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We consider the phase coherent transport of a quasi-one-dimensional beam of Bose-Einstein condensed
particles through a disordered potential of length L. Among the possible different types of flow we identified
�T. Paul, P. Schlagheck, P. Leboeuf, and N. Pavloff, Phys. Rev. Lett. 98, 210602 �2007��, we focus here on the
supersonic stationary regime where Anderson localization exists. We generalize the diffusion formalism of
Dorokhov-Mello-Pereyra-Kumar to include interaction effects. It is shown that interactions modify the local-
ization length and also introduce a length scale L� for the disordered region, above which most of the
realizations of the random potential lead to time-dependent flows. A Fokker-Planck equation for the probability
density of the transmission coefficient that takes this effect into account is introduced and solved. The theo-
retical predictions are verified numerically for different types of disordered potentials. Experimental scenarios
for observing our predictions are discussed.
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I. INTRODUCTION

The absence of diffusion of waves in disordered media
was predicted by Anderson 50 years ago �1�. Originally pro-
posed in the context of electronic transport in disordered
crystals, it has since been observed for different types of
waves, including light and sound. Recently, direct observa-
tions of the Anderson localization by disorder �2� and of a
localization transition by quasiperiodic potentials �3� of
quasi-one-dimensional �1D� matter waves of ultracold atoms
were reported. These experiments pave the way to the obser-
vation of new phenomena and shed new light on long stand-
ing problems, among which the question of possible Ander-
son localization in presence of interactions.

In the present paper we consider the case of an atomic
vapor described as a weakly interacting Bose gas in the pres-
ence of a weak disorder �what is meant by “weak” here will
be made quantitative in Sec. II�. In this configuration it has
been shown theoretically in Refs. �4,5� and supported by
numerical simulations in Ref. �6� that a small amount of
disorder does not drastically alter the equilibrium properties
of the system, but merely decreases the condensate and su-
perfluid fractions. Furthermore, even in the 1D limit consid-
ered in the present work, it has been experimentally demon-
strated in Refs. �7,8� that one can observe global phase
coherence in the presence of disorder and remain far from,
say, the Bose glass phase originally proposed by Giamarchi
and Schulz and Fisher et al. �9,10�.

Here, we are interested in transport properties. Specifi-
cally, we study a quasi-1D weakly interacting Bose-Einstein
condensate �BEC�, propagating through a disordered poten-
tial. In this context, localization has been theoretically stud-
ied mainly for effective attractive interactions �see, e.g., �11�
and references therein�, with less attention on the repulsive
case we consider here �see, however, Refs. �12,13��. In the
absence of an external potential, �repulsive� interactions
make the system superfluid and introduce a new characteris-

tic speed in the system, the speed of sound c. As mentioned
above, when the speed V of the BEC relative to the external
potential tends to zero, the addition of a weak random poten-
tial preserves superfluidity, although with a reduced super-
fluid fraction. What happens as V increases? This question
was investigated in a previous publication �14�, where the
disordered potential, of length L, was modeled by a series of
randomly located delta peaks. For small velocities V /c�1,
perturbation theory shows that the superfluidity is preserved,
e.g., the flow is dissipationless and with a perfect transmis-
sion. In contrast, in the high speed limit V /c�1, where the
kinetic energy dominates over the interaction energy, the
transport properties of the BEC are deeply altered and tend
to those of the noninteracting gas, displaying an exponential
damping of the transmission with length L, a behavior char-
acteristic of the strong Anderson localization. Thus, two lim-
iting cases of stationary flow have been identified �14�, with
contrasting transport properties: superfluidity in the deep
subsonic regime and Anderson localization in the deep su-
personic one. In between, in the region V�c where both
interaction and kinetic energies are important, it was shown
that stationary scattering solutions do not exist: one reaches a
regime of time-dependent flows with more or less �depend-
ing on the speed� complex density excitations. The range of
speeds around c where this phenomenon is observed in-
creases as the length L increases. The different types of
existing flows are summarized in Fig. 1.

In the present study we concentrate on the supersonic sta-
tionary region of the phase diagram �gray �light blue online�,
V /c�1 region in Fig. 1�. In this domain we provide analyti-
cal and numerical evidence of Anderson localization in the
presence of interaction for different types of disorder. We
compute analytically the interaction-dependent localization
length as well as the corresponding distribution of transmis-
sion coefficients. We also explain the disappearance of the
supersonic stationary flow observed at a given velocity for
increasing length of the disordered sample. This onset of
time dependence is an important qualitative effect revealed
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by our study. We show that it is directly connected to inter-
action effects and provide an analytical estimate of the length
L� of the disordered region above which most of the realiza-
tions of the random potential lead to time-dependent flows
�see Fig. 1�.

The paper is organized as follows. In Sec. II we present
the model and identify its range of validity. In Sec. III we
take some time to properly define the transmission coeffi-
cient of a Bose-condensed beam over an obstacle. In Sec. IV
we introduce the different types of disordered potentials
studied in the present work. In Sec. V we present analytical
and numerical results showing that Anderson localization is
indeed possible in the supersonic regime. We consider the
three possible supersonic regimes: perturbative �Sec. V A�,
Anderson localized �Sec. V B�, and onset of time depen-
dence �Sec. V C�. In Sec. VI we discuss experimental strat-
egies and possible signatures for the observation of Anderson
localization in an interacting Bose-Einstein condensate. Fi-
nally, we present our conclusions in Sec. VII. Some technical
points are given in appendixes. In Appendix A we derive the
probability distribution of transmission in a special case �per-
turbative regime and correlated Gaussian potential�. In Ap-
pendix B we present the derivation of the Fokker-Plank
equation �66� for the distribution of the transmission coeffi-
cients.

II. MODEL

We study here the transport properties of a quasi-1D
Bose-Einstein condensate formed of particles of mass m, ex-
periencing a repulsive effective interaction �characterized by
the three-dimensional �3D� s-wave scattering length a�0�,
in the presence of an obstacle represented by the external
potential U. The potential is not necessarily disordered at this

point; the only restriction we impose throughout the present
work is that it should have a finite extent, i.e., U�x�→0 when
x→��. The configuration we consider corresponds to the
“1D mean-field regime” �15� �see also the discussion in Ref.
�16��, where the system is described by a 1D order parameter
��x , t� depending on a single spatial variable: the coordinate
x along the direction of propagation. ��x , t� obeys the non-
linear Schrödinger equation

i�
��

�t
= −

�2

2m

�2�

�x2 + �U�x − Vt� + g���2 − 	�� . �1�

In all the present work we choose to work in the “laboratory
frame” where the condensate is initially at rest. Equation �1�
describes its 1D dynamics in the presence of an obstacle
moving at constant velocity V in this frame, which corre-
sponds to the experimental situation where an obstacle is
swept through a condensate initially at rest �see, e.g., Refs.
�17–19��. On the theoretical side, one should imagine that,
from an initial static configuration where the condensate is at
rest with U�0, the potential intensity and the speed have
been slowly ramped up to a point where the condensate dy-
namics is described by Eq. �1�. We choose V�0; this corre-
sponds to a potential moving from left to right in the labo-
ratory frame.

The reduction of the motion of the condensate to a single
spatial dimension is typically achieved through a transverse
harmonic confining potential of pulsation 
�. We choose a
normalization such that n�x , t�= ���x , t��2 is the linear density
of the condensate. In this case, the interaction among par-
ticles results in Eq. �1� in the nonlinear term g���2, with g
=2�
�a �20–22�.

In the stationary regime, where the flow is time-
independent in the frame moving with the potential, � de-
pends on x and t only through the variable X=x−Vt. The
appropriate boundary condition is ��X→−��=�n0 �where n0
is a constant� �see �22� and the discussion in Sec. III A be-
low�. The condensate is then characterized by a chemical
potential 	=gn0, a speed of sound c= �gn0 /m�1/2, and a heal-
ing length �=� / �mc�.

It is customary to characterize the transverse confinement
via the “harmonic-oscillator length” a�= �� /m
��1/2. With
n1 denoting a typical order of magnitude of n�x , t�, the 1D
mean-field regime in which Eq. �1� is valid corresponds to a
density range such that

�a/a��2 � n1a � 1. �2�

In this domain the wave function of the condensate can be
factorized in a transverse part and in a longitudinal part
�20–22�. The transverse wave function is Gaussian �this is
ensured by the condition n1a�1�; the longitudinal one is of
the form ��x , t�exp	−i	t /�
 and ��x , t� satisfies Eq. �1�
�21,22�. The left-hand side �l.h.s.� inequality in Eq. �2� pre-
vents the system to enter in the Tonks-Girardeau regime.
More precisely, a general analysis of 1D Bose gas shows that
at zero temperature no BEC is possible �23�. This results in a
algebraic decrease of the one-body density matrix monitored
by phase fluctuations occurring over a phase-coherence
length L�=� exp	a��n1 /2a�1/2
 �24,25�. Hence, the results
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FIG. 1. �Color online� Transport of a quasi-1D BEC with veloc-
ity V through a disordered potential U� consisting in a series of
uncorrelated delta peaks extending over a domain of size L �cf. Eq.
�21� and the discussion in Sec. V C�. Dark region: time-dependent
flow; light gray �light blue online� regions: stationary flow. In the
supersonic case, the yellow solid line corresponds to the threshold
L� between these two domains as determined from Eq. �81�. The
blue dashed line is the localization length Lloc �87�. The supersonic
region below Lloc denoted as “ballistic” corresponds to the region
where the perturbation theory of Sec. V A applies. Note the en-
larged scale for V /c� �0,1�.
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obtained using Eq. �1� are valid if they describe structures
with a characteristic length scale smaller than L�. The l.h.s.
inequality in Eq. �2� ensures that L� is exponentially large
compared to the healing length. If one considers, for in-
stance, 87Rb or 23Na atoms in a guide with a transverse con-
finement characterized by 
�=2�500 Hz, the ratio a /a�

is roughly of order 10−2 and restriction �2� still allows the
density to vary over four orders of magnitude.

