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Rough droplet model for spherical metal clusters

Nicolas Pavloff and Charles Schmit
Division de Physique The´orique, Institut de Physique Nucle´aire, F-91406 Orsay Cedex, France

~Received 29 September 1997; revised manuscript received 1 April 1998!

We study the thermally activated oscillations, or capillary waves, of a neutral metal cluster within the liquid
drop model. These deformations correspond to a surface roughness which we characterize by a single para-
meterD. We derive a simple analytic approximate expression determiningD as a function of temperature and
cluster size. We then estimate the induced effects on shell structure by means of a periodic orbit analysis, and
compare with recent data for shell energy of sodium clusters in the size range 50,N,250. A small surface
roughnessD.0.6 Å is seen to give a reasonable account of the decrease of amplitude of the shell structure
observed in experiment. Moreover—contrary to usual Jahn-Teller-type of deformations—roughness correctly
reproduces the shape of the shell energy in the domain of sizes considered in experiment.
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I. INTRODUCTION

Since the discovery of shell effects in metal clusters,
mean-field approach with delocalized electrons has bee
very efficient tool for describing a wide variety of phenom
ena: shell and supershell effects, dipole polarizability a
optical excitations, fission, etc.~for reviews, see Refs. 1 an
2!. This type of approach mainly relies on the jellium mod
where the ionic background is considered as a smooth
uniform distribution of positive charges. It is most legitima
for simple metals~and to a lesser extent for noble meta!
with delocalized valence electrons, almost insensitive to
actual arrangement of the ionic cores. Hence the best ca
dates for this approximation are the alkali metals, as can
inferred from the quasisphericity of their Fermi surface~re-
vealing a weak interaction between ionic cores and vale
electrons!. As a result the compressibility of these solids
close to its electron gas value, and the surface tensio
correctly described by the jellium models~the agreement be
ing better for small electronic density; see Ref. 3!.

It was realized early that deformation effects had to
taken into account for a realistic description of metal clust
~see, e.g., Ref. 4!. Within density-functional theories, thi
can be achieved by imposing to the jellium the shape
suits the electrons best.5–7 Deformations have also been stu
ied in less elaborate models~deformed external mea
field!,8–13 and there is a good overall agreement with expe
mental data for ionization potentials, dissociation energ
and splitting of dipole resonances for relatively small clu
ters ~less than 40 atoms!.

The above-mentioned deformations are of Jahn-Te
type, and occur between major shell closures, where low
ing the symmetry leads to a gain in energy. Another type
surface deformation also has to be considered which con
of surface irregularities of very large multipolarities. The
deformations not only lower the shell effect, but also intr
duce randomness into the spectrum. This was first notice
Gor’kov and Eliashberg,14 who claimed that ‘‘the distribu-
tion of the levels should be random even if the particles h
the same volume and a good shape, say spherical particl
equal size. The point is that electrons in the metal hav
PRB 580163-1829/98/58~8!/4942~10!/$15.00
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wavelength of the order of atomic dimensions. Therefo
surface irregularities of atomic size are sufficient to make
level distribution perfectly random.’’ This statement has
be tempered in view of the success of the jellium mod
Nevertheless it leaves no doubt that the surface of a clu
has atomic size irregularities; it is now important to estim
their amplitude and to evaluate the resulting effect on
physical observables.

The fact that disorder is located on the surface is leg
mated because the elastic mean free path of an electron i
bulk is typically of order of several hundreds of Å, where
an electron experiences collisions on the surface of the c
ter about each 10 Å. Indeed, it was shown in Ref. 15 that
scattering of electrons on the fluctuation of the positive io
has an effect of the same order as that of the thermal di
bution of the occupancy probability, which in turn is show
in the present work to be negligible compared to the effec
shape fluctuations. More microscopically, bulk disord
would be represented by fluctuations of the bottom of
potential well, and in the large-size limit high-lying state
tend to be insensitive to this perturbation, whereas the eff
of surface disorder increase when one goes up in
spectrum.16 Note that such irregularities are also to be tak
into account when the cluster is ‘‘liquidlike’’: the mean ve
locity of the ionic cores is always smaller by several ord
of magnitude than the typical electronic Fermi velocit
Hence, as far as electronic motion is concerned, the io
cores can be considered as frozen, and this necessarily
plies a certain degree of surface roughness.

In the present paper we use a liquid drop model to stu
the thermally activated surface deformations, or capilla
waves, of a neutral spherical cluster~Sec. II!. These defor-
mations correspond to a surface roughness, which we c
acterize by a single parameterD. We derive a simple analytic
approximate expression determining the behavior ofD as a
function of temperature and cluster size. Then in Sec. III
discuss the influence of shape fluctuations on the level d
sity using a trace formula in rough billiards, and compa
with thermal effects linked with the Fermi occupation num
ber of the energy levels~for this purpose we give the gener
form of shell corrections in the presence of temperature
4942 © 1998 The American Physical Society
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PRB 58 4943ROUGH DROPLET MODEL FOR SPHERICAL METAL CLUSTERS
Appendix C!. Finally we present our conclusions, and d
cuss possible refinements of our approach, in Sec. IV.

II. LIQUID DROP MODEL

In the liquid drop model, a cluster is described as a dr
let of incompressible fluid whose shape can be para
trized by a set of normal coordinatesalm obtained by ex-
panding the surface in spherical harmonics:17,18

r ~V,t !5RF11(
lm

alm~ t !Ylm~V!G . ~1!

