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Breakdown of the superfluidity of a matter wave in a random environment
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We consider a guided Bose-Einstein matter wave flowing through a disordered potential. We determine the
critical velocity at which superfluidity is broken and compute its statistical properties. They are shown to be
connected to extreme values of the random potential. Experimental implementations of this physics are discussed.
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I. INTRODUCTION

The simplest and most intuitive definition of superfluidity
(SF) is the ability to move without dissipation. According to a
perturbative mechanism proposed by Landau, superfluidity is
broken when the velocity of the flow exceeds a critical value
V L

c at which it is energetically favorable to emit elementary
excitations. Although this mechanism has been explicitly
verified in 4He [1], 3He-B [2], and Bose-Einstein condensates
(BECs) [3], many experiments in 4He [4], 3He-A [5], and
BECs [6,7] have shown that the actual critical velocity Vc is
generally lower than V L

c due to the occurrence of phase slips.
In this scenario, SF is protected by an energy barrier, which
may be overcome by fluctuations of thermal (as first suggested
by Iordanskii in the context of liquid He II [8] and by Little
for superconductors [9]) or quantal origin (as more recently
observed in 4He [10], in superconducting nanowires [11], and
possibly also in BECs [12]), leading to what is called a resistive
state in the physics of superconductors.

In what follows we address the problem of determining the
critical velocity for the breakdown of SF of a matter wave
moving in a disordered potential. The matter-wave beam is
formed by a guided BEC in a quasi-one-dimensional (1D)
geometry. We assume zero temperature; it is well known that in
this case superconductivity and superfluidity are not destroyed
by weak disorder. This is Anderson’s theorem for nonmagnetic
impurities in superconductors [13]; similar results (with a
different physical mechanism) hold for BECs [14]. In the latter
case, the phase coherence of the system is preserved in 1D
in the presence of a weak disorder as demonstrated in the
experiments reported in Refs. [15,16]. As a consequence, one
may study a simple scenario for breakdown of superfluidity in
disordered BECs where phase slips are neither thermally nor
quantum-mechanically nucleated but rather have a dynamical
origin: the barrier disappears at a given critical velocity.
This mechanism is standard in the absence of disorder (see,
e.g., [17] and references therein) and the extraordinary control
achieved in the domain of atomic vapor has even allowed
a direct observation of the nonlinear excitations nucleated
above the critical velocity Vc [6,7]. However, to our knowledge
there is up to now only one clear experimental evidence of
dynamical breakdown of SF and of finite critical velocity in
the presence of disorder, obtained by studying the damping of
dipole oscillations in an elongated BEC [18]. In our fully 1D
case, as well as in the dipole oscillation experiments [18],
an important issue is to understand the out-of-equilibrium
solutions of a nonlinear continuous system in the presence of
disorder. In this context, the phase diagram of the fluid flowing

through a quasi-1D disordered potential U (x) of finite extent
L was recently studied in Refs. [19–21]. Here, we concentrate
on the SF part of this diagram and more specifically on the
description of the breakdown of SF when the velocity (or the
length L of the disordered region) increases.

We study two different types of disordered potential with
opposite characteristics. The first one is a smooth potential
whose typical spatial scale of variation is large compared to
the healing length of the condensate. In this case a local-density
approximation holds and a local Landau criterion can be
applied [22]. This mechanism reconciles the Landau approach
with the phase-slip phenomenon, because it predicts that SF is
broken when the local Landau velocity is reached by emission
of nonlinear excitations (solitons in our 1D case). The second
type of disordered potential consists in a series of pointlike
impurities and thus has, contrarily to the previous type, strong
fluctuations on small spatial scales. We show that in this case
the criterion can be adapted, yielding—as in the previous
case—very good agreement with numerical simulations. In
both cases we explicitly compute the statistical properties of
the critical velocity Vc and show that they are closely related
to the extreme-value statistics of the disordered potential. We
finally discuss experimental realizations of our models.

