu
continuous atom lasers. Indeed, important progress in
direction is presently being made, which uses the techniq
developed for guiding cold atoms: waveguides have b
designed for a Bose-Einstein condensate using a b
detuned hollow laser beam@4#; Bose condensation has bee
obtained over a microchip@5,6# and a Bose-Einstein wav
packet has been propagated in a microfabricated magn
waveguide@7#. Also, a continuous beam of cold atoms h
been loaded into a magnetic guide, as a first step in orde
perform evaporative cooling and condensation in the gu
@8#.

In the present work, we address the question of supe
idity of a continuous~guided! atom laser, namely, what ar
the conditions for the flow to be dissipationless? A criteri
for superfluidity has been proposed long ago by Landau@9#
which states that dissipation does not occur if the velocity
the flow is lower than the critical valuevcrit5min$E(q)/q%,
whereE(q) is the energy of an excitation with momentumq.

Many experiments have been done in liquid helium II
test Landau’s idea, and indeed one finds a critical veloc
but in many instances it is much lower than Landau’s exp
tation. As Feynman first suggested@10#, this is linked to
vortex formation, i.e., to nonlinear perturbation of the flu
~and not to elementary excitations as implied by Land
@11#!. The experiments done at MIT for Bose-Einstein co
densates confirm this view: in these systems, there is al
critical velocity @12,13#, it is lower that Landau’s expecta
tion, and it is also linked to vortex formation@14#.

In the following, we are concerned with one-dimension
flows, which are relevant to atom laser physics. We devise
alternative phrasing of Landau’s argument based on pe
bation theory and identify its limit of validity. In the generic
nonperturbative case, we confirm that, for obstacles re
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sented byrepulsive potentials, dissipation begins at a veloc
ity lower than the one expected on the basis of Landa
argument and corresponds to emission of solitons~which are
the one-dimensional analogues of vortices!. However, we
show that Landau’s critical velocity is always reached
attractive potentials. Furthermore, following a previous
study @15#, above Landau’s critical velocity we identify
new ~numerically stable! regime, stationaryand dissipative.
In this regime, the drag exerted on an obstacle can be c
puted with little numerical effort. Moreover, in this regime
we show that at large velocity the drag exerted on a p
etrable obstacle goes to zero, i.e., superfluidity is recove

The paper is organized as follows. In Sec. II, we set up
theoretical framework and notations. The natural criterion
the breakdown of superfluidity is the absence of drag, an
this section we show precisely how the drag can be co
puted. In Sec. III, we determine the different types of flo
and the corresponding drag for an obstacle represented b
external potential~a weak potential in Sec. III A, ad peak in
Sec. III B, a square well in Sec. III C, and a Gaussian pot
tial in Sec. III D!. Finally, we discuss our results in Sec. IV
where we emphasize the important differences between
tractive and repulsive potentials in the nonlinear regime.

II. A CRITERION FOR SUPERFLUIDITY

We work in a quasi-one-dimensional regime, or more p
cisely, we use an adiabatic approximation where the cond
sate wave functionC(rW,t) can be cast in the form@16,15#

C~rW,t !5c~x,t !f~rW' ;n!, ~1!

wherec(x,t) describes the motion along the axis of the
ser.f is the equilibrium wave function~normalized to unity!
in the transverse (rW') direction; it depends parametrically o
the longitudinal densityn(x,t)5*d2r'uCu25uc(x,t)u2. The
beam is confined in the transverse direction by a trapp
potentialV'(rW'). The adiabatic approximation assumes th
the transverse scale of variation of the profile is mu
smaller than the longitudinal one. The transverse degree
freedom are not completely frozen, but adapt to the smo
longitudinal dynamics: this is the essence of the parame
dependence off on n(x,t). This represents a significant im
©2002 The American Physical Society10-1
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NICOLAS PAVLOFF PHYSICAL REVIEW A66, 013610 ~2002!
provement to what is generally defined as a quasi-o
dimensional approach and results in a nontypical nonline
ity of the one dimensional~1D! reduction of the Gross
Pitaevskii equation below@Eqs.~2! and ~3!#.

