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We study the quantized electronic energy levels in a three-dimensional icosahedral billiard modeling a
faceted metal cluster. The first 2000 levels are determined numerically. The magic numbers are com-
pared with experimental data and with the results for a spherical model. We discuss the supershell
structure and propose its study as a test of cluster sphericity. We compare our results with the predic-
tions of the semiclassical trace formula and point out the relevance of diffractive orbits.

I. INTRODUCTION

Recent experiments on molecular beams have allowed
investigation of the stability of large metal clusters’-?
containing up to 20000 atoms.’ The most stable
clusters—corresponding to “magic” numbers of
electrons—fall roughly into one of the following two
types: (1) For relatively large numbers of electrons and
low temperature they seem to have icosahedral symmetry
corresponding to dense packing of the ionic back-
ground.>* These are called atomic magic numbers. (2)
For higher temperature and/or a lower number of elec-
trons there are electronic magic numbers corresponding
to closing of major quantal shells. '>>

The electronic shell structure in spherical clusters cor-
responding to case (2) has been studied both theoretical-
ly®7 and experimentally,®® and has been found to be
deeply connected with classical electronic motion. We
wish to compare quantum and classical pictures in facet-
ed clusters in the same way. Existing studies of quantum
electronic behavior in large and faceted metal clusters'®!!
all consider in some manner that the faceted structure is
a perturbation of a spherical arrangement. However,
such an approach would not be appropriate for our pur-
poses because it would obscure any link with a classical
study, where—as we will see—the faceting can by no
means be considered to be a perturbation.

We have therefore chosen a simple model allowing for
a detailed investigation of both classical and quantal
problems. N electrons are considered to be moving in-
dependently in an infinite potential well having a perfect
icosahedral shape with volume V (we speak below of an
“icosahedral billiard”). The size of the box is scaled so
that the mean electronic density N/V is kept constant
and equal to its bulk value. This kind of model can be
justified by the ‘“‘jellium plus mean field” approximation,
which is believed to be adequate for alkali metals and to a
lesser extent for noble metals. For nonfaceted clusters of
these elements, both spherical potential wells and less
schematic electronic mean-field models lead to similar
patterns for the shell structure (see, e.g., Refs. 6, 12, and
13). Similarly, we believe that the use of a more realistic
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potential for a faceted cluster would not alter the physi-
cal picture presented here.

We choose the icosahedron because this shape has been
clearly identified in molecular beams>* and also via elec-
tron microscopy in the physics of ultrafine particles.'*
The internal structure of these aggregates could be multi-
ply twined [i.e., formed by a juxtaposition of several crys-
talline pieces (for a recent review see, e.g., Ref. 15)] or
formed by onionlike addition of geometrical shells of
atoms to a rigid core,* or even disordered, but in accor-
dance with our free-electron model this will be of no
relevance for shell structure. Of greater importance
would be the bumps on the surface caused by the granu-
larity of the ionic background. However, the effects of
random irregularities should compensate when consider-
ing an ensemble of clusters—in a beam for instance—
whereas faceting is a systematic property. This point is
discussed in detail in Appendix A. Moreover, we argue
in Appendix B that typical energies linked to faceting are
larger by a factor of order N'/? than these caused by
small defects of the surface.

In the present paper we expose those aspects of our
study that are relevant to the physics of metal clusters. A
more detailed account of the solution of the classical
problem, including a discussion of the use of semiclassical
trace formulas, will be given elsewhere.!® The present
paper is divided as follows. In Sec. II we present the
method we use to solve the quantum-mechanical prob-
lem. Readers mostly interested in a discussion of shell
effects can skip this part and go directly to Sec. III, where
we present our results. In Sec. IV we sketch the semiclas-
sical analysis and stress the importance of diffractive
effects in the icosahedron. Finally we compare to experi-
mental data and present our conclusions in Sec. V.

II. SOLUTION OF THE QUANTUM PROBLEM

For our model, the quantum-mechanical problem
reduces to the Helmholtz equation with Dirichlet bound-
ary conditions on the surface of the icosahedron. To solve
this problem, we make the following ansatz for the wave
function as a sum over free particle solutions in spherical
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polar coordinates:

'max

r,e)—zch(kr -1(@). (1)
i=1

Here the angular functions S, are linear combinations of
spherical harmonics, chosen to transform according to a
given symmetry class a and described in more detail
below. The j,(kr) are the spherical Bessel functions, / be-
ing the angular momentum associated with the labels
(a,i).

For a given k, the summation in (1) extends up to i,,,,
which is chosen so that the corresponding j,max(kr) is

negligibly small over the whole volume of the icosahed-
ron. More precisely, if R, is the largest distance from
the surface to the center of the icosahedron, [ is
defined by

Imax =[KR max ] » 2)

where the square brackets denote the integer part. The
stability of the final results with respect to changes of i,
will provide a good test of the numerical accuracy.