The right-hand side of Eq.~1! is made real by imposing
al,2m5(2)malm* . The summation stops at a Debye cuto
L estimated by equating the number of surface modes to
number of atoms on the surface; this yieldsL
5(3A4pN)1/3.2.20N1/3. The droplet being considered in
compressible, one should impose volume conservation. If
cluster containsN atoms, it should have a volumeV
54pR3/3 with R5r SN1/3 (r S being the Wigner-Seitz radiu
of the material!. This leads to the relationa00A4p5
2(lmualmu2, valid to leading order. The modesl51,
which correspond to a global translation of the drop, sho
also be omitted in summation~1!.

Equation~1! yields a kinetic energyT and a surface en
ergy Vsurf5sA, wheres is the surface tension andA the
surface area corresponding to Eq.~1!. Including terms up to
second order in thea ’s, one obtains17,18

T5
r0R5

2 (
lm

uȧlmu2

l
,

Vsurf54pR2s1
R2s

2 (
lm

ualmu2~l21!~l12!, ~2!

wherer0 is the specific mass of the material considered.
One can also take into account a curvature term in

potential energy

Vcurv5
g

4E dAS 1

R1
1

1

R2
D . ~3!

In Eq. ~3!, g is an intrinsic curvature energy parameter, a
R1 andR2 are the principal radii of curvature. It turns ou
~see Appendix A! that taking this term into account exact
amounts to replacing in Eq.~2! the surface tension by a
effective term s→s* 5s1g/(2R), with which we will
work henceforth.

No other contribution to the potential energy has to
taken into account, because we consider concomitant de
mations of the jellium and the valence electron cloud o
neutral cluster@hence there is no other electrostatic deform
tion energy than the one included in Eqs.~2! and~3!#. At this
level we neglect finite-size quantum effects. For the surf
tensions, we use the value of the bulk material extract
from experiment in Ref. 19, and this implicitly contain
quantal effects associated with the kinetic energy of the e
trons near the surface. Hence including quantum effect
the present description would double this contribution;
appropriate procedure would be to use a Strutinsky shell
rection, cf. the discussion at the end of the paper.
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In Ref. 20 a description analogous to the present one
been shown to account accurately for the monovacancy
mation energy in simple metals such as the one we are in
ested in. This gives us confidence in the ability of a liqu
drop model to describe atomic size irregularities. Note tha
Ref. 20 the value ofs is renormalized in order to describe a
ideally flat surface. This procedure should not be employ
here, because we want the surface tension of a large clu
to tend to the one of the bulk material.

Equations~2! and ~3! correspond to a liquid drop La
grangian LLD@ȧlm ,alm#5T2Vsurf2Vcurv, with normal
modesalm(t)5Almexp(ivlt) of pulsationvl , given by

vl
25l~l21!~l12!

s*

r0R3
, ~4!

and the classical energy of the mode isElm5
s* R2(l21)(l12)uAlmu2. The average value of the ampl
tudeuAlmu2 of the thermally activated mode is determined
writing Elm5kBT. Here we use classical statistical mecha
ics; the quantal analog would beElm5\vl(nl11/2), where
nl5@exp(\vl /kBT)21#21 is a Bose occupation factor. Suc
a description has been used for describing the surface o
lations of liquid helium,21 but here the motion of the surfac
is classical:kBT@\vL @from Eq. ~4!, \vL.130 K for so-
dium#.

From Eq.~1!, the quantityr (V,t) averaged over the sur
face has a mean valueR(11a00/A4p) and a standard de
viation D which is is given byD25R2(l>2ualmu2/(4p);
henceD is independent of time. The explicit formula read

D25
kBT

4ps*
(
l52

L
2l11

~l21!~l12!

.
kBT

4ps*
ln

~2L21!~2L15!

7
. ~5!

On the right-hand side of Eq.~5!, we replaced the discret
summation by the first term of its Euler-MacLaurin expa
sion. Figure 1~a! displays the result of Eq.~5! for sodium
clusters at temperaturesT5200 and 450 K in the size regio
20<N<1000. It is difficult to determine the precise value
s* to be used in Eq.~5!: the surface and curvature param
eterss and g depend on the temperature and actual ph
~liquid or solid! of the aggregate. Hence we used seve
values ofs andg: a lower bound forD is obtained by taking
the valuess5190 K Å22 ~which is the solid-vapor value
extrapolated to zero temperature in Ref. 19! and g5285
K Å21.20 The upper bound is obtained by takingg50 and
s5145 K Å22 ~which is the liquid-vapor surface tension
melting19!. These values ofs correspond to a droplet param
eter as54pr S

2s, which ranges from 0.68 eV~for s5145
K Å22) to 0.89 eV~for s5190 K Å22). Indeed one can find
a large dispersion ofas in the literature: the value 0.54 eV
was used in Refs. 22 and 12~from a fit to theoretical values
of cluster energy!; in Ref. 2 the valueas50.7 eV was ex-
tracted from the bulk surface tension, and in Ref. 23
valueas51.02 eV was obtained via experimental determin
tion of the clusters’ cohesive energy.
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4944 PRB 58NICOLAS PAVLOFF AND CHARLES SCHMIT
As several studies in the field have demonstrated~see, e.g,
the work of Yannouleas and Landman12,24! the liquid-drop
LagrangianLLD is not adequate for describing the deform
tions of small multipolarities, which are determined main
by shell effects~see the discussion at the end of the pap!.
In order to estimate the role of these multipolarities in t
amplitude of the roughness we have redrawn Fig. 1~a!, with-
drawing the contributions ofl52 and 3 in summation~5!.
The result is displayed in Fig. 1~b!. As one should expect
this significantly reduces the value ofD. For instance, atT
5 450 K the typical roughness forN.200 is reduced from 1
Å to 0.85 Å.

