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Rough droplet model for spherical metal clusters
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We study the thermally activated oscillations, or capillary waves, of a neutral metal cluster within the liquid
drop model. These deformations correspond to a surface roughness which we characterize by a single para-
meterA. We derive a simple analytic approximate expression determihiag a function of temperature and
cluster size. We then estimate the induced effects on shell structure by means of a periodic orbit analysis, and
compare with recent data for shell energy of sodium clusters in the size rargd 5@50. A small surface
roughnessA=0.6 A is seen to give a reasonable account of the decrease of amplitude of the shell structure
observed in experiment. Moreover—contrary to usual Jahn-Teller-type of deformations—roughness correctly
reproduces the shape of the shell energy in the domain of sizes considered in experiment.
[S0163-182698)05328-4

[. INTRODUCTION wavelength of the order of atomic dimensions. Therefore
surface irregularities of atomic size are sufficient to make the
Since the discovery of shell effects in metal clusters, thdevel distribution perfectly random.” This statement has to
mean-field approach with delocalized electrons has been lae tempered in view of the success of the jellium model.
very efficient tool for describing a wide variety of phenom- Nevertheless it leaves no doubt that the surface of a cluster
ena: shell and supershell effects, dipole polarizability andhas atomic size irregularities; it is now important to estimate
optical excitations, fission, et¢for reviews, see Refs. 1 and their amplitude and to evaluate the resulting effect on the
2). This type of approach mainly relies on the jellium model, physical observables.
where the ionic background is considered as a smooth and The fact that disorder is located on the surface is legiti-
uniform distribution of positive charges. It is most legitimate mated because the elastic mean free path of an electron in the
for simple metalsand to a lesser extent for noble metals bulk is typically of order of several hundreds of A, whereas
with delocalized valence electrons, almost insensitive to th@n electron experiences collisions on the surface of the clus-
actual arrangement of the ionic cores. Hence the best candier about each 10 A. Indeed, it was shown in Ref. 15 that the
dates for this approximation are the alkali metals, as can becattering of electrons on the fluctuation of the positive ions
inferred from the quasisphericity of their Fermi surfdce-  has an effect of the same order as that of the thermal distri-
vealing a weak interaction between ionic cores and valencbution of the occupancy probability, which in turn is shown
electrons. As a result the compressibility of these solids isin the present work to be negligible compared to the effect of
close to its electron gas value, and the surface tension shape fluctuations. More microscopically, bulk disorder
correctly described by the jellium moddlhe agreement be- would be represented by fluctuations of the bottom of the
ing better for small electronic density; see Ref. 3 potential well, and in the large-size limit high-lying states
It was realized early that deformation effects had to betend to be insensitive to this perturbation, whereas the effects
taken into account for a realistic description of metal cluster®f surface disorder increase when one goes up in the
(see, e.g., Ref. )4 Within density-functional theories, this spectrunt® Note that such irregularities are also to be taken
can be achieved by imposing to the jellium the shape thainto account when the cluster is “liquidlike”: the mean ve-
suits the electrons bedt’ Deformations have also been stud- locity of the ionic cores is always smaller by several orders
ied in less elaborate model&deformed external mean of magnitude than the typical electronic Fermi velocity.
field), 2-*3and there is a good overall agreement with experi-Hence, as far as electronic motion is concerned, the ionic
mental data for ionization potentials, dissociation energiesgores can be considered as frozen, and this necessarily im-
and splitting of dipole resonances for relatively small clus-plies a certain degree of surface roughness.
ters(less than 40 atoms In the present paper we use a liquid drop model to study
The above-mentioned deformations are of Jahn-Tellethe thermally activated surface deformations, or capillary
type, and occur between major shell closures, where lowemwaves, of a neutral spherical clust@ec. 1). These defor-
ing the symmetry leads to a gain in energy. Another type ofnations correspond to a surface roughness, which we char-
surface deformation also has to be considered which consisgéterize by a single parameter We derive a simple analytic
of surface irregularities of very large multipolarities. Theseapproximate expression determining the behavioAdds a
deformations not only lower the shell effect, but also intro-function of temperature and cluster size. Then in Sec. lll we
duce randomness into the spectrum. This was first noticed bgiscuss the influence of shape fluctuations on the level den-
Gor'kov and Eliashberd! who claimed that “the distribu- sity using a trace formula in rough billiards, and compare
tion of the levels should be random even if the particles havavith thermal effects linked with the Fermi occupation num-
the same volume and a good shape, say spherical particles lnér of the energy levelgor this purpose we give the general
equal size. The point is that electrons in the metal have form of shell corrections in the presence of temperature in
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Appendix Q. Finally we present our conclusions, and dis- In Ref. 20 a description analogous to the present one has

