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We consider the collision of a dark soliton with an obstacle in a quasi-one-dimensional Bose condensate. We
show that in many respects the soliton behaves as an effective classical particle of mass twice the mass of a
bare particle, evolving in an effective potential which is a convolution of the actual potential describing the
obstacle. Radiative effects beyond this approximation are also taken into account. The emitted waves are
shown to form two counterpropagating wave packets, both moving at the speed of sound. We determine, at
leading order, the total amount of radiation emitted during the collision and compute the acceleration of the
soliton due to the collisional process. It is found that the radiative process is quenched when the velocity of the
soliton reaches the velocity of sound in the system.
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I. INTRODUCTION

One of the many interesting aspects of the physics of
Bose-Einstein condensation of ultracold atomic vapors is to
open opportunities of studying mesoscopiclike phenomena in
new types of setups. The advances in the production and
propagation of Bose-Einstein condensates in more and more
elaborate waveguides �magnetic or optical, microfabricated
or not �1�� opens up the prospect of studying a rich variety of
quantum transport phenomena for these intrinsically phase-
coherent, finite-sized systems. In particular it has been pos-
sible to study quantum interference effects �2�, Bloch oscil-
lations and Landau-Zener tunneling �3�, Josephson junctions
�4�, and superfluidity �5�.

Pushing further the analogy in transport properties of me-
soscopic systems and Bose-condensed vapors, one notices
that, whereas in mesoscopic physics interaction effects are
often difficult to understand, in Bose-Einstein condensates
they are more easily accessible to theoretical description and
have the advantage of covering a wide range of regimes,
ranging from almost noninteracting atom lasers to strongly
correlated systems. Along this line, the existence of nonlin-
earity in the wave equation, resulting in the existence of
bright �6� and dark �7� solitons, appears as a natural—and
rather simply understood—consequence of interaction on
transport phenomena of quasi-one-dimensional Bose-
condensed systems.

In the present work we address the problem of transport
of a dark soliton in a quasi-one-dimensional Bose-Einstein
condensate. More precisely, we consider a guided Bose-
Einstein condensate and theoretically study the propagation
of a dark soliton encountering an obstacle on its way. In the
appropriate limit �see Eq. �1� below� the system is described
by a one-dimensional nonlinear Schrödinger equation. This
equation admits bright and dark solitonic solutions, depend-
ing on the sign of the interparticle interaction. The obstacle is
modeled via an external potential, and this could correspond

to different physical realizations, such as a heavy impurity, a
�red or blue� detuned laser beam crossing the atomic beam, a
bend, a twist, or a constriction in the shape of the guide.

A soliton under the influence of a perturbation �here, the
obstacle� sees its shape and velocity modified and may also
radiate energy �see, e.g., Ref. �8��. Despite their mutual de-
pendence, these two phenomena are not easily treated on the
same theoretical footing. The evolution of parameters char-
acterizing the soliton is typically studied within the adiabatic
approximation �see Ref. �9� and references therein�, whereas
radiative effects are not so easily described, because their
influence on the soliton’s parameters only appears at second
order in perturbation theory �see the discussion in Sec.
IV D�. However, it has been possible to treat both phenom-
ena concomitantly in the case of bright solitons �8–12�. Con-
cerning dark solitons, several studies of adiabatic dynamics
have appeared �13–19�, but until recently radiative effects
have been treated mainly numerically �20–22�.

In the present paper we study the dynamics of a dark
soliton via perturbation theory. This method, based on the
theory of linear partial differential equations, has been estab-
lished in the case of the nonlinear Schrödinger equation with
repulsive interaction in Refs. �23,24� �see also the earlier
attempt �25��. Although our first interest lies in the physics of
guided Bose-Einstein condensates, the method employed and
the results displayed also apply to optical waveguides de-
scribed by a one-dimensional �1D� nonlinear defocussing
Schrödinger equation.

The paper is organized as follows. In Sec. II we present
the basic ingredients of the model and the resulting equation
governing the time evolution of the condensate wave func-
tion. In the framework of perturbation theory we then derive
the equations determining the dynamics of the soliton and of
the radiated part �Sec. III�. The results are analyzed in Sec.
IV. We show that one can devise a quite successful approxi-
mation that we denote as “effective potential theory,” where
the soliton is assimilated to a classical particle of mass twice
the mass of a bare particle, evolving in an effective potential
�Sec. IV A�. The agreement of this approximation with the
results of the adiabatic approximation is verified even for the
position shift induced on the trajectory of the soliton by the
obstacle �Sec. IV B�. We then consider in Sec. IV C the ra-
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diated part and show that it is formed of backward- and
forward-emitted phonons, which form two counterpropagat-
ing wave packets moving at the speed of sound. In the limit
of large soliton’s velocity we furthermore obtain in Sec.
IV D an analytical expression for the total amount of radia-
tion emitted by the soliton during the collision. In addition
we show that �within our leading-order evaluation� a soliton
reaching the velocity of sound does not radiate, and we pro-
pose a physical interpretation for this phenomenon. Finally
we present our conclusions in Sec. V. Some technical points
are given in the Appendixes. In Appendix A we recall the
main properties of the spectrum of the operator governing
the wave dynamics of the system around the solitonic solu-
tion. In Appendix B we briefly present the Lagrangian ap-
proach for deriving the dynamics of the parameters of a dark
soliton. In Appendix C we show how to compute some inte-
grals involved in the evaluation of the total amount of radia-
tion emitted by the soliton.

II. MODEL

We consider a condensate confined in a guide of axis z
and denote by n�z , t� the 1D density of the system. The con-
densate is formed by atoms of mass m which interact via a
two-body potential characterized by its 3D s-wave scattering
length asc. We consider the case of a repulsive effective
interaction—i.e., asc�0. The condensate is confined in the
transverse direction by an harmonic potential of pulsation
��. The transverse confinement is characterized by the har-
monic oscillator length a�= �� /m���1/2.

With n1D denoting a typical order of magnitude of n�z , t�,
we restrict ourselves to a density range such that

�asc/a��2 � n1Dasc � 1. �1�

This regime has been called “1D mean field” in Ref. �26�. In
this range the wave function of the condensate can be factor-
ized in a transverse and longitudinal part �27–29�. The trans-
verse wave function is Gaussian �this is ensured by the con-
dition n1Dasc�1� and the longitudinal one, denoted by ��z , t�
�such that n�z , t�= ���z , t��2�, satisfies an effective 1D Gross-
Pitaevskii equation �see, e.g., �27–29��

−
�2

2m
�zz + �U�z� + 2���asc���2�� = i��t. �2�

In Eq. �2�, U�z� represents the effect of the obstacle. We
restrict ourselves to the case of localized obstacle such that
limz→±� U�z�=0. Hence, we can consider that the stationary
solutions of Eq. �2� have at infinity an asymptotic density
unperturbed by the obstacle. Besides, considering solutions
without current at infinity, we impose the following form to
the stationary solutions:

�sta�z,t� = f�z�exp�− i�t/��, with lim
z→±�

f�z� = �n�,

�3�

where n� is the 1D density far from the obstacle and �
=2���ascn� the chemical potential �30�.