From the discussion above and a comparison of Figs.~a!
and 1~b!, we see that, due to the simplicity of our model, w
cannot precisely determine the surface roughness of sod
clusters at typical experimental temperatures. For sod
r S52.08 Å ~thermal variations ofr S are negligible here!, and
we can only say that typical roughnesses are of orde
30–50 % of the interatomic distance. However, this lea
no doubt that there is a thermal activation of capillary wav
which makes a contribution to the surface roughness of
type given by Eq.~5! for large enough multipolarities. We
will see below that this has an important effect on shell str
ture, and that this effect is crucial for understanding
shape of the shell energy determined in experiment.

Note that an estimation of the geometrical corrugation
a solid surface at zero temperature20 yields values ofD on
the order of 20% ofr S . Hence the reduction of shell osci
lations presented below is a general phenomenon which
not depend on the solid or liquid structure of the aggrega

III. SHELL ENERGY IN A ROUGH SPHERE

The influence of surface roughness on the level statis
was discussed in Refs. 25–28 and more recently in a t
dimensional model.29 In the present work we concentrate o
its effect on level density and shell structure. Similar effe
were recently studied in Refs. 30, 31 and 32. The spirit of
present section is very similar to the one of Ref. 32, wh
presents numerical results in a corrugated mean field. H

FIG. 1. ~a! D as a function ofN for sodium clusters at tempera
tures 200 and 450 K, from Eq.~5!. The shaded zones correspond
different values of the surface tension and curvature parameter~see
the text!. ~b! Same as~a!, withdrawing in Eq.~5! the contribution of
the two first multipolarities (l52 and 3!.
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ever, the qualitative conclusions are different: in Ref. 3
corrugation is seen to imply a shift in the supershell str
ture. This effect—not seen in the present study—seems t
due to the fact that, in a finite depth potential such as the
used in Ref. 32, roughness leads to an effective mean
where the phase difference between the orbits is modified
any case, for the small roughnesses we are using here
shift in the shell structure found in Ref. 32 is small. In Re
30, the disorder is modeled by the addition of a rand
Hamiltonian to the mean field, and the results are com
rable to the one presented below. The approach was fur
extended in Ref. 31, where the effects of disorder on en
getics of lithium, sodium, and potassium clusters were ta
into account in a liquid drop plus shell-correction mod
Here the Hamiltonian for the deformation is only of liqu
drop type; however, we do take into account the therma
activated oscillations for the Hamiltonian we consider~see
the discussion in Sec. IV!.

In the present work theN electrons are considered t
move independently in an infinite potential well~a billiard!
having a shape that is approximately spherical@as given by
Eq. ~1!#. Hence we can consider that the actual shape
obtained by a random deviation from a perfect sphere, w
Gaussian fluctuations of standard deviationD determined
above. The choice of Gaussian fluctuations reflects the
that the distribution of eachAlm is Gaussian~according to
classical mechanics!. Then, invoking the central limit theo
rem, it can reasonably be considered that the shape fluc
tions are of Gaussian type. We consider an ensemble of c
ters~such as one would expect in a molecular beam!, and we
will present results averaged over this ensemble. The ra
R of the average sphere scales withN, so that the mean
electronic density is kept constant and equal to its b
value:R5r SN1/3.

The level density in a rough billiard with small size su
face irregularities was studied in Ref. 16, and a semiclass
trace formula averaged over surface disorder was deriv
The important feature of the level density is the gradual d
appearance of shell effects with increasing energy: near
Fermi level the electronic wavelength is of the order of t
typical size of the surface defects, and, after averaging,
induced shift of the eigenlevels leads to a structureless le
density. The bottom of the spectrum is not affected, beca
low-lying states have a wavelength much larger than the
face perturbations~accordingly, the effect on level statistic
is different at the bottom of the spectrum and near the Fe
energy27!.

It was shown in Ref. 16 that the oscillatory part of th
electronic energyEshell ~the so-called shell energy! can be
expressed on average as a sum over classical periodic o
in a perfect sphere:

Eshell~N,D!.
\2k̄F

2

2m (
PO

2A~ k̄F!

k̄FL2
sin~ k̄FL1np/2!

3exp$22n~ k̄FD!2cos2u%. ~6!

In Eq. ~6!, m is the electron mass,k̄F is the smooth part
~i.e., nonoscillatory! of the Fermi wave vector, which is to
good approximation equal to the bulk wave vectorkF
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5rS
21(9p/4)1/3. Eshell in Eq. ~6! is a quantity averaged ove

surface disorder, but the sum is performed over all the p
odic orbits~PO’s! of a perfectsphere~see Ref. 16!. L is the
length of a PO,A is an amplitude slowly depending onk̄F ,
n is a Maslov index,n is the number of bounces of the P
on the sphere, andu is the bouncing angle. All these quan
tities depend on the PO considered; see Appendix B for
ther details. WhenD50, Eq. ~6! follows from Balian and
Bloch’s trace formula for the sphere.33 Since k̄F is nearly
constant, the mainN dependence in Eq.~6! is due to the
scaling of the cluster’s size according toR5r SN1/3 (L scales
like R, A}R5/2 or R2 for some orbits; see Appendix A!.

