PHYSICAL REVIEW A 66, 013610 (2002
Breakdown of superfluidity of an atom laser past an obstacle
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The one-dimensional flow of a continuous beam of Bose-Einstein condensed atoms in the presence of an
obstacle is studied as a function of the beam velocity and of the type of perturbing potemtiiasenting the
interaction of the obstacle with the atoms of the bgavie identify the relevant regimes: stationary/time-
dependent and superfluid/dissipative; the absence of drag is used as a criterion for superfluidity. There exists a
critical velocity below which the flow is superfluid. For attractive obstacles, we show that this critical velocity
can reach the value predicted by Landau’s approach. Besides, for penetrable obstacles, it is shown that super-
fluidity is recovered at large beam velocity. Finally, enormous differences in drag occur when switching from
repulsive to attractive potential.
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[. INTRODUCTION sented byrepulsive potentialsdissipation begins at a veloc-
ity lower than the one expected on the basis of Landau’s
The rapid progresses in the technology of guiding coldargument and corresponds to emission of solifovtsich are
atoms(using hollow optical fiber§1], magnetic guide§2], ~ the one-dimensional analogues of vorticesowever, we
and microchipg3]) opens up the prospect of similar studies show that Landau’s critical velocity is always reached for

of guided Bose-Einstein condensed beams, i.e., of guidegliractive potentials Furthermore, following a previous
tudy [15], above Landau’s critical velocity we identify a

continuous atom lasers. Indeed, important progress in this i ; . C
direction is presently being made, which uses the techniqudi€ (numerically stableregime, stationaryand dissipative.
' n this regime, the drag exerted on an obstacle can be com-

gg;ieg:ﬁggd f(f)cr)r gugj(;g%-E?Ait;fnl%ngsxsgtildizinhgavg gﬁf uted with little numerical effort. Moreover, in this regime,

} . e show that at large velocity the drag exerted on a pen-
detu_ned hollow Ias_er bea_[n], Bose condensa’_uon has been etrable obstacle goes to zero, i.e., superfluidity is recovered.
obtained over a microchif5,6] and a Bose-Einstein wave  1he haper is organized as follows. In Sec. II, we set up the
packet has been propagated in a microfabricated magnetigeoretical framework and notations. The natural criterion for
waveguide{7]. Also, a continuous beam of cold atoms hasthe preakdown of superfluidity is the absence of drag, and in
been loaded into a magnetic guide, as a first step in order tghis section we show precisely how the drag can be com-
perform evaporative cooling and condensation in the guidguted. In Sec. I, we determine the different types of flow
(8]. and the corresponding drag for an obstacle represented by an

In the present work, we address the question of superfluexternal potentiala weak potential in Sec. Il A, @ peak in
idity of a continuous(guided atom laser, namely, what are Sec. Ill B, a square well in Sec. 1l C, and a Gaussian poten-
the conditions for the flow to be dissipationless? A criteriontial in Sec. Il D). Finally, we discuss our results in Sec. IV,
for superfluidity has been proposed long ago by Lani@u where we emphasize the important differences between at-
which states that dissipation does not occur if the velocity ofractive and repulsive potentials in the nonlinear regime.
the flow is lower than the critical value.;=min{E(q)/q},
whereE(q) is the energy of an excitation with momentwam Il. A CRITERION FOR SUPERFLUIDITY

Many experiments have been done in liquid helium I1't0  \va work in a quasi-one-dimensional regime, or more pre-

