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Solitonic transmission of Bose-Einstein matter waves
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We consider a continuous atom laser propagating through a waveguide with a constriction. Two different
types of transmitted stationary flow are possible. The first one coincides, at low incident current, with the
noninteracting flow. As the incident flux increases, the repulsive interactions decrease the corresponding trans-
mission coefficient. The second type of flow only occurs for sufficiently large incident currents and has a
solitonic structure. Remarkably, for any chemical potential there always exists a value of the incident flux at
which the solitonic flow is perfectly transmitted.
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The transport properties of matter confined to small struceigen-state. The constriction affects the longitudinal motion
tures display distinct quantum effects qualitatively differentvia an effective steplike potential whose magnitude is fixed
from those observed at macroscopic scales. These aRy the ground-state energy of the transverse Hamiltonian.
grounded on global phase coherence throughout the sampi@r @ BEC system, the adiabatic approximation implies that
and can be, in many cases, understood within single-partici'e condensate wave function can be cast in the free
pictures, without referring to any specific details of the sys—Ref- [7D
tem. As a result, they arise in many different fiel@dec- > >
tronic systems, atomic physics, electromagnetism, acolstics P(LH =g, ;nix), @
[1-3]. Some examples ar@veak and stronglocalization,  wherey(x,t) describes the motion along the axis of the laser
Bloch oscillations, and conductance quantization. (the beam is flowing along the positixedirection. ¢ is the

Recent experimental developments in the physics o&quilibrium wave functiorinormalized to unityin the trans-
Bose-Einstein condensatiqBEC) of dilute vapor(in par-  verse ¢,) direction. It depends parametrically on the longi-
ticular, the microchip guiding techniquepen up the pros- tudinal densityn(x,t)=fd°r, |¥|?=|y(x,t)|2. The beam is
pect of studying coherent transport phenomena using guidegbnfined in the transverse direction by a trapping potential
atom laser$4]. Besides, because of the extraordinary control; (¢ :x), which is x dependent in the region of the con-
over these systems, they offer a unique opportunity to g@triction. Then, the longitudinal wave equation refg8] (in
beyond the single-particle behavior, and to study specific efynits whereh =m=1)
fects induced by interaction. In the present article we focus
on a simple situation, where a BEC matter wave propagates
through a guide with a constrictid®]. By an adiabatic ap-
proximation, the three-dimensional flow is reduced to one . N
dimension, where the atoms now feel, due to the constricll EG- (2), V|(x) represents an effective longitudinal poten-
tion, a longitudinal steplike potential of height,. In the tial due to the constriction. If, to be specific, we consider a
absence of interaction, the transmissibrdoes not depend fransverse harmonic canfinement with pulsatier(x), then

o , . V|(X)=w,(X)— o, (—=) (energy is measured with respect
on the incident current but only on the be_am_s_enefgys of the ground-state energy of the noninteracting transverse
always lower than unity and tends to this limit when the

fthe b is | In the followi Hamiltonian far before the constrictibne(n;x) is a nonlin-
energy ol the beam IS large compar(_acugp nhe following ~ aar term describing the mean-field interaction averaged over
we consider atoms with a repulsive effective interaction

) . : a transverse slice of the beam. One hagn;x)
characterized by a scattering length>0. The most salient =2, (X)Nas in the low-density regime fa,.<1), and

features of the flow are all at variance with respect to the, ..y =2, (x)Jna.. in the high-density regime
noninteracting casei) the transmission coefficient depends ;(1) [)7 8].%( JVnase g y reg NBsc

on the currentfii) at given chemical potential, there exists &  Qur purpose is to determine the transmission of

maximum transmitted current above which no stationarysteady-state solutions of Eq.(2) where (x,t)

flow exists, (i) at a given current, several distinct stationary = exp{—i uthA(X)exp(iS(X)}, with A and Sreal functions. The

solutions with differentT are possible, andiv) for any  density isn=A? and the local velocity i =dS/dx. From

chemical potential larger thaviy, there is a particular value Eq. (2) one obtaingi) flux conservationn(x)v(x) is a con-

of the incident current which induces total transmission.  stant that we denot&, , and(ii) a Schralinger-like equation
Consider a continuous atom laser incident on a constricfor the amplitude:

tion of a waveguide. Within the adiabatic approximat{ém

the transverse motion is restricted to the lowest transverse 1 d?A ch
-5t V| (x) + e(n(x);x)+ >
2 dx 2 n%(x)