Eshell as given by Eq.~6! is compared in Fig. 2 with the
value determined by Chandezonet al. in Ref. 34. In this
reference, an evaporation model was used for extracting
shell energy from the abundance distribution in a beam,
results for clusters of sizes ranging from 50 to 230 ato
were obtained. This experiment is important for our stu
because it concerns relatively large clusters, and our
proach is limited to this domain for the two following rea
sons:~i! we use a semiclassical approach more accurate
large sizes~see, for instance, the comparison with exact
sults in Fig. 4!, and, moreover,~ii ! the macroscopic concep
of roughness is meaningless for small sizes; for instance,
cluster withN520 atoms the Debye cutoff fixes the max
mum angular momentum of surface deformation to beL
.2.2N1/3.6, and in this regime the concept of roughness
of marginal importance~see the discussion of the Jahn-Tel
effect below!. In the following we state rather loosely tha
our approach is relevant for sizesN*100.

FIG. 2. Eshell(N,D) as a function ofN in sodium clusters. The
lower plot compares the experimental results of Ref. 34~black
points! with the values obtained by fixingD50.9 Å ~dashed line!
and D50.63 Å ~solid line!. The upper plot compares the expe
mental data with the values obtained by determining for each c
ter sizeD via Eq. ~5!, taking s5190 K Å22 and g5285 K Å21,
withdrawing the contributions ofl52 and 3. The dashed line cor
responds to a temperatureT5400 K, and the solid line toT5300
K.
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In the lower part of Fig. 2, the dashed curve correspo
to a constant valueD50.9 Å ~independent ofN) which—
from Fig. 1—is a typical value atT5450 K ~this temperature
is in agreement with the usual evaporation conditions35–37!.
The fact that this value ofD leads to too large a damping o
the shell structure should not worry us at this level: as sta
in Sec. II, the liquid drop model does not accurately det
mine the value ofD because it does not properly descri
deformations of small multipolarities. These deformatio
should be described with a more elaborate procedure,
may be less easily thermally excited~see the discussion o
Sec. IV!. This is confirmed by the solid curve which is draw
for D50.63 Å, and which gives a better account of the da
Note the sensitivity ofEshell to the value ofD/r S : formula
~6! has a schematic largeN-behavior of the form:

Eshell~N,D!;«FN1/6exp~2D2/r S
2!sin~N1/3!, ~7!

where«F5\2kF
2/(2m) is the bulk Fermi energy. For clarity

in the sine and exponent of Eq.~7! we dropped important bu
dimensionless factors. This will also be done in Eq.~9!; the
derivation of these formulas is explained in Appendix C@Eq.
~C9!#. Hence the shell structure is very sensitive to a sm
surface roughness; this point and the validity of formulas
type ~6! have been further tested on a numerical example
Ref. 38.

The valueD50.63 Å does not quite correspond to th
estimation of Fig. 1 forT5450 K: as explained in the con
clusion, the liquid drop Lagrangian seems to underestim
the stiffness of the potential for the deformation paramete
It may also happen that the electrons experience a mean
which—due to the diffuseness of its surface—is less cor
gated than the ionic background. Along the same line,
stead of fixingD to a constant value, one should, accordi
to Eq. ~5!, take the size dependence of the roughness
account. This improves the agreement with experiment
N.50, since in this region the value ofD decreases signifi-
cantly ~see Fig. 1!, and this leads to a lower damping of th
theoretical curve which comes closer to experiment. This
done in the upper part of Fig. 2, which is drawn in the ca
s5190 K Å22 andg5285 K Å21; these values have bee
chosen because they lead to small values ofD and to rela-
tively good agreement with experiment. The dashed line c
responds toT5400 K, and the solid line toT5300 K. For
each temperature and cluster sizeD was determined via Eq
~5!, withdrawing the contributions ofl52 and 3. However,
such a refinement is unnecessary for larger cluster size
view of the smallN dependence of Eq.~5! for large N. In
addition, a simple model with a constant value ofD50.63 Å
already gives a satisfactory agreement with experime
data.

In fact, our approach is more strongly supported by
very good comparison of theory and experiment for t
shapeof the curve for the shell energy than for the compa
son with theamplitude. Indeed, the agreement with the am
plitude may not be as good as presented in Fig. 2, beca
there should be some room left for an extra reduction of
amplitude of the shell energy due to quantum mechanic
driven deformations, corresponding to relatively small m
tipolarities ~typically l52 or 3!. Nevertheless, due to th

s-
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4946 PRB 58NICOLAS PAVLOFF AND CHARLES SCHMIT
high sensitivity of formula~6! to small changes ofD, we still
can conclude from Fig. 2 that the typical roughness is
order of 0.6 Å.

Concerning the shape of the curve, the experimental
sults of Ref. 34 are surprising, because they are in contra
tion with the common belief that cluster’s deformations a
only governed by Jahn-Teller effects. For instance, the
sociation energies and ionization potentials of simple m
clusters of relatively small sizes are well accounted for
models where the Jahn-Teller effect is the only mechan
of deformation12,24 ~the agreement with experiment surviv
up to sizeN;100 for the ionization potentials of potassium
see Ref. 39!. This phenomenon was expected to occur ev
for large values ofN; see, e.g., the zero-temperature resu
of Refs. 11, 13, 9, and 10, or the finite temperature result
Ref. 40. In these studies, the deformations occur betw
shell closures, and their main effect is to remove the up
part of the shell oscillations; the shell energy is predicted
have sharp negative spikes in the vicinity of the magic nu
bers~these spikes correspond semiclassically to long PO!.
On the other hand, surface roughness suppresses long
and reduces shell structure more uniformly, as seen in
experimental data of Ref. 34. Hence we feel that previ
theoretical approaches overestimate the role of the J
Teller mechanism: the very specific shape of shell ene
they predict is not seen in the experiment of Chandezonet al.
The comparison between our approach and the experime
results for the sizesN*100 firmly establishes that there is
qualitatively important effect of roughness.

