
PHYSICAL REVIEW A 68, 063608 ~2003!
Solitonic transmission of Bose-Einstein matter waves
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~Received 9 September 2003; published 15 December 2003!

We consider a continuous atom laser propagating through a waveguide with a constriction. Two different
types of transmitted stationary flow are possible. The first one coincides, at low incident current, with the
noninteracting flow. As the incident flux increases, the repulsive interactions decrease the corresponding trans-
mission coefficient. The second type of flow only occurs for sufficiently large incident currents and has a
solitonic structure. Remarkably, for any chemical potential there always exists a value of the incident flux at
which the solitonic flow is perfectly transmitted.
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The transport properties of matter confined to small str
tures display distinct quantum effects qualitatively differe
from those observed at macroscopic scales. These
grounded on global phase coherence throughout the sa
and can be, in many cases, understood within single-par
pictures, without referring to any specific details of the s
tem. As a result, they arise in many different fields~elec-
tronic systems, atomic physics, electromagnetism, acous!
@1–3#. Some examples are~weak and strong! localization,
Bloch oscillations, and conductance quantization.

Recent experimental developments in the physics
Bose-Einstein condensation~BEC! of dilute vapor~in par-
ticular, the microchip guiding technique! open up the pros-
pect of studying coherent transport phenomena using gu
atom lasers@4#. Besides, because of the extraordinary con
over these systems, they offer a unique opportunity to
beyond the single-particle behavior, and to study specific
fects induced by interaction. In the present article we fo
on a simple situation, where a BEC matter wave propag
through a guide with a constriction@5#. By an adiabatic ap-
proximation, the three-dimensional flow is reduced to o
dimension, where the atoms now feel, due to the cons
tion, a longitudinal steplike potential of heightV0. In the
absence of interaction, the transmissionT does not depend
on the incident current but only on the beam’s energy;T is
always lower than unity and tends to this limit when t
energy of the beam is large compared toV0. In the following
we consider atoms with a repulsive effective interact
characterized by a scattering lengthasc.0. The most salient
features of the flow are all at variance with respect to
noninteracting case:~i! the transmission coefficient depen
on the current,~ii ! at given chemical potential, there exists
maximum transmitted current above which no station
flow exists,~iii ! at a given current, several distinct stationa
solutions with differentT are possible, and~iv! for any
chemical potential larger thanV0, there is a particular value
of the incident current which induces total transmission.

Consider a continuous atom laser incident on a cons
tion of a waveguide. Within the adiabatic approximation@6#
the transverse motion is restricted to the lowest transv
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eigen-state. The constriction affects the longitudinal mot
via an effective steplike potential whose magnitude is fix
by the ground-state energy of the transverse Hamilton
For a BEC system, the adiabatic approximation implies t
the condensate wave function can be cast in the form~see
Ref. @7#!

C~rW,t !5c~x,t !f~rW' ;n;x!, ~1!

wherec(x,t) describes the motion along the axis of the las
~the beam is flowing along the positivex direction!. f is the
equilibrium wave function~normalized to unity! in the trans-
verse (rW') direction. It depends parametrically on the long
tudinal densityn(x,t)5*d2r'uCu25uc(x,t)u2. The beam is
confined in the transverse direction by a trapping poten
V'(rW' ;x), which is x dependent in the region of the con
striction. Then, the longitudinal wave equation reads@7,8# ~in
units where\5m51)

2
1

2
]xxc1$Vi~x!1e„n~x,t !;x…%c5 i ] tc. ~2!

In Eq. ~2!, Vi(x) represents an effective longitudinal pote
tial due to the constriction. If, to be specific, we conside
transverse harmonic confinement with pulsationv'(x), then
Vi(x)5v'(x)2v'(2`) ~energy is measured with respe
of the ground-state energy of the noninteracting transve
Hamiltonian far before the constriction!. e(n;x) is a nonlin-
ear term describing the mean-field interaction averaged o
a transverse slice of the beam. One hase(n;x)
52v'(x)nasc in the low-density regime (nasc!1), and
e(n;x)52v'(x)Anasc in the high-density regime (nasc
@1) @7,8#.