test Landau’s idea, and indeed one finds a critical veloCitygise|, \ve use an adiabatic approximation where the conden-
but in many instances it is much lower than Landau’s expec- . - .
tation. As Feynman first suggestédlO], this is linked to sate wave functio¥’(r,t) can be cast in the forrji6,19
vortex formation, i.e., to nonlinear perturbation of the fluid R .
(and not to elementary excitations as implied by Landau W(r,t)=¢(x,t)p(r, ;n), (1)
[11]). The experiments done at MIT for Bose-Einstein con- . . :
densates confirm this view: in these systems, there is a|sovghere_z,b(x,t) de_s_cn_bes the motlon_along th? axis of t_he la-
critical velocity [12,13, it is lower that Landau’s expecta- ser.¢ is the equHLbrlum wave functiofnormalized to unity
tion, and it is also linked to vortex formatidi4]. in the transverser( ) direction; it depends parametrically on
In the following, we are concerned with one-dimensionalthe longitudinal density(x,t) = fdr | |¥[?=]y(x,t)|>. The
flows, which are relevant to atom laser physics. We devise aReam is confined in the transverse direction by a trapping
alternative phrasing of Landau’s argument based on pertupotentialV, (r, ). The adiabatic approximation assumes that
bation theory and identify its limit of validity. In the generic, the transverse scale of variation of the profile is much
nonperturbative case, we confirm that, for obstacles represmaller than the longitudinal one. The transverse degrees of
freedom are not completely frozen, but adapt to the smooth
longitudinal dynamics: this is the essence of the parametric
*Email address: pavloff@ipno.in2p3.fr dependence op onn(x,t). This represents a significant im-
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provement to what is generally defined as a quasi-one- T(X,t)=—Im(¢* o) + 3| 9,2
dimensional approach and results in a nontypical nonlinear-
ity of the one dimensiona(1D) reduction of the Gross- —e[n(x,H) ] =V (x)n(x,t),
Pitaevskii equation belojEgs.(2) and(3)]. N
In the regime in which Eq(1) holds[17], the equation where g(n):f e(p)dp, (5)
0

governing the time evolution af(x,t) reads 16,15 (we set
units such thati=m=1)
and its impulsion density is)(x,t)=Im (* dy¢) (in our
units, it is also the current densjtyBy the conservation
— 35+ {V () + eln(x,H) 1L yp=id . (2)  equationd; J+d,T+n .V =0, the total impulsion of the
beamP(t)=f"Zdx J(x,t) is related toF 4 by

In Eq. (2), V|(x) represents the effect of the obstacle. We
restrict ourselves to the case of a localized perturbation with dp
lim,_ .. V(x)=0. Such an obstacle can be realized by cross- P
ing the trajectory of the atom laser with a detuned optical dt
laser beam whose waist is large compared with the perpen-

dicular extension of the condensed beam. Another possibilit)[-he physical content of Eq6) is clear:dP/dt equals the
is to bend the trajectory of the guided atom laser; this resultﬁ)tm force exerted over the beam. One part of this force
in an attractive effective potential proportional to the square(_ F,) is due to the potential, the other one is the stress on

of the cyrvature(s_ee[lS]). . T the boundaries of the beafat left and right infinity. Hence
e(n) is a nonlinear term describing the mean-field mter-Eq_ (6) confirms the heuristic gued): besides, it allows us

action inside the beam, and the way it is affe_cted by theto determine the drag in a simple fashion in the stationary
transverse confinement. For a transverse confining harmonfggime whereT andP are time-independent:

potential of pulsationn, , one haqsee[15])

T(=%,t) =T(+o0,t) —Fqy(t). (6)

. : : Fq=T(—o)—=T(+«) inthe stationary regime. (7)
€(n)=2w, hag inthe low-density regime, nay <1,

Hence, in the following, we devote particular attention to
stationary solutions of Eq2). They are of the formj(x,t)
€(n)=2w, \nag in the high-density regimena,1, =exp{—iut} A(x) expiS(X)}, with A andSreal functions. The
3 density isn(x)=A?(x), the velocityv(x)=dSdx, and the
currentJ(x) =n(x)v(x) is a constant that we notke, . From
where ag, denotes theswave scattering length of the two- Ed- (2), the amplitudeA(x) obeys a Schidinger-like equa-
body interatomic potentiaiwe consider only the casa,, 10N
>0, i.e., a repulsive effective interactiprin the following,
we use a formalism allowing to treat both the high- and the

low-density regime, since both will be of interest in future 1 d2A J2
guided-atom laser experiments. 52 +1 V(x)+e[n(x) ]+ > A(X) = nA(X).