On the quantitative level, one can also notice that typi
theoretical studies overestimate the shell effect for cluster
large sizes: compare Fig. 3 of Ref. 34 with similar figures
Refs. 11, 13, 9, and 10. Temperature effects improve
agreement~see Ref. 40!, but there is still a mismatch of orde
of 40% for the amplitude of shell oscillations~see Fig. 3 of
Ref. 34!, leaving room for improvement due to surfac
roughness.

For further comparison with experimental data, we d
play in Table I the magic numbers in the regionN,1300.
The first column shows theD50 results from the semiclas
sical formula~6!. The second column displays the exact
sult in the perfect sphere, and merely tests the accurac
the semiclassical periodic orbit expansion used in the
column. Note that the magic numbers of these two colum
are almost identical to the results of Bulgac a
Lewenkopf,10 who used a quadrupole deformation of
spherical billiard model within the shell correction metho
this is due to the fact that, as stated above, there is no J
Teller deformation at shell closure. In the third column w
show the magic numbers obtained from Eq.~6! with D
50.63 Å. The three first columns compare well with t
experimental ones from Chandezonet al. ~column 4!, and
roughness has only a small effect on the location of
magic numbers. We still produce these data because
justify the billiard model we are using: the magic numbe
from Table I are in better agreement with experiment th
the one obtained with harmonic oscillators9,11 or more elabo-
rate potentials.13,40 Hence, as far as the phase difference
tween the contribution of its PO’s to Eq.~6! is concerned, the
billiard model is presumably close to the experimental s
ation, since it allows a good prediction of the minima in t
f
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shell energy. However, the electrons are sensitive to a m
field which—due to the finite range of the electron-ion a
electron-electron interaction—could be less corrugated t
the ionic background. This would lead to an effective d
crease ofD, and may help improve the model by reducin
the importance of the ionic corrugation, leaving some ro
for an extra decrease in amplitude due to deformations
Jahn-Teller type.

Note that in the present treatment the effects of tempe
ture are indirect: although the usual temperatures reache
experiments are small compared to the Fermi energy~one
remains in the highly degenerate limitkBT!«F), they are
sufficient to induce a disorder of the cluster’s shape wh
has a sizable effect on shell structure. For comparison
can derive a formula@similar to Eq.~6!# encompassing the
effect of a Fermi occupation function in the energy levels
the electron gas. The free energyF(N,T) is more appropri-
ate than the total energy for evaluating these effects. Ind
based on Weisskopf’s approach, the electronic contribu
to the evaporation rate of a neutral monomer from a clus
of sizeN can be shown to be approximatively proportional
exp$@F(N)2F(N21)#/kBT%.40,41 The general formula for the
oscillating part of the free energy is derived in Appendix
and in the case of a billiard reads

Fshell~N,T!.
\2k̄m

2

2m (
PO

2A~ k̄m!

k̄mL2
sin~ k̄mL1np/2!F1~X̄!,

~8!

wherek̄m is the nonoscillatory part of the quantitykm defined
by m5\2km

2 /2m, m being the chemical potential. Again,k̄m

is to a good approximation equal to the bulk Fermi wa
vector kF . X̄5(p/2)tLkF

2/ k̄m is a dimensionless quantit
which tends to zero atT50 (t5kBT/«F is the reduced tem-
perature!. More precisely, it can be considered as small if t
thermal wavelengthlT5(2p\2/mkBT)1/2 is large compared
to Ar SL (X̄52p2L/ k̄mlT

2). F1 is a dimensionless dampin
function defined in Appendix C@Eq. ~C3!#.

TABLE I. Magic numbers in the perfectly spherical billiar
~column 1: PO expansion; column 2: exact results! and in the rough
billiard ~column 3!. Column 4 shows the experimental results
Chandezonet al.

Eq. ~6!,
D50

Exact result,
D50

Eq. ~6!,
D50.63 Å Ref. 34

56 58 56 58
92 92 92 92
138 138 136 138
184 186 190 19262
252 254 252 25662
336 338 334 33462
436 440 430 43062

540/554 542/556 526 54065
610/674 612/676 624 64865
744/830 748/832 752

908 912 902
1070 1074 1082
1282 1250 1286
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In Fig. 3, we compare the effects of a temperatureT5
750 K, with those of a constant roughnessD50.63 Å. The
shell energy is displayed as a function ofN1/3 for sodium
clusters of sizeN,3400. There is a striking difference wit
the N dependence obtained via usual temperature effect
occupation numbers. As one notices from the figure, rou
ness damps the oscillations in the total energy with an o
all factor@of the type exp(2D2/rS

2); cf. Eq.~7!# without modi-
fying the qualitative features of the supershells, wher
temperature leads to anN-dependent damping of schemat
form @cf. Appendix C, Eq.~C9!#:

Fshell~N,T!;«FN1/6F1~tN1/3!sin~N1/3! ~9!

@as in Eq.~7!, we have omitted numerical factors in the si
andF1 function#. Hence the effects of thermal distribution o
occupation numbers is to wash out the beating pattern of
shell energy by exponentially damping the largeN oscilla-
tions ~see also Fig. 4!.