Our purpose is to determine the transmission
steady-state solutions of Eq.~2! where c(x,t)
5exp$2imt%A(x)exp$iS(x)%, with A andS real functions. The
density isn5A2 and the local velocity isv5dS/dx. From
Eq. ~2! one obtains~i! flux conservation:n(x)v(x) is a con-
stant that we denoteJ` , and~ii ! a Schro¨dinger-like equation
for the amplitude:

2
1

2

d2A

dx2
1H Vi~x!1e„n~x!;x…1

J`
2

2 n2~x!
J A5m A. ~3!

To define the scattering problem one needs to study
asymptotic behavior of the flow far from the constriction. F
©2003 The American Physical Society08-1
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upstreamVi(x→2`)50 and the nonlinear term in Eq.~2!
looses its explicitx dependence, taking the simpler for
e@n(x,t)#. Thus, in this region, Eq.~3! admits a first integral
of the form @8#

1

2 S dA

dxD 2

1W„n~x!…5Ecl, ~4!

with

W~n!52«~n!1mn1
J`

2

2n
,

where«(n)5*0
ne(r)dr and Ecl is an integration constant

Equation~4! has a simple interpretation in terms of classic
dynamics. It expresses the energy conservation of a fictit
classical particle with ‘‘position’’A and ‘‘time’’ x, moving in
a potentialW; Ecl being the total energy of this particle
Equation~4! is thus integrable by quadrature, and the dens
profile can be deduced from the plot of Fig. 1. Small valu
of Ecl2W(n1) correspond to small density oscillation
whereas the highest acceptable value isEcl5W(n2), corre-
sponding to a gray soliton.

In the far downstream region,Vi(x→1`) also takes a
constant valueV05v'(1`)2v'(2`).0. Hence, Eq.~3!
admits, in this region, a first integral analogous of Eq.~4!
where, due to the change inv' , e(n) @resp.«(n)] takes a
different form which we denotee0(n) @resp. «0(n)]. The
new form ofW(n) is denotedW0(n) and the new constant o
integration isEcl

0 ,

1

2 S dA

dxD 2

1W0„n~x!…5Ecl
0 , ~5!

with

W0~n!52«0~n!1~m2V0!n1
J`

2

2 n
.

It follows from general arguments on the dispersion of
ementary excitations of Eq.~2! that the physically acceptabl
boundary conditions of Eq.~3! correspond to a constant fa
downstream density~see Ref.@8#!. The asymptoticx→1`

FIG. 1. W as a function ofn. n1 andn2 are the zeros ofdW/dn.
At a given Ecl , the upstream density~or equivalently the ‘‘posi-
tion’’ of the fictitious particle! oscillates betweennmin and nmax

defined byW(nmin)5W(nmax)5Ecl .
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density should thus be equal either ton1,0 ~we denote this as
‘‘case A’’ !, or to n2,0 ~caseB); n1,0 and n2,0—being the
analogous ofn1 and n2 of Fig. 1—are extrema ofW0(n).
They are solutions of

m5e0~n!1V01
J`

2

2 n2
. ~6!

In the noninteracting case the term«0(n) is absent from
W0(n) which has only one minimum (n10). CaseA is there-
fore the only possible solution in noninteracting system
CaseB describes new nonperturbative effects related to
teraction. It corresponds to an asymptotic downstream d
sity which is part of a gray soliton.

There exists a maximum valueJ`
max of J` above which

Eq. ~6! admits no solution: asJ` is increased~keepingm and
V0 fixed!, the two extrema ofW0(n) move toward each
other, until they coalesce and disappear. This marks the o
of a time-dependent flow. If, to be specific, we consider
casee0(n)5g0nn0, then

J`
max5F 2

n012
~m2V0!G1/n011/2

An0 g0
21/n0 . ~7!