cuss possible refinements of our approach, in Sec. IV. been shown to account accurately for the monovacancy for-
mation energy in simple metals such as the one we are inter-
Il. LIQUID DROP MODEL ested in. This gives us confidence in the ability of a liquid

o i . drop model to describe atomic size irregularities. Note that in
In the liquid drop model, a cluster is described as a dropref. 20 the value of is renormalized in order to describe an
let of incompressible fluid whose shape can be paramegeally flat surface. This procedure should not be employed
trized by a set of normal coordinates,, obtained by ex-  here, because we want the surface tension of a large cluster

panding the surface in spherical harmoni€s® to tend to the one of the bulk material.
Equations(2) and (3) correspond to a liquid drop La-
r(Q,H=R1+> ay (DY), (Q) . (1)  grangian ELD[&M,aw]zT—Vsm—chrv, with  normal
A

modesa, ,(t) =A, ,expiw,t) of pulsationw, , given by
The right-hand side of Eq(l) is made real by imposing

a)\’,ﬂ=(—)”a;\‘ﬂ. The summation stops at a Debye cutoff ) o*
A estimated by equating the number of surface modes to the oy =NMNA=1)(A+2) et (4)
number of atoms on the surface; this vyielda Po

=(3\/4mN)**=2.20N"". The droplet being considered in- .4
compressible, one should impose volume conservation. If thg_*
cluster containsN atoms, it should have a volum¥
=47R33 with R=r N3 (r 5 being the Wigner-Seitz radius
of the mazterlal._ This leads to the relationuooy4m= ics; the quantal analog would Ig , =% w, (n, +1/2), where
—3)ulen,|%, valid to leading order. The modes=1, n,=[expfiw, /kgT)—1]* is a Bose occupation factor. Such
which correspond to a global translation of the drop, should, gescription has been used for describing the surface oscil-

also be omitted in summatiotl). lations of liquid heliun?! but here the motion of the surface
Equation(1) yields a kinetic energyl and a surface en- g classicalkgT>%w, [from Eq.(4), fiw,=130 K for so-
ergy Vg, = oA, whereo is the surface tension and the dium.

surface area corresponding to Efj). Including terms up to
second order in the’'s, one obtains18

the classical energy of the mode Ii§,,=
RZ%(N—1)(\+2)|A,|% The average value of the ampli-
tude|A, ,|? of the thermally activated mode is determined by
writing E, ,=kgT. Here we use classical statistical mechan-

From Eq.(1), the quantityr (Q,t) averaged over the sur-
face has a mean valu®(1+ aqy/\4) and a standard de-
viation A which is is given byA?=R?S, _,|a, ,|%/(4);

5 i 2
T= p°2R 2 |l , henceA is independent of time. The explicit formula reads
N A
A
, R2o , A2 kgT 2A+1
Veur=4mR%0+ T; lay P-D(A+2), (2 dmo*iSs A—1) (A +2)
M
wherep, is the specific mass of the material considered. _ kgT n (2A—1)(2A+5) 5