We note here that in Eq. �1� we have discarded very low
densities in order to prevent the system from getting in the

Tonks-Girardeau regime where the mean-field picture
implicit in Eq. �2� breaks down �28,31�. This can be intu-
itively understood as follows: it is natural to assume that
the Gross-Pitaevskii scheme is valid—i.e., that the system
can be described by a collective order parameter �—only if
the interparticle distance �of order n�

−1� is much smaller than
the minimum distance � over which � can significantly
vary �� is the healing length, defined by �=� / �m��1/2

=a� / �2ascn��1/2�. The condition n�
−1�� then imposes us to

consider the regime n�asc	 �asc /a��2 to which, from Eq. �1�,
we restrict our study. If one considers, for instance, 87Rb or
23Na atoms in a guide with a transverse confinement charac-
terized by ��=2
�500 Hz, the ratio asc /a� is roughly of
order 10−2 and the restriction �1� still allows the density to
vary over four orders of magnitude.

In all the following we use dimensionless quantities: the
energies are expressed in units of �, the lengths in units of �,
and the time in units of � /�. � is also rescaled by a factor
n�

−1/2; this corresponds to expressing the linear density in
units of the density at infinity, n�. We keep the same notation
z, t, U�z�, and ��z , t� for the rescaled quantities. Equation �2�
now reads

− 1
2�zz + �U�z� + ���2�� = i�t. �4�

From Eq. �3�, the stationary solutions of Eq. �4� are of type
f�z�exp�−it�, f being real, and a solution of

− 1
2 fzz + �U�z� + f2 − 1�f = 0, �5�

with the asymptotic condition limz→±�f�z�=1.
The method we will expose is quite general and applies to

a broad range of potentials U�z�, but for concreteness we will
often display the explicit solutions of the problem in the case
of a pointlike obstacle, where U�z�=��z�; ��0��0� corre-
sponds to a repulsive �attractive� obstacle. For such an ob-
stacle, the solution of Eq. �5� is

f�z� = 	tanh��z� + a� if � � 0,

coth��z� + a� if � � 0



with

a =
1

2
sinh−1� 2

���� . �6�

In Sec. IV we will concentrate on perturbative aspects of
the problem and consider the case of a weak potential U�z�.
For a pointlike obstacle, this corresponds to the limit ���
�1. In this case sinh−1�2/ ���� ln�4/ ���� and Eqs. �6� sim-
plify to

f�z�  1 −
�

2
exp�− 2�z�� . �7�

In the general case, one can design a simple treatment
�29,32� valid for any weak potential U�z� leading after
linearization of Eq. �5� to the perturbative result
f�z�=1+f�z� with
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f�z�  −
1

2
�

−�

+�

dy U�y�exp�− 2�z − y�� , �8�

of which Eq. �7� is a particular case. In Sec. IV it will reveal
convenient to rewrite Eq. �8� in an other way: denoting by

Û�q�=�RdzU�z�exp�−iqz� the Fourier transform of U�z�, one
may equivalently express f defined in Eq. �8� as

f�z�  − 2�
−�

+� dq

2


Û�q�
4 + q2 exp�iqz� . �9�

The stationary solutions of the problem being defined, let us
now turn to the main subject of the present work and con-
sider the case of time-dependent solutions corresponding to a
dark soliton propagating in the system. The soliton will ap-
pear as a distortion of the stationary background, and it is
here very natural to follow the approach of Frantzeskakis et
al. �17� who write the wave function of the system as a
product:

��z,t� = ��z,t�f�z�exp�− it� . �10�

��z , t� in Eq. �10� accounts for the deformation of the sta-
tionary background f�z�exp�−it� caused by the motion of a
soliton in the system. From Eq. �4� we see that the unknown
field ��z , t� is a solution of the following equation:

i�t + 1
2�zz − ����2 − 1�� = R��� , �11�

where

R��� = − �z
fz

f
+ �f2 − 1�����2 − 1�� . �12�

Far from the obstacle, f�z�=1 and thus R���=0. In this
case, the motion of a dark soliton in the system is described
by the usual solitonic solution of the defocussing nonlinear
Schrödinger equation �33�

��z,t� = ��z − Vt − b,�� , �13�

where

��x,�� = ��x,�� + iV ,

with

��x,�� = cos � tanh�x cos �� and sin � = V . �14�

Equations �13� and �14� describe a dark soliton consisting in
a density trough located at position Vt+b at time t. The phase
change across the soliton is 2�−
. The choice of the param-
eter � in �0,
 /2� corresponds to a soliton moving from left
to right with a velocity V=sin �� �0,1�. Note that a dark
soliton has a velocity always lower than unity �which, in our
rescaled units, is the velocity of sound �34��. When �=0, the
soliton is standing and its minimum density is zero; it is
referred to as a black soliton. When ��0 one speaks of a
gray soliton. We display in Fig. 1 the density profile and the
phase of the wave function ��z , t� �see Eq. �10�� describing a
soliton incident with velocity V=0.4 on a repulsive pointlike
obstacle characterized by �=0.5.

III. PERTURBATION THEORY

In the following we will set up the basis for a systematic
perturbative expansion, and for properly identifying the or-
ders of perturbation at which the expansion is done, it is
customary to introduce an artificial multiplicative parameter
� in the potential of the obstacle �otherwise of arbitrary
form�. We will see in the present section �and justify on
physical grounds in the next one� that for an obstacle char-
acterized by �U�z�, the condition of small perturbation reads
V2	�U. Since the soliton velocity is always lower than
unity �which is the speed of sound in our dimensionless
units�, this condition implies �U�1; i.e., Eqs. �8� and �9�
hold.

At initial times the soliton is unperturbed and described as
in the previous section by ��z , t�=��z−Vt ,�0� �� is defined
in Eq. �14��; i.e., one considers a soliton incident from left
infinity with velocity V=sin �0. The more important effect of
the obstacle on the soliton is a modification of its shape; i.e.,
the parameters characterizing the soliton will become time
dependent in the vicinity of the obstacle. Perturbations at
next order describe the emission of radiation. One thus looks
for solutions of Eq. �11� of the form

��z,t� = �sol„z, z̄�t�,��t�… + ��z,t� , �15�

where

�sol„z, z̄�t�,��t�… = �„z − z̄�t�,��t�… �16�

describes a soliton which is characterized by the two param-
eters z̄�t� �describing the center of the soliton� and ��t� �de-
scribing the phase shift across the soliton�. � describes ad-
ditional radiative components:

FIG. 1. Upper plot: density profile of a dark soliton incident
with velocity V=0.4 on a pointlike repulsive obstacle U�z�=��z�
�with �=0.5�. The arrow represents the direction of propagation of
the soliton. Lower plot: phase of the wave function ��z , t=0� de-
scribing the system. Across the soliton the phase of the wave func-
tion changes from 
−� to � �with V=sin ��.
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��z,t� = ��1�z,t� + �2�2�z,t� + ¯ . �17�

Equations �15�–�17� form the grounds of a secular perturba-
tion theory where the time dependence of the parameters of
the soliton allows for the avoidance of the growth of secular
perturbation in � �see, e.g., the discussion in Ref. �8��.