Even if the mean-field approach is legitimate in one di-
mension, the effects of disorder have to be taken into account
with some care. It may well be that the introduction of a
disordered potential U in Eq. �1� modifies the properties of
the ground state. This is indeed the case as shown in Refs.
�4,5�: a disordered potential decreases the condensate and the
superfluid fraction, but the effects are weak provided the
intensity of the disorder remains weak �see Ref. �26� for an
extension to finite temperature�. More precisely, in the case
of a disorder formed by randomly spaced delta impurities
with density n� �see Sec. IV A� one can show �14,27� that, in
the dilute impurity limit, at V=0 the nonsuperfluid fraction
�normal part� is proportional to n���� /b�2 �the notations are
those of Eq. �21�� and thus remains small provided the di-
mensionless coefficient �� /b� is small �weak disorder limit�.
At finite V, the normal fraction is multiplied by a factor �1
− �V /c�2�−3/2 �see Ref. �14��, which diverges when V=c. One
thus expects the mean-field approach to fail near the region
V�c of Fig. 1. This is supported by the numerical results
presented in �28�. Hence, in the center of the time-dependent
region of Fig. 1, we cannot trust the results obtained from
Eq. �1�. However, far from this region, the 1D mean-field
approach is expected to be valid even in presence of �weak�
disorder, as experimentally demonstrated in Refs. �7,8�.

III. DEFINITION OF THE TRANSMISSION

In the present work we characterize the localization prop-
erties of the condensate in the random potential by studying
the transmission coefficient. Equation �1� being nonlinear,
the definition of transmission and reflection coefficients
needs to be treated with special care. This is the purpose of
the present section where we first define the stationary re-
gime �Sec. III A� and then the transmission coefficient within
this regime �Sec. III B�.

A. Stationary regime

It is customary to perform a Madelung transformation and
to write ��x , t�=�n�x , t� exp	iS�x , t�
, where n�x , t� is the
density and ��xS /m=v�x , t� is the local velocity. From Eq.
�1� one can check that they verify the continuity equation

�tn + �x�nv� = 0. �3�

The stationary regime is defined as the regime where the
system is at rest in the frame moving with the obstacle. In
this case, in the laboratory frame, �, S, n, and v are time
dependent, but they depend on x and t only through the vari-
able X=x−Vt. It is then possible to get a first integral of Eq.
�3� under the form

n�X�� �
m

dS

dX
− V = Cst. �4�

In the case of subsonic �V�c� and stationary motion, the
flow is superfluid and the order parameter is only affected in
the vicinity of the obstacle, with n�X→���=n0 and
v�X→���=0 �22,29�.

For V�c, a regime of stationary flow also exists but in
this case the obstacle induces density oscillations with a pat-
tern stationary in its rest frame �22�. This means that in the
laboratory frame the phase velocity of these waves is identi-
cal to the velocity V of the obstacle. On the other hand, the
energy transferred from the obstacle to the fluid propagates
with the group velocity, which in the case of Bogoliubov
excitations is greater than the phase velocity—i.e., as just
argued—than V. As a consequence, radiation conditions re-
quire that the wake is always located ahead of the obstacle,
i.e., upstream, with no long-range perturbation of the fluid on
the downstream side �22,30�. This means that in this case the
flow far in the downstream region remains unperturbed, with
n�X→−��=n0 and v�X→−��=0. The two possible station-
ary configurations �subsonic and supersonic� are represented
in Fig. 2. Hence, in any stationary configuration �subsonic or
supersonic�, the above reasoning fixes the integration con-
stant in the right-hand side �r.h.s.� of Eq. �4� to its value at
X→−�, i.e., −n0V.

In the stationary regime one gets from Eqs. �1� and �4�

U�X�
dA2

dX
=

d

dX
� �2

2m
�dA

dX
2

+ W�A�� , �5�

where A�X�=�n�X� /n0 and

W�A� =
m

2
�A2 − 1��c2 + V2 − c2A2 −

V2

A2� . �6�

B. Transmission coefficient

In this section we restrict the analysis to the stationary
regime of Sec. III A and define the transmission of the con-
densate through the obstacle represented by a potential U

FIG. 2. Schematic representation of the typical density profiles.
The upper plot corresponds to a subsonic stationary profile, while
the lower one corresponds to a supersonic stationary profile. The
potential moves from left to right, and the upstream �downstream�
region thus corresponds to the region X→+� �X→−��. In both
plots the potential is represented by a thick solid line �hatched down
to zero� and the density profile is represented by a thin solid line.
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�not necessarily disordered� verifying U��x�→��=0. As the
wave equation �1� is nonlinear, one cannot, in general, prop-
erly define reflection and transmission coefficients since it is
generally not possible to disentangle incoming and reflected
waves in the nonlinear flow upstream the obstacle. However,
following a procedure devised in Ref. �31� �see also �32��,
we will show that one can define a transmission and a reflec-
tion coefficient in the limit of small nonlinearity as well as in
the limit of weak reflection and arbitrary nonlinearity.

Outside the scattering region, U�X�=0 and one can get a
first integral of Eq. �5� under the form

�2

2m
�dA

dX
2

+ W�A� = Ecl
� when X → �� , �7�

which defines the “free” asymptotic density profiles. Ecl
� in

Eq. �7� are integration constants. The boundary condition
discussed in the previous section imposes A=1 and dA /dX
=0 when X→−�. This fixes the value Ecl

− =0. The value of
Ecl

+ at +� has to be determined by the integration of Eq. �1�
�cf. Ref. �22��. Equation �7� expresses the energy conserva-
tion for a fictitious classical particle with “mass” �2 /m, “po-
sition” A, and “time” X, evolving in a potential W �whose
typical shape is displayed in Fig. 3�. This type of analysis is
common in the study of nonlinear equations such as Eq. �1�;
see, e.g., the review �33� �the first time we found its use is in
Ref. �34��. It is employed here as a convenient tool for get-
ting intuition about the behavior of the solution of the Gross-
Pitaevskii equation �see below�.

From now on we restrict to the supersonic stationary re-
gime where an imperfect transmission occurs �in the sub-
sonic stationary regime one has perfect transmission�. In this
case the fictitious particle is initially �i.e., when X→−�� at
rest at the bottom of the potential W with Ecl

− =0. The behav-
ior of A for X→+� depends on the value of Ecl

+ . A stationary
solution exists only if A�X→+�� remains bounded, i.e., if
Ecl

+ �W�A1� �where A1 corresponds to the local maximum of
W; see Fig. 3�. In this case, the asymptotic behavior of A�X�
corresponds to oscillations between the values Amin and Amax
defined in Fig. 3.

For future references we note that W�A� is zero when A
=A0=1 and when A=V /c, and that the derivative dW /dA is
zero when A=A0=1 and when A=A1, with

A1 =
V

2c
�1 +�1 +

8c2

V2 1/2

. �8�

At large velocity, when V�c, one has

A1 =
V

�2c
+ O� 1

V/c , �9�

W�A1� =
mV4

8c2 + O�V2

c2  . �10�

Writing A2�X�=��X�=1+���X� we now argue that, fol-
lowing Ref. �31�, one can write a perturbative version of Eq.
�7� in a limit where

����X�� � �V2

c2 − 1� . �11�

We emphasize that restriction �11� corresponds to �����1
�i.e., small oscillations� only when V is of order of c or
smaller. The approach developed below is however able to
tackle large relative density oscillations ������1� at large
velocities �V�c� �35�. In this sense it will allow us to pen-
etrate in the nonperturbative regime where the upstream den-
sity oscillations are large and the transmission is low.

Using the variable �, we write Eq. �7� in the upstream
region �X→+�� as

�2

2m
� d�

dX
2

+ 8F��� = 8�Ecl
+ , �12�

where F���=�W�A=���. A simple limited expansion around
�=1 yields

F��� �
�2�2

2m
����2 +

mc2

2
����3 + ¯ , �13�

where ���X�=��X�−1 and

� =
m

�
�V2 − c2�1/2, �V2

c2 − 1� = �2�2. �14�

The second term in the r.h.s. of expansion �13� is small com-
pared to the first one precisely in the limit �11�. In the fol-
lowing we restrict to this regime and neglect the second term
of the r.h.s. of Eq. �13�. This corresponds to approximating
the exact W�A� by the �red online� dashed line in Fig. 3 and
to write Eq. �12� under the form

�d��

dX
2

+ 4�2����2 = 16�2��1 + ��� , �15�

where the dimensionless parameter � is defined by

� =
mEcl

+

2�2�2 . �16�

The solution of Eq. �15� is

n�X�
n0

= ��X� = 1 + 2� + 2� cos�2�X + �� , �17�

where

0

20
W

(A
)

/m
c2

A0=1 A1

Ecl

+

AmaxAmin

FIG. 3. �Color online� W as a function of A= ��� /�n0 �drawn for
V /c=4�. The fictitious particle has a classical energy Ecl

+ when X
→+�. The �red� dashed line corresponds to an approximation of
W�A� by �2�2�A−1 /A�2 / �2m�, obtained by keeping only the first
term in expansion �13�.