One can also take into account a curvature term in the

; Amo* 7
potential energy

On the right-hand side of Ed5), we replaced the discrete
0% 1 1 . ) . .
chwz_f dA(—+ _) (3)  summation by the first term of its Euler-MacLaurin expan-
4 Ri R, sion. Figure 1a) displays the result of Eq5) for sodium
In Eq. (3), y is an intrinsic curvature energy parameter, andclusters at temperaturds=200 and 450 K in the size region
R, and R, are the principal radii of curvature. It turns out 20<N=1000. It_ is difficult to determine the precise value of
(see Appendix A that taking this term into account exactly o to be used in Eq(5): the surface and curvature param-
amounts to replacing in Eq2) the surface tension by an €terso andy depend on the temperature and actual phase
effective term o—o* =o+ y/(2R), with which we will (liquid or solid of the aggregate. Hence we used several
work henceforth. values ofo- andy: a lower bound forA is obtained by taking
No other contribution to the potential energy has to bethe valuess=190 K A~? (which is the solid-vapor value
taken into account, because we consider concomitant defofXtrapolated to zero temperature in Ref) Hhd y=285
mations of the jellium and the valence electron cloud of aK A~1.2° The upper bound is obtained by taking=0 and
neutral clustefhence there is no other electrostatic deforma-o=145 K A~2 (which is the liquid-vapor surface tension at
tion energy than the one included in E¢®). and(3)]. Atthis ~ melting'). These values of correspond to a droplet param-
level we neglect finite-size quantum effects. For the surfaceter a;=4mr 30, which ranges from 0.68 eVfor o=145
tensiono, we use the value of the bulk material extractedK A~2) to 0.89 eV(for =190 K A~?). Indeed one can find
from experiment in Ref. 19, and this implicitly contains a large dispersion o in the literature: the value 0.54 eV
guantal effects associated with the kinetic energy of the eleowas used in Refs. 22 and 1Rom a fit to theoretical values
trons near the surface. Hence including quantum effects inf cluster energy in Ref. 2 the valueag=0.7 eV was ex-
the present description would double this contribution; thetracted from the bulk surface tension, and in Ref. 23 the
appropriate procedure would be to use a Strutinsky shell conalueas=1.02 eV was obtained via experimental determina-
rection, cf. the discussion at the end of the paper. tion of the clusters’ cohesive energy.
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(a) (b) ever, the qualitative conclusions are different: in Ref. 32,
corrugation is seen to imply a shift in the supershell struc-

12 ture. This effect—not seen in the present study—seems to be

12

- 7 due to the fact that, in a finite depth potential such as the one
T =450 K . - -
o L Lo L z used in Ref. 32, roughness leads to an effective mean field
. T =450 K where the phase difference between the orbits is modified. In
ot any case, for the small roughnesses we are using here, the
— 08 0.8 shift in the shell structure found in Ref. 32 is small. In Ref.
< _ g 30, the disorder is modeled by the addition of a random
T=200K . - -
Hamiltonian to the mean field, and the results are compa-
0.6 rable to the one presented below. The approach was further
extended in Ref. 31, where the effects of disorder on ener-
| | getics of lithium, sodium, and potassium clusters were taken
04 0 500 1000 "o 500 1000 into account in a liquid drop plus shell-correction model.

N N Here the Hamiltonian for the deformation is only of liquid
drop type; however, we do take into account the thermally

FIG. 1. (&) A as a function oN for sodium clusters at tempera- activated oscillations for the Hamiltonian we considsee
tures 200 and 450 K, from E¢5). The shaded zones correspond t0 the discussion in Sec. i

different values of the surface tension and curvature parar(sser In the present work theé\ electrons are considered to

the tex}. (b) Same asa), withdrawing in Eq.(5) the contribution of 6 independently in an infinite potential wéd billiard)

the two first multipolarities X =2 and 3. having a shape that is approximately spherfea given by

Eqg. (1)]. Hence we can consider that the actual shape is
obtained by a random deviation from a perfect sphere, with
Gaussian fluctuations of standard deviatidndetermined
above. The choice of Gaussian fluctuations reflects the fact
that the distribution of eaclA, , is Gaussiantaccording to
classical mechanigsThen, invoking the central limit theo-
rem, it can reasonably be considered that the shape fluctua-
tions are of Gaussian type. We consider an ensemble of clus-
ters(such as one would expect in a molecular biaand we

will present results averaged over this ensemble. The radius
R of the average sphere scales with so that the mean
electronic density is kept constant and equal to its bulk
value:R=r N3,