It is more appropriate to define � in Eq. �15� and the �i’s
in Eq. �17� as functions of z− z̄�t� than as functions of z. To
this end, we define x=z− z̄�t� and choose to work with x and
t as independent parameters rather than z and t. This corre-
sponds to the transformation

�z,�t → �x,�t − ż̄�x. �18�

Furthermore, in order to take into account the slow time
dependence of the parameters of the soliton, it is customary
to introduce multiple time scales: tn=�nt�n�N�. A time-
dependent function could, for instance, depend on t via t1,
indicating a weak time dependence �a t2 dependence being
related to an even weaker time dependence and a t0 depen-
dence to a “normal” time dependence�. Generically, time-
dependent quantities will be considered as functions of all
the tn’s, with

�t = �t0
+ ��t1

+ �2�t2
+ ¯ . �19�

In the following we will make an expansion at order � and it
will suffice to consider only the fast time t0 and the first slow
time t1. The soliton’s parameters � and z̄ are considered as
functions ��t1� and z̄�t0 , t1� �35�.

Putting everything together, we see that, at order �, Eqs.
�15�–�17� read explicitly

��z,t� = �„x,��t1�… + ��1�x,t0,t1�, with x = z − z̄�t0,t1� .

�20�

Equation �11� is now rewritten taking the transformations
�18� and �19� into account, with an expansion at order �. To
this end, we have to take into account that R��� defined in
Eq. �12� is a small quantity and can be written at first order
in � as

R���  − �x��x,����zf�z� + 2��x,��f�z�� � �R�x,z� ,

�21�

where z=x+ z̄�t0 , t1� and f�z� is defined as in Eqs. �8� and
�9�, with an extra multiplicative factor � in U which has been
written explicitly in the definition of R on the right-hand
side �RHS� of Eq. �21�.

We are now ready to expand Eq. �11� in successive orders
in �. The leading order reads

− 1
2�xx + iz̄t0

�x + ����2 − 1�� = 0, �22�

implying that

z̄t0
= sin � , �23�

whence z̄ can be written as

z̄ = t0 sin � + z̃�t1� , �24�

where z̃�t1� is a still unknown function �36�. At next order in
� one obtains

i�t0
�1 = �− 1

2�x
2 + i sin � �x + 2���2 − 1��1 + �2�1

* + R

− i�t1
�� + iz̄t1

�x. �25�

Equation �25� can be rewritten as

i�t0
��1� = H��1� + �3�R� + iz̄t1

��e� −
�t1

cos �
��e� , �26�

where ��1�= ��1 ,�1
*�T, �R�= �R ,R*�T, �3 is the third Pauli

matrice, and

H = �− 1
2�x

2 + i sin � �x + 2���2 − 1 �2

− �*2 1
2�x

2 + i sin � �x − 2���2 + 1
� . �27�

H is not diagonalizable, but can be put in a Jordan form in a
manner similar to what has been done for the attractive non-
linear Schrödinger equation �37�. Its eigenfunctions and ei-
genvalues are presented in Appendix A. In particular, ��e�
and ��e� appearing in Eq. �26� belong to the generalized null
space of H; they verify H��e�=0 and H��e�=cos2� ��e�. As
well as its null space, H has two continuous branches of
excitations which we denote by its “phonon spectrum.” The
corresponding eigenfunctions are denoted by ��q

±� with q
�R �see Appendix A�.

It is physically intuitive that ��1� corresponding to the
radiated part should be expanded over the phonon part of the
spectrum of H:

��1� = �
�=±

�
−�

+�

dq Cq
��t0,t1���q

�� . �28�

A more technical argument for limiting the expansion �28� to
the phonon components of the spectrum of H is the follow-
ing: one might think that a greater generality could be
achieved by allowing ��1� to have also components on ��e�
and ��e�, for instance. However, exactly as in the case of the
bright soliton �12�, these components can �and should� be
imposed to remain zero for avoiding the appearance of secu-
lar terms in the evolution of the soliton’s parameters.
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A. Evolution of the parameters of the soliton

Applying ��e��3 and ��e��3 onto Eq. �26� and using the
orthogonality relations �A6�, one obtains the equations of
evolution of the parameters of the soliton:

4�t1
cos2� = − ��e�R�

= − 2 Re	�
−�

+�

dx �xR*�x,x + z̄�

=

2

�
Re	�

−�

+�

dz R*��sol��z̄�sol
 �29�

and

4z̄t1
cos2 � =

1

i cos �
��e�R�

= − 2 Re	�
−�

+�

dx ��R*�x,x + z̄�

= −

2

�
Re	�

−�

+�

dz R*��sol����sol
 . �30�

The set of equations �23�, �29�, and �30� describe the time
evolution of the soliton’s parameter. The same equations are
obtained via adiabatic approximation which is a simpler
variational approximation where radiative effects are ne-
glected �see Appendix B, Eqs. �B9� and �B10��. This is evi-
dent in the case of Eq. �29� which is the slow time analogous

to Eq. �B9� �since �̇=��t1
�. In a similar way, the prescription

�19� indicates that ż̄= z̄t0
+�z̄t1

; combining Eqs. �23� and �30�,
one sees that the equations of evolution of z̄ obtained in the
present section correspond to the multiple-time expansion of
Eq. �B10�. As a side result of this exact correspondence of
the time evolution of the soliton’s parameters, we obtain here
that, as in the adiabatic approach, sin���t1→ ±���=V �see
the discussion at the end of Appendix B� and the quantity z̃
appearing in Eq. �24� is identical when t1→ +� to the one
defined in Eq. �48�.

A technical remark is in order here. One can notice that in
Eq. �15� we did not consider the most general variational
form for the solitonic component of the wave function. We
could have let its global phase depend on time, for instance,
and this would have given in Eq. �26� a contribution along
��o� ���o� is defined in Appendix A�. Similarly, a more gen-
eral variational ansatz could also have been used in Appen-
dix B. The important point is that if the soliton’s parameters
are chosen within the same variational space, their time evo-
lution is described—in the adiabatic and perturbative
approach—by the same equations. Besides, the radiative
term �1 having in all cases to be restricted to the phonon part
of the spectrum, its time evolution is not �at least in the limit
V2	�U; see below� affected by the specific choice of varia-
tional parameters used for describing the soliton.

B. Radiated part

The time evolution of the radiative component ��1� is
obtained in a manner similar to what is done for the soliton’s

parameters. Projecting Eq. �26� onto the phonon eigenfunc-
tions of H by applying ��q

���3 yields

iNq
��t0

Cq
� = Nq

��q
�Cq

� + ��q
��R� , �31�

where �=±. �q
� in Eq. �31� is the eigenvalue of H associated

with ��q
�� �see Eq. �A2��,

�q
� = q�− sin � + ��q2

4
+ 1 � , �32�

and Nq
� is a normalization factor �see Eqs. �A4� and �A5��. In

deriving Eq. �31�, we have taken into account that the eigen-
functions ��q

�� depend on t only through the slow time t1 �via
sin ��. The same holds for �q

� and Nq
�. Thus, writing

Cq
��t0,t1� = Dq

��t0,t1�exp�− i�q
�t0� , �33�

one has, at the same order of approximation as Eq. �31�,

�t0
Dq
� =

1

iNq
� ��q

��R� . �34�

In integrating Eq. �34� we can choose between two equiva-
lent strategies. The first �and difficult� one is to solve this
equation taking into account that t1=�t0 and that � and z̄
have the time dependence specified by Eqs. �23�, �29�, and
�30�. The second one is to integrate this equation considering
t0 and t1 as independent variables. In this case, the t1 depen-
dence of � and z̄ will not matter and the t0 dependence of z̄
will be specified by Eq. �24�. According to this second
method one obtains

Dq
��t0,t1� =

1

iNq
��

−�

t0

dt0� ei�q
�t0� ��q

��R� + D̃q
��t1� , �35�

where D̃q
� is an unknown function of t1 �verifying D̃q

��t1

→−��=0� which could be determined by pushing the per-
turbative expansion to next order in �. In the following we
will simply neglect this term. This is legitimate in the limit
where all the t1-dependent terms are nearly constant—i.e., to
the limit where the parameters of the soliton are very weakly
affected by the obstacle. We will see in the next section that
this limit is reached when �U�V2.