In the regime in which Eq.~1! holds @17#, the equation
governing the time evolution ofc(x,t) reads@16,15# ~we set
units such that\5m51)

2 1
2 ]xx

2 c1$Vi~x!1e@n~x,t !#%c5 i ] tc. ~2!

In Eq. ~2!, Vi(x) represents the effect of the obstacle. W
restrict ourselves to the case of a localized perturbation w
limx→6`V(x)50. Such an obstacle can be realized by cro
ing the trajectory of the atom laser with a detuned opti
laser beam whose waist is large compared with the perp
dicular extension of the condensed beam. Another possib
is to bend the trajectory of the guided atom laser; this res
in an attractive effective potential proportional to the squ
of the curvature~see@15#!.

e(n) is a nonlinear term describing the mean-field int
action inside the beam, and the way it is affected by
transverse confinement. For a transverse confining harm
potential of pulsationv' , one has~see@15#!

e~n!52v'nasc in the low-density regime, nasc!1,

e~n!52v'Anasc in the high-density regime,nasc@1,

~3!

whereasc denotes thes-wave scattering length of the two
body interatomic potential~we consider only the caseasc
.0, i.e., a repulsive effective interaction!. In the following,
we use a formalism allowing to treat both the high- and
low-density regime, since both will be of interest in futu
guided-atom laser experiments.

We want to characterize the superfluidity of the flow p
the obstacle. To this end, we compute the dragFd exerted by
the atom laser on the obstacle: a finite drag implies diss
tion, whereasFd50 corresponds to a superfluid flow.Fd is
defined as

Fd~ t !5E
2`

1`

dx n~x,t !
dVi~x!

dx
. ~4!

This definition is quite natural: the force exerted on t
obstacle is the mean value of the operatordVi(x)/dx over
the condensate wave function. It is rigorously justified by
analysis below in term of a stress tensor@Eq. ~6!#.

For analytical determination of the drag, we use the f
lowing procedure: the 1D version of the stress tensor of
fluid is @18#
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T~x,t !52Im~c* ] tc!1 1
2 u]xcu2

2«@n~x,t !#2Vi~x!n~x,t !,

where «~n!5E
0

n

e~r!dr, ~5!

and its impulsion density isJ(x,t)5Im (c* ]xc) ~in our
units, it is also the current density!. By the conservation
equation] t J1]xT1n ]xVi50, the total impulsion of the
beamP(t)5*2`

1`dx J(x,t) is related toFd by

d P

dt
5T~2`,t !2T~1`,t !2Fd~ t !. ~6!

The physical content of Eq.~6! is clear:dP/dt equals the
total force exerted over the beam. One part of this fo
(2Fd) is due to the potential, the other one is the stress
the boundaries of the beam~at left and right infinity!. Hence
Eq. ~6! confirms the heuristic guess~4!; besides, it allows us
to determine the drag in a simple fashion in the station
regime whereT andP are time-independent:

Fd5T~2`!2T~1`! in the stationary regime. ~7!

Hence, in the following, we devote particular attention
stationary solutions of Eq.~2!. They are of the formc(x,t)
5exp$2imt% A(x) exp$iS(x)%, with A andSreal functions. The
density isn(x)5A2(x), the velocityv(x)5dS/dx, and the
currentJ(x)5n(x)v(x) is a constant that we noteJ` . From
Eq. ~2!, the amplitudeA(x) obeys a Schro¨dinger-like equa-
tion,

2
1

2

d2A

dx2
1H Vi~x!1e@n~x!#1

J`
2

2n2~x!
J A~x!5mA~x!.

~8!

As discussed in@15#, the radiation condition requires tha
solutions of Eq.~8! have no wake far downstream: long
range perturbations of the beam only occur upstream. He
the boundary conditions have to be imposed downstre
because of nonlinearity, one cannot disentangle an incid
and a reflected part in the perturbed upstream flow. In
following, we take a beam going in the negativex direction,
with downstream boundary conditionsn(x→2`)5n` and
v(x→2`)52v` ~with v`.0). Then, the chemical poten
tial is m5v`

2 /21e(n`). In the following, we refer tov` as
the beam velocity and toc`5(n`de/dnun`

)1/2 as the sound
velocity ~the proper denomination should be ‘‘sound veloc
evaluated at constant densityn`’’ !. We also express the
lengths in units of the relaxation lengthj5@2e(n`)#21/2.