The scattering process is now well defined. It correspond
the matching between two asymptotic densities described
the classical motion of a particle of energyEcl in a potential
W(n) at x→2`, and of energyEcl

0 in a potentialW0(n) at
x→1` @with Ecl

0 either equal toW0(n1,0) or to W0(n2,0)].
Equation~3! being nonlinear, an important question is ho
to properly define a transmission and a reflection coefficie
i.e., is it possible to disentangle an incident and a reflec
wave in the upstream flow? We follow here an approa
closely related to usual experimental setups, and choos
work with an incident and a reflected beam which can
approximated by plane waves. This corresponds to a reg
where Eqs.~3! and ~4! can be linearized in the far upstrea
region. In this regime, forx→2`, we write n(x)5n1
1dn(x) and expandnW(n) to second order indn. Then Eq.
~4! leads to

S d dn

dx D 2

1k1
2dn258~n11dn!@Ecl2W~n1!#, ~8!

wherek1
254(v1

22c1
2), v15J` /n1 being the average veloc

ity of the upstream beam andc15@n1(de/dn)n1
#1/2 the

sound velocity of a beam with constant densityn1. The lin-
earization Eq.~8! is valid providedudn(x)/n1u!k1

2/c1
2. In

this regime, if one further imposesv1@c1, the upstream
density oscillations can be analyzed in term of incident a
reflectedparticles ~and not quasiparticles!. This allows to
unambiguously define the incident, reflected, and transmi
currenta asJi5(n11dn1/2)v1 , Jr5dn1v1/2, andJt5n1v1

5J` ~wheredn154@Ecl2W(n1)#/k1
2). Hence, onceEcl is

known, the transmission at given incident currentJi is deter-
mined through
8-2
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SOLITONIC TRANSMISSION OF BOSE-EINSTEIN . . . PHYSICAL REVIEW A68, 063608 ~2003!
Ecl5W~n1!1
k1

2

4
dn15W~n1!1

k1
2

2v1
Ji~12T!. ~9!

The linearization procedure explained so far is valid in
case of small upstream interaction~this is the essence of th
conditionv1@c1). However, all interaction effects are full
taken into account in the downstream region, where they
indeed more important~the constriction acts as a barrie
which lowers the velocity of the downstream flow and,
flux conservation, increases its density@9#!. In the following
we solve the exact nonlinear equation~3! and use the linear
ization procedure only to define the transmission coeffici
T. Thus, the results presented below are of very general
lidity, but their analysis in term of transmission coefficient
only correct in so far as the linearization procedure is va

The method is now the following: for a givenm andJi ,
assume a particular value ofT. This determinesJ`5T Ji ,
fixes the form of the functionW0(n), the value ofn(1`) ~it
is equal ton1,0 in caseA and ton2,0 in caseB) and of Ecl

0

5W0@n(1`)#. Integrating Eq. ~3! backwards from x
51` to x52` yields Ecl , which should be compatible
with Eq. ~9!. If not, the value ofT has to be modified unti
self-consistency is achieved.

To understand the physical picture we consider an ab
steplike constriction. In this geometry, numerical integrat
of Eq. ~3! can be bypassed becauseEcl is simply expressed
in terms of Ecl

0 @see Eq.~10!#. However, the adiabatic ap
proximation~1! is based on the assumption that the typi
longitudinal length scale is much larger than the transve
one. This is clearly violated by an abrupt constriction. Ne
ertheless, in certain parameter ranges, the adiabatic app
mation remains valid. In order to illustrate this point w
compute the transmission ofnoninteracting atoms@10#, for
which the exact solution can be obtained numerically.
thus consider a linear wave moving in a guide with harmo
confinement whose transverse pulsation changes abrupt~at
x50 say! from v'

, ~upstream! to v'
.5av'

, ~downstream!,
with a.1. The incident atoms occupy the transverse grou
state of the upstream potential. The numerical solution of
problem can be worked out by a straightforward thre
dimensional~3D! generalization of the procedure devised
Ref. @11# for studying a similar 2D problem. We denote th
transmissionTL, the superscript recalling that we are in
linear ~i.e., noninteracting! regime. The result forTL is pre-
sented in Fig. 2 fora52 anda53. The vertical bars indi-
cate the location of the energies of the reflected~thin lines!
and transmitted~thick lines! channels. Conservation of angu
lar momentum along the longitudinal axis imposes selec
rules between channels. These rules effectively forbid ha
the energetically allowed channels, and those henceforth
not play any role in the transmission.