Of most interest to us is the total amount of radiation
emitted by the soliton. For the determination of this quantity
we need the explicit expression of Eq. �35� at large times. In

the limit t0 and t1→ +�, Eq. �35� �without the D̃q
� term�

reads explicitly

Dq
��+ �� =

1

iNq
��

R2
dxdt0� ei�q

�t0� �uq
�*�x�R„x,x + z̄�t0�, + ��…

+ vq
�*�x�R*

„x, z̄�t0�, + ��…� , �36�

where the functions uq
��x� and vq

��x� are the explicit compo-
nents of ��q

�� defined in Appendix A �Eq. �A3��. Note that
the t1-dependent parameters in Eq. �36� have been given their
asymptotic value. In particular, sin ��t1→ +��=sin �0=V,
and according to Eq. �24� one has here z̄�t0� , +��=Vt0�
+ z̃�+��. The integration along t0� in Eq. �36� can be com-
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puted easily using the expression �21� for R and Eq. �9� for
f , leading to

Dq
��+ �� =

4

iVNq
�

Û*��q
�/V�

4 + ��q
�/V�2e−i�q

�z̃�+��/V�
R

dx e−i�q
�x/V�x�

��uq
�*�x����x� −

i�q
�

2V
� + vq

�*�x����x�* −
i�q
�

2V
�� .

�37�

A long but straightforward computation gives the final result

Dq
��+ �� = −

1

16V3

q
�1 + q2/4

Û*��q
�/V�e−i�q

�z̃�+��/V

sinh�
q�1 + q2/4

2V�1 − V2 � . �38�

In this formula the term z̃�+�� can be obtained through the
numerical determination of z̄�t�. We indicate in Sec. IV B
different approximation schemes allowing one to obtain an
analytical evaluation of this term �Eq. �47� and below�. From
expression �38� we see that the radiation contributes to the

total wave function �20� with a term of order ��Û /V2��1−V2.
According to the approximation scheme defined in the begin-

ning of the present section we have V2	�U. Since Û and U
are of same order of magnitude, the radiated part is, as ex-
pected, a small quantity.

IV. ANALYSIS OF THE RESULTS

In this section we analyze the solutions of Eqs. �23�, �29�,
�30�, �28�, �33�, and �34� which describe the dynamics of the
system within our approach. The separation between the
slow and fast times we used up to now in order to identify
which time derivatives were negligible is no longer neces-
sary, and we will henceforth only employ the actual time t.
We will also drop the multiplicative factor � in front of the
perturbing potential U�z� and of �1�x , t�. In the two follow-
ing subsections we study the evolution of the parameters of
the soliton and in the two last ones we analyze the radiated
part.

A. Effective potential approximation

Since we now use the actual time t, instead of using Eqs.
�23�, �29�, and �30�, it is more appropriate to work with the
equivalent equations �B9� and �B10�. In order to get insight
into the details of the dynamics of the soliton, one should
solve these equations numerically for a particular obstacle.
This is done in Sec. IV B, where we study the behavior of a
soliton incident on a delta scatterer. But before going to this
point, it is interesting to study some limiting cases. In par-
ticular, the dynamics of the variational solution �16� can be
more easily understood in the limit of a very dark soliton

�almost back�. To this end, let us multiply Eq. �B9� by z̄̇ and

add it to Eq. �B10� multiplied by �̇. This gives

4�̇ sin � cos2 �

= 2 Re	�
−�

+�

dz R*��sol��ż̄ �z̄�sol + �̇ ���sol�
 .

�39�

In the limit of a weak potential, we have to keep in mind
that R is a small quantity �of order of U�. It is then legitimate

at first order to replace on the RHS of Eq. �39� ż̄ by sin � and

to drop the term �̇. One thus obtains

�̇ =
3

4
cos2 ��

−�

+�

dz
�zf

cosh4�cos ��z − z̄��
. �40�

A further simplification of the equations is obtained in the

limit of very dark soliton, when �→0. In this limit �̇ z̈̄ and
using expression �8� for f we can put Eq. �40� in the follow-
ing form:

2z̈̄ = −
dUeff

dz̄
, �41�

where

Ueff�z̄� = −
3

2
�

−�

+�

dz
f�z�

cosh4�z − z̄�
=

1

2
�

−�

+�

dz
U�z�

cosh2�z − z̄�
.

If we furthermore consider a potential U�z� which slowly
depends on z �over a length scale much larger than unity
�38��, then U�z� in the convolution of the RHS of Eq. �41�
does not appreciably vary over the distance where the term
cosh−2�z− z̄� is noticeable. This yields

Ueff�z̄� 
U�z̄�

2
�

−�

+�

dz
1

cosh2�z − z̄�
= U�z̄� . �42�

Equations �41� and �42� show that in the appropriate limit
�very dark soliton, weak and slowly varying potential� the
soliton can be considered as an effective classical particle of
mass 2 �i.e., twice the mass of a bare particle� of position z̄
�the position of the center of the density trough� evolving in
a potential U�z̄�. If we relax the hypothesis of slowly varying
potential, the soliton can still be considered as a particle of
mass 2, but it now evolves in an effective potential Ueff�z̄�
defined in Eq. �41� as a convolution of the real potential
U�z�. The fact that the effective mass of the soliton is twice
the one of a bare particle has already been obtained in Refs.
�16,17,19,39�. Previous studies mainly focused on slowly
varying external potentials and, as a result, the existence of
an effective potential Ueff—different from U—had not been
noticed so far, except in Ref. �17� where this result has al-
ready been obtained in the special case of a  scatterer. In the
following, we denote the approximation corresponding to
Eq. �41� as the effective potential approximation: the soliton
is considered as an effective classical particle of mass 2,
position z̄, moving in the potential Ueff�z̄�.