The wave vector k and the ¢;’s are determined by im-
posing the boundary conditions. If the surface of the
icosahedron is defined by » =ry(€), these conditions read
explicitly

Y¥(rg(€),€)=0, (3)

max

for all unit vectors €.

Before describing the method of solution of (3), let us
briefly discuss the symmetry group I,, and define the
symmetry-adapted angular functions S;,. I, is a finite
subgroup of O(3), consisting of 60 proper rotations and
60 rotations with inversion, giving 120 elements in all. It
has ten nonequivalent irreducible representations (irreps),
which we label by «, and which have dimension d“=1, 3,
4, or 5. Let us fix a concrete realization of each irrep a
through the set of 120 d*Xd“ unitary matrices U,(g),
where g denotes an element of I,. Then, corresponding
to this set of U%s, one can construct the linear combina-
tions of spherical harmonics S, (€) which transform un-
der the action of an element g of I, as follows:

d%

)= 3 Ug,

m=1

gy, (@)=S2 (g~ (g8)S7,(€) . (4)

The index i labels the distinct symmetry-adapted func-
tions and runs from 1 to . Each value of i corresponds
to a fixed angular momentum /. The index n corresponds
to a basis label in the choice of basis for the matrices
U“%g), and runs from 1 to d“.

Note that the most general wave function would be ex-
pressed as a sum of d“¢ functions of type (1) with
n=1,...,d% However, the index » is not an essential
quantum number: solutions with the same (a,i) and
different n are degenerate and do not mix under an appli-
cation of the Hamiltonian. Thus we can arbitrarily fix
n =1, as we do in Eq. (1). This amounts to demanding
that the eigenfunction transforms according to the first
basis vector of the explicit irrep U“.
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To impose boundary condition (3), we use an improved
version of the “point matching” method of Schmit.!” On
the boundary, W“ can be written as

'max d?®

2 S VimSim(@) . (5)

j=lm=1

\Pa(rB /\ A

According to the discussion above, we are free to restrict
this sum to m =1. The y’s can be treated like Fourier
coefficients. We can project a given coefficient v, by in-
tegrating Eq. (5) against the corresponding symmetry-
adapted function as follows:

'max

2 ¢ ME(k) (6)

i=1

Vim—1= [ dQSH @W(ry(&),8)=

where the star denotes complex conjugation and
Mak)= [dQ j(krg(€)SPF (@)SH (@) . 7

Imposing that W* be zero on the boundary is
equivalent to forcing all the y’s to zero. This, in turn, is
equivalent to imposing that the determination of the ma-
trix M %(k) be zero:

det{MZ(k)} =0, 1=ij<ip,, . ®)

The solution of this equation gives the eigenlevels belong-
ing to the irrep a.

We can use the symmetry of the boundary to restrict
the integration in Eq. (7) to a single face as follows, great-
ly simplifying the practical implementation of the pro-
cess. We divide the icosahedron into 120 elementary cells
@,...Cp A given cell @, is mapped onto ¢, by a
unique element g of the group: g@,=¢C;. In cell €, we
make the change of variable € g€ and Eq. (7) then reads

Mik)= 3 [, dQji(krg(@)s;

gEI,

¥ (ge)S7 (g€) . 9)

Using Eq. (4) and the orthonormality of irreducible repre-
sentation matrices (see e.g., Ref. 18, Chap. 3.5), we have

> Sim(g ,‘f,(ge)— Ja ,,,,ES‘“‘ES“ @®), (10)
gEI, n=1

and so the final form of the matrix element is

Mk = 120

fdm,(kr,,(e))zsa* )SE, (@) . (1)

n=1

This form is very useful if one expresses the icosahedral
harmonics as linear combinations of spherical harmonics
with the z axis going through the center F; of the face of
cell @,. Then rgz(€)=O0F, /cos6 (0 being the azimuthal
angle, and O the origin), and the integration over ¢ in
(11) is straightforward. The remaining integration over 0
in (11) is done numerically. We have checked that a 34-
point Gaussian integration formula!® provides excellent
accuracy up to the highest value of k£ considered.

The eigenvalues were found by this numerical integra-
tion of Eq. (11), followed by a root search for the zeros of
det{M*(k)}.
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III. ANALYSIS OF THE RESULTS

The solution of the quantum-mechanical problem in an
icosahedron with edge length a yields a series of eigenlev-
els {k,},>o which scale trivially with a. We have com-
puted these levels numerically up to k,a =40. The levels
have a group-theoretical degeneracy d,, where d, can
take values of 1, 3, 4, or 5 (if the associated wave function
belongs to irrep «, then d, =d %, see Sec. 1I), and a spin
degeneracy v=2. For a cluster containing N electrons,
the edge length a is fixed by the relation
N/V =(4/37r)"!, r, being the Wigner-Seitz radius of
the bulk material. “Spill-out” effects can be taken into
account phenomenologically by increasing the value of r
used to determine the dimensions of the box. For in-
stance, in Ref. 6 a value of 2.25 Ao was taken for sodium
instead of the bulk value r,=2.08 A. The level density is

