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Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates
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We apply the microscopic Bogoliubov theory of dilute Bose-Einstein condensates to analyze quantum and
thermal fluctuations in a flowing atomic condensate in the presence of a sonic horizon. For the simplest case of
a step-like horizon, closed-form analytical expressions are found for the spectral distribution of the analog
Hawking radiation and for the density correlation function. The peculiar long-distance density correlations that
appear as a consequence of the Hawking emission features turns out to be reinforced by a finite initial
temperature of the condensate. The analytical results are in good quantitative agreement with first principle

numerical calculations.
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I. INTRODUCTION

Thanks to the impressive advances in the cooling and ma-
nipulation of ultracold atomic gases, experiments are now
able to address regimes where the physics of coherent matter
wave is strongly affected by zero point quantum fluctuations
[1-5]. In particular, Bose-Einstein-condensed (BEC) atomic
vapors appear as a versatile and efficient tool for observing a
very fascinating manifestation of quantum fluctuations,
namely, Hawking radiation from acoustic black holes, the
so-called dumb holes [6,7].

Hawking radiation is a most celebrated, yet still unob-
served prediction of quantum field theory on curved space
times, which consists of the conversion of vacuum fluctua-
tions into observable radiation in the vicinity of a black-hole
horizon [8]. Elaborating on the mathematical analogy be-
tween the propagation of sound waves in inhomogeneous
and moving media and the propagation of quantum fields on
a curved space-time background, Unruh predicted in 1981
the occurrence of an analog Hawking emission of sound in
any system showing a sonic horizon, i.e., an interface be-
tween a subsonic and a supersonic region [9].

Very recently, the experimental realization of a dumb-
hole-like configuration in a flowing atomic Bose-Einstein
condensate was presented in Ref. [10]. From a more general
standpoint, a dumb-hole configuration for surface waves on a
tank of moving water was realized in [11]: the reported ob-
servation of the conversion of positive-frequency waves into
negative frequency ones can be considered as a classical ana-
log of the Hawking effect [12]. The observation of a horizon
in a microstructured optical fiber was reported in [13]. The
possibility of simulating acoustic black holes using a ring-
shaped chain of trapped ions was considered in [14].

So far, much of the theoretical work on the analog Hawk-
ing radiation in atomic Bose-Einstein condensates has used
some gravitational analogy to characterize the properties of
the emission. Our point of view is different and aims at de-
veloping a microscopic understanding of analog Hawking
radiation starting from the general theory of quantum fluc-
tuations in condensed matter systems and without referring
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to any gravitational analogy. A similar approach has been
adopted in the few last years by other researchers: A first step
in this direction can be found in Ref. [7] where a general
theory of analog Hawking radiation based on Bogoliubov
theory is presented but no detailed analysis of the observable
consequences is carried out. This point of view has been
pushed further in the very recent papers [15,16], where the
general framework is developed in full detail and numerical
results for some observable quantities are also discussed for
the case of a smooth subsonic to supersonic flow transition.

In the present paper, we report a completely analytical
study of Hawking radiation from dumb holes in atomic
Bose-Einstein condensates. Our calculations are based on a
direct application of the standard Bogoliubov theory of dilute
condensates and no explicit reference is ever made to the
gravitational analogy. In order to make the problem analyti-
cally tractable, we consider a simplest step-like configuration
where the transition between the subsonic to the supersonic
regions occurs on a very short length scale. Even if the sur-
face gravity of this configuration is formally infinite, still a
thermal-like Hawking emission is found at a temperature
fixed by the healing length. Closed analytical formulas for
the density correlations are extracted, which are found in
excellent agreement with the numerical simulations of [17].
These results extend the analytical understanding of the ana-
log Hawking radiation to the sharp interface limit opposite to
the hydrodynamic regime previously considered in the litera-
ture. Even if the singularity at the step makes the analogy
with gravitational physics strictu sensu no longer valid, still
the remarkable properties of the resulting emission support
our choice of calling it analog Hawking radiation.

The paper is organized as follows. In Sec. II, we present
the physical system under consideration and we review the
Bogoliubov description of quantum fluctuations in the pres-
ence of a sonic horizon. In Sec. III, we derive analytical
formulas for the main observable quantities such as the emis-
sion spectrum and the density correlation function. These
formulas are shown to successfully compare with the nu-
merical results of [17]. The effect of a finite initial tempera-
ture is discussed. Conclusions are drawn in Sec. IV.
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FIG. 1. (Color online) Sketch of the one dimensional dumb-hole
configuration considered in this paper. A BEC is flowing in the
positive x direction. The horizon is located at x=0. The flow is
uniform in the asymptotic regions far from the horizon, with a
velocity, which is subsonic in the upstream region and supersonic in
the downstream one. The wiggly arrows illustrate one among the
different scattering processes described by Eq. (10): an incident u-in
wavepacket is partially reflected onto the u-out branch and partially
transmitted on the d1-out and d2-out branches. The chosen labeling
of the modes is explained in the text and illustrated in Fig. 2.
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II. PHYSICAL SYSTEM AND THE BOGOLIUBOV
DESCRIPTION