PAUL et al. PHYSICAL REVIEW A 80, 033615 �2009�

033615-4



� = ��2 + � �18�

and � is a phase factor. We recall that Eq. �17� describes the
density oscillations in the upstream region X→+�. These
oscillations can be described as the sum of incident and re-
flected waves ��inc and �ref� of the form

�inc�X� = �n0�1 + �� exp�− i�X� ,

�ref�X� = �n0� exp�i�X + i�� . �19�

This analysis allows one to determine the reflection and the
transmission coefficients as

R =
��ref�2

��inc�2
=

�

1 + �
, T = 1 − R =

1

1 + �
. �20�

Of course the sum of the incident �inc and the reflected �ref
waves �19� is an approximate solution of the nonlinear
Schrödinger equation �1�, which is only valid in regime �11�,
i.e., in the regime of arbitrary interaction and small transmis-
sion ���1�, or in the regime of arbitrary transmission and
small interaction �V�c�.

IV. DIFFERENT TYPES OF DISORDER

Up to this point we presented a theory valid for any po-
tential of finite extent. From now on we concentrate on the
particular case of random potentials. We denote U�x� an ar-
bitrary random potential and use a subscript when dealing
with one of the particular cases defined below.

A. Potential formed by a series of � peaks

The first potential of interest, analyzed in Ref. �14�, is a
series of N randomly located identical delta peaks of the
form

U��x� =
�2

mb
�
i=1

N

��x − xi� . �21�

The intensity of the peaks is measured by the �nonrandom�
positive quantity b. The scatterers have random uncorrelated
positions 0=x1�x2�x3¯, with mean density n� and aver-
age separation l�=1 /n�. Hence, the potential extends over a
mean length L= �N−1�l�.

Denoting henceforth the disorder average by �¯ � for x
and x� inside the disordered region, one gets the mean value

�U��x�� =
�2n�

mb
�22�

and the irreducible two-point correlation function

�U��x�U��x��� − �U��2 = ���2/m�2��x − x�� , �23�

where

� =
n�

b2 . �24�

B. Correlated Gaussian potential

Another commonly used model of disorder is provided by
Gaussian random processes with zero average. We consider

here potentials which are nonzero only over a region of finite
extent �with typical size L� and generate them in the follow-
ing way �see, e.g., Chap. 5 of Ref. �36� and references
therein�: let us consider a Gaussian white noise ��x� extend-
ing over all the real axis, with zero mean and second moment
���x���y��=��x−y�. Then for a given function w�x� one de-
fines

Ug�x� =
�2��

m
�

0

L

w�x − y���y�dy , �25�

where � is a parameter characterizing the disorder and whose
meaning is explained below. If w were a delta function, then
Ug would be a Gaussian white noise over �0,L� �and zero
everywhere else�. The actual function w�x� has a finite ex-
tension, and this induces finite correlations in the disordered
potential.

From Eq. �25� it is clear that �Ug�=0. If the domain of
integration in the r.h.s. of Eq. �25� were extended to all R, Ug
would have a Gaussian distribution

P�Ug� =

exp�−
Ug

2

2�2�
�2�2

, �26�

where

�2 = ���2/m�2�
R

w2�x�dx . �27�

Defining the correlation function C as

�Ug�x�Ug�x��� − �Ug�2 = ���2/m�2C�x − x�� , �28�

one would get in this case

C�x� = �
R

dy w�x + y�w�y� , �29�

with a Fourier transform

Ĉ�q� = �
R

dx C�x�e−iqx = �ŵ�q��2, �30�

where ŵ is the Fourier transform of w.
Imposing here the normalization condition

�
R

w�x�dx = 1, �31�

leads to a two-point correlation function �28�, which is—as
in Eq. �23�—of the form of ���2 /m�2 multiplied by a func-
tion whose integral over x equals unity �C�x� in Eq. �28�
instead of ��x� in Eq. �23��. Thus, with definition �25� and
normalization �31�, � plays for disorder �25� the same role as
n� /b2 �Eq. �24�� for disorder �21�: it characterizes the ampli-
tude of the fluctuations of the potential. The typical extent of
w�x� will in turn characterize the range of the correlations.

Since Ug as given by Eq. �25� is typically nonzero only
over a region of finite extent, Eqs. �28� and �29� are only
correct if x and x� are inside this region. More precisely, they
should be in this region, at a distance from 0 or L larger than
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the typical extent �c of the function w. In the following we
always consider the case where L is very large compared to
�c �otherwise, one could simply not speak of a disordered
region� and it is clear that the characteristics of the disorder
are properly defined only inside the disordered region.

We consider two special cases of correlation correspond-
ing to different forms of w: a Lorentzian

wL�x� =
1



�c/2
��c/2�2 + x2 �32�

and a Gaussian

wG�x� =
1

�c
�

exp�−
x2

�c
2 . �33�

We denote the corresponding potentials by UL and UG. For
the correlation functions one gets, respectively,

CL�x� =
�c/

�c
2 + x2 , ĈL�q� = e−�c�q�, �34�

CG�x� =
e−x2/�2�c

2�

�2�c
2

, ĈG�q� = e−q2�c
2/2. �35�

In both cases �c is the typical correlation radius.
The choice of a Lorentzian correlated disordered potential

originates from experimental and theoretical results in the
case of microfabricated guides. In this type of setting, the
atoms are magnetically guided over a chip �37�. Unavoidable
imperfections and irregularities in the design of the circuit
induce fluctuations in the current which, in turn, result in a
random contribution to the magnetic field used for guiding
the atoms. Thus, the potential seen by the atoms has a ran-
dom component which is typically Lorentzian correlated,
with a correlation length �c which decreases when the dis-
tance between the guide and the chip increases �13,38–40�.
The Gaussian correlated potential UG is more academic, but
by comparison with the results obtained with UL it allows
one to check what is really specific to the Lorentzian case
and what is a mere effect of finite correlation length.

C. Speckle potential

Another experimentally relevant type of disorder is the
so-called speckle potential, which is generated by an optical
speckle field produced by a laser beam passing through a
diffusing plate �41–43�. The corresponding potential will be
denoted by US and may be mathematically generated as fol-
lows �44�:

US�x� =
�2��

m ��
0

L

wS�x − y���1�y� + i�2�y��dy�2

, �36�

where �1 and �2 are two independent Gaussian white noise
processes of zero mean with ����x�����x���=��x−x������
�� and ��=1 or 2�.

Here also, we characterize the disorder by studying its
statistical properties in the limit where the domain of inte-
gration in the r.h.s. of Eq. �36� is extended to all R. In this
case one gets

P�US� =

exp�−
US

2�2
2�2 , �37�

where � is given by formula �27� �replacing w by wS�. This
yields �US�=2�2 and the correlation function defined in Eq.
�28� reads here

CS�x − x�� =
1

���2/m�2 ��US�x�US�x��� − �US�2�

= 4��
R

dy wS�x − x� + y�wS�y��2

. �38�

Contrarily to choice �31�, wS should not be normalized to
unity here because—from Eq. �36�—this is homogeneitywise
impossible. Instead, the choice

wS�x� = � �c

431/4 sin� x

�c


x
�39�

corresponds to the typical experimental situations �42� and
leads to a correlation function

CS�x� =
�c



sin2� x

�c


x2 , �40�

whose integral over x equals unity and whose Fourier trans-
form is

ĈS�q� = �1 − �q��c/2 if �q��c � 2

0, otherwise.
� �41�

Hence, definition �36� and choice �39� correspond here also
to characterizing the amplitude of the disorder’s fluctuations
by the parameter � and the range of the correlations by �c.

V. SUPERSONIC STATIONARY REGIME

As explained in Ref. �14�, and recalled in the Introduc-
tion, Anderson localization in a weakly repulsive Bose-
Einstein condensate is only possible in the supersonic regime
�cf. Fig. 1�, which we consider now. In the present section
we first analyze the transmission across a short disordered
sample, in which case perturbation theory is applicable �Sec.
V A�. We then turn to generic nonperturbative configurations
�Sec. V B� where Anderson localization is expected. In this
regime we obtain evidences of the occurrence of Anderson
localization in the presence of interaction. Finally, we discuss
the upper limit of the localized regime and the onset of time-
dependent flows for long disordered samples �Sec. V C�.

A. Perturbation theory (�™1)

In the supersonic stationary regime, simple perturbation
theory yields n�x , t�=n0+�n�X�, where �22�
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�n�X� =
2mn0

�2�
�

−�

X

dy U�y�sin�2��X − y�� �42�

and � is given by Eq. �14�. Perturbation theory always pre-
dicts a stationary density profile. This is certainly wrong
when V is close to c �cf. Fig. 1�, but in this case � gets very
small and one precisely goes out of the domain of validity of
perturbation theory ��n as given by Eq. �42� is no longer
small compared to n0�.

Far ahead of the obstacle �in a region where X−L is larger
than �c and �−1�, Eq. �42� gives

�n�X�
n0

=
2m

�2�
Im	e2i�XÛ�2��
 . �43�

The perturbative regime in which Eqs. �42� and �43� are
valid is also the one where the constant � in Eqs. �16� and
�17� is small compared to unity. This can be inferred from
the comparison of Eqs. �17� and �43� which indeed shows
that ��1 in the regime where Eq. �43� holds and that, in this

case, ���m�Û�2��� / ��2��. The corresponding reflection co-
efficient can then be obtained from Eq. �20�, yielding

R � � �
m2

�4�2 �Û�2���2. �44�

From Eq. �44� it is clear that the average reflection coeffi-
cient is

�R� = ��� =
m2

�4�2 ��Û�2���2� � 1. �45�

Furthermore, one can show that the corresponding probabil-
ity distribution of the reflection coefficient is Poissonian with

P�R� =
1

�R�
exp�− R/�R�� . �46�

Note that, for properly normalizing this probability distribu-
tion for R� �0,1�, one should include in the prefactor of the
r.h.s. of Eq. �46� a correcting term of order exp�−1 / �R��,
which can be safely neglected in the limit �45�.