Within the adiabatic approximation, the constriction is d
scribed by an abrupt longitudinal step potential of heig
V05v'

.2v'
, . The corresponding transmission isTadia

L

54@m(m2V0)#1/2(Am1Am2V0)22 ~represented by a
dashed curve in Fig. 2!. The onset of transmission occurs
m5V0, i.e., m/v'

,5a21. One notices in the figure tha
whenm is increased from this value, the adiabatic appro
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mation is initially quite accurate. However, at larger valu
of m deviations from adiabaticity are clearly visible. Fora
52, a sudden lowering ofTL occurs when a new reflecte
channel opens atm//v'

,52 ~in all the following we denote
as ‘‘open channels’’ those allowed by energy conservat
and symmetry rules!. From there on,TL diminishes until a
new transmission channel opens, atmv'

,55. At this point, a
sudden increase ofTL is observed. At large values ofm, TL

tends to unity, as it should. Fora53, the process is similar
but the breakdown of the adiabatic approximation occurs e
lier because the opening of the initial transmitt
channel—atm/v'

,52—coincides with that of the first al
lowed excited reflected channel.

In the following we will concentrate on the regio
m/v'

,*a21 where the adiabatic approximation is well ju
tified and where, as we shall now see, nonlinear effects m
induce strong modifications of the transmission.

We now turn to the nonlinear problem and consider
case Vi(x,0)50, e(n;x,0)5e(n) and Vi(x.0)5V0 ,
e(n;x.0)5e0(n). Equation~3! admits the first integral Eq
~4! for all x<0 and Eq.~5! for all x>0. Ecl is determined
throughEcl

0 by imposing continuity ofA andA8 at x50,

Ecl2W@n~0!#5Ecl
0 2W0@n~0!#. ~10!

Let us consider caseA first. The asymptotic downstream den
sity is n1,0 and thus one has, for allx>0, n(x)5n1,0 ~the
fictitious classical particle remains at the bottom of the p
tential well W0). In particular,n(0)5n1,0 and the matching
Eq. ~10! determinesEcl uniquely. The value ofT is denoted
TA in this case.

CaseB is more interesting because the structure of
downstream solution is richer:n(x>0) being part of the

FIG. 2. Solid curve, transmissionTL of a linear wave as a func
tion of m for a52 ~top! and a53 ~bottom!. Dashed curve, adia
batic approximation. In each plot the vertical thick~thin! lines in-
dicate the location of the transverse eigenenergies in
downstream~upstream! confining potential.
8-3
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LEBOEUF, PAVLOFF, AND SINHA PHYSICAL REVIEW A68, 063608 ~2003!
profile of a gray soliton,n(0) can be varied continuousl
provided the matching Eq.~10! is fulfilled at a value accept
able for Eq.~4!. Effectively, the only restriction imposed i
thatnmin,n(0),nmax (nmin andnmax are defined in Fig. 1!.
As a result, for fixedm and Ji , Ecl is not uniquely deter-
mined byn(1`), and the transmissionTB varies between 0
and a value that we denote asTmax

B .
To be specific, we consider a continuous beam of23Na

atoms propagating through a guide with a transverse con
ment v'

,52p32 kHz ~in the regionx,0), to which we
impose a narrowingv'

.52p36 kHz ~in the regionx.0).
This represents a barrier of heightV05192 nK. In the non-
interacting case the transmissionTL as a function ofm is
plotted in the bottom part of Fig. 2 (a53). We takem
5210 nK ~this corresponds to the kinetic energy of atom
having a velocity of 1.2 cm/s!. This value ofm corresponds,
in the noninteracting case, to a regime where the adiab
approximation holds and yields a transmissionTL.Tadia

L

.0.70. The repulsive interaction between atoms introdu
in Eq. ~3! a nonlinear term which, in the regionx,0, reads
e(n)5gn with g52ascv'

,.530 nK nm. In the regionx
.0, the transverse frequency of the guide is multiplied by
and thuse0(n)5g0n with g0533g. An important param-
eter of the system is the maximum transmitted currentJ`

max

above which no stationary flow can exist in the downstre
part of the guide. From Eq.~7! ~with n051) one obtains
J`

max.1.63104 atom/s.
Figure 3 summarizes the results obtained. The linear

tion conditionv1@c1 is extremely well satisfied in the whol
range of incident currents considered~the less favorable cas
occurs at largeJi , wherev1.25c1). The horizontal dashed
line is the value of the transmission coefficient of nonint
acting atoms:TL.0.7. It is current independent. When th
current is increased from zero,TA decreases from this valu
down toTA.0.5. At this point~located with a black spot on
the figure!, J`(5TAJi) is equal toJ`