For stationary flows, the stress tensor~5! reads
0-2
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T~x!5
1

2 S dA

dxD 2

1W@n~x!#2Vi~x!n~x!,

where W~n!52«~n!1mn1
J`

2

2n
. ~9!

In regions where the spatial variations ofVi(x) are negli-
gible, T(x) is a constant@as easily seen from Eq.~8!#.
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III. DETERMINATION OF THE DRAG

A. Perturbative solution

Let us first evaluate the drag experienced by the obst
when the effects of the potentialVi(x) on the flow can be
treated perturbatively. In this case, by adiabatically bran
ing the potential, one can always find a stationary solut
with A(x)5An`1dA(x) having the correct boundary con
dition ~i.e., verifying the radiation condition!. Introducing the
notationk52uv`

2 2c`
2 u1/2, one finds~see@15#!
dA~x!55 2
An`

k E
2`

1`

Vi~y!exp$2kux2yu%dy when v`,c` ,

2An`

k E
2`

x

Vi~y!sin$k~x2y!% dy when v`.c` .

~10!
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The asymptotic evaluation of Eq.~10! whenx→6` allows
us to compute the drag through Eq.~7!. From Eqs.~9! and
~10!, T(2`) andT(1`) differ only in the supersonic cas
where

T~2`!5W~n`!,

T~x→1`!5T~2`!1
1

2 S ddA~x!

dx D 2

1
k2

2
dA2~x!,

~11!

with ~always in the supersonic regime!

dA~x! ˜
x→1`

2An`

k
Im$eikxV̂i~k!%, ~12!

and V̂i(k)5*2`
1`dx exp(2ikx)Vi(x) is the Fourier transform

of Vi(x). One thus obtains

Fd50 when v`,c` ,

Fd522n`uV̂i~k!u2 when v`.c` . ~13!

The gross behavior characterized by Eq.~13! is general: at
low velocity, the flow is superfluid, whereas at high veloc
dissipation occurs. This corresponds to Landau’s criter
which determines a critical velocity below which the flow
dissipationless:vcrit5min$E(q)/q%, whereE(q) is the energy
of an excitation with momentumq. For our system,E(q) is
given by the Bogoliubov dispersion relationE(q)5q (c`

2

1q2/4)1/2 ~see, e.g.,@19#! and the Landau critical velocity is
then vcrit5c` . Hence the present perturbative approach
identical to Landau’s criterion since both give the same va
of velocity for the onset of dissipation and have the sa
physical content: excitation of small, nonlocalized perturb
tions is allowed only abovevcrit .

However, Landau’s criterion, as well as the reason
leading to Eq.~13!, are, by essence, perturbative. We sh
,

s
e
e
-

g

below that, as discussed in the Introduction, nonlinear effe
alter these simple perturbative views.

B. d-peak potential

A first hint of the failure of the perturbative approach c
be obtained by studying the effect on the flow of a de
potentialVi(x)5ld(x). In that case, a stationary solution
obtained by matching two free propagation modes of
laser@i.e., solutions of Eq.~8! in the absence of a potentia#
at x50 with the conditionA8(01)2A8(02)52lA(0). The
upstream and downstream stress tensors are constant;
are related byTup5Tdown1lA(0)@A8(02)1A8(01)#. Be-
sides, at velocityv`.c` , the radiation condition impose
that the downstream (x,0) density is constant: this give
n(0)5n` and A8(02)50. Hence, for beam velocityv`

larger thanc` , in the stationary regime Eq.~7! yields

Fd522n`l2. ~14!