We give in Appendix A a demonstration of result �46� for
the special case of a correlated Gaussian potential Ug of type
�25�. Below, we show that the same result holds for a poten-
tial U� of type �21� �see Eq. �68� in Sec. V B�, and we
checked numerically that it is also the case for the speckle
potential US �36� �cf. Fig. 4�. In all these cases, the average
reflection coefficient reads �up to the above discussed expo-
nentially small correction�

�R� = L/Lloc��� , �47�

where

Lloc��� =
�2/�

Ĉ�2��
. �48�

We recall that the function Ĉ depends on the type of disorder

considered. For a potential of form �21�, one has Ĉ��1; for
the other potentials considered in this work it is given by
Eqs. �34�, �35�, and �41�.

Concomitantly to distribution �46� of reflection coeffi-
cients, one gets for the transmission

P�T� =
Lloc

L
exp�− �1 − T�

Lloc

L
� . �49�

From Eq. �49� �or Eq. �47��, one gets

�T� = 1 −
L

Lloc���
. �50�

The perturbative approach holds when �R��1, i.e., when L
�Lloc. This corresponds to the region which is denoted as
“ballistic” in Fig. 1 �45�. Its accuracy is shown for L /Lloc
=0.1 in Fig. 4 for a speckle potential US of type �36� �we also
checked this prediction for the potentials U� and UG, with
also excellent results�.

At this stage, Lloc is simply a notation for expression �48�,
but it will be shown to be the actual localization length of the
matter wave in a disordered potential �in Sec. V B�.

The results derived here also hold for a noninteracting
gas, obtained by taking the limit g→0 in Eq. �1�, in which
case c=0 and �=k. Equation �48�, with � replaced with k,
then coincides with the Antsygina-Pastur-Slyusarev formula
for the localization length �46,47� and the distribution of
transmissions �49� holds, with Lloc=Lloc�k�.

In the present work, those formulas are modified to in-
clude interactions. The generalization simply consists in re-
placing the wave vector k=mV /� with �=m�V2−c2�1/2 /�.
This replacement has—as an important physical
consequence—the effect of diminishing, at a given speed V,
the localization length �there is an effective reduction of the
available kinetic energy by the repulsive interactions�. For
instance, in the case of a potential U�, since Lloc�����2,
there is a relative difference c2 /V2 between Lloc��� and
Lloc�k�, that is 11% for V=3c. This is illustrated in Fig. 5,
which displays the average �T� as a function of L for a dis-
order U� of type �21�, with and without interactions.

0 0.2 0.4 0.6 0.8 1
T

0

2

4

6

8

10

P
(T

) L / Lloc = 0.1

speckle

FIG. 4. Probability distribution P�T� for the transmission coef-
ficient T in a potential US with �=3.14	2�, �c=0.1�, and L=50�
moving at velocity V=7c in a condensate of initial constant density
n0�=1. The corresponding localization length is Lloc=500�. The
histogram corresponds to a statistical analysis of the results of the
numerical solution of Eq. �1� for 10 000 different random poten-
tials. The solid line is the perturbative result �49�.
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B. Nonperturbative approach

When the size L of the sample is large compared to the
value Lloc determined in Sec. V A, the perturbative approach
fails. We now propose a nonperturbative method allowing to
treat both the regimes L�Lloc and L�Lloc and showing that
Lloc, as defined in Eq. �48�, is indeed the localization length
in the presence of interactions.

Within the framework of the nonperturbative approach,
we are able to provide approximate analytical results in the
case of the model disorder potential �21�. This potential be-
ing zero between two impurities, one can write a series of
first integrals of Eq. �5� in each segment �xn ,xn+1� as follows:

�2

2m
�dA

dX
2

+ W�A�X�� = Ecl
�n�. �51�

In the region X�x1=0 the integration constant Ecl
− of

Eq. �7� is denoted as Ecl
�0� in Eq. �51� �taking x0=−�� and is

zero, whereas in the region X�xN one has Ecl
+ =Ecl

�N� �and
xN+1=+��.

From Eq. �5� it is a simple matter to show that the match-
ing condition of the density at impurity position xn is

A��xn
+� − A��xn

−� =
2

b
A�xn� , �52�

where A��xn
−� �A��xn

+�� denotes the limit of the derivative
dA /dX at the left �at the right� of xn. Relation �52� between
the derivatives of the amplitude results �from Eq. �51�� in a
relation between the classical energies,

Ecl
�n� = Ecl

�n−1� +
2�2

mb2A�xn��bA��xn
−� + A�xn�� . �53�

Hence, Eq. �51� allows one to draw a classical analog of
the solution of the nonlinear Schrödinger equation in the
presence of potential �21� formed by a series of delta peaks:

the fictitious classical particle defined in Sec. III B evolves in
the potential W and experiences kicks at times xn. Each kick
changes the “energy” according to Eq. �53�, as illustrated in
Fig. 6. The key point in the remaining of this section will be
to derive the probability distribution of Ecl

+ =Ecl
�N� which then

directly allows one to get the distribution of �’s and of the
transmission coefficients �through Eqs. �16� and �20��.

Let us introduce the quantities

�n =
mEcl

�n�

2�2�2 , �n = ���n�2 + �n. �54�

The parameters � and � defined in Eqs. �16� and �18� are
related to the ones of Eq. �54� by �=�N and �=�N �i.e., � is
the last of �n’s; the same holds for ��. Denoting by �n−1 the
value of the phase � �appearing in Eq. �17�� for X
� �xn−1 ,xn�, one gets in this domain �the derivation is exactly
the same as for Eq. �17��

A2�X� = 1 + 2�n−1 + 2�n−1 cos�2�X + �n−1� , �55�

and one can rewrite Eq. �53� as

Ecl
�n� = Ecl

�n−1� +
2�2

mb2 �1 + 2�n−1� +
4�2

mb2�n−1
��2b2 + 1�n−1,

�56�

where

�n−1 = cos�2�xn + �n−1 + tan−1��b�� . �57�

Using definition �54� one can rewrite Eq. �56� in terms of the
parameter �n as

�n = �n−1 +
1 + 2�n−1

�2b2 +
2�n−1

�2b2
��2b2 + 1�n−1. �58�

Equations �56� and �58� are valid provided Eq. �11� holds,
i.e., provided Ecl

�n−1��W�A1�, which reads

0 0.02 0.04 0.06

L / Lloc(κ)
0.94

0.96

0.98

1
<

T
>

non interacting

interacting

FIG. 5. �Color online� Average transmission as a function of L
for a potential U� �characterized by n��=0.5 and � /b=0.1�. In the
interacting case V=3c and Lloc���=1600�. The noninteracting case
is drawn for the same velocity and corresponds to a value Lloc�k�
= 9

8Lloc���=1800�. In both cases the dashed line is the analytical
result �50� and the solid line corresponds to a statistical analysis of
the results of the numerical solution of Eq. �1� for 15 000 different
random potentials. The departure of the numerical results from the
dashed lines occurs when the systems leaves the perturbative
regime.
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FIG. 6. �Color online� Upper panel: W as a function of A �drawn
for V /c=4�. For X�x1=0, the fictitious particle is initially at rest at
the bottom of potential W with Ecl

�0�=0. The value of the classical
energy changes from Ecl

�n−1� to Ecl
�n� at each impurity xn. The lower

panel displays the corresponding oscillations of A�X�, with two im-
purities at x1=0 and x2=4.7� �their position is indicated by vertical
dashed lines�.
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Ecl
�n−1� �

�2�2

m
��2�2�, i.e., �n−1 � �2�2. �59�

In the following we also impose the condition

�b � 1. �60�

Precisely, we neglect all the quantities of order 1 / ��3b3�.
This is an important technical point. It facilitates the analysis
by allowing one to get simple formulas as we now illustrate
in the perturbative case: Eq. �58� allows, for instance, to
compute the average value of the reflection coefficient in the
perturbative regime �as already done in Sec. V A, Eq. �47��.
In this regime, additionally to condition �59� one has �n�1.
Then Eq. �58� implies at leading order ��n�= ��n−1�
+1 / ��2b2� which, together with the initial condition �0=0,
leads immediately to

��� =
1

�2b2 �N� =
1

�2b2

L

l�
, �61�

which is identical to result �47� in the case of a potential U�

for which Lloc���=�2 /�=�2b2l� �cf. Eq. �48��.
Let us now proceed and consider the generic nonpertur-

bative regime where �n may become large compared to unity
and where Eqs. �11� and �59� are still valid. Taking condition
�60� into account, Eq. �58� reads

�n = �n−1 +
1 + 2�n−1

�2b2 +
2�n−1

�b
�n−1. �62�

It is natural to assume that the phase of the cosine in the r.h.s.
of Eq. �57� is uniformly distributed in �− ,� and indepen-
dent of the phase at step n−1. This could be called a “phase
randomization” approximation. This relies on hypothesis
�60� and on the assumption that there is a large number of
density oscillations over the �random� length between xn−1
and xn, i.e.,

��xn − xn−1� = �l� � 1. �63�

Then, the argument of the cosine in definition �57� is uni-
formly distributed; �n’s are uncorrelated random variables,
with all the same law characterized by its average ��n�=0
and variance

��n�n�� = 1
2�n,n�. �64�

Note that the regimes �60� and �63� imply that

�2�2

2m
�

�2n�

mb
= �U�� , �65�

which in turn implies that the kinetic energy 1
2mV2 is much

larger than �U��; i.e., one is exactly in the Anderson regime
where the incident kinetic energy is much larger than the
typical value of the �disordered� potential representing the
obstacle. Hence, a classical particle would flow almost un-
perturbed over the potential but, as we shall see, a quantum
particle experiences an exponentially small transmission.

