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Nonlinear transport of Bose-Einstein condensates through waveguides with disorder
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We study the coherent flow of a guided Bose-Einstein condensate incident over a disordered region of length
L. We introduce a model of disordered potential that originates from magnetic fluctuations inherent to micro-
fabricated guides. This model allows for analytical and numerical studies of realistic transport experiments.
The repulsive interaction among the condensate atoms in the beam induces different transport regimes. Below
some critical interaction (or for sufficiently small L) a stationary flow is observed. In this regime, the trans-
mission decreases exponentially with increasing L. For strong interaction (or large L), the system displays a
transition toward a time-dependent flow with an algebraic decay of the time-averaged transmission.
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I. INTRODUCTION

The extraordinary experimental control achieved over
atomic Bose-Einstein condensates (BECs) provides new
testgrounds for phenomena coming from many different
fields. On the one hand these systems allow extensive study
of nonlinear phenomena such as four-wave mixing [1],
propagation of bright [2] and dark [3] solitons, or the dynam-
ics of Bloch oscillations in the presence of atom-atom inter-
actions [4,5]. On the other hand the rapid progress in this
field has led to a number of fascinating experiments probing
complex condensed matter phenomena, such as the Mott
transition in optical lattices [6], the creation of vortices [7],
the Josephson effect [8] or the BEC-BCS crossover [9].
Bose-Einstein condensates link these two prominent fields of
current research in an exciting and unique way.

Wave mechanical transport in atomic vapors appears as a
new direction for these trans-disciplinary studies that provide
deeper insights into transport phenomena in the presence of
interaction. Indeed, BEC systems are intrinsically phase co-
herent, as are the clean two-dimensional electronic structures
studied in mesoscopic physics at low temperatures. In addi-
tion, interaction is much more simply modeled in BEC sys-
tems than the electrostatic electron-electron potential and its
sign (repulsive or attractive) and strength can be tuned al-
most at will. The link between matter-wave physics and elec-
tronic transport phenomena became ultimately apparent with
the advent of microscopic traps and waveguides for atoms,
known as atom chips [10-12]. Related studies include the
attempt to generalize Landauer’s theory of conductance to
cold atoms [13], the atom blockade phenomenon in
quantum-dot-like potentials [14], as well as nonlinear reso-
nant transport of Bose-Einstein condensates [15], to mention
just a few examples.

A new direction in this context is the transport of Bose-
Einstein condensates through disordered potentials. A rel-
evant question is to what extent a Bose-Einstein condensate
is subject to Anderson localization [16,17] in the presence of
disorder, as well as how this scenario is affected by the atom-
atom interaction. There is a growing interest in the BEC
community in issues related to the behavior of matter waves
in disordered potentials. It started with the observation of
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“fragmentation of the condensate” over a microchip [18].
Nowadays a random potential is routinely engineered using
an optical speckle pattern and its effects on the expansion of
the condensate have been explored in Refs. [19,20].

In contrast to studies where the condensate is initially at
rest, we focus in the present paper on the effect of disorder
on a propagating Bose-Einstein condensate. In an adiabatic
approximation, the dynamics reduces to an effective one-
dimensional (1D) transport problem; this is the so-called 1D
mean-field regime [21]. We furthermore assume that the
mean kinetic energy of the atoms in the condensate is larger
than the typical height of the barriers induced by the disorder
potential, i.e., perfect transmission is expected by classical
mechanics. For the sake of concreteness, we restrict our-
selves to one specific type of disorder: the one experienced
by a condensate that is magnetically trapped above a corru-
gated microchip. To this end we introduce a model that could
be characterized as a “dirty-wire model” where the current in
the microfabricated wire has white-noise fluctuations. This
simple model captures most of the characteristics of the ran-
dom potentials observed over corrugated microchips. We
point out, however, that our results are not expected to be
sensitive to the particular type of disorder, as long as the
latter is sufficiently smooth and can be characterized by a
well-defined correlation length.

Previous theoretical studies of the effect of disorder on the
transmission of nonlinear waves mainly focused on attractive
interaction and looked for stationary solutions of the problem
(see the review [22]). Then, one has to choose between fixed
input and fixed output boundary conditions. The latter case is
less realistic, but simpler to discuss: It leads to algebraic
decay of the transmission [23]. The former case is compli-
cated by the advent of multistability. However, the results of
Knapp et al. [24] show that, for short sample size, the mean
transmission is poorly affected by a weak nonlinearity (as
compared to the linear case), whereas for larger samples and
stronger nonlinearity, evidence of delocalization is found.

Realistic transport processes of Bose-Einstein conden-
sates are different from the above-mentioned studies because
they typically involve particles experiencing repulsive inter-
actions. We will see below that in this case the assumption of
stationarity is not appropriate because for large disordered
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regions or strong nonlinearity stationary solutions are dy-
namically unstable. In typical experiments the population of
a given final state can only be achieved through a time-
dependent process (such as the gradual filling of an initially
empty waveguide with matter waves). As a result, if a sta-
tionary scattering state is unstable, the transport properties of
the condensate may be unrelated to the transmission coeffi-
cient associated with that state, whereas a study of stationary
flows might misleadingly give some weight to this state (if
the transmission is averaged over all possible stationary so-
lutions for instance).

We thus consider a setup that is relevant to experimental
realizations and adapted to this specific transport scenario
explicitly taking into account the possibility of time-
dependent scattering: a coherent source of atoms emits mat-
ter waves that propagate in the magnetic waveguide and
encounter on their path a disorder region of length L. We
show that the presence of a repulsive atom-atom interaction
has dramatic effects on the transport properties of the con-
densate. As is the case for attractive nonlinearity, Anderson
localization is observed only in the regime of small interac-
tion strengths and sample lengths. In this regime the
transmission decreases exponentially with increasing
L [xexp(=L/L,,.)], with a localization length L, modified
by the interaction. For large sample lengths or strong inter-
action, time-dependent scattering processes occur. In contrast
to the previous regime, one observes an Ohmic decrease of
the time-averaged transmission (ocL7h).

The paper is organized as follows. In Sec. II we set up the
theoretical framework that is necessary to study transport
through mesoscopic waveguides, introduce an effective one-
dimensional Gross-Pitaevskii equation, and present a nu-
merical method that is particularly suited to study transport
processes of Bose-Einstein condensates in waveguides. In
Sec. III we introduce a one-dimensional model for the ran-
dom magnetic potential along the center of the waveguide.
We will show that a microscopic meandering of the current
in the wire on the atom chip leads to a Lorentzian-correlated
random potential. In Sec. IV we investigate the regime of
weak disorder potentials and give a simple analytic expres-
sion for the condensate wave function in the guide. In Sec. V
we discuss numerical results for transport through moderate-
and strong-disorder regions. We consider in particular the
scaling of the transmission with the length of the disorder
region. The paper closes with some concluding remarks.
Some technical points are given in the appendixes. In Appen-
dix A we derive a relation between the mean transmission
and the correlation function of the disorder potential. In Ap-
pendix B we rederive, using standard WKB techniques, a
result that is obtained heuristically in the main text.