The same formula would have been obtained by using
perturbative result~13!. Hence it may seem that the pertu
bative approach is valid for all range ofd potentials and
velocities. However, one would expect perturbation to f
for strong potentials and nearv`5c` , since it is meaningful
only if udA(x)u!An`, i.e., if ulu!k52 uv`

2 2c`
2 u1/2 @see Eq.

~10!#. Indeed, whereas a naive perturbative approach@lead-
ing to Eq.~10!# predicts that a stationary solution exists f
all values ofv` , an exact solution in the presence of ad
potential can be found only in some precise range of velo
and potentials. This has been studied in Ref.@15# and is
illustrated in Fig. 1. Roughly speaking, stationary regim
only exist for low and high values ofv` ~in the shaded zone
of Fig. 1!. In the low-velocity case, the stationary profile is
trough ~or a bump, depending on the sign of the potenti!
localized on the perturbation@20#. Such flows are dissipa
tionless. At high velocity, the stationary profile has a~non-
linear! wake extending to infinity in the upstream directio
0-3
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NICOLAS PAVLOFF PHYSICAL REVIEW A66, 013610 ~2002!
and this corresponds to dissipation@by Eq. ~7!#. In between,
the flow is time-dependent and there is no reason why, in
case, the drag should be given by Eq.~14!.

We note here an important dissymmetry between rep
sive (l.0) and attractive (l,0) potentials: the domain o
superfluid flow extends up tov`5c` for l,0, i.e., the criti-
cal velocity has the same value as the one predicted by L
dau’s approach. On the other hand, forl.0 the critical ve-
locity is potential-dependent and decreases significantly. T
feature is very general~it occurs for all the other potential
we have studied!. We will comment on it more thoroughly in
Sec. III D and in the Conclusion.

C. Repulsive square well

Another case with analytical stationary solutions is t
repulsive square well:Vi(x) is zero, except for 0,x,s,
where it takes the constant and positive valueV0. In this case
Eq. ~4! yields

Fd~ t !5V0@n~0,t !2n~s,t !#. ~15!

In the stationary subsonic regime, one can show thatn(s)
5n(0) ~see@15#! and the drag is zero: this characterizes
superfluid flow. Forv`.c` instead, Eq.~15! yields a finite
drag. In this case, when the flow is stationary,n(0)5n` and
n(s) in Eq. ~15! can be computed by quadrature, as a so
tion of

FIG. 1. The shaded zone of the plane (v` ,l) is the domain of
existence of stationary solutions occurring for a potentialVi(x)
5ld(x). The axes are labeled in dimensionless units. The in
represent density profilesn(x)/n` typical for the different flows
~the condensed beam is incident from the right!. Each inset is lo-
cated at values ofv` andl typical for the flow it displays. The left
~right! lower one is a superfluid flow across an attractive~repulsive!
potential. The upper one is a dissipative flow.
01361
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A2Us2L0IntnS s

L0
D U5E

An`

An(s) dA

@T02W~n!1V0n#1/2
,

~16!

where Intn denotes the nearest integer,L0 is the period of
density oscillations inside the well~which is also expressible
as an integral!, andT05W(n`)2V0n` is the constant value
assumed byT(x) inside the well. Of course, Eq.~16! is only
valid for a hypersonic stationary solution. In the regim
where no stationary solution exists, the drag is tim
dependent and should be computed numerically~as done in
Sec. III D below!.

Figure 2 displays the evolution of the drag as a funct
of the beam velocityv` . The drag has been computed on
in the stationary regimes. In the subsonic stationary regim
is exactly zero@20#. In the supersonic stationary regime th
exact result~15! ~solid line! has been computed in two way
through the numerical solution of Eq.~16!, and also by nu-
merical integration of Eq.~8!. Both methods agree within
four digits. The exact expression is compared in Fig. 2 w
the perturbative result~13! @where the Fourier transform o
the potential here givesuV̂i(k)u25(2V0 /k)2sin2(ks/2)#. For
large velocities, the perturbative approach becomes more
more accurate. This is expected from Eq.~10! since, when
ks@1 ~i.e., at large velocities!, the perturbative solution is
accurate ifV0!k2.