=v3d, 8k —k,), (12)

and the integrated level density (or spectral staircase
function) is

N(k)=v3d,0k —k,) . (13)

The functions N (k) and p(k) can be separated into the
sum of smooth parts N(k) and p(k) and oscillating parts

N(k) and p(k) respectively. In our three-dimensional
case N(k) increases roughly like k* with some surface
and edge corrections. The formula reads (see, e.g., Ref.
20, Chap. VI.2)

N(k)=a,(ak)*—a,(ak)*+a,(ak)+ ..., (14)

where a,, a,, and a, are dimensionless coefficients which
are related to the volume V, surface area S, and angle «
between two adjacent faces, according to the formulas

a=" Y| =2 |5
Y oemt |ad |7 Y 16w ’
(15)
=2 |7 _a
47 |la =

We compared the numerically computed smooth part
N (k) of the spectral staircase function with the expansion
in Eq. (14), and found that the agreement was very good.
Equation (14) was correct to an overall accuracy of
0.05% —this places typical limits of 0.05%, 0.2%, and
5% on the errors of a,, a,, and a,, respectively, over the
range of k examined, so that the numerical spectrum is in
detailed agreement with the geometry of the icosahedron.
This also indicates that we do not miss any levels in the
icosahedron’s spectrum. We performed other checks of
our numerical procedure: we changed the value of i,
in (1) [going up to [kR_,,]+7 in formula (2)]; we
changed the number of points of integration in (11); and
we took both complex and real icosahedral harmonics in
(1). All these checks indicate that the eigenlevels are
determined with an accuracy of the order of a few hun-
dredths of a level spacing.

From p(k) or other smoothed quantities one can deter-
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mine thermodynamical quantities such as the bulk Fermi
energy, but the finite-size effects linked to the discreteness
of the spectrum manifest themselves in oscillating quanti-
ties such as p(k). For instance, a minimum in p(k) indi-
cates a region of the spectrum with relatively fewer levels,
and consequently implies a gap in the ionization poten-
tial. Typical experiments study the relative abundance of
clusters on a mass spectrum, and these measurements are
obviously affected by the degree of ionization of the clus-
ters before arriving in the spectrometer. Accordingly the
relevant observables are the total energy, which deter-
mines the probability of formation of differently sized
clusters in the first place, and the ionization potential,
which determines the probability and degree of ioniza-
tion.

Our model does not have a well-defined ionization
potential—since it is an infinite potential well—but
essentially the same qualitative information is provided
by the Fermi energy E,. This is defined for a cluster of
size N by
#k }_ _

where N (k;)=N . (16)
2m
It can be written as the sum of a smooth N-dependent
quantity E + and an oscillating part E . These oscillations
around the smooth curve indicate the presence of shell
effects. However, on the basis of semiclassical arguments
(see Appendix C) one can show that E + decreases like
N 7273 relative to E s SO the shell effects are not easily
studied with this observable.

On the other hand, the total energy E,, and its oscil-
lating part E, , do not exhibit such a rapid decrease with
N and are therefore more useful for understanding shell
effects. The energy E,, is defined by

Eq(N)=

2k3

k 2k2 #i
Emt(N)=f0fh2—mp(k)dk=vE'dn ol (17)

where the prime indicates that the summation extends
only over occupied orbitals. Its smooth approximation
E, is defined as

27,2
fofhk plk)d (18)

tot

From Eqgs. (14), (16), and (18), we obtain

— 3a, | N a, [N ]
EalM=es | 5= 10 ¥ 5 | o)
2a.a 1/3
4 [N +] (19)
3a, a,

where € is the bulk Fermi energy:

2/3
97

2v

Sf_

h2
; (20)

2mr;

In Fig. 1 we plot the oscillating part E,, =E,,, — E,-
The presence of magic numbers is clearly seen in this
figure. Using the results of Ref. 24 we will point out in
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FIG. 1. Oscillating part of the total energy as a function of
N'73. E, is expressed in units of &£,. The thick line represents
the results in the icosahedron, the thin line is for the sphere.

Sec. IV that the bunching of levels leading to shell struc-
ture here does not come from degeneracies due to the
discrete icosahedral symmetry, but from a local continu-
ous symmetry corresponding to the translation of classi-
cal orbits parallel to the faces of the icosahedron. While
in the case of the sphere (or any spherically symmetric
system) the shell effect in E,, increases like N'/¢ (see,
e.g., Ref. 21), E,, is expected to be approximately con-
stant for large N. We give a semiclassical interpretation
of this behavior in Appendix C.

For comparison we also show in Fig. 1 the oscillating
part of the total energy for a spherical infinite potential
well. The two curves are very similar up to N =350

(N!/3=7). For instance, the magic numbers of the two |

systems are almost equal up to this value (see Table I).