N. BILAS AND N. PAVLOFF PHYSICAL REVIEW A 72, 033618 �2005�

033618-6



B. Numerical check

Let us now study in detail a particular example. We consider a soliton incident on a pointlike obstacle—i.e., a  scatterer
characterized by U�x�=��x�. In this case, the static background f�z� is given by Eq. �6� and Eqs. �B9� and �B10� read

�̇ = sgn���cos2 ��
0

+� dz

sinh�2z + 2a�� 1

cosh4 X
−

1

cosh4 Y
� +

cos3 �

2
�

0

+�

dz�1 − f2�z��� tanh X

cosh4 X
−

tanh Y

cosh4 Y
� �43�

and

sin � − ż̄ = sgn���sin ��
0

+� dz

sinh�2z + 2a��X cosh−2 X + tanh X

cosh2 X
+

Y cosh−2 Y + tanh Y

cosh2 Y
�

+
sin � cos �

2
�

0

+�

dz�1 − f2�z���1 − X tanh X

cosh4 X
+

1 − Y tanh Y

cosh4 Y
� . �44�

X and Y in Eqs. �43� and �44� are notations for �z− z̄�cos �
and �z+ z̄�cos �, respectively, and the expressions of function
f and of parameter a are given in Eq. �6�. Solving Eqs. �43�
and �44� numerically, we obtain the time evolution of the
parameters of the soliton. We plot in Figs. 2 and 3 the be-
havior of z̄ as a function of t for different initial velocities V.
Figure 2 corresponds to a repulsive interaction with �= +1
and Fig. 3 to an attractive one with �=−1. The initial condi-
tions for the numerical integration of Eqs. �43� and �44� are

taken to be z̄�t=0�=−10 and ż̄�t=0�=sin���t=0��=V. Sev-
eral curves are drawn, corresponding to several values of V.
In the repulsive case �Fig. 2�, three initial velocities have
been chosen: V=0.9, 0.707, and 0.4. The value V=0.9 cor-
responds to a fast soliton which is weakly perturbed by the
barrier, the value V=0.4 corresponds to a reflected soliton,

and the value V=0.707 is just below the value V=�� /2
which, according to the effective potential approximation
�41�, is the separatrix between transmission and reflexion
�corresponding to V2=max�Ueff�z̄��=� /2�. In the attractive
case �Fig. 3� the curves are drawn in the cases V=0.707, 0.4,
and 0.3. In both figures, the solid lines correspond to the
exact numerical solution of Eqs. �43� and �44� and the
dashed lines to the result of the effective potential approxi-
mation.

We first remark that the case of a  scatterer we consider
here is the worst possible for the effective potential approxi-
mation and that this approximation is certainly more at ease
with smoother potentials. However, it is interesting to note
that the effective potential approximation, which could be
thought as oversimplified, is often very good. The worst

FIG. 2. z̄�t� for solitons of initial velocity V, incident on a re-
pulsive obstacle U�x�=��x� with �= +1. The solid lines corre-
spond to the numerical solution of Eqs. �43� and �44� and the
dashed lines to the effective potential approximation �41�.

FIG. 3. Same as Fig. 2 for solitons incident on an attractive
obstacle U�x�=��x� with �=−1. The dashed lines corresponding
to the effective potential approximation are hardly distinguishable
from the solid lines which correspond to the numerical solution of
Eqs. �43� and �44�.
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agreement occurs in the case of repulsive obstacle, near the
separatrix �which is estimated by the effective potential ap-
proximation to occur in the case of Fig. 2 at V=1/�2�. As we
will see below �Fig. 4�, the effective potential approximation
does not exactly predict the location of this separatrix
whereas, in this region, the trajectories are strongly affected
by small changes of the initial velocity V. This is the reason
for the bad agreement of the result of the approximate
method with the ones given by the numerical integration of
Eqs. �43� and �44� for V=0.707. However, it is surprising to
note that the effective potential approximation is generically
valid, even in the case where the soliton is far from being
very dark: even the limit V→1 is very accurately described
by this approximation on Figs. 2 and 3.

In order to investigate more precisely the limit of large
initial velocities V and to assess the validity of the effective
potential approximation, let us now establish the form of
Eqs. �B9� and �B10� in the case of a very weakly perturbed
soliton. From the effective potential approximation, one in-
fers that the soliton is weakly perturbed by the obstacle when
its initial energy is large compared to the external potential
Ueff—i.e., in the regime V2	U �since Ueff and U are typi-
cally of same order of magnitude�. This is confirmed by the
numerical results presented on Figs. 2 and 3: the trajectory of
the soliton is less modified for large V. In the extreme limit
V2	U one may write ��t�=�0+��t� and z̄=Vt+��t�, with

���0 and �̇�V. � has the meaning of a shift in position: it
is the difference between the position of the center of the
soliton in presence of the obstacle with the value it would
have in absence of the obstacle. The perturbative versions of
Eqs. �B9� and �B10� read

4�̇ cos2 �0 = − 2 Re �
−�

+�

dz R*���z − Vt,�0���z�z − Vt,�0�

�45�

and

4 cos2�0 �� cos �0 − �̇� = 2 Re �
−�

+�

dz R*���z − Vt,�0��

����z − Vt,�0� . �46�

From these equations it is a simple matter to compute ana-
lytically the asymptotic expressions of the soliton parameter.
One obtains—as expected—��+��=0, and the asymptotic
shift in position is

��+ �� = − Û�0�
1 + 2V2

6V2 , �47�

where Û�0�=�RdxU�x�. Equation �47� for ��+�� is an ap-
proximation �valid in the regime V2	U� of the exact result

��+ �� = lim
t→+�

�z̄�t� − Vt� . �48�

Comparing definitions �24� and �48� we see that, since
sin ��t1→ +��=V, one has ��+��= z̃�+��.

In the case of a  scatterer, the exact value �48� was com-
puted through numerical solution of Eqs. �43� and �44�. The
result is displayed in Fig. 4 �thick solid curves� and com-
pared with the approximate expression �47� �thin solid
curves� and with the result of the effective potential approxi-
mation �dashed curves�.

In the case of the effective potential approximation, the
value of the shift ��+�� can be computed either via the
numerical solution of the equation of motion �41� or via the
formula

��+ �� = �
−�

+�

dx�1 −
1

�1 − Ueff�x�/V2� . �49�

From this expression, one sees that in the limit V2	Ueff
�U, the effective potential approximation yields a result

��+��− 1
2Û�0� /V2. Hence, in this limit, the shift computed

via the effective potential approximation at V=1 is correct
�since it agrees with the result �47� at V=1�. This is surpris-
ing, because the effective potential approximation is ex-
pected to be accurate only for very dark solitons. However,
one can also notice that detailed agreement with the exact
result �48� is missed since, in the limit V2	U, the
asymptotic evaluation �47� of �48� does not exactly match
the one of �49�. Yet one sees from Fig. 4 that the shift com-
puted via the effective potential approximation is in surpris-
ingly good agreement with the exact value, even for fast
solitons. In particular, in the case of an attractive potential,
the exact evaluation of ��+�� and its approximation �49� are
hardly distinguishable.