We want to characterize the superfluidity of the flow past dx 2n“(x)
the obstacle. To this end, we compute the dfggxerted by ®
the atom laser on the obstacle: a finite drag implies dissipa-
tion, wheread=4=0 corresponds to a superfluid flof, is As discussed ifi15], the radiation condition requires that
defined as solutions of Eq.(8) have no wake far downstream: long-

range perturbations of the beam only occur upstream. Hence
the boundary conditions have to be imposed downstream:
o dVj(x) because of nonlinearjty, one cannot disentangle an incident
Fd(t)=J dx n(x,t) ax (4) and a reflected part in the perturbed upstream flow. In the
- following, we take a beam going in the negativelirection,
with downstream boundary conditiomgx— —«)=n,, and

This definition is quite natural: the force exerted on thev_(x_—’_c’o)j —v.. (wWith v.>0). Then, the chemical poten-
obstacle is the mean value of the operaddf(x)/dx over ~ tial is p=v./2+ e(n.). In the following, wl(/azrefer .. as
the condensate wave function. It is rigorously justified by thethe beam velocity and to..=(n..de/dn|, )*'* as the sound
analysis below in term of a stress ten$gq. (6)]. velocity (the proper denomination should be “sound velocity

For analytical determination of the drag, we use the fol-evaluated at constant density,”). We also express the
lowing procedure: the 1D version of the stress tensor of théengths in units of the relaxation lengéh=[2e(n..)] Y2
fluid is [18] For stationary flows, the stress tenby reads
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1/dA\? I1l. DETERMINATION OF THE DRAG
= —| — + —
T 2( dx WInG)I=Vi09n(x), A. Perturbative solution
2 Let us first evaluate the drag experienced by the obstacle
where W(n)=—g(n)+un+ ﬁ (9)  when the effects of the potenti&l(x) on the flow can be

treated perturbatively. In this case, by adiabatically branch-
ing the potential, one can always find a stationary solution
with A(x) = n..+ SA(x) having the correct boundary con-

In regions where the spatial variations gf(x) are negli-  dition (i.e., verifying the radiation conditionintroducing the
gible, T(x) is a constanfas easily seen from E@8)]. notationx=2|vZ —c2|*?, one finds(see[15])
Ny [+=
- \/K_ Vi(y)exp{— k[x—y[}dy when v.<c.,
SA(X)= 10
e | (10
. Vi(y)sin{x(x—y)} dy when v.>c.

The asymptotic evaluation of E¢LO) whenx— *c0 allows  below that, as discussed in the Introduction, nonlinear effects
us to compute the drag through Eg). From Egs.(9) and  alter these simple perturbative views.
(10), T(—o) and T(+x) differ only in the supersonic case

where B. &-peak potential
T(—%)=W(n.,), A first hint of the failure of the perturbative approach can
be obtained by studying the effect on the flow of a delta
1[dsA(X)\? «? ) potentialV(x) =\ 5(x). In that case, a stationary solution is
TX=F2)=T(=®)+5| —5 | T3 5AX), obtained by matching two free propagation modes of the

(11) laser[i.e., solutions of Eq(8) in the absence of a potentjal
atx=0 with the conditionA’ (0*)—A’(07)=2\A(0). The
with (always in the supersonic regine upstream and downstream stress tensors are constant; they
are related byT,=Tgount MA(O)[A’(07)+A’(0")]. Be-
~ 2n, sides, at velocity..,>c..,, the radiation condition imposes
X+ that the downstreamx(0) density is constant: this gives
R n(0)=n, and A’'(07)=0. Hence, for beam velocity.,
and V()= TZdxexp(-ixx)V|(x) is the Fourier transform |arger thanc.., in the stationary regime Eq7) yields
of V(x). One thus obtains