Note also the efficiency of a small roughness for dim
ishing shell effect: for clusters of size 800,N,1200, from
Eqs.~6! and ~8!, one can see, for instance, that the effect
a small roughnessD50.2r S.R/50 onEshell is similar to the
one of a temperature of about 550 K onFshell. In the range
300,N,500 the same roughness corresponds to a temp
ture T.750 K, and for 50,N,250 it corresponds toT
.1000 K ~aroundN5200) or 1400 K~aroundN5100). As
a result, in a range of sizes and temperatures comm
reached in experiment (N;500 andT;400 K!, the effect of
roughness on shell structure is dominant compared to tha
thermal distribution of occupation numbers. Furthermore
discussed above, it seems from the experimental result
Ref. 34 that in about the same region, Jahn-Teller defor
tions of small multipolarity play a smaller role in the sha
of the shell energy than predicted by usual theoretical stu
~see Fig. 3 of Ref. 34!. Here we present roughness as
concomitant phenomenon which~according to comparison
with the data of Ref. 34! seems more relevant for large clu
ters. As discussed in Sec. IV, both phenomena should
taken into account for a proper description of deformatio
of large clusters.

FIG. 3. Eshell ~expressed in eV! as a function ofN1/3 in sodium
clusters. The upper plot is obtained by taking a constant rough
D50.63 Å. The lower plot corresponds to formula~C8! for a per-
fectly spherical aggregate with a temperaturet5kBT/«F50.02,
i.e., T5750 K.
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IV. DISCUSSION

One of the original interests of metal clusters was to p
vide a physical realization of a discrete and random sp
trum. It was long thought that the randomness of the lev
would lead to a structureless level density, and theoret
works were mostly devoted to the study of the two-po
form factor of the spectrum.42,43It is only during the last two
decades that molecular beams have made it possible to w
in a regime where the size of the cluster is well defined a
small compared to the electronic mean free path. In this
gime one observes shell effects as a result of finite-size qu
tum effects.1,4 Nevertheless the remark of Gor’kov an
Eliashberg quoted in Sec. I remains valid to some extent,
the present work aims at reconciling these two views
providing a semiclassical description of shell structure in
presence of shape disorder.

The model we have considered is schematic; a m
elaborate procedure would be to design a Lagrangian for
surface deformation encompassing the effects of shell st
ture ~in the spirit of Strutinsky shell corrections!:

L5LLD@ȧlm ,alm#2Eshell@alm#. ~10!

This approach is typical in a study of deformations of fin
fermionic systems. It is used for determining the equilibriu
shape, i.e., the set ofalm minimizing the total potential en-
ergy. Between shell closure it leads to a ground state
which the equilibrium value of some of thea ’s is nonzero
~mainly for smalll), contrary to what is obtained in Sec. I
where all thea ’s are zero at equilibrium. Using the Lagrang
ian ~10! would also modify the stiffness of the potential ne
the minimum ~since a termEshell would be added to the
potential used in Sec. II!.

Following the procedure of the present paper, one sho
go one step further and study the thermally activated vib
tions of the normal modes in Hamiltonian~10!. Hence the
usual Jahn-Teller deformations correspond to the first ste
the procedure just exposed and to a small multipolar
whereas surface roughness corresponds to the second
~and to large multipolarity!.

It would be of great interest to verify if the agreeme
obtained in Sec. III with experimental values would pers
when describing surface oscillations with a Lagrangian s
as L defined in Eq.~10!. This form of the Lagrangian is
legitimated by confrontation with experiments in the sm
and intermediate size domains, where it is commonly adm
ted that clusters of sizeN&100 experience static deforma
tions of small multipolarities.12,24 The success of the prese
model ~which usesLLD , and does not include such Jah
Teller deformations! in the size rangeN*100 might be ex-
plained by the decrease of the shell-energy contribution tL
due to an intrinsic roughness of the surface. Schematic
one might say that there is less difference between a ro
sphere and a rough ellipsoid than between a perfect sp
and a perfect ellipsoid. A similar phenomenon explains
disappearance of Jahn-Teller deformations with increas
temperature; see Ref. 40, where deformation is seen to
suppressed by thermal fluctuations. Note, however, that
phenomenon predicted in this reference is size depend
i.e., not uniform for all cluster sizes~as roughness would be!;
see the precise discussion in Ref. 40.

ss



ns
ni
a
o
e
lim
ec
ry

t
s

s

is
a
-

t
o

er

nn

es
.
ur-

a-

rms

rm

33
the

in

text
e

the

e

a
c-
-

4948 PRB 58NICOLAS PAVLOFF AND CHARLES SCHMIT
Note, finally, that thermally induced shape fluctuatio
have already been investigated in the study of the broade
of plasma resonances of metal clusters in Refs. 44–47
very recently in the study of shell structure for clusters
size smaller thanN5100.39 The ideas are similar to the on
exposed above; however, the allowed deformations are
ited to simple shapes, whereas it has been considered n
sary in the present work to include deformations of ve
large multipolarities for studying surface roughness.
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APPENDIX A

In this appendix we compute the curvature energyVcurv
@defined in Eq.~3!# for a droplet of shape given by Eq.~1!.
This amounts to evaluating the integralC5*dA(1/R1
11/R2) for a boundary that is approximately spherical. Th
can be done by noticing that ifA is the surface area of
given boundary, the modificationdA caused by an infinitesi
mal displacement of the boundary readsdA
5*dA dz(1/R111/R2), where dz is the normal segmen
between the undeformed boundary and the deformed
~see, e.g., Ref. 48, Chap. VII!. If this modification corre-
sponds to a modification of Eq.~1! by r→r 1dr , one can
computedA anddz in terms ofdr . This allows us to write
C in the form

C5E dV
K

r H r 21K

K1/2
2

1

sinu
]uS r sin u]ur

K1/2 D
2

1

sin2u
]fS r ]fr

K1/2 D J , ~A1!

where K(V)5r 21(]ur )21(]fr )2/sin2u. Then, writing
r (V)5R@11h(V)# and neglecting terms of order great
thanO(h2), one obtains

C52RE dVH 11h1
1

2
~]uh!21

1

2 sin2u
~]fh!2J 1O~h3!.