Let P�� ,n�d� be the probability that �n lies in the interval
�, �+d�. Going to the continuous limit and defining the
continuous variable t=n / ��2b2�=X /Lloc �where Lloc=�2 /� is
the parameter �48� in the case of a potential U�� it is shown

in Appendix B that P�� , t� verifies the following Fokker-
Planck equation:

�P

�t
=

�

��
���1 + ��

�P

��
� . �66�

Equation �66� follows directly from Eq. �62� in the regime
where conditions �60� and �63� hold. It is precisely the
Dorokhov-Mello-Pereyra-Kumar �DMPK� equation �48� for
the transmission in a single disordered channel �with T
=1 / �1+���. Equation �66� is sometimes referred to as
Mel’nikov’s equation �after Ref. �49�� but has a much longer
history �see the discussion in Refs. �47,50��.

Since before entering the disordered region the particle
has a classical energy Ecl

�0�=0 corresponding to �=0, Eq. �66�
has to be solved for the initial condition

lim
t→0

P��,t� = �+��� , �67�

where �+ is the one-sided delta function: �0
��+���d�=1. In

the limit of small t �i.e., in the perturbative regime X�Lloc�,
� remains small and one can approximate in the r.h.s. of Eq.
�66� the term ���+1� by �. It is then simple to verify that the
solution of this approximate equation that satisfies Eq. �67� is

P��,t� =
exp	− �/t


t
for t � 1. �68�

This result for the small t solution of the DMPK equation has
been already obtained in Ref. �51� �see also the discussion in
Ref. �52��. The distribution law �68� is exactly equivalent to
distribution �46� of the reflection coefficient in the perturba-
tive regime and this proves the validity of the Poissonian
distribution �49� for a potential U� of type �21� �53�.

In the general case �i.e., for all t�0� the solution of Eq.
�66� with the initial condition �67� is �see, e.g., Refs. �47,50�
and references therein�

P��,t� =
e−t/4

�2t3�
u�

� ue−u2/�4t�

�cosh�u� − 1 − 2�
du , �69�

where u�=cosh−1�1+2��.
From distribution �69�, a lengthy computation or alterna-

tively the direct use of the DMPK equation �66� �54� yields

�ln T� = �
0

�

d� ln� 1

1 + �
P��,t� = − t . �70�

In the large t limit, distribution �69� tends to a log-normal
distribution, i.e., the distribution of the variable ln T is
Gaussian �see Ref. �54��

P�ln T,t� =
exp	− �t + ln T�2/4t


�4t
for t � 1. �71�

From this distribution one gets the correct average �ln T�
=−t �Eq. �70�� and a standard deviation ���ln T�2�
− �ln T�2�1/2=�2t, which is in agreement with the exact result
in the limit t�1 �54�. At the extremity of a sample of length
L, one has t=L /Lloc, and distribution �71� is the logarithmic-
normal distribution of transmission typical for Anderson lo-
calization in the regime L�Lloc �see, e.g., Refs. �50,55��. As
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a side product of this analysis, Eqs. �70� and �71� confirm
that Lloc is indeed the localization length as was anticipated
in the notation.

We have tested the validity of the DMPK approach for a
Bose-Einstein beam of interacting particles propagating in a
disordered potential U� of type �21�. The numerical results
for the probability distribution P�T� are compared in Fig. 7
with the DMPK prediction �69�. The agreement is seen to be
excellent. The distribution evolves from the Poissonian result
�49� �for low values of L /Lloc� toward a distribution peaked
at low-T values for large L /Lloc. In this latter case one can
check that the distribution tends to a log-normal by plotting
P�ln T�.

We have also checked the validity of the present approach
over a sizable range of lengths of disordered region and of
intensities of disordered potential by plotting in the inset of
Fig. 7 the average �ln T� as a function of L /Lloc. The agree-
ment of the numerical results with the DMPK prediction �70�
is excellent. Note however the beginning of a small depar-
ture around L /Lloc�2; this effect will be studied more thor-
oughly in Sec. V C �cf. Fig. 9�.

Finally, we discuss numerical results obtained for the dis-
ordered potentials introduced in Secs. IV B and IV C. Al-
though we do not have an analytical derivation of the DMPK
equation for these potentials, the numerical results indicate a
very good quantitative agreement for a disordered potential
UG and for a speckle potential US. We display the compari-
son of the numerical data with the DMPK predictions for a
speckle potential in Fig. 8. The same agreement is obtained
for a Gaussian potential UG. Hence, the behavior analytically
predicted for the potential U� appears to be of general valid-
ity, meaning that the above defined regime of phase random-
ization can probably be extended to correlated potentials,

leading to a regime of single parameter scaling. However, we
have noticed that, although showing an overall good agree-
ment with the DMPK prediction, the Lorentzian correlated
potential UL exhibits some deviations in the tail of the dis-
tribution; the details of which will be studied elsewhere.

C. Threshold for the existence of a stationary flow

In the previous sections the main effect of interaction has
been shown to be a renormalization of the localization length
Lloc. Interaction induces a modification of the wave vector:
expression �48� for the localization length coincides with the
noninteracting one but computed for an effective interaction-
dependent wave vector � given by Eq. �14�, instead of k
=mV /�. The repulsive interaction diminishes the available
kinetic energy and therefore reduces the localization length
with respect to the noninteracting case �since ��k�.

We now discuss another, more spectacular, effect of inter-
actions on the localization properties of a propagating BEC
on a disordered potential. In the previous Secs. V A and V B,
we completely neglected the presence of an upper limit for
the classical energy Ecl, which is given by the local maxi-
mum of the effective potential W�A�, namely, Ecl

max=W�A1�
�see Fig. 3�. Trajectories that pass beyond Ecl

max would be-
come unstable and develop singularities with infinitely large
density at X→�. In practice this implies, on the level of Eq.
�1�, that a stationary flow cannot be maintained in this case
and that the disorder induces time-dependent dynamics of
the condensate.

In the vicinity of Ecl
max, the density profile of the conden-

sate in between two adjacent scatterers becomes quite differ-
ent from the cosine shape �17� that was derived for weak
nonlinearities and/or low density modulations and resembles
more to a periodic train of gray solitons �22�. In a crude
approximation, we neglect this complication and assume that
the spatial evolution of the density is still given by Eq. �17�
for all classical energies until Ecl=Ecl

max. Trajectories that
happen to pass beyond Ecl

max are considered to be “lost,” i.e.,
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FIG. 7. �Color online� Probability distribution of the transmis-
sion through a disordered potential U� of type �21� �characterized
by � /b=0.5 and n��=0.5� plotted for different values of the ratio
t=L /Lloc��� with V=30c. The black solid lines are the DMPK result
�69� and the colored histograms correspond to the numerical simu-
lations �50 000 samples used for each value of t�. Cases �a�, �b�, �c�,
and �d� correspond, respectively, to t=0.1, 0.5, 1, and 2. The inset
displays �ln T� as a function of t. The thick solid line is extracted
from numerical simulations and the thin �red� solid line is the
DMPK prediction �70�. They can be distinguished only around
t�2 as shown in the blowup of the �gray� shaded region for
1.9� t�2.
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FIG. 8. �Color online� Probability distribution of the transmis-
sion through a speckle disordered potential US �characterized by
�c /�=0.05 and �=3.13	2�� plotted for different values of the ratio
t=L /Lloc��� with V=13c. Curves �a�, �b�, and �c� corresponds, re-
spectively, to t=0.31, 0.52, and 0.68. For each curve, the black solid
line is the DMPK result �69� and the colored histogram is the result
of 10 000 numerical simulations.
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they do no longer contribute to the probability distribution
for the transmission. This formally amounts to introducing a
“sink” in the stochastic equation �62�, namely, at �=�max
=mEcl

max / �2�2�2�. In the corresponding Fokker-Planck equa-
tion �66�, this sink is appropriately modeled by imposing the
boundary condition

P��max,t� = 0. �72�

As a consequence of this boundary condition, the integrated
probability distribution �0

�maxP�� , t�d� is no longer con-
served, but decreases with increasing t, i.e., increasing length
L of the disorder region.

In the following, we show how this affects the DMPK
predictions of Sec. V B and how the “survival probability,”
i.e., the fraction of trajectories that remain below this bound-
ary at given length L, can be analytically computed in the
limit V�c. In this limit, from Eq. �10� one gets Ecl

max

�mV4 / �8c2� and thus �max�V2 / �16c2��1. Modifications of
the probability density P�� , t� due to the presence of the sink
appear only when the typical value of � is of order �max
which, as just remarked, is large compared to unity in the
case V�c. In this case P�� , t� is already negligibly small
around ��1. We therefore make the approximation �+1
�� in the Fokker-Planck equation �66�, which then reads

�P

�t
=

�

��
��2�P

��
� . �73�

Using, from now on, the probability distribution P�ln T , t�
for finding a given value of ln T at fixed t�L /Lloc, we obtain
in this limit

�

�t
P�z,t� =

�2

�z2 P�z,t� −
�

�z
P�z,t� , �74�

where we introduce z�−ln T. Clearly, the log-normal distri-
bution �71� corresponds to a solution of Eq. �74� in the ab-
sence of any additional boundaries.