The system considered is a weakly interacting BEC
transversely confined by a harmonic potential of frequency
ω⊥. For simplicity, the disordered potential U is supposed to
depend on a single spatial variable—the coordinate x along the
axial direction of the guide. A stationary flow of the system
is then accurately described by a 1D order parameter ψ(x)
obeying the nonlinear Schrödinger equation [23,24]

µψ = − h̄2

2m

d2ψ

dx2
+ [U (x) + gnν(x)]ψ. (1)

Here, n(x) ≡ |ψ(x)|2 is the condensate density per unit of
longitudinal length, µ is the chemical potential, and g =
2h̄ω⊥aν is the nonlinear parameter (a > 0 is the 3D s-wave
scattering length). In the low-density regime (an � 1) the
density profile in the transverse direction is Gaussian shaped
and ν = 1, whereas ν = 1/2 in the opposite high-density
regime (an � 1), where the Thomas-Fermi approximation
holds for the transverse degree of freedom [25].

II. SUPERFLUID FLOWS

In addition to the density n(x), it is convenient to character-
ize the flow by its velocity v(x) = h̄

m
[arg (ψ)]x . We assume that

the disordered potential U (x) takes sizable values only over a
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region of finite length L. In this case a SF flow corresponds to
a solution of Eq. (1) with constant density n0 and velocity V

at ±∞. The chemical potential µ then reads

µ = 1
2mV 2 + gnν

0. (2)

In the following we denote the chemical potential of a BEC at
rest as µ0 (µ0 = gnν

0).
In the absence of an external potential, the SF solution

corresponds to n(x) = n0 and v(x) = V for all x, and one
can show that it is stable under a weak perturbing potential
provided V � c0, where

c0 =
√

νgnν
0

m
(3)

is the sound velocity of the unperturbed condensate. The con-
dition V � c0 is exactly the Landau criterion for SF because
in a BEC the velocity V L

c is precisely the speed of sound.

III. SLOWLY VARYING DISORDERED POTENTIALS

In the case of a slowly varying potential, that is, when the
typical length of spatial variations of U (x) is much larger than
the healing length ξ = h̄/

√
mµ0 of the fluid, one can devise

a local-density approximation for describing stationary flows.
In this scheme, the flow verifies current conservation and local
equilibrium. This reads n(x)v(x) = Cst = n0V and

µ = 1
2mv2(x) + gnν(x) + U (x). (4)

From these considerations it is easy to see that the ve-
locity v(x) is determined by a simple algebraic equa-
tion [22]: U (x) = µ0 G(v(x)), where G(v) = 1 − (V/v)ν +
ν
2 (V 2 − v2)/c2

0. This equation admits a solution provided
U (x)/µ0 is lower than the maximum of G. If this condition
is violated the flow no longer admits a stationary solution,
SF is broken and the flow becomes dissipative [one can show
that in this case the obstacle described by the potential U (x)
experiences a finite drag [26]]. The maximum of G is reached
when V νc2

0 = [v(x)]2+ν , which precisely reads v(x) = c(x)
where c(x) = √

νgnν(x)/m can be termed the local sound
velocity [compare with (3)]: SF is broken when one reaches
the local Landau criterion.

In this approximation, it is clear that SF will first break down
at the point x = xm where the potential is maximum: U (xm) =
max [U (x)] = Um. The condition v(xm) = c(xm) yields an
explicit relation between Um and Vc:

Um

µ0
= 1 + ν

2

(
Vc

c0

)2

−
(

1 + ν

2

)(
Vc

c0

)2ν/(ν+2)

. (5)

Everything now boils down to a problem of extreme value:
once the statistical properties of the maximum Um of U (x) over
[0,L] are known, the distribution of the critical velocities Vc

can be obtained readily through (5). Namely, if one denotes by
PL(Um) the probability distribution of Um and by PL(Vc) the
corresponding distribution of the critical velocity Vc, one has

PL(Vc) = νµ0

c0

[
Vc

c0
−

(
Vc

c0

)(ν−2)/(ν+2)
]

PL(Um). (6)

The distribution function of Um (and thus also that of Vc)
depends on the size L of the disordered region for the simple

reason that the longer the disordered region, the larger the
probability of finding a large maximum of U . Hence it is
clear that, on average, the critical velocity decreases with
increasing sample length L. Note also that, in this picture,
the critical velocity is related to the local fluctuations of the
disorder and not to the details of the correlations.