1
- E&XX¢+{VH(X)+e(n(x,t);x)}tp:i&tzﬁ. 2

A=uA. (3)

*Present address: Max Planck Institut Rhysik Komplexer Sys- To define the scattering problem one needs to study the
teme, Nahnitzer Str. 38, 01187 Dresden, Germany. asymptotic behavior of the flow far from the constriction. Far
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density should thus be equal eithermtp, (we denote this as
“case A”), or to ny, (caseB); n;o and n, —being the
analogous ofn; andn, of Fig. 1—are extrema o¥Wy(n).

= | Th lutions of
§ E, | ey are solutions o
| |
M : J2
| _ o
| | =e€g(N)+Vo+ . 6
| : | : m=€o(n)+Vo > n2 (6)
Lo ! |
[ | ! . . .
n,n, n,.. n, In the noninteracting case the tersm(n) is absent from

W,y(n) which has only one minimumn(). CaseA is there-

FIG. 1. Was a function oh. n,; andn, are the zeros adW/dn. fore the only possible solution in noninteracting systems.
At a givenEg, the upstream densitfor equivalently the “posi- CaseB describes new nonperturbative effects related to in-
tion” of the fictitious particlg oscillates betweemy,, and nyax  teraction. It corresponds to an asymptotic downstream den-
defined byW(npin) =W(Nma =Ec - sity which is part of a gray soliton.

' . There exists a maximum valug;'®* of J.. above which
upstreamV|(x— —<)=0 and the nonlinear term in EQR)  Eq, (6) admits no solution: a3, is increasedkeepingu and
looses its explicitx dependence, taking the simpler form V, fixed), the two extrema oMW,(n) move toward each
e[n(x,t)]. Thus, in this region, Eq3) admits a firstintegral  gther, until they coalesce and disappear. This marks the onset

of the form([8] of a time-dependent flow. If, to be specific, we consider the
2 caseeg(n)=gyn”o, then
2 ( dx W) =Ee, @ Uvg+1/2 u
max_ Y, v g Mo, 7
it por(H Vo) Vro g )
32 The scattering process is now well defined. It corresponds to
W(n)=—e(n)+un+ on’ the matching between two asymptotic densities described by

the classical motion of a particle of energy, in a potential

wheree(n)=[Je(p)dp and E, is an integration constant. W(n) atx— —c, and of energ)ESI in a potentialW,(n) at
Equation(4) has a simple interpretation in terms of classicalx— + [with E, either equal toNp(ny g or to Wy(n,g)].
dynamics. It expresses the energy conservation of a fictitiouEquation(3) being nonlinear, an important question is how
classical particle with “position’A and “time” x, moving in  to properly define a transmission and a reflection coefficient;
a potential W, E., being the total energy of this particle. i.e., is it possible to disentangle an incident and a reflected
Equation(4) is thus integrable by quadrature, and the densitywave in the upstream flow? We follow here an approach
profile can be deduced from the plot of Fig. 1. Small valuesclosely related to usual experimental setups, and choose to
of E,—W(n;) correspond to small density oscillations, work with an incident and a reflected beam which can be
whereas the highest acceptable valu&is=W(n,), corre- approximated by plane waves. This corresponds to a regime
sponding to a gray soliton. where Eqgs(3) and(4) can be linearized in the far upstream

In the far downstream regio/|(x— +«) also takes a region. In this regime, forx— —c, we write n(x)=n;
constant valu&/p=w, (+*)—w, (—*)>0. Hence, Eq(3) + én(x) and expanahW(n) to second order idn. Then Eq.
admits, in this region, a first integral analogous of 4. (4) leads to
where, due to the change i, , €(n) [resp.e(n)] takes a

different form which we denote,(n) [resp.eq(n)]. The (d on\ 2

+k26n?=8(ny+ oN)[Eq—W(ny],  (8)