In the presence of the sink, which is imposed by the
boundary condition P�zmax, t�=0 with

zmax = ln��max + 1� � ln �max � ln� V2

16c2 , �75�

we can straightforwardly find the solution of Eq. �74� by
subtracting from the log-normal distribution �71� a “mirror”
distribution centered at some z�zmax �namely, 2zmax+ t� with
a suitable prefactor. This yields the distribution

P�z,t� =
1

�4t
�exp�−

�z − t�2

4t
 − ezmax

�exp�−
�z − t − 2zmax�2

4t
� , �76�

which is defined for z�zmax. Clearly, this distribution satis-
fies the evolution equation �74� as well as the boundary con-
dition P�zmax, t�=0 for all t and the initial condition P�z ,0�
=��z� for z�zmax.

The presence of the sink at z=zmax explains a phenom-
enon barely noticeable in Fig. 7, but exemplified in Fig. 9,
namely, the departure of the observed average �ln T� from

the usual DMPK result �ln T�=−t. This departure is due to
the fact that the numerically computed average only takes
into account the stationary solutions which—as will be seen
from Eq. �79�—become less and less numerous when t in-
creases. Hence, what is computed numerically is the average
of ln T=−z over distribution �76�. This reads

�z� = �
−�

zmax

zP�z,t�dz

=
t

2�1 + erf� zmax − t

2�t
�

− ezmax� t

2
+ zmaxerfc� t + zmax

2�t
 . �77�

where the error function is defined by

erf�x� =
2

��0

x

exp�− y2�dy , �78�

and erfc�x�=1−erf�x�.
Expression �77� is compared in Fig. 9 with the results of a

numerical simulation performed in the case V /c=450 �corre-
sponding to zmax=9.43� for 10 000 random potentials U� of
type �21� characterized by n� �=0.5 and � /b=�2 �leading to
Lloc���=100��. The agreement is seen to be very good. Since
the sink cuts the solutions which are strongly scattered by the
random potential, the remaining stationary states have a
higher transmission coefficient. This effect increases with the
sample length L, which explains the behavior of the curve in
Fig. 9.

As another test of the validity of our approach �which
amounts to model the upper boundary zmax by a perfect sink
and to neglect nonlinear deformations of the density pattern
of the flow close to the threshold�, we now determine the
probability for a trajectory to remain below the boundary.
This survival probability reads

0 5 10 15
L / Lloc

−5

−4

−3

−2

−1

0

<
ln

T
>

FIG. 9. �Color online� �ln T�=−�z� plotted as a function of t
=L /Lloc��� in the case of random potentials U� characterized by
n� �=0.5 and � /b=�2. The curve is drawn in the case V /c=450.
The red solid line is the numerical result and the black dashed line
is the analytical result �77�. The straight �thin dashed� line is the
usual DMPK result �ln T�=−t �Eq. �70��.
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Ps�t� = �
−�

zmax

P�z,t�dz

=
1

2�1 + erf� zmax − t
�4t

� −
ezmax

2
erfc� zmax + t

�4t
 .

�79�

As anticipated, Ps�t� clearly decreases from 1 �at t=0� to 0
�for large t�. The knowledge of Ps�t� allows one to determine
the value L� of the length of the disordered region beyond
which most of the random realizations lead to a nonstation-
ary flow of the condensate. We can, most conveniently,
define L� through the condition

Ps�t�� = 1/2, �80�

with t��L� /Lloc. This leads to the implicit equation for the
threshold value t�,

erf� zmax − t�

�4t�  = ezmax erfc� zmax + t�

�4t�  . �81�

This equation can be explicitly solved in the limiting case of
large zmax. As it is natural to assume that t� ought to be of the
order of zmax, which is the only relevant scale in this equa-
tion, we make the ansatz

t� = zmax + �t �82�

and assume �which is to be verified a posteriori� that �t is of
the order of unity, whereas zmax�1. This yields to lowest
nonvanishing order

erf� zmax − t�

�4t�  = −
�t

�zmax

�1 + O�zmax
−1 �� , �83�

for the left-hand side of Eq. �81� and

ezmax erfc� zmax + t�

�4t�  = ezmax
2

���zmax

�

e−y2
dy�1 + O�zmax

−2 ��

=
1

�zmax

�1 + O�zmax
−1 �� , �84�

for the right-hand side of Eq. �81�. This finally results in

�t = − 1 + O�zmax
−1 � . �85�

Neglecting terms of the order of zmax
−1 , we therefore obtain for

the threshold length

L� = �zmax − 1�Lloc = Lloc�ln� V2

16c2 − 1� . �86�

We emphasize that Eq. �86� holds for zmax�1, i.e., for
ln�V2 /16c2��1 �see Eq. �75��. This is much more restrictive
than the condition V�c which is assumed to hold true when
deriving Eqs. �76� and �81�.

Figure 10 shows a comparison of the analytical predic-
tions �79� and �86� with numerical data obtained from the
integration of the time-dependent Gross-Pitaevskii equation
�1�. The condensate flows through a disorder potential U� of
type �21� with V2 /c2=2�105. We see that the fraction of

stationary trajectories Ps�t� is very well described by Eq.
�79�, and that the approximate expression �86� predicts very
well the length L� at which the crossover length from sta-
tionary to time-dependent flow occurs.

For velocities V not extremely large compared to the
speed of sound, the condition zmax�1 will not be fulfilled
and estimate �86� will not be valid, while �max�1 might still
hold and the average evolution of the system might still be
fairly well described by the simplified Fokker-Planck equa-
tion �73�. In that case, the implicit equation �81� has to be
solved numerically. In Fig. 1 one can see that the numerical
solution of Eq. �81� �yellow solid line� provides a very rea-
sonable estimate of the boundary between the bright super-
sonic region �stationary flows� and the dark time-dependent
region, in a regime of not extremely large V /c, where Eq.
�86� fails to properly predict the threshold length L�. The
simulations are performed by solving Eq. �1� numerically
using a potential of type U� �characterized by �U�� /	
=0.025 and n� �=0.5�. For each V and L we consider 100
realizations of such a potential and statistically determine the
quantity Ps, i.e., the fraction of stationary solutions. Ps is
plotted in Fig. 1 using a grayscale �dark, Ps=0; light blue/
gray, Ps=1� as a function of the normalized variables L /�
and V /c �this normalization rescales interaction effects�. The
qualitative agreement of Fig. 1 is made quantitative in Fig.
11. In this figure the numerical solution of Eq. �81� is com-
pared with its determination extracted from numerical simu-
lations in the supersonic regime. More precisely, the solid
�red� line in Fig. 11 is simply the contour Ps=1 /2 in Fig. 1.
This corresponds exactly to definition �80� of L�. The agree-
ment between the numerical result and the theory of the
present section �dashed curve, solution of Eq. �81�� is seen to
be excellent �56�.

We conclude this section by emphasizing that the exis-
tence of an upper threshold L� corresponding to lengths of
the disordered region beyond which most of the flows are
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t = L / L
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FIG. 10. �Color online� Fraction of stationary trajectories Ps�t�
plotted as a function of the length L of the disordered region. The
condensate flow through disorder potentials U� of type �21� was
numerically computed for this purpose �red solid line�, at param-
eters for which V2 /c2=2�105. The black dashed line shows the
analytical prediction of this survival probability Ps�L /Lloc� accord-
ing to Eq. �79�. The vertical dashed line marks prediction �86� for
the threshold length L� at which Ps�L� /Lloc�=1 /2 �horizontal
dashed line�, namely, L� /Lloc=8.433.
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time dependent is a genuine nonlinear effect �absent if one
sets g=0 in Eq. �1��. Actually, whereas interactions only
weakly modify the precise value of the localization length,
the existence of the threshold L� is a remarkable qualitative
effect induced by nonlinearity. Moreover, as illustrated in
Figs. 9 and 10, this effect persists even in the limit V�c
where naively one would expect no noticeable consequence
of interaction.

VI. EXPERIMENTAL CONSIDERATIONS

On the basis of the results obtained in the previous section
we present here what are the more favorable experimental
configurations for observing Anderson localization in an in-
teracting Bose-Einstein beam. We also discuss a possible ex-
perimental signature of localization.

A. Appropriate configurations for observing
Anderson localization

In the noninteracting regime the only condition for ob-
serving Anderson localization in one dimension is that the
size of the disordered region should be larger than the local-
ization length. Then one can observe an exponential decay
of transmission with a log-normal distribution �in the limit
L�Lloc�.

The situation is more complex when interactions are
turned on. What is particularly interesting is the interplay
between localization and superfluidity. Indeed these two phe-
nomena are conflicting one with the other: superfluidity is
the �counterintuitive� ability to pass over an obstacle without
reflection, whereas Anderson localization corresponds to a
large reflection in a domain where one would expect almost
perfect transmission. As a result of the interplay between
these two extreme phenomena, and depending on the fluid
velocity and on the sample size, the flow may be stationary
and superfluid, dissipative and time dependent, or stationary
supersonic �and also dissipative� �14�. Anderson localization
does not occur in the superfluid region �where the transmis-
sion is perfect� and either does not exist or cannot be clearly
identified in the time-dependent regime �where interference
effects are washed out �13��, but is truly observed in the
supersonic stationary regime, as demonstrated in Sec. V.

In that regime, a first experimentally relevant effect is the
modification of the localization length with respect to its
value in the absence of interactions. This effect is very well
described by renormalizing the wave vector k to � �Eq. �48��,
which means that part of the kinetic energy available to the
flow is taken by interactions. However, as already discussed
in Ref. �14� this effect is only sizable in a regime where V is
not too large compared to c and is thus relevant only in the
perturbative regime �cf. Fig. 5�.