II. TRANSMISSION THROUGH WAVEGUIDES

We consider a coherent beam of Bose-Einstein-condensed
atoms at zero temperature, propagating through a cylindrical
magnetic waveguide of axis x. The condensate is formed by
atoms of mass m which interact via a two-body potential
characterized by its 3D s-wave scattering length a,.. We con-
sider the case of repulsive effective interaction, i.e., a,.>0.
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The condensate is confined in the transverse direction by a
harmonic potential of pulsation w . This transverse confine-
ment is characterized by the harmonic oscillator length a |
=(h/mw )"

In the following we restrict ourself to the 1D mean-field
regime [21] corresponding to a density range such that
(a,/a,)?<n,pa,.<1, where n,p denotes the typical order
of magnitude of the 1D density n(x, ) of the system. The first
of these inequalities ensures that the system does not get into
the Tonks-Girardeau limit and the second that the transverse
wave function is the ground state of the linear transverse
Hamiltonian; see, e.g., the discussion in Refs. [21,25]. In this
regime the system is described by a 1D order parameter
(x,t) [such that n(x,f)=|¢(x,1)|*] depending only on the
spatial variable x along the guide. #fx,r) obeys the 1D
Gross-Pitaevskii equation
d s
iﬁg—fl:(— E§+V(x)+gn(x,t)>¢, (1)
with g=2hw,a,, [26-28]. V(x) is an effective one-
dimensional potential along the waveguide, to which the
condensate is exposed during the propagation process. We
will see in Sec. III how it may originate from irregularities of
a wire used for creating the magnetic confinement.

In the absence of a potential [V(x) =0] the plane wave

(. 1) = \ng explikx — iut/h) (2)

is obviously a solution of the Gross-Pitaevskii equation (1).
It satisfies the dispersion relation

— +8nop, (3)

where the particle current is given by J=ngfik/m. Therefore,
the chemical potential w and the equilibrium constant density
ng of a freely propagating condensate beam are determined
by the current J, the wave vector k, and the effective inter-
action strength g. At this point, we mention that it was dem-
onstrated in [28] that Eq. (3) exhibits two constant-density
solutions: a low-density (supersonic) one and a high density
(subsonic) one, where the transport is respectively dominated
by the kinetic energy or by mutual interaction of the atoms.
Both solutions are plane waves of the form (x)=Ae™**, but
with different wave vectors k and particle densities A%. As we
are considering rather small condensate densities and large
velocities in the waveguide, the supersonic solution will be
the relevant one in the context of this paper.

We now assume the presence of a disorder potential V(x)
in the waveguide which is finite between x=0 and L and
vanishes elsewhere. In this case, a BEC that is injected into
the initially condensate-free disorder region from the up-
stream side (i.e., at x<<0) in general does not freely propa-
gate to the downstream region (at x>L), but undergoes a
scattering process. In this paper we shall compute transport
properties of a system where a monochromatic beam of con-
densate with well-defined current J; is injected into the dis-
order region (see Fig. 1). This means, we consider the propa-
gation process in terms of a so-called fixed input problem
[22,24].
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FIG. 1. (Color online) A condensed beam with incident current
J; can populate a stationary scattering state. The solid line shows its
longitudinal density n(x) (in units of the equilibrium density ng). In
the downstream region, ¢ tends to a plane wave with transmitted
current J,. The dashed line displays the scattering potential V(x) in
units of the chemical potential w.

Our purpose is now to compute transmission coefficients
for the condensate transport through the disordered region.
Furthermore, we shall investigate to what extent it is possible
to populate stationary scattering states, i.e., stationary solu-
tions (x,t)=y(x)exp(—iut/h) satisfying the outgoing
boundary condition i(x)=\nye™ (with k>0) for x— +oe,
where n; is the density associated with the supersonic solu-
tion [29]. This question can be addressed by integrating the
time-dependent Gross-Pitaevskii equation (1) in the presence
of a source term that is localized in the upstream region and
emits monochromatic matter waves. Such a source models
the coupling of the waveguide to a reservoir of condensate
from which matter waves are injected into the guide. It has
been demonstrated in [15] that this approach is particularly
well suited to compute transmissions for fixed input prob-
lems. Additionally, it allows one to determine for a given
potential V(x) whether an incident monochromatic beam
populates a stationary scattering state or not.

Hence, we consider now the modified Gross-Pitaevskii
equation with a source that is localized at the position x; in
the upstream region,

2
iﬁ%j’t) = (— ;l_m% +V(x) + glw(x,t)|2>¢f(x,t)
+ Sy exp(— iut/h) Sx — x;). (4)

Sy is the source amplitude which determines the emitted cur-
rent. To understand the functionality of the source term, it is
instructive to consider first solutions of Eq. (4) in the absence
of the potential V(x). In this case there exist plane-wave so-
lutions with constant density n. To demonstrate this, we
switch to the Fourier space, where Eq. (4) takes the form (for
constant n)
i ﬁ2q2 7 —igxg ,—iut/h
(h % om gn) (q,1) = Spe” 0™ MM, (5)

This equation admits a solution of the form
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Soe—iqxoe—i,u.t/ﬁ

w—gn—h*q*I(2m)’

q.1) = (6)
By transforming back to real space, we find that the source
emits in both directions the monochromatic wave

Som . )
w(x, t) — ilc()?ez/dx x0|e le/ﬁ. (7)
In Eq. (7) k is self-consistently defined by (fk)>*=2m[u
—g|So[>m?/(#*k*)]. The current emitted by the source can
be calculated by evaluating the quantum mechanical
current operator. We find J;==|Sy|’m/(#3k) (+ for x> x,;
— for x<x).

We now return to the general case V(x)# 0. In order to
perform the numerical integration, the wave function ¢(x,?)
is expanded on a finite lattice and is propagated in the real
time domain. As we are dealing with an open system, artifi-
cial backscattering at the boundaries of the lattice has to be
avoided. For that purpose we impose absorbing boundary
conditions that are well suited for transport problems [30]
and can be generalized to account for weak or moderate non-
linearities [31].