In order to calculate the distribution of Um, the first step
consists in mapping the problem of finding the maximum
value of a correlated continuous function to a problem of a
set of N discrete uncorrelated variables. According to [27]
this mapping can be done if the correlation function of
U (x), characterized by a correlation length �c, decays faster
than a logarithm and provided L/�c � 1. From now on we
assume that these requirements are fulfilled, and study the
extreme-value statistics of a set of N = γL/�c uncorrelated
random variables {U1,U2, . . . ,UN } distributed according to
the probability distribution of the disorder potential p(U ). γ

is a parameter of order unity that depends on the correlation
function and has to be determined numerically [28]. If we
denote by f (U ) and FL(Um) the cumulative distribution
functions of U and Um, respectively, we have FL(Um) =
[f (Um)]N . Taking the derivative of this expression yields the
probability distribution PL(Um) and then the distribution of
the critical velocity through (5) and (6).

To estimate the frontier between the superfluid and the
dissipative regimes, we calculate the median L(Vc) of this
distribution and obtain

L(Vc)

�c

= γ −1 ln 1/2

ln f (Um(Vc))
, (7)

where Um(Vc) is given by (5).
In order to check the validity of our approach, we have nu-

merically determined the critical velocity from time-dependent
simulations of the Gross-Pitaevskii equation. Starting from the
ground state in the presence of disorder at zero velocity, we
have adiabatically accelerated the disordered potential until
it reaches a velocity V . For each V and L we consider
80 realizations of the random potential and determine the
fraction Ps of stationary solutions. This quantity is plotted
in Fig. 1 using a gray scale [dark, Ps = 0; light blue (gray),
Ps = 1] as a function of the normalized variables L/�c and
V/c0. The inset displays FL(Vc), the cumulative probability
distribution of the critical velocity. Very good agreement is
observed in the expected limit of validity of our approach
(L/�c � 1). Figure 1 is drawn in the case of a Gaussian
disorder, p(U ) = exp(−U 2/2�2)/

√
2π�2, with a Gaussian

correlation function (numerically we find γ � 0.8). We have
also checked the accuracy of our predictions for other types of
disorder of experimental interest (Lorentz-correlated disorder
and speckle potential).

IV. A SERIES OF δ SCATTERERS

Another commonly used model of disorder is a po-
tential formed by a series of δ-like impurities: U (x) =
λµ0ξ

∑N
i=1 δ(x − xi), where the xi’s are uncorrelated random

variables distributed between 0 and L with density ρ = N/L.
λ > 0 is the dimensionless strength of a scatterer. In the
presence of such a potential, the local Landau criterion is no
longer applicable because the density is not smooth. However,
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FIG. 1. (Color online) Transport of a quasi-1D BEC with velocity
V through a Gaussian-correlated disordered potential of extension L

(the parameters ν, �c, and � take here the values ν = 1, �c = 5ξ ,
and � = 0.1µ0). Dark region: time-dependent flow; light gray (light
blue online) region: SF stationary flow. The (yellow online) solid
line displays the boundary between the two regions as predicted by
Eq. (7). The inset displays the cumulative probability distribution of
the critical velocity Vc for samples of two different lengths. Staircase
functions: numerical computations; dot-dashed lines: theory.

one can devise an approach adapted to this particular case.
One first remarks that each impurity repels the condensate, the
density of which reaches its lowest local value at the position
of the δ peak. The region in space where the decrease in density
is the largest will correspond to configurations where two (or
more) scatterers lie very close to each other. SF will break
down, therefore, at the point where the local concentration of
δ peaks is maximum.