A second experimentally observable effect is the modifi-
cation of the localization length due to the correlations of the
disordered potential. This is described by formula �48� where

Ĉ is the Fourier transform of the two-point correlation func-
tion of the disorder. For the different potentials considered

here, Ĉ�1 for a potential U� or is alternatively given by
Eqs. �34�, �35�, and �41� for correlated potentials. Explicitly,
this yields

Lloc��� =
�2

�
, �87�

for a potential U� of type �21�;

Lloc��� =
�2

�
exp	2�2�c

2
 , �88�

for a potential UG of type �25�;

Lloc��� =
�2

�
exp	2��c
 , �89�

for a potential UL of type �25�; and

Lloc��� =
�2

�

1

1 − ��c
. �90�

for a potential US of type �36� �when ��c�1�. The validity
of these expressions has been tested in Sec. V B. In the non-
interacting case �i.e., �=k�, expressions �87�–�90� corre-
spond to a high-energy limit and can be obtained through a
first-order Born expansion within the phase formalism of
Refs. �46,47�. In all three cases, one sees that the localization
length is drastically enhanced due to the nonzero correlation
length with respect to the uncorrelated disorder �Eq. �87��. In
the Gaussian and the Lorentzian cases the localization length
scales exponentially with ���c�2 and ��c, respectively �see
Eqs. �88� and �89��. In the case of a speckle potential, the
effect is even stronger: one sometimes speaks of an “effec-
tive mobility edge” �57,58�, meaning that beyond a critical
wave vector �or a critical velocity� the localization length
�90� is infinite. This is an artifact of the Antsygina-Pastur-
Slyusarev formula �48�, which can be corrected by going to
higher orders �see Refs. �59–61��: the corrections to this re-
sult give a localization length which is finite, but typically
larger than any other relevant scale in experimental systems.

Hence, in all the cases the dependence of the localization
length with respect � �i.e., with velocity� is amplified by
correlations. Mathematically this is due to the fact that the
denominator in the Antsygina-Pastur-Slyusarev formula �48�
for the localization length in the presence of correlations
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FIG. 11. �Color online� L� as a function of V in dimensionless
units. The black dashed line corresponds to the solution of Eq. �81�
and the red solid line corresponds to the value of L� extracted from
numerical simulations for a potential U� with the same characteris-
tics as in Fig. 1 �see the text�.
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tends to zero when ��c�1. In order to minimize this effect
one needs to impose the following condition:

��c � 1 or V � Vc =
�

m�c
= c

�

�c
. �91�

In the r.h.s. of Eq. �91� we replaced � with mV /� because in
practice condition �91� is verified in regimes where V�3c,
i.e., when the approximation ��k is sound. Note that this
condition is arbitrary and is only superficially analogous to
the 3D Ioffe-Regel criterion �62�. The latter defines a true
mobility edge that separates a metallic from a localized
phase, whereas Eq. �91� only requires that the localization
length does not get too large. Understood in this sense, cri-
terion �91� is exactly equivalent to the definition of an effec-
tive mobility edge sometimes used in the literature.

In the absence of interactions it is always possible �at least
theoretically� to define a system with a length L�Lloc which
verifies Eq. �91�; i.e., a system where one can observe Ander-
son localization. If we now turn on interactions, a major
effect is the appearance of a length scale L� which signals the
onset, for L�L�, of a regime of time-dependent flows �cf.
Sec. V C�. In this regime, Anderson localization disappears,
and the time-averaged transmission coefficient scales as 1 /L
�13�. This is the most spectacular effect of interactions in the
transport properties of the system. In order to observe Ander-
son localization, the system size should therefore satisfy
Lloc�L�L�. In practice, one should be in a regime of pa-
rameters such as illustrated in Fig. 12: the crossing L��Loc
has to occur at a velocity lower than Vc.

Based on the numerical solution of Eq. �81� one can show
that the crossing L��Lloc occurs at a velocity V��7.95c
�63� �see also Fig. 1�. This condition only allows the system
to reach a �stationary� regime where L=Lloc. But if one wants
to observe Anderson localization one should be able to reach
a regime where, say, L��L�2Lloc, in order to get as close as
possible to the domain of log-normal distribution of trans-
missions still remaining in the region of stationary flows.
This imposes V /c�20. This must be supplemented by con-
dition �91�, i.e., V /c�� /�c. Hence, the correlation length �c
should be smaller or equal to � /20. Figure 13 shows the

phase diagrams of a one-dimensional interacting beam of
condensed atoms moving through a speckle potential in this
regime. For plotting this diagram, one has generated 16 ran-
dom potentials and studied in each case if a stationary solu-
tion exists or not. The dark blue region corresponds to a
domain where no stationary solution exists while the light
blue one corresponds to a domain where all the potentials
admit a stationary solution �the color code is the same as in
Fig. 1 and is explained in Sec. V C�. The region between Lloc
and L� in Fig. 13 is the region where one can observe Ander-
son localization.

Let us now evaluate the orders of magnitude of the dif-
ferent parameters allowing one to reach the appropriate re-
gime. For concreteness we consider a beam of 87Rb atoms
such as the one of the Atom Optics Group at Laboratoire
Charles Fabry de l’Institut d’Optique. For a correlation
length of 0.26 	m the velocity cutoff for observing Ander-
son localization is roughly Vc�2.7 mm /s. Note that in Ref.
�2� the velocity of the expanding condensate is about 1.6
mm/s, i.e., smaller that Vc as it should. If we use the param-
eters of Ref. �64� �an1�0.25, V�9 mm /s, a=5.3 nm, n1
=45 atoms /	m, c�0.9 mm /s, and ��0.8 	m� it is im-
possible to satisfy condition �91� because V�9 mm /s�Vc
and also because �c /��0.3. However, the Atom Optics
Group has recently improved the sensitivity of its detectors,
which is now close to being able to detect a density as small
as 1 atom /	m. This allows one to work with a smaller den-
sity and to improve the ratio �c /�, which can be tuned down
to the value of 0.05. Then, the localization length can be
selected by tuning the speckle amplitude. For instance Lloc
=0.25 mm can be obtained by choosing �Us�=34 Hz at V
=1.6 mm /s. These parameters are close to those used in Fig.
13 and are reachable experimentally. However, for observing
Anderson localization one needs to keep the beam stable for
almost 1 s �0.31 s if we want L=2Lloc�, whereas in the cur-
rent experiment this is only possible during 0.1 s; hence, it is
still a matter of debate to decide if the observation of Ander-
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FIG. 12. �Color online� Schematic phase diagram in arbitrary
units. The �blue� dashed line is the localization length Lloc and the
solid line is the threshold length L�. Vc=� /m�c is the typical veloc-
ity beyond which it is almost impossible to observe Anderson lo-
calization in a realistic system �see text�. The �blue� colored zone
corresponds to the region where Anderson localization can be ex-
perimentally observed in presence of interaction.
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FIG. 13. �Color online� Phase diagram displaying the fraction of
stationary trajectory Ps for a beam with velocity V moving in a
speckle disorder of extent L. The figure has been drawn for a po-
tential US of type �36� characterized by �c /�=0.05 and �
=3.93	2�. The light blue region corresponds to a domain of station-
ary flow �Ps=1: 100% of the solutions are stationary; see the ex-
planation in the text�; the dark region corresponds to time-
dependent flow. The curves indicating the values of Lloc and L�

correspond to the analytical results �90�and to the numerical solu-
tion of Eq. �81�.
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son localization of a Bose condensed beam in the presence of
interaction is within the reach of present-time technology.

It is also interesting to make a connection between the
physics described here and the recent experiment observation
of Anderson localization of a condensate expanding in a dis-
ordered potential performed in the same group �2�. Contrar-
ily to the propagation of a beam studied in the present work,
Ref. �2� considers the spreading of a wave packet �initially at
rest� in a speckle potential. After a first stage of expansion,
mainly driven by interactions, the experimental cloud ex-
pands with a constant velocity V�1.6 mm /s but the particle
density and the sound velocity are functions of the position.
Therefore, it is not possible to place this experiment on a
single point of the phase diagram displayed in Fig. 13. How-
ever one can evaluate the ratio V /c at different positions—
that is, at different L. For instance, at the typical value L
=Lloc, Fig. 2 of Ref. �2� allows one to calculate the sound
velocity as well as the healing length �, yielding the typical
experimental values V /c�12 and L /��55. Moreover, the
ratio between the typical disorder amplitude �US� and the
chemical potential 	=gn0 is the same in Fig. 13 and in ex-
periment: �US� /	=5 �note however that in the experimental
case this is the value of the local chemical potential that
matters�. Hence, although the experimental setup of Ref. �2�
forbids a direct comparison with the results of the present
work, the estimates of the typical values V /c�12 and L /�
�55 indeed locate the experimental system within the
regime of Anderson localization of Fig. 13.