TABLE I. Magic numbers for the sphere and icosahedron
compared with experimental results. The columns Na
Stuttgart, Na KBH, and Li Orsay refer to the results of Refs. 3,
8, and 2, respectively.

Sphere Icosahedron Na Stuttgart Na KBH Li Orsay
2 2 2 2

8 8 8 8
20 20 20 20
34 34 40 40 40
58 58 58 58 58/70
92 92 92 92 92

138 138 138 138 138

186 196 198+2 198 198

254 254 263+5 264 258
338 348 341£5 344 336
440 456 443+5 442 440
542/556 588 557+5 554 546
612/676 708 700£15 680 710
748/832 888 840+15 800 750/820
912 970 910
1074 1076 1040420 1120 1065/1160
1284 1250 1220%+20 1310 1270/1370
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This behavior might be expected since electrons can only
discriminate between an icosahedron and a sphere when
the difference between the radii of the two systems
(AR =~0.1a) is an appreciable fraction of the Fermi wave-
length: say AR ~2X,/4 or A,/3 (this is supported by the
perturbation approach exposed in Appendix B). This es-
timate leads to a separation of the quantum behaviors
starting at N ~ 150 or 550. However, we will see that the
dominant classical periodic orbits of the two systems are
very different, and simply on the basis of the trace formu-
la we would not expect such similar quantum behavior if
we were to believe semiclassical results down to the bot-
tom of the spectrum.

IV. SEMICLASSICAL THEORY

Oscillations in the density of states such as those re-
sponsible for the shell structure have been very success-
fully predicted in terms of classical periodic orbits ac-
cording to the theory of Gutzwiller (see, e.g., Ref. 22 and
references therein) and Balian and Bloch.?® In this
theory, oscillations in the density of states are expressed
directly as a sum over periodic orbits of the correspond-
ing classical system.

In this section, we attempt to interpret the shell oscilla-
tions of Fig. 1 within this framework. The formalism
works very well for the oscillations of longest scale in
N'73, corresponding to the shortest periodic orbit, but
fails for shorter scales. We interpret this failure as being
due to diffractive effects which are not included in a
direct use of the periodic orbit formula.

The original formulation of Gutzwiller applies to cases
where classical periodic orbits of a given energy are iso-
lated in phase space, such as occurs in (classically) chaot-
ic systems. This is not the case for the icosahedral bil-
liard, however, because orbits occur in two-parameter
families due to a symmetry that corresponds to a local
translation of orbits parallel to the faces of the icosahed-
ron. If a given periodic orbit has an even number of
bounces, it is possible to deform it into another nearby
periodic orbit by translating it at any point where it
bounces from a face along any of the two dimensions
parallel to that face. A similar degeneracy of orbits
occurs in the case of the spherical cavity due to the
three-parameter rotational symmetry of that system. As
one would expect, the higher the degree of degeneracy of
periodic orbits, the larger the resulting oscillations in the
density of states. Thus the oscillations in the icosahedron
are larger than in a typical chaotic system, but smaller
than in the spherical cavity.

We use a generalization of the Gutzwiller theory that
is valid for the case of degenerate periodic orbits.?* Here
we quote the result as it applies to the icosahedron and
leave detailed discussion for the future.'® The main con-
tribution to the oscillating level density can be written as
(see Ref. 16)

+
s ~X 5 5 4 cospsin(krL) . @1)

2
27°ppo ;=1 ¥

In formula (21) L is the length of a primitive periodic or-
bit (PPO), and r labels the repetitions of this orbit. A is
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the area occupied by the orbit on a face and ¢ the angle
between the direction of the orbit and the normal to this
face. & is a symmetry factor counting the number of dis-
tinct orbits obtained by applying one of the elements of
the icosahedron’s symmetry group to the primitive
periodic orbit; for instance, for the pendulating orbit
below £=10 (the orbit links 2 by 2 the 20 faces of the
icosahedron).

Since we are only interested in shell effects, i.e., in the
gross features of the level density, we need only deter-
mine the shortest PO’s of the system. There are two
significant orbits in the icosahedron, with approximate
lengths 3.0a and 5. 6a, respectively —all other orbits were
found to have much longer length and/or smaller cross-
sectional area A . The interesting orbits are the pendulat-
ing and the bow-tie orbits shown in Fig. 2. They each
form a two-parameter family and they occupy the area
shaded in Fig. 2. Their characteristics are listed in Table
II. As mentioned before, the main classical PO’s in the
sphere have very different properties: the pendulating or-
bit indeed exists (as a two-parameter family) but it plays a
negligible role in comparison with the other orbits, which
form three-parameter families (the shortest being the tri-
angle and the square, see Ref. 23). Thus we already see
that leading oscillating contributions (21) cannot account
for the similarities of the quantum behavior of the
icosahedron and the sphere that are observed at low
values of N.

Since typical orbits have a length of order
L~a~N'3 from Eq. (21) one sees that the level density
at the Fermi energy (and all other related quantities) os-
cillates with a period of order N!/3 as the size of the clus-
ter increases (see Fig. 1). The qualitative features of the
oscillations in physical quantities are discussed in Appen-
dix C using a schematic form of p(k).