The system we consider is sketched in Fig. 1. A Bose-
Einstein condensate is flowing along a one-dimensional
atomic waveguide. For simplicity, the transverse trapping is
assumed to be tight enough for a one-dimensional descrip-
tion to be accurate. The flow velocity is directed along the
positive-x direction, v(x) > 0. The density profile n(x) and/or
velocity field v(x) of the condensate show a significant spa-
tial modulation in the region around x=0. Far from this in-
terface region, both the density and the flow velocity tend to
their up-stream (x—-o) and down-stream (x— +%)
asymptotic values n,, ; and v, 4. The flow is kept stationary in
time by means of a suitable external potential V,,(x) and/or
spatial modulation of the atom-atom interaction constant
g(x), so that the condensate wave function (x) is a solution
of the stationary Gross-Pitaevskii equation

hZ
Hepipy=| - E‘ﬁ + Vexd0) + 80|t | o = iy, (1)

at a chemical potential w. A dumb-hole configuration is re-
alized when the up-stream region is subsonic v, <c, and the
down-stream region is instead supersonic v,>c,. Here, ¢, 4
=\gy. My q/m is the speed of sound and g, ,=g(x ——0°,+x)
are the asymptotic values of the interaction constant in the
u, d-regions, respectively. For later purposes, we also
present the corresponding upstream (downstream) healing
length &, ,=#/(mc, ), chemical potential ,u,u!d=mci,d, and
condensate wave vector k, ,=muv, 4/ .

In this dumb-hole configuration a sound wave emitted in
the down-stream region is dragged away by the flow without
being able to reach the up-stream region. The down-stream
region is thus the sonic analog of the interior of a gravita-
tional black hole, and the transition point where the velocity
of the flow is exactly equal to the speed of sound is the
analog of the event horizon. We conventionally locate this
point at x=0.

Provided the condensate is everywhere dilute n(x)&(x)
> 1, small fluctuations on top of the condensate can be de-
scribed by the Bogoliubov theory of dilute condensates [18].
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FIG. 2. (Color online) The Bogoliubov mode dispersion rela-
tions (4) in the asymptotic upstream (left panel) and in the down-
stream region (right panel). Solid (dashed) lines correspond to
modes with a positive (negative) Bogoliubov norm.

In particular, the elementary excitations correspond to the
eigenvectors of the Bogoliubov operator:

(Hcp — o+ gl gl ) @)
- g —Hgp+p—gltnl* )

A. Bogoliubov modes in a homogeneous system

Within each homogeneous u, d region far from the inter-
face, the eigenvectors of operator (2) at an eigenenergy iw
are plane waves of the form

u(x) | [ #x)etud )_ ikx( U et )
(W(}C) ) B <\/T/(x)e_iku,d)‘ =¢ Wke_iku,dx . (3)

The wave vector k and frequency w satisfy the Bogoliubov
dispersion relation w=wg (k) with

. / 1
w]; (k) = vu,dk * Cu,dk 1+ Z(kgu,d)z- (4)

As usual in Bogoliubov theory [18], the upper (lower) sign in
Eq. (4) refers to the positive (negative) norm branch, for
which |Uk|2_|Wk|2=+l(_1)-

Let us restrict our attention to the positive frequency
modes (w>0). The negative frequency modes can in fact be
obtained from the positive frequency ones by simply revert-
ing the sign of k and exchanging the values of the Bogoliu-
bov coefficients U and W; corresponding modes then have
opposite norms.

In the up-stream subsonic region, for any w>0 there are
two positive norm modes satisfying the Bogoliubov equation
w=wy(k) with real wave vectors k', kK, respectively. These
modes correspond to propagating plane waves. In the Bogo-
liubov dispersion shown in Fig. 2 (left panel), they corre-
spond to the branches indicated as u-in and u-out. Through-
out the whole paper, modes will be labeled as in-going (“in”
if their group velocity v,=dw/dk points toward the horizon
and out-going (“out”) in the opposite case. In addition to the
positive norm modes, a second pair of negative norm of
modes exist with complex wave vectors satisfying the Bogo-
liubov equation w=wg(k): these correspond to exponentially
growing or decreasing evanescent waves [19].

In the down-stream super-sonic region, two positive-norm
real solutions of the Bogoliubov dispersion at klj, and k'
exist for any w>0: In the Bogoliubov dispersion of Fig. 2
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(right panel), these wave vectors correspond to the d1-in and
dl1-out branches. On the other hand, two cases have to be
distinguished in the negative norm sector, depending on
whether  is larger or smaller than the critical value ()
=wy(K) with K defined by

2 2

v [%P] Uy
KP=-2+—%4+ L [8+-4 5
(&aK) 2c[2, 2¢y 2 ©)

d

A pair of real solutions £, and k33 to the negative-norm
dispersion relation w=wp(k) exist as long as w<{) and cor-
respond to the d2-in and d2-out branches of Fig. 2 (right
panel). The critical frequency () is the maximum of the d2-in
and d2-out branches. For w>(), these real solutions are
again replaced by a pair of complex solutions corresponding
to evanescent waves. Of course, the d2 branches do not exist
if the condensate flow is everywhere subsonic.