SA(X) Im{e“*V|(x)}, (12

Fg=—2Nn.\2 (14)
Fq=0 whenv,<c,,
The same formula would have been obtained by using the
Fg= —2noo|\“/”(,<)|2 when v,,>c.,. (13)  perturbative result13). Hence it may seem that the pertur-
bative approach is valid for all range & potentials and
The gross behavior characterized by Ef) is general: at  velocities. However, one would expect perturbation to fail
low velocity, the flow is superfluid, whereas at high velocity for strong potentials and near,=c.,, since it is meaningful
dissipation occurs. This corresponds to Landau’s criteriononly if | SA(X)| < \h.., i.e., if[\|<x=2|v2—c2|"?[see Eq.
which determines a critical velocity below which the flow is (10)]. Indeed, whereas a naive perturbative apprdéed-
dissipationlessu .= min{E(q)/q}, whereE(q) is the energy ing to Eq.(10)] predicts that a stationary solution exists for
of an excitation with momenturg. For our systemE(q) is  all values ofv.,, an exact solution in the presence ofba
given by the Bogoliubov dispersion relatida(q)=q (cfc potential can be found only in some precise range of velocity
+92/4)Y2 (see, e.g.[19]) and the Landau critical velocity is and potentials. This has been studied in Hé&6] and is
thenvt=c. . Hence the present perturbative approach isllustrated in Fig. 1. Roughly speaking, stationary regimes
identical to Landau’s criterion since both give the same valuenly exist for low and high values af,. (in the shaded zone
of velocity for the onset of dissipation and have the sameof Fig. 1). In the low-velocity case, the stationary profile is a
physical content: excitation of small, nonlocalized perturbatrough (or a bump, depending on the sign of the poteitial
tions is allowed only above i . localized on the perturbatiof20]. Such flows are dissipa-
However, Landau’s criterion, as well as the reasoningionless. At high velocity, the stationary profile hagreon-
leading to Eq.(13), are, by essence, perturbative. We showlinearn wake extending to infinity in the upstream direction
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FIG. 1. The shaded zone of the plane.(\) is the domain of
existence of stationary solutions occurring for a poten¥igix) FIG. 2. Drag exerted by a high-density beam on a repulsive

=\48(x). The axes are labeled in dimensionless units. The insetsquare well Voé?=0.2,0=2¢), as a function of the beam velocity
represent density profiles(x)/n., typical for the different flows (F4 andv.. are expressed in dimensionless unifthe dashed line
(the condensed beam is incident from the riglach inset is lo- is the perturbative resu{tL3). The solid line is the exact drad5).
cated at values af., and\ typical for the flow it displays. The left It is evaluated here only in the stationary regime. The inset repre-
(right) lower one is a superfluid flow across an attractrepulsive sents the beam density in the supersonic regime, at a value of ve-

potential. The upper one is a dissipative flow. locity (indicated by the arrojpwhere the drag is exactly zero.
and this corresponds to dissipatidsy Eq.(7)]. In between, Bl o—Lint o _ (W@ dA
the flow is time-dependent and there is no reason why, in this 7 =olln Lo W [To—W(n)+Ven]¥2’

case, the drag should be given by Etd). (16)
We note here an important dissymmetry between repul-
sive (\>0) and attractive X<0) potentials: the domain of where In}, denotes the nearest integéy is the period of
superfluid flow extends up t@..=c., for A\<0, i.e., the criti-  density oscillations inside the wellvhich is also expressible
cal velocity has the same value as the one predicted by Larmas an integra) andTy=W(n..) —Vgn., is the constant value
dau’s approach. On the other hand, for 0 the critical ve- assumed byl (x) inside the well. Of course, E@16) is only
locity is potential-dependent and decreases significantly. Thigalid for a hypersonic stationary solution. In the regime
feature is very generdlt occurs for all the other potentials where no stationary solution exists, the drag is time-
we have studied We will comment on it more thoroughly in  dependent and should be computed numeridagydone in
Sec. llID and in the Conclusion. Sec. Il D below.
Figure 2 displays the evolution of the drag as a function
of the beam velocity ... The drag has been computed only
C. Repulsive square well in the stationary regimes. In the subsonic stationary regime it
Another case with analytical stationary solutions is thelS €xactly zerd20]. In the supersonic stationary regime the
repulsive square wellV|(x) is zero, except for &x<a, exact resulf15) (sol_ld line) ha_ls been computed in two ways:
where it takes the constant and positive valigeIn this case  through the numerical solution of E(L6), and also by nu-
Eq. (4) yields mencql_lntegranon of Eq(8). _Both methods agree Wlthln_
four digits. The exact expression is compared in Fig. 2 with
Fq(t)=Vo[n(0t)—n(o,1)]. (15)  the perturbative resultl3) [where the Fourier transform of
the potential here giveld/(«)|?=(2V,/x)?sind(ka/2)]. For
large velocities, the perturbative approach becomes more and
In the stationary subsonic regime, one can show tifat) more accurate. This is expected from Efj0) since, when
=n(0) (see[15]) and the drag is zero: this characterizes ako>1 (i.e., at large velocitigs the perturbative solution is
superfluid flow. Forw..>c,, instead, Eq(15) yields a finite  accurate ifVy<«?2.