C. Backward- and forward-emitted wave packets

At this point it is interesting to study in more detail the
structure of the phonon part of the wave function—i.e., of

FIG. 4. ��+�� as a function of the initial velocity V of a soliton
incident on a  peak U�x�=��x�. The upper curves correspond to
the case �=−0.5, the lower ones to the case �=0.5. The thick solid
lines are the exact result �48� obtained form the numerical integra-
tion of Eqs. �43� and �44�. The dashed curves are the result �49� of
the effective potential approximation and the thin solid curves are
the approximate result �47�.
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�1�x , t�. From Eqs. �28� and �A3� one can separate �1 into
two parts: �1=�1

++�1
− with

�1
��x,t� = �

R
dqCq

��t�uq
��x� . �50�

From the explicit expressions �32�, �33�, and �A3� one sees
that �1

+��1
−� describes waves propagating toward the positive

�negative� x.
We are interested in studying the outcome of the

collision—i.e., in obtaining an analytical evaluation of Eq.
�50� when t→ +�. To this end, one uses the fact that at large
time one has Cq

��t��exp�−i�q
��t+ z̃�+�� /V��. Hence, instead

of working with the variable t, it is convenient here to define
�= t+ z̃�+�� /V and to write Eq. �50� in the form

�1
��x,t� = �

R
dqG��q,x�exp�i�q�x + V�� − ��F�q��� ,

�51�

where F�q�=q�q2 /4+1�1/2 and G��q ,x�= �q /2+�q
� /q

+ i��x��2 Dq
� �+��exp�i�q

�z̃�+�� /V�. In the appropriate limit
�to be defined soon�, one can evaluate this expression
through a saddle phase estimate. In this limit, the rapidly
oscillating phase in Eq. �51� is stationary at point ±q� which
are solutions of x+V�=��F��q�. One has

q�
2 =

1

2
�X2 − 4 + �X�X2 + 8�, with X = V +

x

�
. �52�

One can easily verify that q� goes to zero when V+x /�=�
and that q�

2 is positive only if ��V+x /���1. From this, one
sees that the saddle phase estimate of Eqs. �50� and �51� is
accurate when the two saddles are well separated—i.e., in the
regime x	 �1−V�� for �=+ and x�−�1+V�� for �=−. If
this condition is fulfilled, one obtains

�1
��x,t�  G��q�,x�� 2


�F��q���
ei�q��x+V��−��F�q��−�
/4�

+ G��− q�,x�� 2


�F��q���
e−i�q��x+V��−��F�q��−�
/4�.

�53�

The exact expression computed from Eq. �50� is compared in
Fig. 5 with the saddle phase estimate �53�. The curves are
drawn at �=60 �40� for a soliton with incident velocity V
=0.5. The obstacle is here taken to be a delta scatterer ��x�.
�1 being proportional to � �through the expression �38� of
Dq
��+��� we represent in Fig. 5 the value of �1�x , t� /� �ac-

tually its real part� which do no depend on �.
One sees in Fig. 5 that the semiclassical approximation

�53� is excellent in all its expected domain of validity and
diverges at x= �1−V��=30 �for �=+� and x=−�1+V��
=−90 �for �=−� �41�. Hence, these points can be considered
as representative of the region where the contribution of �1

+

and �1
− to the total wave function is more important. Roughly

speaking, the present approach indicates that, long after the
collision, �1

��x , t� is maximum around x= ��−V��. We recall
that when using x �instead of z� as position coordinate, the

soliton is, at all times, located around x=0. Hence, going
back to the z coordinate, we have a clear picture of the pro-
cess at large times: the soliton propagates at velocity V �the
same as its initial velocity� after having emitted phonons
which form two wave packets, one propagating in the for-
ward direction with group velocity 1 �i.e., the sound veloc-
ity� and the other one propagating backward with group ve-
locity −1. The same conclusion seems to be reached in the
numerical simulations of Parker et al. �21,22�.

D. Radiated energy

A quantity of importance for characterizing the system is
the total energy radiated by the soliton. Equation �4� for the
field � which, in the present work, is of the form
��z , t�exp�−it� �cf. Eq. �10��, conserves the energy E defined
as

E��� = �
R

dz	1

2
��z�2 +

1

2
����2 − 1�2 + U�z����2
 . �54�

In order to have an expression of the energy in terms of the
field � which, when �=�, matches the usual expression
�B3� of the energy of the soliton, we rather work with the
quantity E���=E�f��−E�f�. E��� is of course a conserved
quantity, and we are interested in its expression far before
�t→−�� and far after �t→ +�� the collision with the ob-
stacle. We note here that f�z�−1 and U�z� are nonzero only
when z is close to to origin, whereas, in the same region,
��z , t�−1 is zero when t→ ±�. After a change of variable
from z to x=z− z̄�t�, the previous remark allows one to obtain
the simplified expression for E �only valid when t→ ±��:

FIG. 5. Re��1�x , t�� as a function of x for �=60 for a soliton of
initial velocity V=0.5 incident on a  scatterer ��x�. The thick line
represents the result �50� and the thin line its semiclassical approxi-
mation �53�. For legibility we have separated the region where �1

− is
nonzero �around x=−90� from the one where �1

+ is nonzero �around
x=30�. Note that in the expected domain of validity of Eq. �53�
�x	30 and x�−90� one can hardly distinguish the thick line from
its semiclassical approximation.
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E��� =
1

2
�

R
dx���x�2 + ����2 − 1�2� . �55�

Using the decomposition �15�, keeping the lowest orders in
�, and taking into account the fact that, when t→ ±�,
���2−1 is zero in the regions where � is noticeable, one
obtains

E��� =
1

2
�

R
dx���x�2 + ����2 − 1�2�

+
1

2
�

R
dx���x�2 + ��*� + �*��2� + O��3� .

�56�

The first integral on the RHS of Eq. �56� corresponds to the
energy of the soliton and is equal to 4

3cos3 �. The second
integral on the RHS of Eq. �56� corresponds to the energy of
the radiated part and is denoted by Erad in the following.

We are now facing a difficulty: we performed a computa-
tion at order � and at this order we have ��+��=��−�� since
the equations for the parameters of the soliton are the same
as the one obtained in the adiabatic approximation �see the
discussion at the end of Appendix B�. Accordingly, Erad in
Eq. �56� being of order �2 should be neglected. Hence, at
order � nothing has occurred for the energy of the soliton:
this quantity is not modified by the collision with the ob-
stacle and the radiated energy should be neglected. Thus, it
seems that our first-order approach is unable to predict the
amount of energy lost by the soliton during the collision with
the obstacle.

However, as already remarked in the study of the scatter-
ing of bright solitons �42�, one can circumvent this difficulty
and extract some second-order information from our results.
The procedure is the following: when pushing the computa-
tions at order �2, the O��2� estimate of Erad is still given by
the second term on the RHS of Eq. �56� with �=�1, which
we know from our first-order approach. At second order,
since Erad is nonzero, the energy of the soliton has been
modified by the collision and energy conservation now reads

4
3 cos3���− ��� = E = 4

3 cos3���+ ��� + Erad. �57�

Equation �57� allows us to determine the change in the soli-
ton’s parameter �. Writing ��−��=�0 �with sin �0=V� and
��+��=�0+� one obtains

� =
Erad

4 cos2 �0 sin �0
. �58�

From Eq. �58� one can also determine the velocity at
t→ +� which is equal to sin���+���=V+� cos �0. Thus,
we can determine how the collision has affected the soliton’s
shape and velocity by computing Erad �replacing � by �1�.
This will be done in the rest of this section.

On the basis of the analysis in terms of forward- and
backward-emitted wave packet made in Sec. IV C, one can
separate Erad into two parts, which we denote Erad

− and Erad
+ ,

the first one corresponding to energy radiated backward and
the second one to forward-radiated energy, with

Erad
� = lim

t→+�

1

2
�

R
dx���x

��2 + ��*�� + ��*��2� . �59�

A long computation which is summarized in Appendix C
yields the result

Erad
� = 16
�

0

+�

dq�Dq
��+ ���2��q

��2�q2

4
+ 1� . �60�

When Dq
��+�� is given by Eq. �38�, one obtains

Erad
� =




16V6�
0

+�

dq
q2��q

��2�Û��q
�/V��2

sinh2�
q�1 + q2/4

2V�1 − V2 � . �61�

The behavior at low and high velocity of Erad
� defined in Eq.