B. Scattering solution

Far from the interface, the generic eigenfunction of the
Bogoliubov operator (2) at a frequency w is built by super-
imposing within each u, d region all available propagating
(that is nonevanescent) plane waves at the given frequency
w:

i) | E(Uk;n) A
VT/()C) wd iein Wki.n |1n|

Ukout E k;)m ut

0ut
Jjeout ‘/VkOllt \’47T| w.d

Here, plane waves have been separated into 1n-going (in) and
out-going (out) ones according to the sign of their group
velocity. Most remarkable among these solutions are the so-
called scattering solutions, that describe a plane-wave exci-
tation originating from infinity (either upstream or down-
stream) on a well-defined in-going mode, impinging on the
horizon, and then leaving again towards infinity as a super-
position of the different out-going branches: only a single
in-going B;" amplitude is then nonvanishing, while two (if
w>Q) or three (if <)) out-going ,8;-"“ components have a
finite value, describing reflected and transmitted waves.

As a specific example, in the case where the in-going i
=d1,d2 wave originates from the down-stream region, the
scattering solution has the form

( IZ(X) ) ( Uki_n ) eikihx Bin
w(x) J Wk%“ \/47T|vi'ji| '

Ukoul e k;’m
+ E /=B(])m’ (7)

t
jeout Wkout \'4’7T|l)Ou

in the down-stream region and the form

) (G
w(x) . Wk::“‘ Varlv °”t| '

in the up-stream region. The two out-going components in
Eq. (7) correspond to the reflected part in, respectively, the
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dl and d2 channels; of course, a d2 component can only be
present if w<<{). On the other hand, only a single outgoing
transmitted component is present in the upstream region.
Similar expressions can be straightforwardly written in the
case where the in-going u-in wave originates from the up-
stream region.

The expressions (7) and (8) based on the plane-wave ex-
pansion are only valid in the asymptotic regions far from the
interface. For any given realization of the dumb-hole con-
figuration the complete scattering solution for all x can be
obtained by solving the full Bogoliubov problem (2). A nu-
merical solution for the case of a smooth interface was pre-
sented in [16]. An analytical solution for a simplest step-like
case will be presented in Sec. II C. A

In general, the linear relation between the amplitudes G}
and B;"" of in- and out-going waves can be written in a
compact matricial form [7]. In the case of a generic flow that
remains subsonic in both asymptotic regions, as well as for
®>() in a dumb-hole configuration, this relation has the
two-by-two form:

ut in
i (@) B, (w)
( w, | =Sl@)| o : )
1 (@) (@)
which only involves positive-norm modes. On the other
hand, the negative-norm d2 mode appears as soon as fre-

quencies w<<{) are considered. In this case, the matricial
relation has the three-by-three form:

B (w) Bl (w)
(@) | =S(w)| Bii(e) |. (10)
ﬂZS‘(w) dz(w)

With the chosen normalization of the solution (6), the S
matrix connecting the B coefficients in the asymptotic re-
gions is unitary in the Bogoliubov metric 7 inherited by the
norm of the corresponding plane-wave modes

S(@)'78(w) = 7. (11)

More specifically, n=diag(l,1,-1) in the case w<(),
whereas 7 is just the standard 2 X2 identity matrix #
=diag(1,1) for o> Q.

Physically, the square moduli [S;|* of the S-matrix ele-
ments give the transmission/reflection coefficients for a
Jj-ingoing mode which scatters into an i-outgoing mode. The
property (11) ensures total-energy conservation. It is interest-
ing to note that a closely related approach was used in the
context of quantum evaporation from superfluid “He [20].

As an illustrative example, for each quantum that incides
on the system from the d1 in-going mode with an energy fiw,
one has |S,,;;|? transmitted quanta in the u-out mode, S, ,|*
reflected quanta in the d1-out mode, and |S | quanta re-
flected in the d2-out mode. While the energy of the transmit-
ted u-out and reflected d1-out quanta is positive and equal to
hw, the energy of a quantum of the d2-out Bogoliubov mode
is negative and equal to —fiw [18]. As a result, energy con-
servation then recovers the unitarity condition 1=[S,,|*

+ |Sd1d1|2_ |Sd2d1|2-
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C. Step-like geometry

All the theory reviewed so far is not limited to a particular
realization of dumb-hole and can be applied to generic con-
figurations as long as the density and flow velocity tend to
constant values in the asymptotic regions far from the inter-
face. A numeric solution for a smooth interface was indeed
reported in [16].