One can obtain a more quantitative comparison be-
tween the computed level density and the semiclassical
estimation (21) by convoluting the exact spectrum with a
smoothing function w (k). Then formula (12) reads

PeonvK)=vId, wik —k,) . (22)

Without displaying all the explicit formulas (see Ref. 16),
let us mention that the convolution of (21) yields a trace
formula for g, where the periodic orbits of length L are
damped by a weight factor @(L), where @W(L) is the
Fourier transform of w (k). If (L) decreases rapidly —
i.e., if w(k) is broad—Ilong PO’s will not contribute to
ﬁconv'

We choose @ in order to be able to discriminate
efficiently orbits with similar lengths. It was taken to be
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FIG. 2. The two shortest periodic orbits in the icosahedron.
The shaded area indicates the surface occupied by the family.
To make the trajectories more easy to visualize, we placed a
white spot on the center of each face hit by the orbit. Each
bouncing point on a face is marked with a black spot.

the convolution of a step function 6 (A-L) with a Gauss-
ian (standard deviation o). Figure 3 shows the compar-
ison of p.,,, [computed from Eq. (21)] with p.,,—p
[computed from Eq. (22) using the numerically computed
eigenvalues] when 4 =2.3aq and 0 =0.6a. As seen in the
figure this choice of parameters ( A4,0) selects only the
pendulating orbit, and the agreement between the quan-
tum and semiclassical results is very satisfactory.

The agreement is not so good, however, if A4 is in-
creased slightly so as to allow slightly longer orbit lengths
to play a role. Figure 4 shows the same comparison for
A =3.5a and 0 =0.6a. From Eq. (21) one would not ex-
pect any qualitative change with respect to Fig. 3 since
the bow-tie orbit is still discarded by the weighting func-
tion @(L) (it has a length ~5.65a). A Fourier analysis of
the spectrum reveals oscillations corresponding to a clas-
sical length of L ~4.0a. We have searched intensively
for periodic orbit families in this length range and found
none. Therefore we are forced to conclude that there are
classical structures responsible for spectral fluctuations
which are not of the form of Eq. (21).

It is possible to think of two types of correction to the
periodic orbit formula that might explain this anomalous
behavior.

(i) Orbits with an odd number of bounces. Such orbits
do not remain periodic when a point of reflection is
translated along a face (they period double into periodic
orbits with twice as many bounces) and form one-
parameter families. They would therefore contribute to g
with a factor of order k ~!/? less than the two-parameter
families.

(ii) Orbits bouncing on an edge or a vertex. According
to Keller’s “geometrical theory of diffraction” (see, e.g.,

TABLE II. Parameters characterizing the two shortest orbits in the icosahedron [see Eq. (21)]. L is expressed in units of the edge

length a. A is in units of a?.

Orbit L A & cos¢
Pendulating 3 ‘:/‘_3/5 ~3.023 % ~0.289 10 1
bow-tie %(2+\/5_)25.648 V3 o 0.096 30 14V5 0,934

18 2v'3
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Ref. 25) such orbits can be used to explain diffractive
effects—we will therefore refer to them as “diffractive or-
bits.” Each diffraction from an edge decreases the contri-
bution to the trace formula by order k 1“2, and from a ver-
tex by order k. If these orbits occur in one-parameter
families or are isolated, their contributions are further re-
duced by orders k /2 or k, respectively.

Notice that each of these possible contributions is of
higher order in k, and should therefore be insignificant
for large enough clusters. However, it is evident that this
regime is not yet reached for the stretch of spectrum that
we found numerically.

Of the two possibilities above, (i) can be eliminated as
an explanation of the anomalous behavior in Fig. 4, be-
cause there is no orbit with an odd number of bounces
that is short enough. Therefore (ii) seems to be the only
possible explanation, and we are led to conclude that
diffractive effects play an important role in determining
the oscillating level density for moderate values of k in
the icosahedron. We would expect the same conclusion
to hold for any billiard with nontrivial sharp edges (by
“nontrivial” we mean that edges with the same angle, etc.
do not occur in simpler tessellating billiards). We will
study this phenomenon in a forthcoming paper. !¢

The diffraction effects discussed here obviously cannot
be relevant in a detailed way for physical clusters, since
the sharp edges are an artificial feature of the model.