As in real experiments we choose as initial condition
Y(x,t=0)=0. In order to compute the condensate wave
function we numerically integrate ¢(x,t) in Eq. (4) while
adiabatically tuning the source amplitude S, from O up to a
given maximum value that corresponds to a desired incident
current J;. This approach simulates a realistic propagation
process, where a coherent Bose-Einstein condensate beam
with chemical potential u is injected into the initially empty
waveguide from a reservoir. For comparatively weak nonlin-
earities a stationary scattering state of the form i(x,?)
=(x)e”™™" which corresponds to a supersonic solution in
the downstream region, is generally obtained from the nu-
merical propagation. This stationary wave function satisfies
the time-independent Gross-Pitaevskii equation

2
piplx) = (— ﬁ—iz +V(x) + gld/(X)P) iHx). (8)
2m dx

In contrast to the case of the linear Schrodinger equation
the transmission coefficient cannot be computed by simply
decomposing the upstream wave function into an incident
and a reflected part because the superposition principle is not
valid in the presence of the nonlinear term. Such a decom-
position is only possible in the limit of small interaction
strengths or small back reflections [32]. However, our nu-
merical approach permits nevertheless a straightforward ac-
cess to the transmission coefficient also in the nonlinear case.
The latter is evaluated by the ratio of the current J, in the
presence of the potential V(x) (i.e., the transmitted current) to
the current J; obtained in the absence of V(x) (the incident
current that is emitted by the source). This approach provides
a natural extension of the usual definition of transmission
coefficients in quantum mechanics to the nonlinear case [15].
In the nonlinear regime, due to dynamical instabilities the
wave function i(x,7) does not always converge toward a
stationary state but can remain time dependent (cf. Sec. V).
In that case, the downstream current is no longer constant
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FIG. 2. (Color online) Main building block to create a magnetic
waveguide on a chip. A current flowing in a microfabricated wire
and a perpendicular bias field form an elongated microtrap. Imper-
fections in the wire force the current to follow a weakly meandering
path and generate therefore a magnetic disorder potential along the
center of the guide.

and therefore the transmission becomes a function of time. In
this case we simulate the propagation process over a long
period 7 (ideally 7— ) and characterize the transport prop-
erties of the guide by means of the time-averaged transmis-
sion

_ 1 +T7

T=lim —f T(t")dt' (:>0). 9)

T—o0 T t

This choice of working with the mean value T is inspired by

common experimental setups: the number of condensed at-
oms N reaching the downstream region during the time 7 is

N, A=TTJ,-. This number of atoms can be determined experi-
mentally, e.g., by use of absorption spectroscopy.

II1. A SIMPLE MODEL OF DISORDER

In order to compute transport properties through disor-
dered regions in magnetic waveguides, it is necessary to in-
troduce an appropriate model for the static random magnetic
potential along the center of the waveguide. We first briefly
recall the basic principle to generate elongated magnetic
waveguides for cold atoms or condensates. A typical setup
that is commonly implemented on atomic chips is the so-
called side wire guide [33]. As sketched in Fig. 2 a circular
magnetic field B, created by an electric current / that flows
along a straight microfabricated quasi-two-dimensional wire,
and a homogeneous bias field B, form a minimum of the
magnetic field parallel to the wire at distance h. An offset
field B applied parallel to the wire reduces losses induced by
spin-flip processes near the magnetic field minimum.

For a spatially homogeneous current density in an ideal-
ized wire, the magnetic waveguide is perfectly uniform along
its longitudinal axis. In reality, however, inhomogeneities in
the current density inside the wire have to be taken into
account. Such deviations from a homogeneous current flow
can be induced by shape fluctuations of the wire or impuri-
ties inside the metal. These imperfections cause a magnetic
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field roughness along the center of the waveguide that acts as
an additional potential and prevents perfect transmission of
condensate beam through the guide [34]. This additional
magnetic-field component increases as the distance to the
chip surface diminishes and is expected to reduce the trans-
mission noticeably.

In the following we consider a steady state current density
j(r) flowing in a thin quasi-two-dimensional metallic wire.
Due to the wire imperfections the current density varies with
the position r. We decompose j(r) into a large constant com-
ponent j, flowing parallel to the wire and a small component

dj(r)
J(r) = joe, + j(r). (10)

At the center of the waveguide the circular magnetic field B
that is generated by j, cancels with the bias field B | . Hence,
the total magnetic field along the center of the waveguide is
given by

B(x,0,h) = Bje, + 6B(x,0,h), (11)
where 6B=6B,e,+ 0Be,+ 0B e, is computed from the Biot-
Savart law

(12)

The effective potential for the atoms is proportional to the
modulus of the magnetic field

B| = V(B + 6B,)* + 6B + 5B (13)

As §j is supposed to be small, we keep only terms of first
order in &j. This yields the simple result

Hence, within the approximation of small current fluctua-
tions, the disorder potential along the center of the wave-
guide is given by

V(x) = updB,(x,0,h). (15)

We now consider a quasi-two-dimensional wire of length
L in the x direction and width w in the y direction. A proper
description of the current density j(r) in the metallic wire
would require an accurate microscopic model for structural
dislocations of the wire as well as its impurities [34,35]. In
the present work we adopt a more simple and phenomeno-
logical approach, which is valid if the length scale / on which
j(r) typically fluctuates is much smaller than the height & of
the waveguide. To this end, we divide the wire into N equal
blocks of length [ width w and thickness A_ (see Figs. 2 and
3). For each block of volume V we compute the average
current density

1 Az/2 vl wi2
j”=—J dzf dxf dy j(r). (16)
VI s (»-1)1 —wi2

(The index v=1, ..., labels the blocks and the correspond-
ing mean current densities j”.) The total electric current
along the wire is given by
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v—1 \% v+1

FIG. 3. (Color online) Partitioning of the wire in equal blocks of
length /, width w, and thickness A,. For each block we compute an
average current density j”. The current component parallel to the y
direction is at the origin of the magnetic disorder potential along the
center of the waveguide.

A2 wi2
I=f dzf dyj(r)-e,=wAj" e,. (17)
-A/2 —-w/2

Hence, in the usual case of a stationary electric current /, the
x component of j” is given by the constant value j, of Eq.
(10) for all v, and we have

J'=joe.+ djje, + dj’e.. (18)

The thickness A_ of the wire is assumed to be much smaller
than all other relevant length scales. We therefore assume
|8j%]<|8j}| and neglect the contribution of 8j” to the disorder
potential in the following. This yields

N
V(x) = g2 SBY(x,0,h) (19)

r=1

where the magnetic-field contribution of the vth block at the
center of the waveguide is computed from the Biot-Savart
law according to

vl wl2 v

v Mo A hdj
5Bx=4 J dx'f y'[( , 2Z hzy 121312
TJ (v-1)1 wi2 x—x") " +h*+y""]

wul(2h) )}H”—W

A
= &6.]; arctan(ﬁ
2m Vu® + h* + w24

(20)
x—vl

Within the discretization procedure just described, we
can introduce disorder by assuming &j; as a random
variable, uniformly distributed in the interval [—(30?/
20)'2,(302/21)""?]. This assumption corresponds to a zero
average transverse current density (¢ 5j;)=0) with a & corre-
lation

W
<5j;5j;>:75v,v’9 (2])

and allows us to reach a well-defined regime in the limit /
—0. In that limit &;! is replaced by an x-dependent quantity
dj,(x) verifying [36
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FIG. 4. Numerically computed representative examples for dis-
order realizations at different distances & between the center of the
guide and the atomic chip surface. The panels show the transition
from weak to strong disorder, with decreasing distance h. The dis-
order potential is given in units of uougwA_ o/ (27).