One can remark in Fig.2 that, even in the supersonic
gime, the drag happens to be exactly zero for some spe
values ofv` @21#. As illustrated in the inset, this occurs whe

ts
FIG. 2. Drag exerted by a high-density beam on a repuls

square well (V0j250.2,s52j), as a function of the beam velocit
(Fd andv` are expressed in dimensionless units!. The dashed line
is the perturbative result~13!. The solid line is the exact drag~15!.
It is evaluated here only in the stationary regime. The inset rep
sents the beam density in the supersonic regime, at a value o
locity ~indicated by the arrow! where the drag is exactly zero.
0-4
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BREAKDOWN OF SUPERFLUIDITY OF AN ATOM LASER . . . PHYSICAL REVIEW A66, 013610 ~2002!
the period of the density oscillations inside the well is
exact divisor of its widths. In this case, the density is un
perturbed outside the well. The modification of density
side the well is minute in the case represented in the fig
(4%). However, for stronger potentials it can be quite su
stantial: fors52j and V0j255, the maximum density in-
side the well reaches 2n` while the density remains unpe
turbed~i.e., equal ton`) outside the well.

D. Gaussian potential

The generality of the above deductions, based on
study of model potentials~a d peak and a square well! can be
tested numerically on more realistic potentials. We now c
sider the caseVi(x)5V0exp$2x2/s2% ~with V0.0).

As in the previous cases, stationary solutions exist onl
the beam velocityv` is not too close to the sound velocit
c` . In the subsonic stationary regime, the density is p
turbed only in the vicinity of the potential, and the flow
superfluid@by Eq. ~7!#. In the supersonic stationary regim
the density oscillations extend upstream to infinity, and t
corresponds to dissipation. At velocities where a station
regime is possible, we have determined the drag indiffere
using Eq.~4! or Eq. ~7! @after having solved Eq.~8! numeri-
cally#, whereas in the nonstationary case we used Eq.~4!
after having solved the time-dependent equation~2!. The re-
sults are presented in Fig. 3.

The behavior of the drag in the stationary regime confir
what is expected from the results of the previous sections
particular, the critical velocity for the onset of dissipation
lower thanc` . The reason for this is that, in the region of th

FIG. 3. Drag exerted by a low-density beam on a Gauss
potential@V0j250.2,s50.5j#, as a function of the beam velocity
The conventions are the same as in Fig. 2. The dashed line is
perturbative result~13!. The solid line is the exact drag evaluated
the stationary regime. The circles correspond to the drag evalu
in the time-dependent regime. The error bars correspond to the
tremal values of the time dependentFd(t) ~see the text!.
01361
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repulsive obstacle, the density decreases and conservati
flux requires that the local fluid velocity increases. As a
sult, it may happen that Landau’s criterion is verified~al-
thoughv`,c`! because thelocal fluid velocity reaches the
sound velocity. For slowly varying potentials~i.e., in the re-
gime s@j) this argument was put on a firm mathematic
basis by Hakim@22#.

From this, one can infer that forattractive potentialsin-
stead, the critical velocity should be equal toc` since for
such potentials the density increases in the region of the
stacle and the local velocity decreases accordingly@23#. This
has already been observed in the case of ad-peak potential
~see Fig. 1! and also for an attractive square well~see Ref.
@15#!. We have performed numerical checks showing that
same occurs for an attractive Gaussian potential. We
return in the final section to the difference between attrac
and repulsive potentials.

Let us now come to the discussion of the time-depend
data~the circles of Fig. 3!. They are drawn with error bars
this does not correspond to a numerical uncertainty, but
flects the fact that the drag depends on time in the non
tionary regime. The ‘‘error bars’’ correspond to the extrem
values of the time-dependent functionFd(t) ~see Fig. 4!. The
initial conditionc(x,t50) was taken as the stationary supe
fluid solution in the presence of the potential for the subso
case v`

init50.5c` , to which a Galilean boost exp$i(v`
init

2v`)x% was applied att50 in order to reach the desire
value of velocity. Accordingly, in the computation, the dra
Fd(t) starts from 0 and after a setup time reaches a reg
where it oscillates around a mean value~see Fig. 4!, which is
represented by the circles in Fig. 3. The oscillations ofFd(t)
around its mean value are of interest because they reflec
cause of time dependence of the flow: the numerics indic

n

he

ed
x-

FIG. 4. Time evolution of the drag exerted by a low-dens
beam ~of velocity v`50.9c`) on a Gaussian potential (V0 j2