drag. In this case, when the flow is stationarf{Q)=n,, and One can remark in Fig.2 that, even in the supersonic re-
n(o) in Eq. (15 can be computed by quadrature, as a solugime, the drag happens to be exactly zero for some specific
tion of values ofv.. [21]. As illustrated in the inset, this occurs when
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FIG. 3. Drag exerted by a low-density beam on a Gaussian i 4. Time evolution of the drag exerted by a low-density
potential[ V&2=0.2,0=0.5¢], as a function of the beam velocity. beam (of velocity v..=0.%c..) on a Gaussian potentialV{ 2
The conventions are the same as in Fig. 2. The dashed line is th§0.2,o=0.5§). F, andt are expressed in dimensionless units. The
perturbative resulfl3). The solid line is the exact drag evaluated in
the stationary regime. The circles correspond to the drag evaluat
in the time-dependent regime. The error bars correspond to the ex-
tremal values of the time dependdrj(t) (see the tejt

upper (lower) inset represents a density profile observed when the
ag is maximumminimum).

repulsive obstacle, the density decreases and conservation of
flux requires that the local fluid velocity increases. As a re-
the period of the density oscillations inside the well is ansult, it may happen that Landau’s criterion is verifiéal-
exact divisor of its widtho. In this case, the density is un- thoughv..<c.,) because théocal fluid velocity reaches the
perturbed outside the well. The modification of density in-sound velocity. For slowly varying potentialse., in the re-

side the well is minute in the case represented in the figurgime o> &) this argument was put on a firm mathematical
(4%). However, for stronger potentials it can be quite sub-basis by Hakin{22].

stantial: foro=2¢ and Vy£2=5, the maximum density in- From this, one can infer that fattractive potentialsn-
side the well reachesr2, while the density remains unper- stead, the critical velocity should be equaldg since for
turbed(i.e., equal ton,,) outside the well. such potentials the density increases in the region of the ob-

stacle and the local velocity decreases accordif@®}. This
has already been observed in the case éfeak potential
(see Fig. 1 and also for an attractive square wedke Ref.

The generality of the above deductions, based on th€&l5]). We have performed numerical checks showing that the
study of model potential& & peak and a square wellan be  same occurs for an attractive Gaussian potential. We will
tested numerically on more realistic potentials. We now con+eturn in the final section to the difference between attractive
sider the cas®|(x) = Voexp{—x¥o?} (with V>0). and repulsive potentials.

As in the previous cases, stationary solutions exist only if ~Let us now come to the discussion of the time-dependent
the beam velocity ., is not too close to the sound velocity data(the circles of Fig. 8 They are drawn with error bars:
c... In the subsonic stationary regime, the density is perthis does not correspond to a numerical uncertainty, but re-
turbed only in the vicinity of the potential, and the flow is flects the fact that the drag depends on time in the nonsta-
superfluid[by Eq. (7)]. In the supersonic stationary regime, tionary regime. The “error bars” correspond to the extremal
the density oscillations extend upstream to infinity, and thisvalues of the time-dependent functibg(t) (see Fig. 4 The
corresponds to dissipation. At velocities where a stationarynitial condition #(x,t=0) was taken as the stationary super-
regime is possible, we have determined the drag indifferentlyluid solution in the presence of the potential for the subsonic
using Eq.(4) or Eq.(7) [after having solved Eq8) numeri-  case vM=0.5c,,, to which a Galilean boost efifvl"