(8),(x) 8j,(x")) = a* 8(x = x'). (22)

Here, the parameter o fixes a scale for the typical deviation
of the current density from a homogeneous current flow.
Since the fluctuations in &j, are certainly proportional to j,
=1/(wA,), we can write o=j,\€". Here €" is a characteristic
length depending on the properties of the metallic wire,
which can in principle be found from experimental investi-
gations.

Due to the convolution procedure in Eq. (20), the short-
range disorder in the electric wire induces a smoothly vary-
ing potential V(x) along the guide. This is clearly visible in
Fig. 4, which shows the disorder potentials that result from
three numerically generated sets of current densities jy, at
three different heights & of the waveguide. The disorder po-
tential is smoother for large distances 4, and becomes more
rough (and its typical intensity increases) as & diminishes.

One has (V(x))=0 and it is appropriate to characterize the
random potential by studying the correlation function

Clx—x")=(V(x)V(x')). (23)

In Fig. 5 we show results for C(x—x") at different heights .
The correlation function is computed numerically by averag-
ing over a large number of different disorder realizations. We
find that it can be fitted with good accuracy by a Lorentzian
curve

Clx-x') =

.
e . (24)

l§+ (x=x")

This allows extraction of the correlation length /. and estab-
lishment of an empirical relation between the height / and /...
In the regime where the width w of the wire and the discreti-
zation length [/ are of the same order, we find that the corre-
lation length depends linearly on the distance between wire
and waveguide, /.= sh, with a proportionality constant s that
varies between 1 and 2. For the experimentally relevant case
of w=4 um (a wire of this size has been realized by Ott er
al. [11]) we find s=1.2.
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FIG. 5. (Color online) Numerically computed correlation func-
tions for different distances / between the center of the guide and
the atomic chip surface (solid lines). Dashed lines: Fit to a Lorent-
zian curve.

Theoretically, this result may be understood as follows. In
the continuous limit /[—0 (and in the idealized case of an
infinitely long wire), Eq. (20) takes, in the regime w> h, the
particularly simple form

+00 . ’
Hepito , hA5j,(x")
=t | v R

21 23)

In this case the disorder potential is exactly Lorentz corre-
lated with [,=2h and y=7""(uoupA,0/2)>. In the opposite
regime w<h, the correlation function C(x—x’) cannot be
computed analytically, but its Fourier transform C,
=J77 exp(—igx)C(x)dx can be calculated. One obtains

2
C,= (M) 4K (ah) P, (26)
2
where K| is the modified Bessel function of the first kind
[37]. C, as given in Eq. (26) is not very different from the
Fourier transform of a Lorentzian (a decreasing exponential),
and this is the reason why C(x—x") can be fitted reasonably
well by a Lorentzian also in the regime 2>w. To find a
sensible Lorentzian fit, one can for instance try to reproduce
C(0) and C"(0) obtained from Eq. (26) with the parameters y
and [, of Eq. (24): C(0)=7/1, and C"(0)=-27/[’. This leads

to
+00 1/2
2 J K3 (1)dt

= ——— | =146 (27)
f K3 (0)dr

Thus, again in this limit, we find that /, is of the type [,
=sh. The important outcome of this discussion is that, for
the continuous model (I— 0)—in both limits w<h and w
> h—and also in the numerical realizations of the disorder
with a finite grid /, we obtain a random potential which is
Lorentz-like correlated, with a correlation length /. that is
proportional to the height / of the trap above the chip, and
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with a proportionality constant of the order 1-2. This is con-
firmed experimentally by the detailed studies presented in
Ref. [34].

The model introduced in this section, where the disorder
potential originates from white-noise-correlated fluctuating
currents [see Egs. (21) and (22)] corresponds physically to a
dirty-wire model, in the sense that the very erratic random
current density (22) can be considered as originating from
the presence of impurities in the wire. We note that the
white-noise current correlations lead to a disorder potential
whose typical amplitude (for the continuous limit /—0,
when h>w) varies as (V*(x))?ocIh~3/2, different from the
experimental finding 7h~>? of Kraft et al. [38]. In contrast,
the model of a “clean wire with corrugated boundaries” in-
troduced in [35] and developed in [34] yields in the case of a
white-noise correlated boundary roughness a dependence of
the form Ih™>, in closer agreement with the experimental
findings of Ref. [38]. Note, however, that the experimental
results of Esteve et al. [34] point to a boundary roughness
which is not white-noise correlated, and a typical disorder
potential which decreases less rapidly than 4>, as found in
the present study. Also the correlation function coming from
the dirty-wire model is in better agreement with the experi-
mental one determined in Ref. [34], which differs from the
one resulting from a wire with a white-noise-disordered
boundary (which has a correlation function verifying C,-
=0 [35]). It thus appears that the simple dirty-wire model
introduced in the present section allows one to construct a
disordered potential V(x) that captures most of the character-
istics of microfabricated magnetic guides.

IV. WEAK DISORDER

In this section we investigate the regime of weak disorder
potentials and derive simple relations between the conden-
sate density and the disorder potential V(x). Weak disorder
means in this context that the propagation of the condensate
is only marginally affected by the scattering region. This
implies that the kinetic energy per particle must be much
larger than the typical intensity of the disorder potential
[which can be estimated, for instance, by the standard devia-
tion (V2(x))""?]. We shall argue below that a secondary crite-
rion is necessary to characterize this regime, namely, that the
length of the disordered region is small compared to the
characteristic length scale L; (to be defined below) typical
for the decrease of the transmission.

First, we rewrite the Gross-Pitaevskii equation (1) in the
well-known form of the hydrodynamic equations

0 J
En =- 5(nu) (28)
and
du 0 12 Pn'? i
mE - %( 2mn'? ox? B 7 - V&) - gn) > (29)

where u is the condensate velocity. In the case of a stationary
state we have dn=0 and d,u=0, from which it follows that
the current J=nu is constant. Integration of Eq. (29) then
yields
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12 h2 [92,11/2

2mn® 2mn'? ox*

u=Vx)+gn+ (30)

This is the time-independent Gross-Pitaevskii equation for a
current-carrying scattering state. In the downstream region
an outgoing plane wave ¢(x)=\nye™ is expected. The equi-
librium density n, coincides with the supersonic solution of
the dispersion relation (3). Defining p(x)=n(x)/n, and
v(x)=2mV(x)/(A*?*) one may rewrite Eq. (30) in a dimen-
sionless form:

1 52p1/2 p—l
_ﬁ 2 + 2

In this expression we made use of the dispersion relation Eq.
(3) and expressed J=nyhk/m in terms of the downstream
density ny and of the outgoing wave vector k. The quantity
hk*/(2m)=u—gn, is the kinetic energy of the outgoing
plane wave with equilibrium density ng. £é=#/2mng is the
condensate healing length.