In the present paper, we restrict our attention to a model
step-like structure with Ve, (x)=V" O(-x)+ V¢ O(x) and
g(x)=g,0(-x)+g,0(x) for which analytical formulas for the
components of the S-matrix can be found in closed form. As
usual, O is here the Heavy side step-function. Provided one
imposes [17]

Vtetxt+ILLu=Vth+lu“d7 (]2)

the time-independent Gross-Pitaevskii Eq. (1) has a solution
in the plane-wave form

Yo(x) = Vg explikyx), (13)

that describes a flow with uniform density n, ,=n, and ve-
locity v, 4=vo=%iky/m. If one chooses c,;<vy<c,, a dumb-
hole configuration is obtained. The value of the potential
jump V* —V¢ is then fixed by the condition (12). This
model configuration has the remarkable advantage of allow-
ing for analytical insight without having to solve any differ-
ential equation. In a future publication we will present the
analysis of other realistic dumb-hole configurations [21].

In the step like geometry, the expressions (7) and (8) for
the scattering solution can be extended to the whole x>0
and x<<0 regions simply by including evanescent modes as
well [19]. A complete scattering solution is then formed by
the superposition of five two dimensional column vectors of
the form (3): one of these corresponds to the incoming (i
=u,dl,d2) mode and the four others are outgoing waves
(two reflected and two transmitted). Depending on the value
of w, some of the outgoing waves may be evanescent: in this
case, between the two conjugate complex wave vectors that
solve the Bogoliubov dispersion Eq. (4), only the wave vec-
tor value giving an exponentially decaying wave at large
distance from the horizon has to be considered.

Across the step structure at x=0 the column vector eigen-
function of £ and its first derivative have to be continuous.
This provides the four matching conditions that are neces-
sary to determine the amplitudes of the four outgoing waves
as a function of the amplitude B;" of the in-going i one. The
coefficients of the non evanescent outgoing waves corre-
spond to the matrix elements S;; with j=u, d1, d2. As usual,
the d2 element only exists for > (). Note that correct in-
clusion of the evanescent waves is here crucial to be able to
fulfill the four matching conditions.

D. Transmission and reflection

The typical behavior of the scattering coefficients for a d1
ingoing wave is plotted in Fig. 3 as a function of the fre-
quency w. For @>(), the transmitted u-out wave and the
reflected d1-out wave are only present. As usually expected
in wave mechanics, the transmission (reflection) coefficient
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FIG. 3. Transmission and reflection coefficients for a d1 in-
going mode on a step-like dumb-hole configuration. |S,;|?> (dotted
curve) corresponds to the transmission on the u-out mode; [S;;4[?
(solid curve) and |S 41| (dashed curve) correspond to the reflec-
tion on the d1-out and d2-out modes, respectively. The parameters
vo/c,=0.75, vo/cy=1.5 used here are the same as in Ref. [17].
Above Q (Q/u,=0.316 for the chosen set of parameters) one re-
covers [insets (a.1) and (a.2)] the usual case of a single transmitted
(u-out) and a single reflected (d1-out) waves, respectively. Inset (b)
displays a comparison of the exact |S;,|*> coefficient (solid line)
with its low energy approximation (14) (dot-dashed line).

increases (decreases) as a function of w, see the insets (al)
and (a2). Energy conservation imposes that the sum of these
two coefficients is always equal to unity.

For w< ) also the (negative norm) reflected mode d2-out
is involved in the dynamics. Remarkably, all three scattering
coefficients diverge as 1/w in the low w limit. Nonetheless,
energy conservation is ensured by the »-unitarity of the
S-matrix, which now imposes |S,;11>+|S41411*=[Spa|*=1.

Straightforward algebraic manipulations lead to a simple
analytical formula for the reflection coefficient in the low-w
limit,

|Sdldl|2 =

_<><>(__)L (14)

Ca (Cu + UO) (Cu + Cd) 3 2hw '

ci c
the excellent agreement between this low-energy approxima-
tion and the exact Bogoliubov result is apparent in Fig. 3(b).

The wave mechanics encoded in the S-matrix is physi-
cally illustrated in Fig. 4 where we show the result of a
numerical solution of the time-dependent Gross-Pitaevskii
equation that describes the scattering of a incident d1 in-
going wave packet (upper panel) onto the black hole horizon.
For a low initial energy, the in-going wave packet splits into
a u-out transmitted one (central panel), and a pair of d1, d2
reflected ones: Among these, the bigger and slower wave
packet corresponds to the negative-norm d2-out mode, while
the other one corresponds to the d1-out mode. As expected,
for an in-going wave-packet energy above () [lower (c)
panel], only the u transmitted and the d1 reflected wave
packets are visible. A related phenomenology was experi-
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FIG. 4. (Color online) A d1 ingoing wave packet is incident on
a step-like sonic horizon located at x=0 (upper panel). When the
central frequency omega of the wave packet is smaller that Omega,
a single transmitted u wavepacket and two d1, d2 reflected wave
packets are visible (middle panel). A single u transmitted and a
single d1 reflected wave packet are instead visible for w > () (lower
panel). Same system parameters as in Fig. 3. Wave-packet carrier
wave vector g&,=—1.2 (upper and middle panels), g&,=-1.35
(lower panel).

mentally observed for surface waves in a water tank in [11]
and theoretically discussed in [14] for a chain of trapped
ions. In [22], this negative norm reflected mode was inter-
preted in terms of a bosonic analog of Andreev reflection.