�61� is the following:

Erad
� �




16V
�

0

+� q4�Û�q��2

sinh2�
q/2�
dq when V → 0 �62�

and

Erad
− �

4

15
�1 − V2�5/2�Û�0��2, �63�

Erad
+ �

2

35
�1 − V2�9/2�Û�0��2, when V → 1.

One sees from Eq. �62� that our approach predicts an un-
physical divergence of the radiated energy at low incident
soliton velocity. On the contrary, numerical computations in-
dicate that a soliton with very low velocity does not radiate
�21,22�. However, one must bear in mind that Eq. �61� is the
result of a first-order expansion only valid in the limit V2

	U and is unable to tackle the regime of very low incident
velocities. More interestingly, in the high-velocity regime—
where the first-order perturbation theory is valid—we see
from Eq. �63� that the leading-order estimate of the total
amount of radiation �forward or backward emitted� vanishes.

In order to fix the ideas, we plot in Fig. 6 the value of Erad
�

as a function of the initial soliton velocity V. The obstacle is
here taken to be a  scatterer U�z�=��z�. In this case

Û�q�=�.
Figure 6 shows that most of the energy is radiated back-

ward �this was already implicit in Fig. 5� and confirms that,
at leading order in U /V2, a soliton does not radiate in the
limit V→1. Besides, not only the absolute value of Erad goes
to zero, but also the relative amount of energy radiated
Erad /E vanishes �as �1−V2��. Very similar results are ob-
tained for an obstacle interacting with the beam through a
finite-range potential �for instance, a Gaussian�. This absence
of radiation of a fast soliton can be explained intuitively as
follows: whatever the sign of the potential describing the
obstacle, the soliton loses energy under the form of radiated
phonons. Accordingly it gets less dark ���0 in Eq. �58��
and is accelerated. This increased velocity after a loss of
energy is a typical feature of dark solitons which are some-
times referred to as effective particles having a negative ki-
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netic mass which decreases with increasing energy �43�.
However, our results show that, since the soliton velocity
cannot exceed the speed of sound, a soliton whose velocity is
close to this upper limit cannot be further accelerated and the
radiative process is suppressed.

V. CONCLUSION

In this paper we have presented a study of the dynamics
of a dark soliton experiencing a collision with a finite-size
potential in a quasi-1D condensate. We determined the evo-
lution of the soliton’s parameters and also included radiative
effects within secular perturbation theory.

A first output of the present work is what we called the
“effective potential theory:” in many instances the soliton
can be described as an effective classical particle of mass 2
�twice the mass of a bare particle� evolving in an effective
potential Ueff �defined in Eq. �41��. This approximation is
rigorously valid in the case of a slow soliton incident on a
weak potential, but its actual regime of validity appears to be
quite broad.

The effective potential theory is an approximation
where—as in all adiabatic approaches—radiative effects are
neglected. Perturbation theory allows one to get a deeper
insight into the collisional process and to determine the
amount of radiated energy at leading order in U /V2. We
show that the radiated waves form two counterpropagating
phonon wave packets, and we predict that the radiative pro-
cess is suppressed in the limit of a soliton moving with a
velocity close to the velocity of sound. This result should be
checked numerically; work in this direction is in progress.

Whereas adiabatic theory predicts that the soliton’s shape
and velocity are the same far before and far after the colli-
sion with the obstacle, it is an important feature of the per-
turbative approach of being able to determine finite
asymptotic modifications of the soliton’s parameters due to
the collision. We computed �in Eq. �58�� the modification of
the soliton’s parameters at leading order in U /V2. The quali-
tative picture of the collisional process drawn from our ap-
proach is the following: the soliton radiates energy, gets less
dark, and is accelerated. Since the velocity of a dark soliton
cannot exceed the velocity of sound in the system, it is natu-
ral that this velocity appears as a threshold for emission of
radiations. Roughly speaking, a soliton with a velocity close
to the velocity of sound cannot radiate �as seen from Eqs.
�63�� since its velocity cannot further increase.
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APPENDIX A

In this appendix we present the eigenvectors and eigen-
values of the Hamiltonian H defined in Eq. �27�. H is not
diagonalizable because, as we will see below, its null space
and the one of H2 are not identical. If we denote by its
“generalized null space” �37� the union of these two null
spaces, one can easily verify that it is spanned by the four
vectors ��o�, ��e�, ��o�, and ��e� defined as

��o� = � � = � + i sin �

− �* = − � + i sin �
�, ��o� = �x�x + �

x�x + �
� ,

��e� = ��x = �x

�x = �x
� , �A1�

��e� = �i cos � �� = − cos2 � − i sin � �x�x + ��
i cos � ��

* = cos2 � − i sin � �x�x + ��
� ,

where the function ��x ,�� is defined in Eq. �14�. The kets
defined in Eq. �A1� verify H��o�=H��e�=0 and H2��o�
=H2��e�=0, with H��o�=2 cos2���o� and H��e�
=cos2���e�. One sees from Eq. �A1� that ��e� and ��e� are,
respectively, linked to variations of the center of the soliton
and of the parameter � �i.e., to the phase change across the
soliton�: this is the reason why the terms in �t1

and z̄t1
in Eq.

�25� can be rewritten in Eq. �26� by means of ��e� and ��e�.
One can similarly show that ��o� is linked to modulations of
the global phase of the soliton and that ��o� is linked to
variations of the background density at infinity.

The remainder of the spectrum of H is what we call the
“phonon spectrum.” It has two branches which we denote
“�” and “�.” The corresponding eigenvectors and eigenval-
ues are denoted ��q

±� and �q
± with

FIG. 6. Energy Erad
� radiated in the forward ��= + � and back-

ward ��=−� directions by a soliton of initial velocity V incident on
a  scatterer. The solid lines represent the result �61� and the dashed
line the approximation �62� which reads here Erad

� �2 / �15 V�. The
inset displays a blowup of the figure at high velocity. In the inset,
the dashed curves are the asymptotic results �63�.
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H��q
±� = �q

±��q
±� . �A2�

The explicit expression of the eigenvalues is given in the
main text �Eq. �32��. It can be simply obtained by consider-
ing the form of Eq. �A2� when x→ ±�. In this limit, � goes
to a constant, and looking for the eigenvectors under the
form of plane waves, exp�iqx��Uq

± ,Vq
±�T �where Uq

± and Vq
±

are constants�, yields the result �32�. This is the reason why
we denote these excitations as phonons. A better denomina-
tion should be “Bogoliubov excitations” because, far from
the soliton, their form and dispersion relation correspond in-
deed to the elementary excitations of a constant background
moving with velocity −V.

The exact expression �valid for all x�R� of the eigenvec-
tors is given by the squared Jost solutions of the inverse
problem �23�. They read ��q

±�= (uq
±�x� ,vq

±�x�)T with

uq
±�x� = exp�iqx��q

2
+
�q

±

q
+ i��2

,

vq
±�x� = exp�iqx��q

2
−
�q

±

q
+ i��2

. �A3�

The natural inner product of two kets is �·��3� · �, where �3 is
the third Pauli matrice. The eigenvectors have the following
normalization:

��p
 ��3��q

�� = �
R

dx �up
 *�x�uq

��x� − vp
 *�x�vq

��x��

= Nq
��, �p − q� , �A4�

with

Nq
� = 16�
q�q2

4
+ 1��q

�

q
�2

. �A5�

In the main text we also use the following orthogonality
relations:

��e��3��e� = ��e��3��e� = ��e��3��q
�� = ��e��3��q

��

= 0, ��e��3��e� = − 4 cos3 � �A6�

and

��o��3��o� = ��o��3��e� = ��o��3��q
�� = 0, �A7�

��o��3��e� = 2i sin � cos � .