In order to find perturbative solutions of Eq. (31) for
v(x)<1, we insert the ansatz p(x)=1+d8p(x) into Eq. (31)
and keep only terms that are linear in Jp(x):

+k2<é -1 +v(x)> =0. (31)

gﬁp(x) +4K>8p(x) = 2k%v(x), (32)

/ 1
k=k 1—@. (33)

The solution of Eq. (32) in the presence of the downstream
boundary conditions Sp(L)=0, Sp’(L)=0 (flat downstream
density) is [40]

where

k2 L
Sp(x) = ;J sin[2k(x" — x)Juo(x")dx",

L
op'(x)=- 2k2f cos[2k(x" — x)Juo(x")dx". (34)

This implies that the density profile in the upstream region
(x<0) deduced from the linearized Eq. (32) is of the form
n(x)=ng[ 1+ Sp(x)] with

Sp(x) = 8p cos(2kx + 6). (35)

The amplitude Sp and the phase factor 6 in Eq. (35) are
determined by the disorder potential V(x) via Eq. (34). The
modified wave number « fixes the period of the density os-
cillations.

As we are obviously in the regime of small back reflec-
tions we adopt the method of Ref. [32] to determine the
transmission coefficient in an approximative way. To this end
we make the ansatz n(x) =i, (x) + he(x)|> with

l;binc(x) =a eXp{in},
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lvl’ref(-x) = b eXp{i(Kx + 0)} (36)

Comparing the corresponding density profile with Eq. (35),
one obtains the following expressions for the amplitudes a
and b [39]:

2

1
L =1 -8+ 0(55Y,
no 4
o1,
—=—5p"+0(p). (37)
l’lO 4

It was pointed out in Ref. [32], and numerically confirmed
for single- and double-barrier potentials [31], that ,.; can be
approximately identified with the reflected component of the
condensate in the case of almost perfect transmission. This
corresponds to a reflexion coefficient R=b/ a2=él—‘5f)2
+O(5ﬁ4) and to a transmission coefficient which can be ex-
pressed [using Eq. (35)] as

1 1 1
T=1- 1552 =1- Z([@D(O)]2 + m[ﬁp’(o)?). (38)

In this final expression dp(0) and Jp’(0) are related to the
disordered potential by means of Eq. (34). Therefore, deter-
mining the transmission 7 for a given potential V(x) amounts
to compute the integrals Eq. (34).

As shown in Appendix A the above procedure allows us
to determine the disorder average (T) from knowledge of the
correlation function of the disorder potential. For the relevant
case of a Lorentzian correlation [of the form (24)] we obtain

L

H=1-—, 39
(1) L (39)
where
f),4 2
Ly= ——— e (40)
mym

is the characteristic length scale for the decay of the trans-
mission. We recall here that the above analysis is valid only
in the regime Sp<<1, i.e., the linear decrease of (T) in Eq.
(39) is valid only for L<L,. Thus, we have to refine our
definition of weak disorder: not only should the intensity of
the potential be small, but also the length of the disordered
region should not exceed the value L.

As we see from expression (40), the effect of the atom-
atom interaction is entirely contained within the modified
wave number « [Eq. (33)] which describes the period of the
upstream density oscillations. For repulsive atom-atom inter-
actions, we have k<k, which implies that the mean trans-
mission is reduced compared to the noninteracting case. This
behavior is indeed well confirmed by numerical computa-
tions based on the approach presented in Sec. V. This
interaction-induced decrease of the transmission was already
observed in Ref. [32] and interpreted as a lack of kinetic
energy compared to the interaction-free case.

In the limit of very small correlation lengths, i.e., /.
<1, the disorder potential can be approximated by a white-
noise potential with correlation function C(x—x')=ymw&(x
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—x"). Considering the noninteracting case (k=k) we recover
in this regime the well-known expression L,=L,,
= (h*k?)/(mrm*y) for the localization length of S-correlated
disorder potentials (see, e.g., Ref. [41]).

The opposite limit «/.>1 can be considered as the semi-
classical regime, where the de Broglie wavelength A\
=2/k of the condensate is much smaller than the correla-
tion length . of the disorder potential. In this regime, the
length scale L, is dominated by the exponential prefactor
exp(2«l,), and the deviations from perfect transmission (7)
=1 vanish exponentially fast with increasing ratio «l.. The
semiclassical condition «I.>1 furthermore allows us to de-
rive a simple analytical expression for the density n(x)
throughout the scattering region. We start from the zeroth-
order solution n(x)=n, valid for V=0. Then, for given w
and J, the density n, can be obtained by iteratively solving
the self-consistent equation [strictly equivalent to Eq. (3)]

m
o= \/;J[,U«—g”o]_llz, (@)

starting, e.g., with ny=J\m/(2u). This procedure guarantees
convergence toward the supersonic solution of Eq. (3).

The natural generalization of Eq. (41) to the case of a
small but nonvanishing potential V(x) is obtained by using
Eq. (30) instead of Eq. (3). This yields

( V(x) w—gn+ (h*2m \";)((92/&x2) \’;>_1/2
n=ngy\ — + N
M= 8N M= 8N

(42)

where the current J was substituted by means of the disper-
sion relation (3). We shall now find approximate solutions of
this self-consistent equation in the case of weak disorder, i.e.,
[v(x)] < 1, where the typical value of V is much smaller than
m—gng, which is the kinetic energy per particle. We empha-
size that this does not imply that the nonlinear term gn,
should be small.