<:;/ o1 |
0.0 ‘ ' i'
0.0 2.0L 4.0 6.0
A |
. ° /V“NWW/X\W/K\\W\V/\V/\WVUUVVVV
L
- 0.0 10.0 i0.0 30.0 40.0

FIG. 3. P,y as a function of k (lower part) for a function
(L) (upper part) characterized by the coefficients 4 =2.3 and
0=0.6. The arrows indicate the length of the pendulating and
of the bow-tie orbit. The lengths are in units of @, and the mo-
menta in units of 1/a. In the lower graph the thick line
represents the semiclassical prediction, and the thin line is the
quantum result. Due to the convolution the quantum results
stop being relevant here at k=~32/a: our computation extends
up to k ~40/a, and the exact convolution (22) becomes sensitive
to this upper boundary.
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k

FIG. 4. Same as Fig. 3 for a function ®(L) characterized by
A =3.5 and 0=0.6. Since w(k) is extended less here than in
Fig. 3, the “boundary effects” near ka =40 for the quantum re-
sult are less important.

However, they do indicate a mechanism through which
the real spectrum deviates from the simple semiclassical
spectrum for small clusters. Such a deviation is also indi-
cated by a surprising degree of agreement between spheri-
cal and icosahedral results at the low values of k& exam-
ined, despite the disparity of the semiclassical pictures.
In the limit of short wavelengths, however, these
diffraction effects are presumably not important, even in
our billiard model. We have not been able to determine
enough of the spectrum to evaluate precisely where this
transition to semiclassically predicted behavior occurs.

Therefore, as the cluster size increases, we expect that
the shell oscillations will be given more nearly by formula
(21), without diffractive effects. Thus we evaluate the
large-N behavior of E,, using Eq. (21) with the four
shortest families of periodic orbits of the system. This
leads to the pattern displayed in Fig. 5. As explained in
Appendix C, the amplitude of the oscillations is approxi-
mately constant for large N. The interference between
the bow-tie orbit (L =5.6a) and the repetition of the pen-
dulating orbit (2L =6.0a) are responsible for the modu-
lation of E,,,. These two orbits contribute to the PO sum
(21) with different prefactors, and the interference is also
obscured by the presence of the simple pendulating orbit.
As a result there is here no strong beating pattern such as
caused in the sphere by the contributions of the triangle
and square.

Comparing Figs. 1 and 5 one sees that at N!/3=16 the
“true semiclassical limit” where Eq. (21) holds without
diffraction corrections is not yet reached. However, the
amplitude of the oscillations at N'/3~16 in Fig. 1 is
about what is expected semiclassically. Hence, for larger
N we expect the amplitude of the exact shell effect to
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FIG. 5. Semiclassical estimation of E,, including the four
shortest PO’s in summation (21) (as explained in the text, here
we consider only orbits with even number of bounces). E, is
expressed in units of €, (the bulk Fermi energy).

remain approximately constant and equal to the semiclas-
sical prediction. For still larger values of N the exact
magic numbers should match the predictions of Fig. 5.

V. DISCUSSION

In this paper we have studied the electronic shell struc-
ture in an icosahedral cluster, using the simple model of
an infinite potential well. We have found that the magic
numbers for this system are the same as those for a spher-
ical well up to N ~350, and this can be understood to
arise because of the similarity in shape between the
sphere and the icosahedron.

Our results reveal a useful criterion for distinguishing
between spherical and faceted structures: the existence of
quantum shells up to N ~ 1400 electrons in the experi-
ment of Ref. 3 is not a very conclusive sign of the spheri-
city of the clusters studied. This can be seen by compar-
ing the theoretical magic numbers in spherical and facet-
ed clusters with their measured values (Table I): it is
often difficult to decide which of the two models is in
better agreement with the experiments. A more con-
clusive approach is to study the supershell structure us-
ing the procedure exposed in Ref. 8: the supershells can
be revealed from a plot of the cube root of the magic
numbers (N,,,, )1/3 against a running index i labeling the
shells. In the case of interference of the two main orbits
(as is the case for a spherical cluster), there is a phase
shift 8/ =1 in the nodal region of the beating pattern. No
such phase shift can be detected for the icosahedron in
the region where the experiments find it [N =~800 (Refs.
2, 5, and 8)], whereas the spherical model predicts its lo-
cation quite accurately.

Regarding the distinction between electronic and
atomic shell structures, one of the more important results
is the following observation of Ref. 3: above N ~ 1500
electrons the index labeling the magic numbers still
grows like (N,,.)'”?, but with a completely different
slope from that predicted by the electronic shell struc-
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ture. This change in behavior has been explained by the
transition to completion of icosahedral shells of atoms
rather than the filling of electronic shells as being the
dominant factor in cluster formation. Our computations
extend up to N =~4200 electrons, and no such changes in
the magic structure can be detected (see Fig. 1). This in-
dicates that when clusters become “‘solid” the electrons
play a minor role in determining stable configurations,
and that most of the total binding energy is due to the
atomic structure. However, the results of Ref. 3 are
peculiar in the sense that, contrary to what is seen at
higher temperature,>® no magic phase shift is seen in the
“quantum region” at N ~800. We interpret this absence
of the supershell as a signature of the nonsphericity of the
clusters studied in Ref. 3. It could be due to strong defor-
mations (maybe with icosahedral symmetries) of still
liquid clusters.