50.2,s50.5j). Fd andt are expressed in dimensionless units. T
upper~lower! inset represents a density profile observed when
drag is maximum~minimum!.
0-5
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NICOLAS PAVLOFF PHYSICAL REVIEW A66, 013610 ~2002!
that whereas the upstream flow reaches a quasistationary
tern, the downstream density is perturbed by solitons, p
odically emitted from the obstacle, that propagate in
same direction as the flow with a smaller velocity~such a
behavior has already been observed by Hakim@22#!. As il-
lustrated in Fig. 4, the drag decreases when a soliton has
been emitted~this was already noted in two-dimension
flows by Winieckiet al. @24#, where vortex pairs are emitte
from a moving obstacle!.

In the supersonic regime, it is also important to discu
the discrepancy between the results for the drag comp
for stationary flows and for time dependent ones~solid line
and circles, respectively, in Fig. 3!. This discrepancy by no
means implies that the stationary profile is unstable or
the asymptotic time-dependent flow is not stationary. On
contrary, numerics indicate that time-dependent flows re
an asymptotic stationary regime for velocities at which su
a regime exists. Moreover, the asymptotic density profile
of the expected type~flat downstream and oscillating up
stream!. The point is that our specific initial conditionc(x,0)
does not asymptotically lead~when t→`) exactly to down-
stream density and velocity which have the same valuen`

andv` as the initial flow. This is illustrated in Fig. 5. In th
figure, one sees that the asymptotic downstream densi
about 6% lower thann` and a simple numerical chec
shows as well that the asymptotic velocity differs fromv` ~is
roughly 3% higher!. This artifact becomes less and less im
portant for increasing velocities: since the perturbative
proach is more and more accurate, it is clear that downstr
modifications of the solution become minor and that

FIG. 5. Density profile in the casev`51.6c` , in the presence
of a Gaussian potential (V0j250.2,s50.5j). The plot represents
the profile ~solid line! after evolution of the initialn(x,t50)
~dashed line! during a timet with v`t/j5203.6. The density trough
initially located atx50 has moved to the left and is now atx.
2100j. It will asymptotically move to left infinity. It is followed by
a density slightly depressed compared to the initial valuen` . This
depressed density is the asymptotic down-stream density.
01361
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asymptotic solution is the expected one. As a result, whenv`

increases, the black circles get closer to the solid line
Fig. 3.

IV. DISCUSSION AND CONCLUSION

The above-presented results illustrate the well-known f
that nonlinear effects alter the simple perturbative~Landau’s!
approach for the determination of the critical velocity
which dissipation occurs~we saw, however, that the pertu
bative approach could reach a regime of accuracy at la
velocity!. For repulsive potentials, the critical beam veloc
is smaller than the velocity of soundc` ~which is here the
critical velocity from Landau’s criterion! because, in the re
gion of the potential, the local fluid velocity can reach valu
higher than the sound velocity. The onset of dissipation c
responds to nonstationary flows with a wake asymptotica
extending upstream to infinity, and downstream perio
emission of solitons. In fact, another way of explaining t
lower stability of the dissipationless flow in the presence o
repulsive potential is to remark that, for subsonic flow ov
such an obstacle, the density decreases in the region o
potential, allowing easier nucleation of solitons.

On the other hand, we have shown that, for attract
potentials, stationary dissipationless solutions exist up
v`5c` : Bose-Einstein condensates appear to be exce
supports for reaching Landau critical velocity, more app
priate than superfluid helium, because, in atomic vapors,
simpler to contruct obstacles described by purely attrac
potentials.