The zeroth-order solution of Eq. (42) is simply the con-
stant equilibrium density n,. Resubstituting this constant so-
lution into the recursive equations yields the first-order solu-
tion for the condensate density

() = —10

n*V(x) \/1_—0()(). (43)
Corrections to this first-order expression particularly arise
from the quantum pressure term (A2/2my\n)(/dx*)\n. Tt
can be shown, however, that the latter is suppressed by a
factor ~1/(kl.)> as compared to the kinetic energy
#2k*/(2m) when nV(x) is resubstituted in Eq. (42). In the
semiclassical regime k/.> 1, the quantum pressure term be-
comes negligible, and the expression (43) represents a very
good approximation to the actual density of the condensate
in the scattering region. We show in Appendix B that the
result (43) can be derived in a way that is directly analogous

to the semiclassical WKB approach.
This result is illustrated in Fig. 6, whose lower panel
shows a random potential generated with the method pre-
sented in the previous section. In the upper panel we com-
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FIG. 6. (Color online) The upper panel displays a comparison of
the first-order solution [WKB, Eq. (43)] with a numerically com-
puted solution (QM) of the Gross-Pitaevskii equation for a weak-
disorder potential V(x) (shown in the lower panel). The correlation
length is /,.=30 um; the wavelength is A=3 um. The ratio between

interaction and kinetic energy in the incident beam is E;,/Ey;,
=1/10.

pare the result of Eq. (43) with an exact, i.e., numerically
computed solution of the Gross-Pitaevskii equation. Excel-
lent agreement between the first-order solution and the exact
solution is found. We note here that it is quite natural to find
that the density profile mirrors the potential because we are
dealing with current-carrying states: the relation (30) (in the
absence of quantum correction) w=mu’/2+V(x)+gn pre-
dicts that the condensate velocity becomes minimal close to
the maxima of the disorder potential. It follows then from the
continuity equation J=nu=const that the density n assumes
its maxima when the velocity becomes minimal.

It is instructive to realize that classically forbidden back
reflections can be taken into account by inserting the ansatz
n(x)=n"V(x)+ én(x) into Eq. (30) and linearizing the result-
ing equation for small én(x)/n,. To the lowest nonvanishing
order in v, we again obtain the result (39) for the mean
transmission.

Finally we consider experimental realizations of
waveguides on atom chips. Typical distances / between the
chip surface and the guide are in the range 20—100 um.
Typical disorder correlation lengths are of the same order as
h. In recent transport experiments [43] the velocity of propa-
gating ®’Rb condensates is of the order of a few millimeters
per second, resulting in a mean wavelength of a few mi-
crometers. This corresponds to the regime «/.>1 with—
from Eq. (40)—a very large value of L,. Hence the regime of
weak disorder is presently the most relevant one; the kinetic
energy is much larger than the typical intensity of the disor-
dered potential and L, is large compared to the typical length
of the disordered region; one thus expects almost perfect
transmission.

V. MODERATE AND STRONG DISORDER

In Sec. IV we focused on weak-disorder potentials, in the
limit of small reflection. The analysis was done in the regime
w>(V*(x))""? and L<L,. In the present section we still par-
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tially satisfy the first of these inequalities, but drop the sec-
ond one. We will see that the behavior of the system is quite
different, ranging from a regime of localization (in the limit
of weak interaction) to a time-dependent behavior for larger
interaction, with a power-law decay of the time-averaged
transmission.

First, we shall discuss some elementary differences be-
tween the scattering problem in linear quantum mechanics
and the nonlinear Gross-Pitaevskii equation. In linear quan-
tum mechanics (g=0) one finds for any scattering potential a
unique stationary scattering state that is dynamically stable,
and the associated transmission coefficient T relates the con-
stant incident current J; one to one with the transmitted cur-
rent J,. For the nonlinear Gross-Pitaevskii equation the trans-
mission 7 depends on the density of the propagated
condensate and thereby on the current. Additionally, the phe-
nomenon of multistability may arise. This means that for a
given incident current J; two or more scattering states with
different transmissions can coexist.

In principle all stationary scattering states that are associ-
ated with a given incident current J; can be found by inte-
grating the time-independent Gross-Pitaevskii equation (8)
from the downstream to the upstream region. A systematic
variation of the downstream current J, allows one to select
the desired states. This procedure, however, does not reveal
any information about their dynamical stability properties,
which are crucial for answering the question whether an in-
cident condensate beam populates a stationary scattering
state or not. For instance, in the case of coherent condensate
transport through a double-barrier potential, three possible
scattering states are expected close to the resonances, but
only one of them is dynamically stable [15]. Here the advan-
tage of integrating the time-dependent Gross-Pitaevskii
equation becomes apparent: If this integration converges to a
stationary scattering state we know automatically that this
state is dynamically stable (otherwise small numerical devia-
tions would exponentially increase with propagation time).

We consider an ensemble of N disorder realizations with
randomly varying sample lengths L that are uniformly dis-
tributed between 0 and a maximal sample length. For each
realization (labeled with index @) we numerically compute
the time evolution of the wave function and extract either the
time-independent transmission 7T, [if ¢(x,t) converges to a

stationary state] or the time-averaged transmission T, [if
(x,1) remains time dependent]. For the sake of definiteness
and due to its experimental relevance we consider the propa-
gation of condensed ®’Rb atoms (whose scattering length is
a,.=5.77 nm). Our numerical computations were performed
for a guide with radial trapping frequency o, =27
% 100 s~! (oscillator length @, =1 wm). The disorder is gen-
erated as in the previous section. The regime of strong dis-
order is reached by choosing a rather short distance h
=5 um between the center of the guide and the chip surface,
which corresponds to a correlation length /.=6 um. In order
to avoid excitations of the condensate into higher transversal
modes we adjust the standard deviation of the potential
(which is a measure of the mean potential height) to
(VA(x))2=0.12%w, . In all the following numerical calcula-
tions we consider an incident monochromatic beam with cur-
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FIG. 7. (Color online) Transmission through a disordered
sample as a function of sample length L for the noninteracting case.
Each point corresponds to a different realization of the disordered
potential. Upper panel: arithmetically averaged transmission (blue
staircase function). Lower panel: The geometric averaged transmis-
sion (blue staircase function) decreases exponentially with increas-
ing L, as revealed by the fit with L;,,=586 um (straight black line).
The arrows mark the logarithmic standard deviation.

rent J;=10° atoms per second and wavelength \=10 um.
Then the chemical potential is w=0.25%w®, (in the linear
case the chemical potential takes the slightly different value
©n=023%w ).

It is instructive to focus first on the linear case (g=0)
which has already been extensively investigated in the con-
text of localization theory [22,41]. In the localized regime
the transmission decays exponentially with increasing sys-
tem length L, i.e., (T)=exp(-L/L,,,) where L, is the so-
called localization length. The points in the upper panel of
Fig. 7 mark for each disorder realization the associated trans-
mission T,(L) as a function of the sample length L. To ex-
tract from these data a characteristic scaling law for the L
dependence of the transmission we divide L into equal inter-
vals of length AL<<L. We then compute the mean transmis-
sion at sample length L by summing up all the values T,
corresponding to a sample length lying in the interval of
width AL centered at L:

I AL AL
Ty(L)=— To(L'), L-— <L <L+—.
(T)(L) M% (L"), 5 +

(44)

N; is the number of samples in the interval under consider-
ation.
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FIG. 8. (Color online) Transmissions through an ensemble of
disorder realizations for a moderate nonlinearity E;,/E;;,=1/10;
the characteristics of the incident beam are given in the main text. A
transition from a time-independent to a time-dependent regime is
observed at critical length L*=125 um. The black dots represent
the transmissions in the time-independent regime and the (orange
online) crosses are the time-averaged transmissions in the time-
dependent regime. The staircase function is the geometrically aver-

aged transmission. It is well approximated by the algebraic scaling
law Lo/ (L+Lg) (smooth solid line) with Ly=287 um.