We have made an attempt at interpreting the electron-
ic shell structure in the icosahedron in terms of PO’s.
The semiclassical approach used in spherical cavities?
does not extend so successfully here. However, we argue
that semiclassical arguments are still useful to evaluate
the amplitude of the shell oscillations in large clusters,
and that they would predict accurately the magic num-
bers of the model in the large N limit.

Finally, let us mention that the billiard model we use
here has its own interest within the general framework of
semiclassical approximations. Our study suggests that
the diffractive orbits represent an important contribution
to the trace formula at low energy. We will address this
question in a future work.
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APPENDIX A

In this appendix we discuss the effects of random fluc-
tuations in the ionic background on the model calculated
in the main text.

In any real cluster, the ionic background will have
significant random fluctuations which will alter
significantly the effective background potential experi-
enced by the electrons. For the purposes of our system,
one might model these effects as fluctuations in the interi-
or potential and in the shape of the boundary, corre-
sponding to the placement of individual ions. For exam-
ple, if there are not enough atoms to completely fill an
atomic shell, one might imagine lumps in the potential at
the surface, corresponding to the random positions of
ions within an incomplete outer shell.
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We argue here that even if these fluctuations are
enough to make a smooth featureless potential such as
the one we use invalid for an individual cluster, it is
necessary in practice to average over an experimental en-
semble, and the effect of this is to validate a model in
which the bumps caused by the ions are averaged out.

In an experiment where many clusters of each size are
detected, the relevant quantity determining the probabili-
ty of formation of clusters is the following averaged den-
sity of states:

Pl K)={pk)) = (8(k —k*™)), , (A1)

where the average is taken over cluster configurations «
within some ensemble. The levels and density of states of
configuration a are denoted by k\* and p,(k), respective-
ly.

Let us model the experimental ensemble by the set of
Hamiltonians

H,=Hy,+V,, (A2)

where H is a simple Hamiltonian such as the one used
by us, and V, represents some random background fluc-
tuation corresponding to a given ionic configuration.
Each eigenlevel k, of H,, is perturbed to k, + Ak\® when
V, is included—Ilet w,(Ak) represent the distribution
function for the shifts Ak\® within the ensemble. Then
the averaged density of states is

par(K)=Sw,(k —k,) . (A3)

We now make the assumption that w,(Ak) depends on
n only through some weak dependence on k,. This cer-
tainly seems reasonable if the size of V, is such that the
shifts are of the order of many level spacings—then each
shift will be affected by a statistically large group of levels
within some energy range, and all levels within that range
should be affected in more or less the same way by the en-
semble of perturbations. However, this is only an as-
sumption. Such a weak k, dependence will not alter
qualitatively the following discussion, so we will denote
the distribution of shifts simply by w (Ak). Then,

Pav(k)zw*Po(k) , (A4)

where w.p, represents the convolution of the function w
with the density of states p, of H,,.

Therefore, the effect of random fluctuations is just to
smooth out the density of states of H, with some distri-
bution function. Such a procedure does not alter qualita-
tively the shell oscillations calculated in this paper. In
terms of the discussion of Sec. IV, the effect is to damp
the contribution to the density of states of longer orbits
relative to that of shorter orbits—the contributions of or-
bits of length L are modified by a factor (L), the
Fourier transform of w (k).

Note that these arguments work more convincingly in
justifying the use of a spherical cavity for small clusters
than they do in justifying the icosahedral cavity for larger
clusters. In the spherical case, the clusters are “liquid”
and the averaged potential would truly be spherical, and
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flat in the interior. In the icosahedron, correlations of
the ions would remain with their preferred positions with
respect to the lattice, and the true averaged potential
would be lumpy. However, the argument still works to
show that this lumpiness is less than one would expect
from considering an individual cluster. In addition, it
suggests that this model should work best for high-
temperature clusters.

APPENDIX B

In this appendix we estimate typical energies linked to
the deformation of an initially spherical potential. We use
a simple perturbation theory valid for a system with
infinite walls.?® The shape of the deformed particle will
be expressed in direction € by a development on spherical
harmonics:

+o +A
rs@®=R[1+3 3 b,,7,,@ | . (B1)
A=lu=—A

In the following all the b,,’s will be considered as
small parameters. Accordingly, at zeroth order the
volume enclosed in boundary (B1) is a sphere of radius R.
We will consider here two types of surface deformations
and compare the changes in energy they induce.

(1) Small bumps of order r; on the surface. In this case
A—pu and u are of order N'/3 and by, ~rs/R ~N 13,

(2) For an icosahedral cluster the linear combination of
Y;,’s in (B1) must belong to the trivial irrep of I, (this
selects A=6,10,12,16,...). The bm’s are at most of or-
der (R —a)/R ~0.1, and decrease for increasing angular
momentum.

Without taking into account the possible symmetries of
the surface specified by (B1), the matrix elements M;(k)
here read [compare with Eq. (7)]

My(k)= [dQj(krg(@) Y, (&)Y, (@), (B2)

where i (j) is here an index labeling the pair of quantum
numbers (I,m) [(I',m')].