max, and a stationary

FIG. 3. TA and Tmax
B as a function ofJi /J`

max ~at fixed m
5210 nK). The horizontal dashed line is the transmissionTL of
noninteracting atoms. The gray zone above the dashed hype
~of equationT5J`

max/Ji) is a region where no stationary flow ex
ists. Inset: schematic of the constriction’s geometry.
06360
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flow of typeA is no longer permitted~actually it bifurcates to
a typeB solution!. The prominent feature of the behavior o
TA as a function ofJi is its decrease compared to the non
teracting valueTL. The physical reason behind this phenom
enon is simple: the available kinetic energy necessary to
over the barrier is reduced when the interaction energy
creases, i.e., when the incident current increases. This pic
is supported by a perturbative treatment which accura
describes the flow at low incident current (Ji!J`

max) and
confirms that the decrease ofTA corresponds to an increase
fraction of the interaction energy in the chemical potentia

Case B being mediated via interaction, does n
exist for low current. It exists only above a critica
current (2g0)21(m2V0)2(8m)21/2.1.53103 atom/s
.0.1J`

max. From this point,Tmax
B increases rapidly up to 1

~reached atJi.0.36J`
max in the case of Fig. 3!, and then

decreases down to a point where one can show that it exa
meets the end point ofTA. From there on, the value ofTB is
limited by the condition that the flow should be stationa
and one hasTmax

B 5J`
max/Ji , which coincides with the dashe

hyperbola in Fig. 3. We emphasize that stationary soluti
of typeB with arbitrary transmission 0<TB<Tmax

B exists for
any current above the critical one.

The nonlinear transport induced by the repulsive tw
body interaction has therefore a nontrivial consequence:
solutions—of solitonic character—emerge; they allow for
increased transmission. This contrasts with the behavio
caseA where the transmission is lowered by the interactio
One can show that, for any value ofm.V0, there always
exists a value ofJi such that complete transmission exists
caseB. The profile forTmax

B 51 consists of a constant up
stream densityn(x<0)5n1 connected atx50 to half a soli-
ton. Figure 4 displays the density profiles of two stationa

FIG. 4. Density profiles~in dimensionless units! for the con-
striction defined in the text, at incident currentJi50.36J`

max ~flow-
ing from left to right! and chemical potentialm5210 nK. Thick
solid line, solitonic flow withTB5Tmax

B 51; thin solid line, type-A
flow with TA50.7.

ola
8-4
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flows ~caseA and caseB at TB5Tmax
B 51) at an incident

currentJi50.36J`
max ~see Fig. 3!. Note the significant differ-

ence in the densities of the upstream and downstream
files, a purely nonlinear effect mediated by a solitonic p
file. We have performed numerical computations that sh
that the same type of solution also exists for smooth cons
tions and that they are dynamically stable, as confirmed b
Bogoliubov analysis. The interactions can thus have two
ferent and, in some sense, opposite consequences o
transport properties of a condensate flow. They diminish
transmission in some instances~caseA), but also allow for
new stationary flows that can be perfectly transmitted~case
B) @12#.

We have restricted our analysis to stationary configu
tions, but dynamical effects are certainly of intere
Amongst these, one could address the question of the t
sient that exists before stationarity is reached, or the na
of the flow in parameter regions where stationarity is n
possible. An other open problem, that clearly deserves in
d

o
.M

ss

.

06360
o-
-
w
c-
a

f-
the
e

-
.
n-
re
t
s-

tigation, is the dynamical selection of the different types
stationary profiles discussed above: given an initial lo
density flow~which, from Fig. 3, is of typeA), which branch
(A or B) will be followed when the incident flux increases

There are different ways to experimentally realize the
fect discussed in the present work, namely, enhanced so
nic transmission of matter waves. We have studied one p
sible implementation, where the steplike potential in t
longitudinal motion of the condensate is produced by a c
striction of the guide. An other possibility is to apply a blu
detuned laser beam on the regionx.0 of a condensate
propagating along a guide of constant diameter. In this c
the characteristics of the flow and the barrier should be ea
controlled by modifying the laser’s frequency, intensity, a
waist, thus allowing for a neater experimental observation
the above predicted transport phenomena@13#.
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Paris XI et du CNRS, UMR 8626.
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