~A2!

The surface area can be expressed in a similar ma
~see Ref. 48!:
ng
nd
f

-
es-

o
,

ne

er

A5E dA5E dVrK 1/25R2E dVH ~11h!21
1

2
~]uh!2

1
1

2 sin2u
~]fh!2J 1O~h3!. ~A3!

The condition of volume conservation impos
*dV(11h)25*dV(11h)1O(h3). Hence, comparing Eqs
~A2! and~A3!, one sees that for small deformations the c
vature integral is proportional to the surface area:C52A/R
1O(h3). The corrections are of third order in the deform
tion, they are given in Ref. 49~Chap. 6! for spheroidal and
harmonic deformations. Here we are interested only in te
up to orderO(h2), thus the curvature energyVcurv5gC/4 is
equal up to a multiplicative constant to the surface te
Vsurf5sA: Vcurv is formally obtained fromVsurf by replacing
the surface tensions by an effective termg/(2R).

APPENDIX B

In this appendix we briefly present the results of Ref.
for the level density in the sphere, and we make explicit
different terms appearing in Eq.~6! for the perfect billiard.
The periodic orbits in the sphere are regular polygons
diametral planes. They are labeled by two numbers (n,t), n
being the number of sides andt the winding number of the
orbit around the center (n>2t). Note thatn is here the same
as the number of bouncing points appearing in the main
@Eq. ~6!#. The oscillating part of the level density in th
sphere reads

rosc~k!5(
t51

1`

(
n52t

1`

An,t~k!sin~kLn,t1nn,tp/2!. ~B1!

The shortest orbits are the pendulating orbit (n52, t
51), the triangle (n53, t51), and square (n54, t51).
The triangle and the square are sufficient to understand
qualitative features of the shell and supershell structure~see,
e.g., Refs. 50 and 51!. Each orbit bounces on the surfac
with a constant normal angleun,t5(122t/n)p/2, and has a
lengthLn,t52nR cosun,t . The pendulating orbit occurs in
two-parameter family~the parameters determine the dire
tion of bouncing!, whereas all the other orbits form three
parameter families. Hence the bouncing ball~with n52t)
has to be treated separately. The explicit formulas forA(k)
andn in Eqs.~6! and ~B1! are (t>1)

nn,t5H 0 if n52t,

n13/2 if n.2t
~B2!

and
An,t~k!5H 2
dSkR2

pt
if n52t

2dS~21! tsin~2un,t!Acosun,t

pn
R~Rk!3/2 if n.2t,

~B3!
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wheredS52 is the spin degeneracy.
One sees that the amplitude corresponding to the p

dulating orbit is proportional tok, whereas the other familie
have a larger weight~proportional tok3/2). Generally speak-
ing, one can show that the contribution of ad-parameter
family has an extrakd/2 power with respect to that of a
isolated orbit.52

APPENDIX C

In this appendix we derive approximate analytical expr
sions for the oscillatory part of the total energy, and of t
free energy at finite temperature. Similar results concern
the entropy, the free energy, etc. were previously obtaine
Refs. 53 and 54. We nevertheless briefly outline the der
tion of the formulas because the references just quoted
not very explicit and difficult to follow. The formulas ar
derived in the framework of a general PO expansion:
level density is notedr(e); it is separated in a smooth term
r̄(e) and an oscillating termrosc(e). In the present work, we
denote all the smooth terms with an upper bar and the o
lating terms with a subscript ‘‘osc,’’ except for the oscilla
ing part of the energies which have a subscript ‘‘shell’’ a
cording to the general convention in the field.rosc(e) is
supposed to be of the form

rosc~e!5Re(
PO
B~e! eiS~e!/\, ~C1!

whereS(e) is the action of the PO considered.B(e) is an
orbit-dependent amplitude which is of order\21 for chaotic
systems, order\22 for typical integrable systems in thre
dimensions, and order\25/2 for rotationally symmetric sys-
tems as the spherical billiard where families of orbits a
characterized by three parameters.52

We will estimate the asymptotic form of several integra
all of the same type, and we first display a formula oft
used below. Letg(e) be a slowly varying function ofe @as
B(e) is supposed to be#, andg8 its first derivative. Letf(e
2m)5@11exp$(e2m)/kBT%#21 be the Fermi function,m be-
ing the chemical potential. IfS(m)@\, one has

E
0

1`

g~e!f~e2m! eiS~e!/\de

5
\

i

eiS~m!/\

S8~m! H g~m!F1~X!2
\

i

g8~m!

S8~m!
F2~X!

1
\

i

g~m!S9~m!