We also showed, using analytical and numerical e
amples, that stationary dissipative profiles exist in hyp
sonic beams, provided the beam velocity is large enou
From the numerical study, these solutions seem stable,
moreover time-dependent flows tend asymptotically to s
solutions~when they exist!. It is interesting to note that dis
sipation is drastically reduced at very high velocity, i.e., s
perfluidity is recovered. Such an effect should also exist
higher dimensions for penetrable potentials. It can be un
stood perturbatively: at high velocity, when the perturbat
approach becomes valid, the relevant wave vector~denotedk
in Sec. III A! is large and the Bogoliubov dispersion relatio
becomes exactly quadratic. Hence, in this regime one h
matter wave described by the linear Schro¨dinger equation.
The drag in this regime can be shown to be proportiona
the reflection coefficient, which, as is well known, decrea
at high energy~in any dimension!.

Note that, for the sake of clarity, we have always illu
trated our conclusions using rather weak perturbing pot
tials. The reasons for this are twofold:~i! for stronger poten-
tials the supersonic stationary regime that we wanted
emphasize is rejected to higher velocity;~ii ! the numerical
effort necessary in the study of the nonstationary regime
decreased for weak potentials since the domain of time
pendence is reduced.

Although for stronger potentials the qualitative results
main the same, very interesting new quantitative phenom
occur. In particular, enormous differences in drag can oc
when switching from repulsive to attractive potentials~pro-
0-6
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vided the potential is strong enough!. This is illustrated in
Fig. 6.

One sees in the figure that the domain of existence
stationary solutions is markedly different between attract
and repulsive potentials and that the values of the drag d
by more than two orders of magnitude. The physical exp
nation for this phenomenon is subtle. At high velocity, co
trarily to intuition, the density decreases~increases! in an
attractive~repulsive! potential@25#. Hence, an attractive po
tential creates a density trough which, being the supers
analog of a gray soliton, does not create large perturbat

FIG. 6. Drag exerted by a low-density beam on a Gauss
potential (V0j2561.0,s/j51.0), as a function of the beam veloc
ity. The conventions are the same as in Fig. 2. The main fig
displays the drag for a repulsive potential~solid line! together with
the perturbative result~13! ~dashed line! which is not affected by
the sign of the potential. The inset displays an enlargement of
main figure allowing to see the~very small! drag for an attractive
potential.
R
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in its wake. This results in a small drag. This feature
clearly missed by the perturbative approach, which give
drag insensitive to the sign of the potential@see Eq.~13!#.

From the result of Fig. 6 it would be very interesting
redo with anattractiveperturbing potential the experimen
which have been done at MIT with a repulsive potent
@12,13#. Although the present computations are valid in
quasi-one-dimensional regime~whereas the experiment
were done in truly three-dimensional systems!, the present
results leave no doubt that the critical velocity for the on
of dissipation should increase and that the energy tran
rate from the obstacle to the fluid~i.e., Fd v`) should dras-
tically decrease in the case of an attractive obstacle@26#.

Finally, we note that the present discussion sheds so
light on the theory of wave resistance. The wave resistanc
the part of the drag experienced by a body moving in
medium which is caused by excitation of waves in this m
dium ~typically surface waves in the case of boats!. In a
superfluid, aT50 ~i.e., in the present work!, this is the only
source of drag~if one broadens its definition in order t
include nonlinear effects such as vortex or soliton form
tion!. Recent experiments of moving spheres in silicone
@27# have shown that the wave resistance at Landau thr
old has a smooth behavior as a function of the velocity, c
trary to the expectation of perturbation theory@28#. The same
behavior was found here: nonlinear effects smoothe out
unphysical step in drag predicted by perturbation theo
This smooth behavior was already observed in the exp
ments done at MIT@12,13# and in numerical simulations by
Frisch et al. @29# and Winieckiet al. @24# when moving an
impenetrable sphere in a superfluid. Hence, Bose-conde
systems offer an interesting testing ground for ubiquito
nonlinear hydrodynamical effects, in a particularly simp
theoretical framework~the Gross-Pitaevskii equation!.
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