B. Experimental signature

Once the appropriate regime of parameters for observing
Anderson localization in a Bose condensed beam has been
determined, it is also important to identify possible experi-
mental signatures. In our theoretical approach we use the
transmission coefficient T of the beam over the disordered
region as the relevant parameter. However, the measure of T
might be experimentally involved, and we propose here to
use another related quantity, namely, the rate of energy dis-

sipation �27� Ė=−VFd, where

Fd = �
R

dx n�x,t�
�U

�x
�92�

is the drag force exerted by the beam on the obstacle. Defi-
nition �92� is quite natural: the force exerted on the obstacle
is the mean value of the operator �xU over the condensate
wave function. It is rigorously justified by the analysis of
Ref. �65� in terms of stress tensor. In the stationary case,
changing integration from x to X in Eq. �92�, a simple inte-
gration by parts yields

Fd = − n0�
R

U
dA2

dX
dX = n0�Ecl

− − Ecl
+ � . �93�

In the r.h.s. of Eq. �93� we made use of relations �5� and �7�.
It has been shown in Sec. III B that Ecl

− =0 and that under
assumption �11� �small nonlinearity and arbitrary transmis-
sion or weak transmission and arbitrary nonlinearity� one has
�see Eqs. �16� and �20�� Ecl

+ =2�2�2 /m�R /T�, which yields

Fd = −
2�2�2

m
n0

R

T
. �94�

In the regime R�1, using Eq. �44� one recovers from Eq.
�94� the perturbative result already obtained in Ref. �65�:
Fd=−2n0m�Û�2���2 /�2 �66�.

The physics embodied in Eq. �94� is rather simple and it is
worth spending some time to discuss it. Consider an incident
beam of particles with density ninc and momentum p=−��
moving from +� toward an obstacle at rest. Part of the par-
ticles is transmitted �a fraction T� and the other part is re-
flected �a fraction R�. The collisions are elastic and each of
the reflected particles experiences an exchange of momen-
tum �p=2�� with the obstacle. During a time �t there are
Ncoll collisions and by the law of action and reaction the
obstacle experiences a force

Fd = − Ncoll
�p

�t
= −

2�2�2

m
nincR . �95�

In the r.h.s. of Eq. �95�, one has written that Ncoll /�t is the
flux of particles colliding with the obstacle, i.e., ��

m Rninc.
Equations �94� and �95� are identical because what we call n0
is the downstream density of the beam �cf. Fig. 2�, i.e., pre-
cisely Tninc. Depending on which quantity is held constant
�n0 as in the present paper, or ninc�, Eq. �94� or Eq. �95� is
more appropriate �cf. the discussion of the fixed input and
fixed output problem in Ref. �32��. This is somewhat remi-
niscent of the controversy on the correctness of the Landauer
formula �see, e.g., the discussion in Ref. �67��.

On the basis of Eq. �94� one sees that the measure of Ė
gives direct information on the transmission of the interact-
ing beam through the disordered region, allowing one to re-
veal in which configuration is the system. For instance, in the
localized regime the energy dissipation is high ��1 /T� and
grows exponentially with the size L of the disordered region,

whereas in the perturbative regime Ė is much lower and
scales as L.

VII. CONCLUSION

In the present work we have presented an analysis of the
transmission of a weakly interacting Bose gas incident on a
disordered potential. We have shown on the basis of numeri-
cal and analytical results that there is a regime of Anderson
localization in this system and proposed experimental signa-
ture of this phenomenon. In order to properly identify a “lo-
calized regime,” we have studied the transmission coefficient
and its probability distribution. The transmission coefficient
T is well defined under assumption �11�, which holds in the
following regimes: �i� small nonlinearity and arbitrary trans-
mission or �ii� weak transmission and arbitrary nonlinearity.
In other cases there is no obvious way to define the trans-
mission of the nonlinear beam because one cannot separate
in the upstream region an incident flow from a reflected one.
However, our analysis in terms of Ecl and � �defined in Sec.
III B� is always valid, even when condition �11� is not ful-
filled. This just means that, out of regime �11�, the connec-
tion �20� between � and T is invalid. But, for instance, this
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does not invalidate at all the analysis leading to the DMPK
equation �66�, and the experimental signature proposed in
Sec. VI B also remains valid even when it is not possible to
properly define T.

We note that the validity of the DMPK approach for non-
interacting particles is a well-established fact in the theory of
disordered systems. What is achieved in the present work is
its extension to the case of interacting particles. Other studies
of Anderson localization in the presence of interactions have
concentrated on the long-time behavior of the time evolution
of initial wave packets �68�. Although those results are still a
matter of active debate in the community, the results of the
present work produce strong evidence of the existence of
Anderson localization for weakly interacting Bose particles
�with effective repulsive interaction� propagating through
disordered samples of finite size L�L�.

Although the present study leads to the important conclu-
sion that Anderson localization in the presence of interaction
is possible, it is rather disappointing to remark that it can be
clearly identified only when V�20c, i.e., in a regime where
interactions do not play a major role �see the discussion of
Sec. VI A and also Ref. �14��. In this respect, the more in-
teresting effect of interactions is the existence of an upper
threshold L� for the length of the disordered region: for L
�L� no stationary flow is possible. As shown in Sec. V C, L�

is directly connected to the probability distribution of the
parameter � and to the localization properties of the system.
It would be very interesting to lead a systematic study of the
transmission in the interaction-induced time-dependent re-
gime �L�L�� where the numerical results of Ref. �13� indi-
cate a power-law decay of the time-averaged transmission, a
signature generally considered as of loss of phase coherence,
and onset of Ohmic behavior �69,70�. Work in this direction
is in progress.
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APPENDIX A: DISTRIBUTION OF REFLECTION
COEFFICIENTS IN THE PERTURBATIVE CASE

FOR A POTENTIAL OF TYPE (25)

We give here a demonstration of the perturbative results
�46�–�48� in the special case of a Gaussian disordered poten-
tial Ug of type �25�. A simple way to obtain this results starts
by noticing that any Gaussian noise verifying ���x��=0 and

���x���x���=��x−x�� �and here we are specifically interested
in ��x� that appears in Eq. �25�� can be written as �see, e.g.,
Ref. �71��

��x� = lim
 →�

1
� �

j=−�

+�

! j��x − Xj� , �A1�

where Xj’s are random positions uniformly distributed on the
real axis with density  and mean spacing 1 / , and ! j = �1
is a random variable �with �! j�=0 and �!i! j�=�ij�.

In order to calculate the probability distribution of the
reflection coefficient R �whose value is given by Eq. �44��
one should first consider the distribution of

Ûg�2�� = �
R

dx Ug�x�e2i�x = lim
 →�

�2��
m

ŵ�2��
� �

j=0

 L

! je
2i�Xj .

�A2�

The quantity Ûg�2�� as given by Eq. �A2� is formally
equivalent to the position z of a particle performing a random
walk in the complex plane after N= L iterations. The par-
ticle is initially at the origin and performs jumps of constant
amplitude s= ��2 /m��ŵ�2����� / with random direction. De-
noting by d2P= p�z ,N�dxdy the probability to find the par-
ticle in the domain dxdy around z after N steps, if N�1
�which is ensured by taking the limit  →� in Eq. �A2��, the
central limit theorem yields

p�z,N� =
1

Ns2exp�−
�z�2

Ns2 . �A3�

It is then a simple exercise to get the distribution of �z�2. One
obtains

P��z�2,N� =
1

��z�2�
exp�−

�z�2

��z�2�� , �A4�

where

��z�2� = s2N = ���2/m�2�ŵ�2���2L . �A5�

From relation �44�, Eq. �A5� immediately yields the an-
nounced probability distribution �46� with

�R� =
m2

�4�2 ��z�2� =
�L

�2 �ŵ�2���2. �A6�

For a potential Ug of type �25�, �ŵ�2= Ĉ �see Eq. �30�� and
Eq. �A6� demonstrates in this case the validity of Eqs. �47�
and �48�.

APPENDIX B: DERIVATION OF THE
DMPK EQUATION (66)

In this appendix, we explain how to obtain the DMPK
equation �66� starting from the discrete Langevin equation
�62�. Let us consider a generic situation where �n obeys a
stochastic recursion relation of the type

�n+1 − �n = F��n,�n� , �B1�

with uncorrelated random variables �n,

PAUL et al. PHYSICAL REVIEW A 80, 033615 �2009�

033615-16



��n1
�n2

¯ �nN
� = CN �n1n2

¯ �n1nN
. �B2�

It is clear that, under assumption �63�, Eq. �62� is of type
�B1� with all the odd N averages in Eq. �B2� being zero and
C2=1 /2 �cf. Eq. �64��.

Let P�� ,n�d� be the probability that �n lies in the interval
�, �+d�. One can express P�� ,n� as

P��,n� = ����n − ��� =��
R

dk

2
eik��n−��� . �B3�

This yields

P��,n + 1� − P��,n�

=��
R

dk

2
eik��n−���eikF��n,�n� − 1��

= �
�=1

�
�− 1��

�!

��

����F���n,�n��
R

dk

2
eik��n−���

= �
�=1

�
�− 1��

�!

��

��� �F���,�n����n − ��� . �B4�

Using the fact that �n depends on the variables �1�2 , . . . ,�n−1
but not on �n �as can be seen directly from Eq. �B1�� one can
write the last of Eqs. �B4� as

P��,n + 1� − P��,n� = �
�=1

�
�− 1��

�!

��

��� 	�F���,�n��P��,n�
 .

�B5�

In the case of Eq. �62� one has F�� ,��= �1+2�� /�2b2

+2��2+��1/2� /�b and the successive moments of F read

�F��,�n�� =
1 + 2�

�2b2 , �B6�

�F2��,�n�� =
2��2 + ��
�2b2 + O� 1

�4b4 , �B7�

with all the other moments being of order 1 / ��3b3� or more,
i.e., negligible in regime �60�. Equation �B5� thus reads

�2b2�P��,n + 1� − P��,n��

= −
�

��
��1 + 2��P� +

�2

��2 ���2 + ��P�

=
�

��
���� + 1�

�P

��
� . �B8�

In the continuous limit, defining t=n / ��2b2�, the l.h.s. of Eq.
�B8� is simply the first derivative of P with respect to t, and
Eq. �B8� reduces to Eq. �66� of the main text.
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