D. Gaussian potential

cally], whereas in the nonstationary case we used (Bg. —uv.)x} was applied at=0 in order to reach the desired
after having solved the time-dependent equat®nThe re-  value of velocity. Accordingly, in the computation, the drag
sults are presented in Fig. 3. F4(t) starts from O and after a setup time reaches a regime

The behavior of the drag in the stationary regime confirmsvhere it oscillates around a mean valsee Fig. 4, which is
what is expected from the results of the previous sections. Inepresented by the circles in Fig. 3. The oscillation§ gfft)
particular, the critical velocity for the onset of dissipation is around its mean value are of interest because they reflect the
lower thanc., . The reason for this is that, in the region of the cause of time dependence of the flow: the numerics indicate
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1.5 - - - asymptotic solution is the expected one. As a result, when
increases, the black circles get closer to the solid line in
Fig. 3.

IV. DISCUSSION AND CONCLUSION

L l The above-presented results illustrate the well-known fact

that nonlinear effects alter the simple perturbativendau’s
approach for the determination of the critical velocity at
which dissipation occuréwve saw, however, that the pertur-
bative approach could reach a regime of accuracy at large
velocity). For repulsive potentials, the critical beam velocity
is smaller than the velocity of sourd, (which is here the
critical velocity from Landau’s criterionbecause, in the re-
gion of the potential, the local fluid velocity can reach values
higher than the sound velocity. The onset of dissipation cor-
responds to nonstationary flows with a wake asymptotically
05 . . . extending upstream to infinity, and downstream periodic

-100 -50 emission of solitons. In fact, another way of explaining the
x/§ lower stability of the dissipationless flow in the presence of a
repulsive potential is to remark that, for subsonic flow over
such an obstacle, the density decreases in the region of the
potential, allowing easier nucleation of solitons.

oo

n(x)/n

FIG. 5. Density profile in the case,=1.6c.,, in the presence
of a Gaussian potentiaM£?=0.2,0=0.5¢). The plot represents

the profile (solid line) after evolution of the initialn(x,t=0) .
(dashed lingduring a timet with v..t/¢=203.6. The density trough On the other hand, we have shown that, for attractive