APPENDIX B

In this appendix we briefly present the Lagrangian ap-
proach for dark soliton of Kivshar and Królikowski �14� and
derive the Lagrange equations �B9� and �B10�.

In absence of the perturbation R���, Eq. �11� can be de-
rived from the following Lagrangian density:

L��,�*� =
i

2
��*�t − ��t

*��1 −
1

���2� −
1

2
��z�2 −

1

2
����2 − 1�2.

�B1�

Accordingly, the energy and momentum are defined by

E = �
−�

+�

dz��t

�L
��t

+ �t
* �L
��t

* − L�
=

1

2
�

−�

+�

dz���z�2 + ����2 − 1�2� ,

P = �
−�

+�

dz��z

�L
��t

+ �z
* �L
��t

*�
=

i

2
�

−�

+�

dz���z
* − �*�z��1 −

1

��2�� . �B2�

The Lagrangian density �B1� is not a priori the most natural
one leading to Eq. �11�, but for the asymptotic boundary
condition we are working with ����→1 when z→ ±��, it
yields a finite value of the energy and, besides, the energy
and momentum are now, for a field of the form ��x−Vt� �in
particular, in the case of a soliton�, related by the relation
E=VP, indicating that the background contribution has
been removed and allowing one to treat the soliton as a clas-
sical particlelike object �33,44�. For completeness, we note
that, for a soliton, � is given by Eq. �13� and its energy and
momentum defined in Eq. �B2� have the following expres-
sions:

E = 4
3 cos3 �, P = 
 − 2� − sin�2�� . �B3�

Following Kivshar and Królikowski �14�, one can obtain
adiabatic equations of motion for the soliton’s parameters
in the following way. Let us consider a variational approxi-
mation of the type of Eq. �16�; the field of the soliton is
parametrized with time-dependent quantities q1�t� , . . . ,qn�t�
and has no other time dependence: �sol�z , t�
=�(z ,q1�t� , . . . ,qn�t�). One first defines the Lagrangian for
the qi’s as being

L�q1, q̇1, . . . ,qn, q̇n� = �
−�

+�

dz L��sol,�sol
* � . �B4�

Then the quantities �qi
L and �q̇i

L are computed via

�qi
L = �

−�

+�

dz��qi
���L + �qi

�z��z
L + �qi

�t��t
L� + c.c.

�B5�

and

�q̇i
L = �

−�

+�

dz �q̇i
�t��t

L + c.c., �B6�

where c.c. stands for complex conjugate. Considering that �
is solution of Eq. �11� �including the perturbative term R����,
simple manipulations allow one to obtain Lagrange-like
equations for the qi’s:
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�qi
L −

d

dt
��q̇i

L� = �
−�

+�

dz ���L − �z���z
L� − �t���t

L��

��qi
� + c.c.

= 2 Re	�
−�

+�

dz R*��sol��qi
�sol
 . �B7�

In the particular case where �sol�z , t�=�(z− z̄�t� ,��t�) one
obtains

L��, �̇, z̄, ż̄ � = ż̄ �
 − 2� − sin�2��� − 4
3 cos3 � , �B8�

and the equations of motion �B7� read explicitly

4�̇ cos2� = 2 Re	�
−�

+�

dz R*��sol��z̄�sol
 �B9�

and

4 cos2� �sin � − ż̄ � = 2 Re	�
−�

+�

dz R*��sol����sol
 .

�B10�

We note here a general feature, always valid in the frame-
work of the adiabatic approximation: With Eq. �4� conserv-
ing energy, one can show that the soliton’s energy defined in
Eq. �B2� has the same value far before and far after the
collision with the obstacle �the demonstration is essentially
the same as the one given in Sec. IV D where, in addition,
the consequences of soliton’s radiation—neglected in the
present adiabatic approximation—are taken into account�. As
a result, one obtains for the solutions of Eqs. �B9� and �B10�
that ��+��=��−��, and ż̄�±��=sin ��±��=V. Hence the
soliton’s shape and velocity may change during the collision,
but they eventually regain their initial values. This is inti-
mately connected to the neglecting of radiative effects in the
adiabatic approximation.

APPENDIX C

In this appendix we briefly indicate how to obtain expres-
sion �60� for the radiated energy starting from Eq. �59�,
where � is given by �1—i.e., by Eq. �50�. Instead of giving
a detailled explanation on how to treat all the terms in the
integrand of Eq. �59�, for brievity we focus on one of the
contributions to the expression �59� for Erad

� :

�
−�

+�

dx���2����2 = �
−�

+�

dx�1 −
cos2 �

cosh2�x cos �����1
��x,t��2.

�C1�

We recall that we are interested of the evaluation of this term
at large times. Expressing �1 through Eq. �50�, one can show

that the term in cosh−2 in the integrand on the RHS of Eq.
�C1� can be dropped because it gives a contribution which
decreases algebraically at t→ +� �this can be checked by a
stationary phase evaluation of the integrals over the mo-
menta�. It thus remains to evaluate

�
−�

+�

dx��1
��2 = �

−�

+�

dq�
−�

+�

dp�
−�

+�

dx �Cq
�Cp

�*�uq
�up

�*

− vq
�*vp

�*� + Cq
�Cp

*�vq
�vp

*�� . �C2�

In Eq. �C2� we have added and substracted the contribution
vq
�*vp

�* in order to make use of the normalization �A4�. For
the evaluation of the last part of the integrand on the RHS of
Eq. �C2�, the explicit expressions �A3� of uq

��x� and vq
��x� are

to be used. In the course of this computation, an argument of
stationary phase shows that only the x-independent terms
with p=q give a finite contribution at t→ +�. These terms
will contribute as 2
�p−q� after the integration over x. Al-
together one obtains the expression

�
−�

+�

dx��1
��2 

t→+�
�

−�

+�

dq�Cq
��2	Nq

� + 2
��q

2
−
�q
�

q
�2

+ cos2 ��2
 . �C3�

Noting that Nq
� defined in Eqs. �A4� and �A5� is an odd

function �and thus does not contribute to the integral since
�Cq

��2 is even� and explicitly computing the other contribu-
tions, one obtains

�
−�

+�

dx��1
��x,t��2 

t→+�
8
�

0

+�

dq�q2 + 2���q
�

q
�2

�Dq
��+ ���2.

�C4�

The others contributions to Eq. �59� can be computed
similarly. One obtains

�
−�

+�

dx��x�1
��2 

t→+�
8
�

0

+�

dq q2�q2 + 2���q
�

q
�2

�Dq
��+ ���2

�C5�

and

�
−�

+�

dx��*�1
��2 

t→+�
− 16
�

0

+�

dq��q
�

q
�2

�Dq
��+ ���2.

�C6�

Gathering all these contributions yields the final result �60�.
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