E. Quantization of the modes

In the presence of a macroscopically occupied conden-
sate, the full Bose field operator can be expanded as

P(x) = ) + SY(x). (15)

The coherent condensate is described by a classical field
that evolves according to the Gross-Pitaevskii equation.

Quantum fluctuations are described by the operator term Sy
whose dynamics is ruled by the Bogoliubov operator (2).

A most favorable basis to our purposes consists of the
scattering solutions at a given frequency  that we have
discussed in Sec. II B. Within each w subspace, the three
scattering modes corresponding to the I=u, dl, d2 in-
going modes form an orthonormal basis (of course, one has
to restrict to I=u, dl for w>()) in the Bogoliubov
n-metric,

f dx[ulw(x)*ulw’(x) - W;w(x)ij/(x)] = 515115(0) -o'),

(16)

f dX[M[w(x)ijr(x) - Ulw(x)ujw’(x)] =0. (17)

The s, coefficient gives the sign of the Bogoliubov norm of
the mode: in our case, one has s;=+1 for I=u, dl and
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s;=—1 for I=d2. Spatial integration is over the whole space.

The final form of the quantum field is obtained by the
standard Bogoliubov quantization prescription [18]: the am-
plitudes corresponding to positive-norm modes become de-
struction operators while amplitudes of negative-norm
modes become creation operator,

Slx) = f do 2 [u,(0)d () +wy,(0)d ()]
0

I=u,dl

+ f dolug ,(x)a) (@) + W) ,(Ddgp(w)].
0

(18)

Expectation values of physical observables (e.g., the density
correlation function) are then straightforwardly evaluated by
imposing the suitable boundary conditions on the expectation
values of products of in-going operators, @; and d;.

If one is interested in correlation functions involving the
out-going modes only, a reformulation of Eq. (18) in the
input-output language [23] can be used, as proposed in [7].
In our case, the input-output relations consist of a linear re-
lation connecting the operators of the out-going modes

A

b,.a1.4 to the in-going a, 41 4o ones via the S matrix Eq. (10)
presented in the previous subsection:

bulw) ()
by(w) [=S(@)| dn(w) |. (19)
bin(w) (@)

As a consequence of their negative Bogoliubov norm, the d2
modes appear in both the left- and the right-hand side of Eq.
(19) as creation operators rather than destruction ones. As we
shall see in Sec. III A, this simple fact is the mathematical
origin of the Hawking emission in our formalism. From a
quantum optical perspective, Hawking emission can then be
interpreted as parametric down-conversion of Bogoliubov
sound waves by the horizon.

III. OBSERVABLES

The expression (18) for the quantum field in the Bogoliu-
bov approximation and the input-output relation (19) are the
starting point for the calculation of physical observables of
the system: in particular, our attention will be focused on two
most remarkable ones, namely, the spectral distribution of
the Hawking emission and the long-distance behavior of the
correlation function of density fluctuations.

A. Emission spectrum

In the gravitational context, the only observable quantity
is the Hawking radiation outside the black hole. One of the
most remarkable feature is that this radiation is thermal at a
temperature univocally determined by the surface gravity of
the black hole.

In our condensed matter context, the Hawking emission
from the dumb hole corresponds to the phonons that are
emitted into the upstream region on the u-out branch. As-
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suming that no correlation between the different in-going
modes exist, the emission spectrum, that is the number of
phonons emitted per unit time and per unit bandwidth into
the wu-out branch is straightforwardly calculated from the
input-output relation (19):

ul

e . | |
dtc;w = (bi(@)b,(0)) =S, L) + IS, PI + [Suan (I + 1).

(20)

For a system initially at zero temperature, all the I;‘zdl’ o
=<dz,d1,d2(w)du,d1,dz(w)>=0, yet a finite Hawking emission
exists as a consequence of the +1 term arising from the
(ddz(w)djiz(w)) expectation value that encodes quantum fluc-
tuations.

Restricting our attention to the low-frequency part of the
spectrum, an analytical form can be found for the emission
spectrum:

ut

u =S 2
dtdw o | udZ(w)|

2 2 2\32
_(emv) < (@_C_d) 2m,
(c,+vp) (ci - ci) 3 2 hw

¢ u
(21)

Cc

It is remarkable to note that this formula still gives the typi-
cal the 1/w thermal behavior of Hawking radiation even
though one is not allowed to use the gravitational analogy: in
the present step-like case, the surface gravity is in fact for-
mally infinite. The effective temperature of the emission, i.e.,
the coefficient of the 1/w term, is here determined by the
microscopic physics of the condensate that fixes the cutoff
frequency () and the chemical potential gz, 4.

B. Density correlations

As first remarked in Ref. [24], the density correlation
function appears to be the most promising tool for identify-
ing Hawking radiation: in particular, this quantity was at the
heart of the numerical observation of [17]. An example of
such a calculation is reproduced in Fig. 5. The dark regions
correspond to antibunching, and the bright ones to bunching.
The strongest feature in this figure is the dark stripe along the
x=x"line: as its origin is well known and corresponds to the
antibunching due to the repulsive interatomic interaction
[25], we will not discus it further. In the present paper, we
will rather focus our attention onto the other features of the
correlation plot, labeled as u—d2, u—dl, and d1-d2, that
encode the information on the Hawking emission.