new form ofW(n) is denotedN,y(n) and the new constant of dx

integration isE?, ,

A2 . wherek2=4(v3—c3), v;=J../n, being the average veloc-
E(&) +Wo(n(x))=EZ, (5) ity of the upstream beam and;=[n(de/d n)nl]l’2 the
sound velocity of a beam with constant dengity The lin-
with earization Eq.(8) is valid provided|sn(x)/n,|<«2/c3. In
this regime, if one further imposes,;>c,, the upstream
)2 density oscillations can be analyzed in term of incident and
on° reflectedparticles (and not quasiparticles This allows to
unambiguously define the incident, reflected, and transmitted
It follows from general arguments on the dispersion of el-currenta as);=(n;+ ény/2)v,, J,=nw,/2, andJ;=nyv,
ementary excitations of E2) that the physically acceptable =J., (where 6n,;=4[E,—W(n,)]/«2). Hence, once&,, is
boundary conditions of Eq:3) correspond to a constant far known, the transmission at given incident currénis deter-
downstream densitysee Ref[8]). The asymptoticx— + mined through

Wo(n)=—go(n)+(u—Vo)n+
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Ky K1 —_
EC|=W(n1)+—5n1=W(n1)+TJi(1—T). (9 ——
1

4 2 ]

The linearization procedure explained so far is valid in the= 0& [
case of small upstream interacti¢this is the essence of the 04l
conditionv1>c4). However, all interaction effects are fully a=2
taken into account in the downstream region, where they are 92
indeed more importanithe constriction acts as a barrier 0
which lowers the velocity of the downstream flow and, by 0 2 4 6 8 10
flux conservation, increases its dendi®y). In the following 1} ]
we solve the exact nonlinear equati@® and use the linear- - /—"‘
ization procedure only to define the transmission coefficient I
T. Thus, the results presented below are of very general va, o6}
lidity, but their analysis in term of transmission coefficient is &
only correct in so far as the linearization procedure is valid. 041 o=3
The method is now the following: for a givem andJ;, 02| .
assume a particular value at This determines)..=T J;,
fixes the form of the functioiVy(n), the value oin(+«) (it 0 2 4 <
is equal ton, 4 in caseA and ton,, in caseB) and of EZ, p/o
=Wg[n(+=)]. Integrating Eg.(3) backwards from x
=+ to x=—x yields E;;, which should be compatible
with Eq. (9). If not, the value ofT has to be modified until batic approximation. In each plot the vertical thitkin) lines in-

self-consistency is achlevgd. . ) dicate the location of the transverse eigenenergies in the
To understand the physical picture we consider an abrufownstrearmupstream confining potential.

steplike constriction. In this geometry, numerical integration

of Eq. (3) can be bypassed becalkg is simply expressed mation is initially quite accurate. However, at larger values
in terms of E; [see Eq.(10)]. However, the adiabatic ap- of . deviations from adiabaticity are clearly visible. Fer
proximation(1) is based on the assumption that the typical=2, a sudden lowering of" occurs when a new reflected
longitudinal length scale is much larger than the transversghannel opens g/l =2 (in all the following we denote
one. This is clearly violated by an abrupt constriction. Nev-35 “open channels” those allowed by energy conservation
ertheless, in certain parameter ranges, the adiabatic approyng symmetry rules From there onT* diminishes until a
mation remains valid. In order to illustrate this point We e\ transmission channel opensgait; =5. At this point, a
compute the transmission abninteracting atom$10], for ¢ ,4den increase af- is observed. At large values of, T
which the exact solution can be obtained numerically. We[ends to unity, as it should. Far=3, the process is similar,

thus consider a linear wave moving in a guide with harmonig, ; the preakdown of the adiabatic approximation occurs ear-
confinement whose transverse pulsation changes abi@tly o pecause the opening of the initial transmitted

— < >_ <
x=0 say from " (upstreamto o =aw] (downstrean channel—atu/w | =2—coincides with that of the first al-
with @>1. The incident atoms occupy the transverse groung,ed excited reflected channel.
state of the upstream potential. The numerical solution of the |, he following we will concentrate on the region
Sroblem cal? b)e Workeld out b¥ k? stralgf(ljtforwdard th(;ee',u/wfza—l where the adiabatic approximation is well jus-

imensional3D) generalization of the procedure devised in..: :