@S8~m!#2
F3~X!1•••J , ~C2!

where the integral has been evaluated by a contour inte
tion in the complex plane~see, e.g., Ref. 55!. In the evalua-
tion of the integral we have neglected the contribution o
part of the contour located on the positive imaginary ax
this is legitimate provided the temperature is small compa
to the Fermi energy~degenerate Fermi gas approximation!.
X5pS8(m)kBT/\ is a dimensionless quantity which can b
considered as small if the periodS8 of the orbit is small
compared to a characteristic thermal time\/kBT. F1, F2, and
F3 are dimensionless damping functions:
n-

-
e
g
in
-
re

e

il-

-

e

,

ra-

a
;
d

F1~X!5
X

sinh X
, F2~X!5

X2coshX

sinh2X
,

F3~X!5
X3

sinh3XS 11
sinh2X

2 D . ~C3!

For obtaining the total energy starting from Eq.~C1!, one
first determines the chemical potentialm through the equality
N5N(m), whereN is the number of electrons andN(m)
5*r(e)f(e2m)de. Like r(e), N can be separated in
smooth termN̄ ~the Weyl term! plus an oscillating partNosc.
Accordingly, m can be separated in a smooth function ofN

plus an oscillating term:m5m̄1mosc, whereN5N̄(m̄).
Then the total electronic energy isE5*ef(e

2m)r(e)de. It can also be separated into a smooth partĒ,
and an oscillating part which is denotedEshell throughout the
paper @more preciselyEshell(N,T) in the presence of tem
perature#, in accordance with the general notations in t
field. Eshell reads, approximately,

Eshell5E er~e!f~e2m!de2E er̄~e!f~e2m̄ !de

.E er~e!@f~e2m̄ !2moscf8~e2m̄ !#de

2E er̄~e!f~e2m̄ !de

5E erosc~e!f~e2m̄ !de1moscm̄S dN
dm D

m̄

2moscE ~e2m̄ !r~e!f8~e2m̄ !de. ~C4!

The last term on the right-hand side of Eq.~C4! is sub-
dominant; moreover, it is zero at zero temperature, and he
we drop it in the following. Then, from Eqs.~C1! and~C2!,
one obtains

Eshell~N,T!.2Re(
PO

S \

iS8~m̄ !
D 2

B~m̄ !F2~X̄!eiS~m̄ !/\,

~C5!

whereX̄ is computed asX, with m̄ replacingm.
The free energyF(N,T) is a quantity more appropriat

than the total energy to evaluate the effects of electro
temperature on the abundance of clusters in the beam~see
the discussion in the main text!. It is defined by

F~N,T!5mN1E
0

1`

der~e!F~e2m!,

where

F~e2m!52kBT ln~11e~m2e!/kBT!. ~C6!

The oscillating part of the free energy is denoted
Fshell(N,T), and can be evaluated similarly to what has be
done in~C4!. This yields
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Fshell~N,T!.2Re(
PO

S \

iS8~m̄ !
D 2

B~m̄ !F1~X̄!eiS~m̄ !/\,

~C7!

In the particular case of a billiard whose level density is
the type~B1!, Eq. ~C7! reads

Fshell.
\2k̄m

2

2m (
PO

2A~ k̄m!

k̄mL2
sin~ k̄mL1np/2!F1~X̄!,

~C8!

wherekm is defined bym5\2km
2 /(2m). A formula of this

type seems to have been derived first by Dingle in Ref.
We have verified that this formula is of very good accura
in the spherical billiard~see Fig. 4!. An equally good agree
ment is obtained for the comparison ofEshell @as given by Eq.
~C5!#, with the exact result. For relatively low values ofN1/3

~sayN1/3,6), an even better agreement can be obtained
still using the semiclassical level density, but evaluating
tegrals such as Eq.~C6! numerically.

In the sphere, the main contribution to Eq.~C8! comes
from orbits occurring in three-parameter families~cf. Appen-
dix B!. Considering thatk̄m is of orderkF;1/r S , and thatL
and R scale liker SN1/3, one obtains the following leading
order: A( k̄m);R(Rk̄m)3/2;r SN5/6. Hence the schemati
largeN behavior of Eq.~C8! reads

Fshell;«FN1/6F1~tN1/3!sin~N1/3!, ~C9!

wheret5kBT/«F is the temperature expressed in units of t
bulk Fermi energy. Here for clarity we have dropped imp
tant but dimensionless factors in the sine andF1 function: we
just want to illustrate the typicalN dependence ofFshell. We
have adopted the same type of notation in the text@Eqs.~7!
and~9!#. The behavior~C9! is in agreement with the finding
in Refs. 53 and 54, and with Ref. 18 where Bohr and M
telson used schematic forms of the level density. We emp
size that here we have used a generic PO expansion, and
~C5! and~C7! are valid for any system~chaotic or integrable!
of independent fermions moving in an external potential.
et
f

.
y

y
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-

-
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qs.

Note, finally, that here we have computed the thermo
namical quantities in the grand canonical ensemble. T
number of electrons in a cluster being exactly conserved,
canonical description should be used instead@hence we
should have notedF(m,T) instead ofF(N,T): in this Ap-
pendix,N should be understood as the mean number of e
trons#. The difference between the two ensembles was s
ied in Ref. 57, where it was shown to give discrepancies
order of 0.05 eV~or 0.1 eV at best! in the free-energy dif-
ferenceF(N21)2F(N). This difference is expected to de
crease in the large-N limit, and moreover it plays no role in
the discussion of the effects of temperature given in the m
text.

FIG. 4. Fshell ~expressed in units of the bulk Fermi energy«F) as
a function ofN1/3 in a perfectly spherical aggregate.Fshell is de-
notedFshell(N,T) in the main text. The different plots correspond
temperaturest50.01 ~upper plot! and t50.02 and 0.03~lower
plots!, wheret5kBT/«F . For sodium these values correspond
T5376, 752, and 1128 K. The solid lines correspond to a deter
nation ofFshell obtained by using theexactspectrum of the spheri-
cal billiard, and the dashed lines to Eq.~C8!.
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