Within Bogoliubov theory, the density correlation func-
tion in the stationary state

_ PR )

G )=————
PN () plx))

(22)

can be expanded in its w components as
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YIE

FIG. 5. (Color online) Plot of the rescaled density correlation
nogu[Gf)z)(x,x’ )—1] for an initial zero temperature. The data are the
same as the one presented in [17], but the color scale has been
modified in order to make the positive u-d1 correlation clearly vis-
ible. This signal was overlooked in the original paper given its
relative weakness. The dashed lines identify the different feature of
the correlation function as discussed in the text. The white dotted
line corresponds to the cut x"—x=39.5¢, used in Figs. 7 and 6.

G(w,x,x")dw. (23)
R+

GP(x,x") =

Each w component has to be evaluated imposing suitable
boundary conditions on the expectation values of in-going
operator averages. In the following of the discussion, it will
reveal useful to separate the zero temperature contribution
ng) from the thermal one Gsf)

G(w,x.x") =GP (w,x,x") + GPw.x,x").  (24)

The former term only involves the zero-point fluctuations of
the in-going modes

1 * ’ * ’
G nx) = 2] 3 wino) )
T\ 1=u,d1

+ c.c.} , (25)
while the latter includes the initial populations (a}(w)a,(w)):

1
NG (wxx)=— 2 [r0r,() +cc.]
T [=u,d1,d2

X (aj(@)afw)). (26)

In both these formulas, we have set r;=u;+w,.
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C. Zero temperature density correlations
1. In-out correlation

Let us first consider the in-out zero-temperature correla-
tions between the inside (x’>0) and the outside (x<<0) re-
gions. For x and x’ far from the interface, it is legitimate to
only keep the terms with a stationary phase and neglect the
fast oscillating ones. Making use of the #-unitarity of the
scattering matrix and setting R,=U,+ W, the simple expres-
sion

| Ryou(@)Ryou(w)

G(Z)( = — w1
Mot L, X, X0 ) = /1. out_ out
T i=q1,d2 v |vg,uvg,l

% ei[kzut(w)x_k?ul(w)x’]s’;dz(w)Sld2(w) +cc.(,
(27)

is obtained for the long-distance zero-temperature correlation
function. As all the S-matrix elements appearing in Eq. (27)
involve the d2 mode, it is apparent that a nonzero long-
distance correlation is only possible in a dumb-hole configu-
ration: in terms of the input-output picture of Eq. (19), the
two terms in Eq. (27) originate from the quantum fluctua-
tions of the ingoing d2 mode that are scattered in either the u
or the /=d1, d2 modes.

As the integrals in Eq. (23) are dominated by the small w
part of the integral, simple analytical expressions can be
worked out by extrapolating the low-w asymptotic form of
the S-matrix elements

Al/*"u

Szdz(w)szdz(w) = P

(28)

to the whole spectrum and then cutting the integral at (). In
this hydrodynamic approximation, k;"": w/V(j=u,dl,d2)
and the velocities V; of the outgoing modes are V,=v,—c,
<0, Vy=v9+c;>0, Vyp=v9—c,;>0. As typical of Bogoliu-
bov theory [18], the R, coefficients giving the density weight
of the Bogoliubov modes scale as \w. The in-out correlation
function then takes the simple form

Ac2Q) sinc[Q(i - x_ﬂ
Vu Vl

47T| Vuvl| V”?Cd

oG (ex) = 2
I=d1,d2

. (29)

where sinc(x)=sin x/x and the A; coefficient has the follow-
ing explicit form

o /&M(%_é)”# (30)
di(d2) cilea+vo\ 2 2] ci+(=)e,

u

in terms of the microscopic parameters of the system.

From the explicit expression (29), it is immediate to see
that the density correlation is maximum along the pair (I
=d1,d2) of straight lines
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-0.002

n,&, G, (x,x+39.58 )
g

-0.006

-0.008

| | | |
0 20 40 60

(x+x)/28 |

FIG. 6. Cut of the zero-temperature density correlation function
ng) along the x'—x=39.5¢, line. Solid line: numerical result from
[17]. Dashed lines: prediction of Egs. (27) and (33) for, respec-
tively, the u—d2 and the d1—-d2 contributions. On this scale the u
—d1 contribution is hardly visible.

!