) S tified and where, as we shall now see, nonlinear effects ma

Ref. [11] for studying a similar 2D problem. We denote the y

: issionTL. th - ling that .~ induce strong modifications of the transmission.
ransmissiont -, e superscript recafing tha V\[e. are a8 \we now turn to the nonlinear problem and consider the
linear (i.e., noninteractingregime. The result fol - is pre-

V) (x<0)= X<0)= Vi (x>0)=V
sented in Fig. 2 fomw=2 anda=3. The vertical bars indi- case V|(x<0)=0, e(nix=0)=e(n) and V}(x=0)=Vo,

X>0)= . i [ irsti .
cate the location of the energies of the reflectiih lines €(n;x>0)= eo(n). Equation(3) admits the first integral Eq

X S . (4) for all x<0 and Eq.(5) for all x=0. E, is determined
and transmittedthick lines cha.nne.ls. Cor)sgrvatmn of angu- throughES, by imposing continuity ofA andA’ atx=0,
lar momentum along the longitudinal axis imposes selection

=
[
/
I
|

FIG. 2. Solid curve, transmissioft of a linear wave as a func-
tion of u for «=2 (top) and a= 3 (bottom. Dashed curve, adia-

rules between channels. These rules effectively forbid half of E. —W[N(0)]=E% —W,[n(0)]. (10)
the energetically allowed channels, and those henceforth do ¢ ¢!
not play any role in the transmission. Let us consider casifirst. The asymptotic downstream den-

Within the adiabatic approximation, the constriction is de-sity is n, , and thus one has, for ak=0, n(x)=n, , (the
scribed by an abrupt longitudinal step potential of heightfictitious classical particle remains at the bottom of the po-
Vo=w] —w; . The corresponding transmission By,  tential well Wp). In particular,n(0)=n, , and the matching

=4[ w(u— Vo)V u+Vpu—Vo) "2 (represented by a Eq.(10) determinesE,, uniquely. The value of is denoted
dashed curve in Fig.)2The onset of transmission occurs at T in this case.

u=Vy, i.e., uloT=a—1. One notices in the figure that CaseB is more interesting because the structure of the
when u is increased from this value, the adiabatic approxi-downstream solution is richen(x=0) being part of the
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FIG. 3. TA and T2, as a function ofJ; /31 (at fixed u 0.00 a 0 4 Py 12
=210 nK). The horizontal dashed line is the transmissiénof x VI/Z
noninteracting atoms. The gray zone above the dashed hyperbola 0
(of equationT=J*7J;) is a region where no stationary flow ex-  FiG. 4. Density profilegin dimensionless unitsfor the con-
ists. Inset: schematic of the constriction’s geometry. striction defined in the text, at incident curreht= 0.36M* (flow-