Then we make a limited expansion of j,(krg(€))
around kR, yielding

M, (k)= j,(kR)S,;
+kRj{(KR)Z by, [dQY,, Y5, Y, (B3)
Ap

where §;; is a short notation for §,3,,,. From (B3) the
matrix M (k) is expressed as a sum of a diagonal matrix
[let us call it J (k)] plus a matrix A4 (k):

M(k)=J(k)+ A(k)
=J(k)+kJ'(k)B . (B4)

In the second line of Eq. (B4) we have made explicit
the k dependence of matrix A4 (k). J'(k) is the derivative
of J(k); B is a k-independent matrix defined by compar-
ing (B3) and (B4); its coefficients are of the order of the
byu’s. Then it is natural to write
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detM =exp(TrIn(M))
=detJ +detJ Tr(J " 14)+ ... . (B5)

From (B5) one can evaluate the zeros of det{M (k)} easi-
ly. We write them as

k kS + Ak, (B6)

nim —

where the kQ’s are the zeros of det{J(k)}. They are the
unperturbed levels, solutions of j;(k%R)=0. From (B4)
and (BS), a limited expansion yields after simple manipu-
lations

Tr{Jkl(k,?I)A(k,?I)}

Ak
T T T kG R

(B7)

From the explicit k dependence of matrix 4 (B4) we
deduce that the relative shift of the eigenlevel Ak,,,, /k5
is of the order of the matrix elements of B, i.e., of the or-
der of the b,;,’s. We see—as stated in Sec. I—that
faceting will affect the eigenenergies with a factor N'/3
larger than surface bumps.

Of course there is an important drawback to the per-
turbation method presented here: it is strictly valid only
for wave vectors such that kR (b ™ ) <<1, i.e., for wave-
lengths large compared to the surface deformation. This
is the reason why trying to get a quantitative estimate of
the shell structure in a faceted cluster using perturbation
theory is a difficult task. However, this does not affect
the qualitative picture presented here: the surface defects
involve a part of the total volume of the cluster which is
smaller by a factor N ~1/3 than the facets, and the charac-
teristic energies are accordingly smaller.

APPENDIX C

In this appendix we estimate the amplitude of the shell
oscillations (for E  and E,,) in large clusters (i.e., large
N). Because we are only interested in rough estimates of
the relative sizes of the oscillatory and the averaged con-
tributions, we include only the contribution of a single
periodic orbit to the oscillatory part, and use only the
leading term in the expansion Eq. (14) for the averaged
part of the density of states as follows:

plk)=~Ca’k sin(kL) , p(k)=3a,a’k?® . (1
Here a and L are of order r,N'/3. C is a dimensionless
constant, uninteresting for the purposes of this appendix.

The relation defining k, reads

N=[

2
(k)]dk ~a,a’k}—C

k

A cos(k,L) .
(C2)

Here we neglect an oscillating term C(a /L)? sin(ka),

which is smaller than the oscillating term of (C2) by a
factor of order L. For large N, the smooth term dom-
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inates in (C2) and we can invert this part to express k, as
a smooth function of N, on top of which small oscillatory
corrections are to be added:

(N /a, )3
kp~—"—"——[1+eN)]. (C3)
The leasing term is denoted by k  and is of order 1 (more
precisely 1/r,) for larger N. A limited expansion for the

remaining oscillatory contribution yields

C a

N)2/3
3007 L( ) cos

e(N)~ %(N/au)m (C4)

As noted in the text, the oscillations are equally spaced
in N'/3. From (C3) and (C4) we see that the amplitude of
the oscillations in &, behave for large N as

EfNEfN*Z/s ) (CS)
and E/ scales similarly with N.

The oscillations in the total energy are computed from
the differences between the quantities £, and E;:

ky ﬁzk 2
E= f [P (k

+pUk))dk
(C6)
k, 2212
= [ s .
Then,
E=Ew—Ey
27,2 2
f fﬁk Bk dk+f fﬁk SUk)dk
- ﬁ2k2 - kr 2k ?
~ (k=)= - Lotk + [ S Ptkodk (€D

In (C7) we replaced the integrals by their large-N approx-
imations. The two terms on the right-hand side of Eq.
(C7) cancel exactly at leading order (i.e., at order N!/3).
Thus in (C7) the dominant term is constant for large N:

E~es (C8)

where €, is the asymptotic value of the Fermi energy.
The detailed structure of the semiclassical estimate of
E,, is displayed in Fig. 5.

We recall that in the case of a sphere of radius R the
main orbits form three-parameter families, and the oscil-
lating level density reads schematically

Popn(k) =R (RK)**sin(kL) . (C9)

This leads to large-N behaviors for E; and E,, that are
different from those of the icosahedron. Repeating the
procedure above for the sphere, one obtains
o -1/2
Ef EfN

and E ., ~eN'°. (C10)
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