==z (31)
Vu Vl

that exit in opposite directions x <0, x’ >0 from the horizon

position x=x"=0. The absence of lateral shift from the hori-

zon position x=x"=0 is a consequence of the reality of the A,

coefficients. As a consequence of the inequality ¢,>vy>cy,

the sign of the d2 contribution is positive, while the one of

the d1 contribution is negative. The d2 contribution is al-

ways stronger than the d1 one by a significant factor

AVl (cu=cd)vo=cq)
Aa/Vall  (cq+c)vo+cy)

(32)

The d2 contribution corresponds to the Hawking signature
anticipated in [24] and numerically observed in [17]. Once
the horizon is formed, the quantum fluctuation of the incom-
ing negative-norm d2 mode start being converted into corre-
lated pairs that emerge from the horizon in the u and d2
modes. The two phonons are simultaneously created at the
horizon and then propagate away at speeds V,=vy—c,<0
and Vp=vy—c;>0. At time ¢ after their emission, they are
therefore located at x=V,t<0 and x'=V;¢>0, which ex-
plains the correlation between the density fluctuations at
points verifying x/V,=x"/V .

This simple argument can be straightforwardly extended
to explain the geometry of the other d1 feature. This feature
went overlooked in [17] because of its weak intensity, but
was mentioned in [16]. When the numerical data of [17] are
plotted with a suitable color scale as done in Fig. 5, the u-d1
correlation is perfectly visible as a positive correlation
tongue.

A quantitative comparison of the prediction (27) with the
numerical results is illustrated in Fig. 6 where cuts of the
density correlation function along the line x'-x=39.5¢,
(marked by a white dashed line in Fig. 5) are shown using
the same set of parameters as in Ref. [17]. In spite of the
approximations made, the agreement is remarkable.
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FIG. 7. (Color online) Cut of the density correlation function
G(()z) along the x" —x=39.5¢, line. Black solid lines are the predic-
tion of Egs. (27) and (33). Red dashed lines are the hydrodynamical
approximations (29) and (36). The main panel shows the u—d2
feature in the in-out region. Inset (a) shows the u—d|1 feature in the
in-out region. Inset (b) shows the d1—d2 feature in the in-in region.

The accuracy of hydrodynamical approximation (29) is
finally validated in Fig. 7. As shown in the main panel, the
agreement for the /=d?2 feature is quite good even though the
hydrodynamic approximation is not fully able to reproduce
the asymmetry of the peak nor its slightly back-shifted posi-
tion with respect to the straight line Eq. (31). Both these facts
can be traced back to the quick deviation from a linear dis-
persion that is visible in Fig. 2 (right panel) for the d2 Bo-
goliubov branch. This interpretation is confirmed by the ex-
cellent agreement, which is instead found for the [=dl
contribution [inset (a) of Fig. 7]: the discrepancy of the dis-
persions of both the u and the d1 modes from the hydrody-
namic approximation is in fact very small in the whole fre-
quency range up to w={).

2. In-in correlation

The in-in correlation function for a pair of points x, x’
both located inside x, x’ >0 the dumb hole can be calcu-
lated along the same lines. In this case, a single contribution
appears that originates from the correlation between the d1
and the d2 modes,

nOG(2 (w,x,x")=—

1 Rkout( a))Rkout(w)
4

Al |U§u¢;1 §u¢;2|

out

X itk (nk (@1’ S5142(0)S (@)

+c.c.> +(x = x'). (33)

Even though it did not appear in the analytical calculations
of [24] based on the gravitational analogy, this contribution
was observed and discussed in the numerical paper [17].

The same hydrodynamical approximation that led to Eq.
(29) can be used to obtain an approximate expression to this
d1-d2 feature as well. For small w, the S-matrix product can
be expanded as
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*® BIU/u
Su1a(@)S (@) = P (34)
with
pe- ity UO)<U% C‘z’)”. (35)
2¢,(c, +vp) c

u

Extrapolating this expression to the whole @ spectrum and
cutting the integral at ), one immediately gets to the expres-

sion
X x’
BOc? sinc[ﬂ(— - —)}
Va Vo

47TVd1 decd

noG(()2>(x,x’) = +(x=x").

(36)

D. Finite temperature density correlations

One of the major issues in view of an experimental ob-
servation of the analog Hawking radiation is the role of tem-
perature. To this purpose, a naive, but extremely constraining
requirement is often imposed that the temperature of the sys-
tem should be (much) smaller than the Hawking temperature
of the emission. The numerical simulations of [17] have in-
stead shown that correlations are robust with respect to tem-
perature, which supports once more their promise in view of
an actual experiment. In the present section, we extend the
theory of correlations developed in the previous section to
the case of a condensate at a finite initial temperature.

In particular, we focus our attention on the same dynami-
cal situation already considered in [17]: The condensate ini-
tially has a uniform density n,, flow velocity vy and sound
velocity ¢, and is at thermal equilibrium in the moving frame
at a temperature T [26]. The horizon is then (adiabatically)
switched on by ramping down the scattering length in the
downstream region.