profile of a gray solitonn(0) can be varied continuously ing from left to right and chemical potentigh =210 nK. Thick
. - y . . solid line, solitonic flow withT®=T%,, . =1; thin solid line, typeA
provided the matching Eq10) is fulfilled at a value accept- o "\ w'TA_ g 7
able for Eq.(4). Effectively, the only restriction imposed is
thatnyin<n(0)<Nmax (Nmin andnmay are defined in Fig. L fiow of type A is no longer permittedactually it bifurcates to
As a result, for fixedu andJ;, E is not uniquely deter- 5 typeB solution. The prominent feature of the behavior of
mined byn(+), and the transmissioR° varies between 0  TA a5 4 function of; is its decrease compared to the nonin-
and a value that we denote &§,,,. teracting valueT. The physical reason behind this phenom-
To be specific, we consider a continuous bean?®a  enon is simple: the available kinetic energy necessary to step
atoms propagating through a guide with a transverse confingyer the barrier is reduced when the interaction energy in-
ment w} =2mX2 kHz (in the regionx<0), to which we creases, i.e., when the incident current increases. This picture
impose a narrowinge, =2 X6 kHz (in the regionx>0). is supported by a perturbative treatment which accurately
This represents a barrier of heighig=192 nK. In the non-  describes the flow at low incident currenl;€JT?) and
interacting case the transmissidi as a function ofw is  confirms that the decrease Bt corresponds to an increased
plotted in the bottom part of Fig. 2e(=3). We takeu  fraction of the interaction energy in the chemical potential.
=210 nK (this corresponds to the kinetic energy of atoms Case B being mediated via interaction, does not
having a velocity of 1.2 cmjsThis value ofu corresponds, exist for low current. It exists only above a critical
in the noninteracting case, to a regime where the adiabaticurrent (Do) "L w—Vo)?(8u) Y?=1.5x 10° atom/s
approximation holds and vyields a transmissibh=T.,,  =0.172*. From this point, TS, increases rapidly up to 1
=0.70. The repulsive interaction between atoms introducegeached at);=0.36)T2* in the case of Fig. B and then
in Eqg. (3) a nonlinear term which, in the region<0, reads  decreases down to a point where one can show that it exactly
e(n)=gn with g=2as.w =530 nKnm. In the regiorx  meets the end point &". From there on, the value d® is
>0, the transverse frequency of the guide is multiplied by 3Jimited by the condition that the flow should be stationary,
and thuseq(n)=gon with go=3Xg. An important param- and one ha3?%,,,=J7®J;, which coincides with the dashed
eter of the system is the maximum transmitted curdHt*  hyperbola in Fig. 3. We emphasize that stationary solutions
above which no stationary flow can exist in the downstreanof type B with arbitrary transmission€ TE<TE _ exists for
part of the guide. From Eq.7) (with »o=1) one obtains any current above the critical one.
JM*~1.6x 10* atom/s. The nonlinear transport induced by the repulsive two-
Figure 3 summarizes the results obtained. The linearizabody interaction has therefore a nontrivial consequence: new
tion conditionv 1> c, is extremely well satisfied in the whole solutions—of solitonic character—emerge; they allow for an
range of incident currents considergle less favorable case increased transmission. This contrasts with the behavior of
occurs at largel; , wherev,=25c;). The horizontal dashed caseA where the transmission is lowered by the interaction.
line is the value of the transmission coefficient of noninter-One can show that, for any value pf>V,, there always
acting atomsT-=0.7. It is current independent. When the exists a value of; such that complete transmission exists in
current is increased from zerd? decreases from this value caseB. The profile forTE_ =1 consists of a constant up-
down toTA=0.5. At this point(located with a black spot on stream density(x<0)= n, connected ax=0 to half a soli-
the figure, J.(=TAJ,) is equal toJT®*, and a stationary ton. Figure 4 displays the density profiles of two stationary
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flows (caseA and caseB at TE=TE_=1) at an incident tigation, is the dynamical selection of the different types of
currentJ; = 0.36)M2* (see Fig. 3. Note the significant differ- ~stationary profiles discussed above: given an initial low-
ence in the densities of the upstream and downstream prélensity flow(which, from Fig. 3, is of type?), which branch

files, a purely nonlinear effect mediated by a solitonic pro-(A Or B) will be followed when the incident flux increases?
file. We have performed numerical computations that show 1 here are different ways to experimentally realize the ef-

that the same type of solution also exists for smooth constricd€Ct discussed in the present work, namely, enhanced solito-

tions and that they are dynamically stable, as confirmed by gic transmission O.f matter waves. We have StUd'eq one pos-
Sible implementation, where the steplike potential in the

Bogoliubov analysis. The interactions can thus have two d'f'ongitudinal motion of the condensate is produced by a con-

ferent and, in some sense, opposite consequences on { ffiction of the guide. An other possibility is to apply a blue-
transport properties of a condensate flow. They diminish th%ietuned laser beam on the regiar-0 of a condensate

transmission in some instancesseA), but also allpw for propagating along a guide of constant diameter. In this case,

new stationary flows that can be perfectly transmittese o characteristics of the flow and the barrier should be easily

B) [12]. , , . i controlled by modifying the laser’s frequency, intensity, and
We have restricted our analysis to stationary configurayist, thus allowing for a neater experimental observation of

tions, but dynamical effects are certainly of interest.ihe apove predicted transport phenom§L.
Amongst these, one could address the question of the tran-

sient that exists before stationarity is reached, or the nature We acknowledge stimulating discussions with D. Gue
of the flow in parameter regions where stationarity is notOdelin. LPTMS is UniteMixte de Recherche de I'Universite
possible. An other open problem, that clearly deserves invedRaris XI et du CNRS, UMR 8626.
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