The smallest length scale for density modulations of the
condensate is the healing length ξ . The condensate is therefore
not sensitive to details of the disordered potential on scales
smaller than ξ . One thus divides the disordered region into B =
L/ξ boxes, each of size ξ , and replaces the mi δ peaks present
in box i by a single effective peak of strength mi λ. The goal
is then to determine the probability distribution of intensity of
the strongest of the effective peaks, because it is at this peak
that SF will first be broken. One thus needs to calculate the
probability distribution of M = max {m1,m2, . . . ,mB}, where∑

i mi = N .
The probability of finding m peaks in an interval of length ξ

is π (m) = ( N
m )pm(1 − p)N−m, where p = ξ/L. In the limit of

a wide disordered region (L → ∞), the product pN remaining
constant, the binomial law can be approximated by a Poisson
law of parameter ζ = pN : π (m) � e−ζ ζm/m!. In this limit,
the mi’s are uncorrelated and the cumulative distribution of M

is FL(M) = f (M)B , where f (M) = (M + 1,ζ )/M! is the
cumulative distribution function associated with the Poisson
law [(x,ζ ) is the incomplete gamma function].

One can relate the SF critical velocity to the strength �e =
M λ of the strongest effective peak by using the criterion for
the critical velocity obtained in [23] for a single peak: �e =
K(Vc/c0), where

K(z) =
√

2

4z
[−8z4 − 20z2 + 1 + (1 + 8z2)3/2]1/2. (8)
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FIG. 2. (Color online) Same as Fig. 1 but for a random potential
formed by a sequence of uncorrelated δ peaks (λ = 0.1, ρ ξ = 0.1).

The probability distribution of Vc is then

PL(Vc) = K ′(Vc/c0)

λ c0
PL(M = �e(Vc)/λ), (9)

where PL(M) = dFL(M)/dM . Defining again the typical
critical velocity as the median, the boundary of the SF region
corresponds to

L(Vc)

ξ
= ln 1/2

ln f (�e(Vc)/λ)
. (10)

Figure 2 displays the stability phase diagram and the cumu-
lative distribution of the critical velocity. Here also we find
excellent agreement with the numerical results.

V. DISCUSSION

There are several experimental possibilities for studying
the statistical properties of the boundary of the SF region.
The Gaussian disorder with zero average may be imple-
mented experimentally in the case of microfabricated circuits,
where the atoms are magnetically guided over a chip [29].
Roughness and disorder in the circuits induce fluctuations
along the guide which are typically Lorentzian correlated,
with a correlation length �c which decreases with increasing
distance between the guide and the chip [30]. However, the
most common type of experimental disorder is the so-called
speckle potential, generated by a laser beam passing through
a diffusing plate [31]. One of the most appropriate setups
seems to be the one used in Ref. [7], where the critical
velocity of a trapped Bose-Einstein condensate has been
probed by sweeping a laser beam through it. The critical
velocity was determined from measurements of the amount
of excitations related to the emission of solitons and linear
excitations. Similar studies could be done by sweeping the
laser beam through a diffusive plate at constant velocity, thus
creating a moving speckle potential. Finally, the statistical
properties of the SF breaking may also be studied by
simply adapting our calculations to the damping of dipole
oscillations, along the lines of the recent experiments of
Ref. [18].

In conclusion, we have stressed the link between the SF
critical velocity in the presence of disorder and the statistics
of extreme events. We have developed simple models in
two opposite situations where the disorder is either very
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smooth or composed of pointlike impurities. In both cases
the agreement between numerical simulations and our an-
alytical model is very good. We note that, because of the
mapping of the statistical properties of the critical velocities
to that of extreme events of an uncorrelated sequence, in
the limit L → ∞ the distribution of Vc tends to one of
the universal distributions of extreme-value statistics [32]. A
possible extension of this work could be the application to
fermionic superfluids in the BCS regime. In that case, the

Landau critical velocity is related to the pairing gap, and
an equation similar to (5) can be explicitly written down
[17].
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