The step function in Fig. 7 shows the decrease of (T), for
30 000 disorder realizations and AL=>50 (for the sake of clar-
ity we show only 2000 points in the plot). In the context of
localization theory it is convenient to investigate scaling
laws by means of the geometrically averaged transmission

(), = ™), <1H(T)>:%2 In[T,(L")],  (45)
L «a

because, contrary to (T),, the average (In(7)) is a self-
averaging quantity of the system [41,42]. The lower panel of
Fig. 7 shows (T),, which follows clearly an exponential law.
This is clear evidence for the appearance of localization. We
can extract the localization length, which here is L,
=586 um. We note the wide spread of the data points around
their average. This spread is quantified by the logarithmic
standard deviation

Aln(T)=< %E [1n(Ta)—<ln(T)>]2), (46)
L «a

which is shown as arrows in the lower panel of in Fig. 7. We
find an almost linear increase of A In(7) with the sample
length.

Is the conventional localization scenario, with the charac-
teristic exponential decrease of the transmission [16,17], still
valid in the case of interacting atoms? To address this ques-
tion we now calculate the transport in presence of a moderate
nonlinearity where the ratio of interaction and kinetic energy
in the incident beam is E;,/E;,=1/10. Contrarily to the
linear case, time-dependent behavior becomes now a domi-
nant feature as shown in Fig. 8. We find that dynamical
stable scattering states (black dots in Fig. 8) are populated
only for sample lengths that are smaller than a critical length
L®, which is here of order of 125 um. For samples with
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length L=L" we find a crossover region where time-
dependent behavior sets in and convergency to a stationary
state is achieved for only a certain fraction of disorder
samples. (x,r) remains time dependent (orange crosses) for
all samples when we reach the regime where L is notably
larger than L. In the time-dependent case the data points

display the time-averaged transmissions T, (9).
In order to extract a scaling law from our data, we com-
pute the ensemble-averaged transmission [in the time-

dependent cases T, in Eqs. (44)—(46) is replaced by T,]. We
find that the geometrically averaged transmission (T), (step
function in Fig. 8) decreases inversely with the sample
length L and is well approximated by the algebraic function
(smooth line in Fig. 8)

Ly

47
L+L, “7

(D)=

with the decay length L. Such a scaling law is characteristic
for transport in systems with loss of phase coherence be-
tween the single-scattering events. Indeed, if one considers a
series of successive scatterers and calculates the transmission
by neglecting all interference effects, one derives exactly the
scaling law of Eq. (47) [44,45]. Such an Ohmic behavior is
observed for electron transport through mesoscopic metal
structures in the limit of small dephasing lengths [44,46].
Another striking feature is the distribution of the data
points in Fig. 8. Contrarily to the linear case, this distribution
is now clearly restricted to the neighborhood of the average
transmission, and the standard deviation AT(L) decreases for
long sample lengths L. Hence, in the regime of large lengths

one expects to find the 7,’s in a narrow interval centered

around the averaged transmission. Loosely speaking, T, be-
comes more or less sample independent. For the sake of

completeness we mention that ideally the time averages T,
should be computed for an infinitely long period. Of course
this cannot be done numerically, but we verified that the
averaged transmission and the standard deviation do not
change if we increase in Eq. (9) the averaging time window
from 7to 27 and 37.

The above presented computations demonstrate that even
a moderate nonlinearity leads to a dramatic change of the
transmission properties. In particular, the usual interpretation
of the transmission behavior in terms of localization is put in
question in the case of interacting particles. In order to obtain
deeper insight into that matter, we redo the above computa-
tion with a very weak nonlinearity, such that E;,/Ey,
=1/100. Figure 9 shows that for this case the crossover from
time-independent to time-dependent behavior is shifted to
larger sample lengths (L =600 wm). This indicates the exis-
tence of a critical nonlinearity beyond which the system ex-
hibits time dependence. Indeed, preliminary studies show
that for each disorder sample length L there is a critical value
g" above which no stationary scattering state can be popu-
lated, or, equivalently, for each strength of interaction g,
there is a critical disorder length L* above which the flow is
time dependent. We find that L* decreases with increasing
nonlinearity. This is the reason why stationary states can be
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FIG. 9. (Color online) Transition from time-independent to
time-dependent behavior in presence of a very weak nonlinearity
(Ejp! Egin=1/100). The staircase function in the upper panel shows
the geometric average of both time-independent and time-
dependent transmissions (black dots and orange crosses, respec-
tively). The lower panels display separate averages over the time-
independent transmissions (lower left panel) and the time-
dependent transmissions (lower right panel) and show the best
exponential (dashed line, colored red online) as well as algebraic
(solid line, colored red online) fits to the data. Clearly, the time-
independent transmissions decrease exponentially with increasing L
(with localization length L;,.=439 um) while the averaged trans-
missions in the time-dependent case decay according to Ohm’s law.

populated in short but not in long disorder regions and why
the crossover to time-dependent dynamics in Fig. 9 is dis-
placed to larger sample lengths L compared with Fig. 8.

From Fig. 9 we also see that the Ohmic decrease of the
transmission is intimately connected to the occurrence of
time-dependent dynamics. This is clearly indicated by the
fact that the time-independent data points can be accurately
fitted by an exponential law, and not by an algebraic one
[47]. We infer from this observation that as long as stationary
states are populated the system follows the conventional sce-
nario of localization even in the presence of repulsive atom-
atom interactions, with a smaller localization length than in
the interaction-free case. This scenario seems to break down
as soon as the scattering process of the condensate becomes
intrinsically time dependent. We tentatively attribute this
phenomenon to the fact that the definition of the mean trans-
mission involves a time average over the propagation pro-
cess [see Eq. (9)]. Therefore, information about the phase
coherence, which is in principle preserved by the time-
dependent Gross-Pitaevskii equation, becomes lost in the
time-averaging procedure.

VI. CONCLUSIONS

In this paper we have presented a study of transport of
Bose-Einstein condensates in the presence of disorder. We
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introduced a one-dimensional model for the disorder poten-
tial in the case of a condensate that propagates through a
magnetic waveguide over a microchip. We assumed for this
model that the transverse current density in the microfabri-
cated wire exhibits a white-noise correlation. We showed that
this yields a disorder potential that is Lorentz-like correlated
along the axis of the waveguide.

In the regime of weak disorder, a perturbative approach
allowed us to estimate the deviations from perfect transmis-
sion. We found that on length scales much smaller than a
characteristic length L;—which is determined by the corre-
lation length of the disorder potential and the healing length
of the condensate—the transmission decreases linearly with
increasing length L of the disorder region. The presence of a
repulsive atom-atom interaction diminishes the transmission
compared to the interaction-free case. Furthermore, in the
limit of large correlation lengths (/.>\) we could identify a
semiclassical regime where the backscattering is exponen-
tially suppressed and where the condensate density mirrors
the shape of the disorder potential V(x).