The level density in a rough billiard with small size sur-
face irregularities was studied in Ref. 16, and a semiclassical
[face formula averaged over surface disorder was derived.
The important feature of the level density is the gradual dis-
we can only say that typical roughnesses are of order q ppearance of shell effe_cts with increa_\sing energy: near the

ermi level the electronic wavelength is of the order of the

ao g ST .
e v \helpical size of e surface delects, and. afer averaging, h
pifiary induced shift of the eigenlevels leads to a structureless level

8ensity. The bottom of the spectrum is not affected, because

o vt e L%, YU s e 3 alengih much ager h e ur-
ture, and that this effect is cru?:ial for understandin thefaCe perturbationgaccordingly, the effect on level statistics

' . X : 9 Is different at the bottom of the spectrum and near the Fermi
shape of the shell energy determined in experiment.

7
Note that an estimation of the geometrical corrugation Ofenergﬁ )

a solid surface at zero temperafiirgields values oA on It was shown in Ref. 16 that the oscillatory part of the
the order of 20% of 5. Hence the reduction of shell oscil- electronic energyEsne (the so-called shell energycan be

lations presented below is a general bhenomenon which do expressed on average as a sum over classical periodic orbits
P 9 P it a perfect sphere:

not depend on the solid or liquid structure of the aggregate.

As several studies in the field have demonstrasee, e.g,
the work of Yannouleas and LandrmaR® the liquid-drop
LagrangianZ, p is not adequate for describing the deforma-
tions of small multipolarities, which are determined mainly
by shell effectgsee the discussion at the end of the paper
In order to estimate the role of these multipolarities in the
amplitude of the roughness we have redrawn F{g), Wwith-
drawing the contributions of =2 and 3 in summatior5).
The result is displayed in Fig.(). As one should expect,
this significantly reduces the value &f For instance, al
= 450 K the typical roughness fdi=200 is reduced from 1
Ato0.85A.

From the discussion above and a comparison of Figs. 1
and Xb), we see that, due to the simplicity of our model, we
cannot precisely determine the surface roughness of sodiu
clusters at typical experimental temperatures. For sodiu
rs=2.08 A (thermal variations of 5 are negligible here and

Ill. SHELL ENERGY IN A ROUGH SPHERE n2KE o 2A(ke)  —
Esnei(N,A)= 5=, ——= sin(keL + v7/2)
The influence of surface roughness on the level statistics PO kel
was discussed in Refs. 25—-28 and more recently in a two- x expl — 2n(keA)2co26) ©6)

dimensional modéel® In the present work we concentrate on

its effect on level density and shell structure. Similar effects _

were recently studied in Refs. 30, 31 and 32. The spirit of the In Eq. (6), m is the electron mas is the smooth part
present section is very similar to the one of Ref. 32, which(i.e., nonoscillatory of the Fermi wave vector, which is to a
presents numerical results in a corrugated mean field. Hongood approximation equal to the bulk wave vectog
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06 In the lower part of Fig. 2, the dashed curve corresponds
to a constant valua =0.9 A (independent oN) which—

A [\ A ‘ﬁ\ A from Fig. 1—is a typical value ak= 450 K (this temperature
i L) A . /

[ev]

00 A is in agreement with the usual evaporation conditfor¥).

: V v \\:// v ™ \ The fact that this value i leads to too large a damping of

_ . the shell structure should not worry us at this level: as stated

s in Sec. Il, the liquid drop model does not accurately deter-
—08 | | ! ! ! mine the value ofA because it does not properly describe
0 50 100 150 200 250 deformations of small multipolarities. These deformations
should be described with a more elaborate procedure, and
06 may be less easily thermally excitésee the discussion of
Sec. V). This is confirmed by the solid curve which is drawn
for A=0.63 A, and which gives a better account of the data.
Note the sensitivity ofEg¢, to the value ofA/rg: formula

(6) has a schematic large-behavior of the form:

Eshell

[eV]

Eshell

Esne(N,A) ~NY0exp( — A2/r2)sin(NY3), R

wheresF=ﬁ2K§/(2m) is the bulk Fermi energy. For clarity,
in the sine and exponent of E(f) we dropped important but
dimensionless factors. This will also be done in E); the
derivation of these formulas is explained in AppendikEg).