Within each semi-infinite uniform region, the population
of each k mode is adiabatically preserved during the forma-
tion of the dumb hole. The initial population (aja;) of each
I=u, d1, d2 mode at wave vector k; is given by the thermal
population n(Q,;)=[exp(AQ,/kgT)—1]"! corresponding to its

frequency

w2k [ 12k

hQ, = \/ ( Ly 2me ) (37)
2m \ 2m

in the comoving frame before the creation of the horizon. For
each w, the wave vector k; of the corresponding in-going
mode has to be determined by inverting the relation w

= (.l)§ (k])
The density correlation function at a finite temperature
can then be written as a sum of different terms,
G(w,x,x") = GP (0,0, )1 +n(Qyy) +n(Qyy)]
+FSH((1),X,X’) +FNSH((X),X,X,). (38)

Here, n(w)=[exp(fhw/kzT)—1]""
perature 7.

is the thermal law at a tem-
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The first term in the r.h.s. of Eq. (38) is straightforwardly
interpreted as a thermal enhancement of the zero-point signal
described in the previous subsection, i.e., a stimulated Hawk-
ing emission. Other scattering processes peculiar to the 7
# 0 case are responsible for the other contributions, which
can be separated in a u—d2 term due to the presence of a
sonic hole,

.cpout  sout s
RkoutRkoutel<kzl A_kdz x')
u d2

noFsy(w,x,x") =
w Ao,

X Sy Sawn(Q,) = n(Qu)]+c.c.,
(39)

and a u—d1 term that instead persists even in absence of the
sonic hole:

R outR out
ku kd 1

out_ out |

47T\/ |vg’uvg’d1

.cpout out_r
nOFNSH(w7x7x,) — el(ku x—kgy x")

X Szusdlu(”(ﬂu) -n(Qy)) +c.c.
(40)

In the low-w limit the S-matrix element products involved in
the terms (39) and (40) tend to finite values

N CyCu—Uvocqt+ (=)v
Su@)S a1 (@yu(@) = =4/ e 02T S 0 (41)

cqc,tvyg ¢, +0g
while the thermal population is proportional to 1/ w,

Uotcy, kBT

n(Qu) - n(le) = ho

(42)
Combining these two facts, it is immediate to see that in the
hydrodynamic approximation the contributions of Egs. (39)
and (40) to, respectively, the u—d1 and u—d2 features then
the same form as the zero-temperature one Eq. (29).

Summing up all the terms, the only effect of a finite initial
temperature on the d1—d2 feature is a bosonic stimulation
factor 1+n(Qy)+n(Qz). In particular, this feature is not
affected by the Fgy and Fygy terms.

The u—d2 feature is affected by this multiplicative factor
as well as by the additional term Fgy: remarkably, the zero-
point Eq. (29) and thermal Eq. (39) contributions have op-
posite signs. Within the hydrodynamic approximation, the
ratio of their contributions to the peak correlation signal has
the simple expression

_ clvg=cg)e, = cq) M

2 2
(UO - Cd)3/2 My

(43)

As usual, the zero-point contribution dominates at low tem-
perature while it is overwhelmed by the thermal one at high
temperature. For the parameters used for the finite tempera-
ture numerical simulations in Ref. [17], the T=0 was still the
most relevant one.

The effect of the thermal occupation on the u—d1 feature
is even more dramatic. Also in this case, the (amplified)
zero-point positive feature due to the /=d1 term in Eq. (29)
and the thermal contribution Eq. (40) have opposite signs. As
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the involved scattering process is not limited to the w<<Q
window, the term (40) gets contributions from high frequen-
cies and is for this reason generally larger in magnitude than
Eq. (39). For this reason, the zero-point contribution only
dominates at very low temperatures and is quickly over-
whelmed by the thermal one: this effect is clearly visible
when comparing the 7=0 numerical simulations shown in
Fig. 6 with the finite temperature ones shown in Fig. 6(a) of
Ref. [17].

When the flow remains everywhere subsonic, all long-
distance features of the density correlation function disap-
pear but for the positive u—d1 tongue at finite temperature.
This fact was apparent in Figs. 4(a) and 6(b) of Ref. [17] and
corresponds within the present formalism to the Fygy term.
Its physical origin can be traced back to the finite reflectivity
of the interface region even in the absence of a horizon and
the different initial occupation of the u and d1 incident
modes.

Before concluding, it is important to stress that a different
configuration was considered in [16], where the dumb hole
was assumed to be in thermal equilibrium in the comoving
frame after completion of the horizon formation process. Of
course, this configuration can be still described by Eq. (38),
but the initial populations n(£),; 4,) have to be computed
using in Eq. (37) the ¢, instead of ¢, for the downstream
region.

IV. CONCLUSION

In this work we have made use of the Bogoliubov theory
of dilute Bose-Einstein condensates to study the analog
Hawking emission that is emitted by an acoustic black holes.
Our framework does not rely on any gravitational analogy
and is able to provide closed-form analytical formulas for the
emission spectrum and the density correlation function of a
simplest step-like configuration. Although the surface gravity
is in this case formally infinite, the low-energy part of the
emission spectrum still shows a thermal character, but the
temperature is found to depend on the microscopic properties
of the condensate. The extension of our theory to the case of
a non-vanishing initial temperature is discussed. We have
shown that this general framework is able to quantitatively
reproduce the results of first principle numerical calculations
[17], and to provide a physical understanding of the various
features that appear in the density-density correlation func-
tion. Generalization of the present theory to more general
dumb-hole configurations is in progress [21].
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