initially located atx=0 has moved to the left and is now et potentials, statio.nary. dissipationless solutions exist up to
—100¢. It will asymptotically move to left infinity. It is followed by V== C-: Bose-Einstein condensates appear to be excellent
a density slightly depressed compared to the initial vaiye This ~ SUPPorts for reaching Landau critical velocity, more appro-
depressed density is the asymptotic down-stream density. priate than superfluid helium, because, in atomic vapors, it is
simpler to contruct obstacles described by purely attractive
that whereas the upstream flow reaches a quasistationary pgitentials.
tern, the downstream density is perturbed by solitons, peri- We also showed, using analytical and numerical ex-
odically emitted from the obstacle, that propagate in theamples, that stationary dissipative profiles exist in hyper-
same direction as the flow with a smaller velocisuch a sonic beams, provided the beam velocity is large enough.
behavior has already been observed by Hak22)). As il- From the numerical study, these solutions seem stable, and
lustrated in Fig. 4, the drag decreases when a soliton has justoreover time-dependent flows tend asymptotically to such
been emitted(this was already noted in two-dimensional solutions(when they exist It is interesting to note that dis-
flows by Winieckiet al.[24], where vortex pairs are emitted sipation is drastically reduced at very high velocity, i.e., su-
from a moving obstac)e perfluidity is recovered. Such an effect should also exist in
In the supersonic regime, it is also important to discusshigher dimensions for penetrable potentials. It can be under-
the discrepancy between the results for the drag computestood perturbatively: at high velocity, when the perturbative
for stationary flows and for time dependent orteslid line  approach becomes valid, the relevant wave vedenotedk
and circles, respectively, in Fig).3This discrepancy by no in Sec. lll A) is large and the Bogoliubov dispersion relation
means implies that the stationary profile is unstable or thabecomes exactly quadratic. Hence, in this regime one has a
the asymptotic time-dependent flow is not stationary. On thenatter wave described by the linear Salirmer equation.
contrary, numerics indicate that time-dependent flows reacfthe drag in this regime can be shown to be proportional to
an asymptotic stationary regime for velocities at which suchthe reflection coefficient, which, as is well known, decreases
a regime exists. Moreover, the asymptotic density profile isat high energyin any dimensioh
of the expected typéflat downstream and oscillating up- Note that, for the sake of clarity, we have always illus-
strean). The point is that our specific initial conditiaf(x,0)  trated our conclusions using rather weak perturbing poten-
does not asymptotically lea@vhent—o) exactly to down- tials. The reasons for this are twofol@) for stronger poten-
stream density and velocity which have the same value tials the supersonic stationary regime that we wanted to
andv., as the initial flow. This is illustrated in Fig. 5. In the emphasize is rejected to higher velocityi) the numerical
figure, one sees that the asymptotic downstream density &ffort necessary in the study of the nonstationary regime is
about 6% lower tham, and a simple numerical check decreased for weak potentials since the domain of time de-
shows as well that the asymptotic velocity differs from(is ~ pendence is reduced.
roughly 3% higher. This artifact becomes less and less im-  Although for stronger potentials the qualitative results re-
portant for increasing velocities: since the perturbative apmain the same, very interesting new quantitative phenomena
proach is more and more accurate, it is clear that downstreawccur. In particular, enormous differences in drag can occur
modifications of the solution become minor and that thewhen switching from repulsive to attractive potentigiso-
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8 0.01 in its wake. This results in a small drag. This feature is
clearly missed by the perturbative approach, which gives a
case V,&'=-10 drag insensitive to the sign of the potenfiabe Eq.(13)].
—»—+— non-stationary From the result of Fig. 6 it would be very interesting to
regime redo with anattractive perturbing potential the experiments
which have been done at MIT with a repulsive potential
[12,13. Although the present computations are valid in a
quasi-one-dimensional regiméwhereas the experiments
were done in truly three-dimensional systenpthe present
0 . . : results leave no doubt that the critical velocity for the onset
1 2 3 of dissipation should increase and that the energy transfer
rate from the obstacle to the fluide., F4v..) should dras-
tically decrease in the case of an attractive obstgfé
\ Finally, we note that the present discussion sheds some
\ light on the theory of wave resistance. The wave resistance is
\ the part of the drag experienced by a body moving in a
\ medium which is caused by excitation of waves in this me-
~ dium (typically surface waves in the case of boatkh a
superfluid, aT=0 (i.e., in the present wojkthis is the only
source of drag(if one broadens its definition in order to
include nonlinear effects such as vortex or soliton forma-
FIG. 6. Drag exerted by a low-density beam on a Gaussiartion). Recent experiments of moving spheres in silicone oil
potential (Vo&2=+ 1.0,0/£=1.0), as a function of the beam veloc- [27] have shown that the wave resistance at Landau thresh-
ity. The conventions are the same as in Fig. 2. The main figur@ld has a smooth behavior as a function of the velocity, con-
displays the drag for a repulsive potentiablid line) together with  trary to the expectation of perturbation the§?g]. The same
the perturbative resultl3) (dashed ling which is not affected by behavior was found here: nonlinear effects smoothe out the
the sign of the potential. The inset displays an enlargement of thenphysical step in drag predicted by perturbation theory.
main figure allowing to see thevery smal) drag for an attractive This smooth behavior was already observed in the experi-
potential. ments done at MIT12,13 and in numerical simulations by
Frischet al. [29] and Winieckiet al. [24] when moving an
vided the potential is strong enouglThis is illustrated in  Impenetrable sphere in a superfluid. Hence, Bose-condensed
Fig. 6. systems offer an interesting testing ground for ubiquitous
One sees in the figure that the domain of existence ofionlinear hydrodynamical effects, in a particularly simple
stationary solutions is markedly different between attractivéheoretical frameworkthe Gross-Pitaevskii equatipn
and repulsive potentials and that the values of the drag differ
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