FIG. 2. Eg,ei(N,A) as a function ofN in sodium clusters. The
lower plot compares the experimental results of Ref. (Blck

points with the values obtained by fixing =0.9 A (dashed ling (C9)]. Hence the shell structure is very sensitive to a small

and A=0.63 A (solid line). The upper plot compares the experi- s . L
mental data with the values obtained by determining for each Clusgurface roughness; this point and the validity of formulas of

ter sizeA via Eq. (5), taking o=190 K A~2 and y=285 K A~! type (6) have been further tested on a numerical example in

withdrawing the contributions af =2 and 3. The dashed line cor- Ref. 38. .
responds to a temperatufe=400 K, and the solid line td =300 The valueA=0.63 A does not quite correspond to the
K. estimation of Fig. 1 foiT=450 K: as explained in the con-

clusion, the liquid drop Lagrangian seems to underestimate
the stiffness of the potential for the deformation parameters.

-1 13 : : ;
s (9m/4)™. Egpen in Eq. (6) is a quantity averaged over |, may also happen that the electrons experience a mean field
surface disorder, but the sum is performed over all the peri-

. ) ) ) which—due to the diffuseness of its surface—is less corru-
odic orbits(PO's) of a perfectsphere(see Ref. 15 L |s_the gated than the ionic background. Along the same line, in-

length of a PO,A is an amplitude slowly depending &®,  stead of fixingA to a constant value, one should, according
v is a Maslov indexn is the number of bounces of the PO to Eq. (5), take the size dependence of the roughness into
on the sphere, and is the bouncing angle. All these quan- account. This improves the agreement with experiment for
tities depend on the PO considered; see Appendix B for furN~50, since in this region the value df decreases signifi-
ther details. Whem\=0, Eq. (6) follows from Balian and  cantly (see Fig. 1, and this leads to a lower damping of the
Bloch’s trace formula for the sphefd.Sincekg is nearly  theoretical curve which comes closer to experiment. This is
constant, the maimN dependence in Eq6) is due to the done in the upper part of Fig. 2, which is drawn in the case
scaling of the cluster’s size accordingRe=rsN'? (L scales =190 K A2 and y=285 K A™%; these values have been
like R, AxR%?2 or R? for some orbits; see Appendix)A chosen because they lead to small valued aind to rela-
Eqnen @s given by Eq(6) is compared in Fig. 2 with the tively good agreement with experiment. The dashed line cor-
value determined by Chandezat al. in Ref. 34. In this responds tal =400 K, and the solid line td =300 K. For
reference, an evaporation model was used for extracting theach temperature and cluster sixevas determined via Eq.
shell energy from the abundance distribution in a beam, an¢b), withdrawing the contributions af =2 and 3. However,
results for clusters of sizes ranging from 50 to 230 atomssuch a refinement is unnecessary for larger cluster sizes in
were obtained. This experiment is important for our studyview of the smallN dependence of Ed5) for large N. In
because it concerns relatively large clusters, and our amddition, a simple model with a constant valueAot 0.63 A
proach is limited to this domain for the two following rea- already gives a satisfactory agreement with experimental
sons:(i) we use a semiclassical approach more accurate fatata.
large sizeqsee, for instance, the comparison with exact re- In fact, our approach is more strongly supported by the
sults in Fig. 4, and, moreover(ii) the macroscopic concept very good comparison of theory and experiment for the
of roughness is meaningless for small sizes; for instance, in shapeof the curve for the shell energy than for the compari-
cluster withN=20 atoms the Debye cutoff fixes the maxi- son with theamplitude Indeed, the agreement with the am-
mum angular momentum of surface deformation to /e plitude may not be as good as presented in Fig. 2, because
=2.2N¥3=6, and in this regime the concept of roughness ishere should be some room left for an extra reduction of the
of marginal importancésee the discussion of the Jahn-Teller amplitude of the shell energy due to quantum mechanically
effect below. In the following we state rather loosely that driven deformations, corresponding to relatively small mul-
our approach is relevant for sizés=100. tipolarities (typically A=2 or 3. Nevertheless, due to the
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high sensitivity of formulg6) to small changes of, we still TABLE |. Magic numbers in the perfectly spherical billiard
can conclude from Fig. 2 that the typical roughness is of(column 1: PO expansion; column 2: exact regudtsd in the rough
order of 0.6 A. billiard (column 3. Column 4 shows the experimental results of