The numerical approach presented in Sec. II provides ac-
cess also to the regime of moderate- and strong-disorder po-
tentials and allows simulation of a realistic transport process.
In the case of noninteracting atoms we find clear evidence of
the appearance of localization. In the presence of interaction,
the time dependence of the transmissions becomes a domi-
nant feature of the system. We find that stationary scattering
states can then be populated only in waveguides with rather
short disorder regions, whereas the condensate exhibits a
strongly time-dependent dynamics if we consider large
sample lengths. Our numerical calculations show that the
critical length L*, at which the crossover between the two
different regimes occurs, is shifted toward shorter sample
lengths when the strength of the interaction is increased. It
remains an open problem to determine this critical length L”
analytically from the system-specific parameters, which are
the incident current, the kinetic energy, the average height of
the disorder potential, and the associated correlation length.

Our numerical study was restricted to Lorentz-correlated
disorder in the atom-chip context. We expect, however, no
significant differences for other types of disorder potentials,
such as speckle fields or point scatterers. Indeed, preliminary
studies on the transport of BECs in presence of randomly
placed &-like barriers reveal qualitatively the same phenom-
enology: A regime of time-dependent scattering sets in be-
yond a critical interaction strength (or sample length), and
the transmission decreases according to an Ohm-like law
rather than to an exponential one. An important aspect that
remains unexplored, on the other hand, is the depletion of the
condensate, due to atom-atom scattering events, and the ap-
pearance of a thermal cloud that propagates together with the
condensate. This issue should be rather relevant in the re-
gime of time-dependent scattering, but cannot be studied
with our present approach, which is based on the mean-field
description of the condensate. Since the interaction with such
a thermal cloud will lead to an additional cause for incoher-
ent transport, we expect no qualitative change as far as the
Ohmic power-law decay of the transmission is concerned.

The present work opens further perspectives for the study
of transport in phase-coherent systems. In particular the re-
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pulsion between the atoms leads to a behavior different from
the one expected in the noninteracting and attractive cases.
Throughout this work we have considered realistic values of
the parameters (intensity and correlation length of the poten-
tial, distance from the guide to the microchip, incident cur-
rent of the beam) describing a BEC of 8’Rb in a waveguide,
and hope to motivate experimental studies testing the results
presented in this work.
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APPENDIX A

In this appendix we derive a relation between the mean
transmission (7) and the correlation function of the disorder

potential in the weak-disorder limit. Taking the mean value
of Eq. (38) gives

=1~ i<<[5p<0)]2> + 417<[5p'<o>]2>). (A1)

Therefore the problem of computing (7T) reduces to the cal-
culation of the averaged values
N

(0= [0 O)F

i=1

N

Lo/ OF) =+ S [/ O

i=1

(A2)

Equation (34) allows us to write these averages as
(L L

{[8p(0)]?) = _ZJ dx sin(2;<x)f dx'" sin(2rx"){v(x)v(x)),
K-Jo 0

L L
{8p"(0)» = 4k2f dx cos(ZKx)f dx" cos(2kx")
0 0

X (x)v(x")),

where (v(x)v(x')) is the correlation function of the potential.
We evaluate (T) for the particularly interesting cases of a
o-correlated  white-noise potential and a Lorentzian-
correlated disorder potential. In the first case the correlation
function reads

(A3)

2
(@) = y(,f—’Z) mox—x),  (A4)

and the integrals in Eq. (A3) can be easily evaluated by
means of integration by parts. This yields
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) 2m>yar
([6p(0)]%) = WL +c,

([6p" (0)]) = 4X[5p(0) ),

where ¢ is a dimensionless constant which is of the order
(4ymm?)/ (h*K3). For sample lengths L> k™! we can neglect
¢ and we keep only terms that scale linearly with L. By using
this approximation we find with Eq. (A1) for a white-noise
random potential

(AS)

2
mm~yL
(Iy=1- PEC (A6)
In the case of a Lorentzian correlation,
, 2m \? [,
wv(x')) = 7<h2_k2> 13+(X——x')2 (A7)

an exact analytic evaluation of the integrals (A3) is not pos-
sible. Nevertheless, in the regime L>1[. and L> 1/« the in-
ner integral can be approximated with high accuracy by the
real or, respectively, the imaginary part of

L 2ikx" g1
f lzlce—dx,2 = 2[@(x) —O(x—L)]. (A8)

o L+ (x—x")
The same integration by parts procedure as in the white-
noise potential yields a result that is only modified by the
occurrence of the exponential factor exp(—2«l,). Therefore,
in presence of a Lorentzian correlation the mean transmis-
sion reads

m* YL ,

P wle (A9)

Ty=1-

APPENDIX B

In this appendix we demonstrate that the first-order solu-
tion Eq. (43) can also be derived from a standard WKB
method [48]. Inserting the WKB ansatz (x)=exp[if(x)]
[where f(x) is a complex-valued function] in the time-
independent Gross-Pitaevskii equation (8) gives
- —[if" = (f")"]+ V() + gV ) = . (B1)

2m
The potential V(x) is supposed to be small compared to u
—gny, and its correlation length is large compared to the de
Broglie wavelength. Equation (B1) can be rewritten in terms
of a self-consistent equation

2m i(f—f"
=y a0 - i, (B2

which allows us to compute recursively the unknown func-
tion f(x). Treating V(x) as a small perturbation motivates the
use of a plane wave with wave number k and density n, as
zeroth-order approximation,

FO=kx—i ln(\"zo) .
Hence, by use of Eq. (B2), we find

(B3)
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1 1~
Fr= %\J'Zm[,u— V(x) — gngl = %P(X), (B4)

and the first-order approximation of the wave function reads
X 1~
PV (x) = \ﬂnro exp(if gP(x’)dx’) (B5)

The lower bound a of the integral lies in the downstream
region, where we assume the flat condensate density n,. In-
serting the second derivative

m

#P(x)

D _ _

V()= 2P (B6)

into the self-consistent Eq. (B2) yields the second-order ap-
proximation
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P(x) . P'(x)
o 2p(x)
(B7)

1= %\/1 +ifP' (x)/[[P(x)]* =

By integrating we find the second-order approximation of the
wave function

2 (x) = \ng @ exp(i f x fl—iﬁ(x’)dx’). (B8)

P(x)
Hence, the density found with this WKB method is
P
(a) o (BY)

where v(x)=V(x)/(u—gny)=V(x)2m/(h*?*). Indeed, Eq.
(B9) coincides exactly with the result (43) found in Sec. IV.
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