Concerning the shape of the curve, the experimental rechandezoret al.

sults of Ref. 34 are surprising, because they are in contradic-

Eq. (6), Exact result, Eq. (6),

tion with the common belief that cluster’s (_Jleformatlons are ;g A=0 A=063 A Ref. 34
only governed by Jahn-Teller effects. For instance, the dis-

sociation energies and ionization potentials of simple metal 56 58 56 58
clusters of relatively small sizes are well accounted for by 92 92 92 92
models where the Jahn-Teller effect is the only mechanism 138 138 136 138
of deformatiori??* (the agreement with experiment survives 184 186 190 1922
up to sizeN~ 100 for the ionization potentials of potassium; 252 254 252 2562
see Ref. 3R This phenomenon was expected to occur even 336 338 334 3342
for large values oN; see, e.g., the zero-temperature results 436 440 430 4382
of Refs. 11, 13, 9, and 10, or the finite temperature results of 540/554 542/556 526 5405
Ref. 40. In these studies, the deformations occur between g10/674 612/676 624 6485
shell closures, and their main effect is to remove the upper -44/830 748/832 752

part of the shell oscillations; the shell energy is predicted to  gyg 912 902

have sharp negative spikes in the vicinity of the magic num- 1070 1074 1082

bers(these spikes correspond semiclassically to long PO’s 1282 1250 1286

On the other hand, surface roughness suppresses long PO’s,
and reduces shell structure more uniformly, as seen in the

experimental data of Ref. 34. Hence we feel that previoughe|| energy. However, the electrons are sensitive to a mean
theoretical approaches overestimate the role of the Jahfeld which—due to the finite range of the electron-ion and
Teller mechanism: the very specific shape of shell energygjectron-electron interaction—could be less corrugated than
they predict is not seen in the experiment of Chandeta@l.  the jonic background. This would lead to an effective de-
The comparison between our approach and the experimentglease ofA, and may help improve the model by reducing
results for the sizebl=100 firmly establishes that there is a the importance of the ionic corrugation, leaving some room

qualitatively important effect of roughness. _ for an extra decrease in amplitude due to deformations of
On the quantitative level, one can also notice that typicaljahn-Teller type.

theoretical studies overestimate the shell effect for clusters of Note that in the present treatment the effects of tempera-

large sizes: compare Fig. 3 of Ref. 34 with similar figures oftyre are indirect: although the usual temperatures reached in
Refs. 11, 13, 9, and 10. Temperature effects improve th@xperiments are small compared to the Fermi endome
agreementsee Ref. 4 but there is still a mismatch of order remains in the highly degenerate limigT<eg), they are
of 40% for the amplitude of shell oscillatiorisee Fig. 3 of  syfficient to induce a disorder of the cluster's shape which
Ref. 34, leaving room for improvement due to surface has a sizable effect on shell structure. For comparison one
roughness. . _ ) ~ can derive a formuldsimilar to Eq.(6)] encompassing the
For further comparison with experimental data, we dis-gffect of a Fermi occupation function in the energy levels of
play in Table I the magic numbers in the regibi<1300.  the electron gas. The free ener§yN,T) is more appropri-
The first column shows tha =0 results from the semiclas- ate than the total energy for evaluating these effects. Indeed,
sical formula(6). The second column displays the exact re-nased on Weisskopf's approach, the electronic contribution
sult in the perfect sphere, and merely tests the accuracy @ the evaporation rate of a neutral monomer from a cluster
the semiclassical periodic orbit expansion used in the firsgf sizeN can be shown to be approximatively proportional to
column. Note that the magic numbers of these two cqumn§z‘3)(p[[|:(|\|)_|:(N—1)]/kBT}_4°'41 The general formula for the

are a|m051t0 identical to the results of Bulgac andgoscillating part of the free energy is derived in Appendix C,
Lewenkopf,” who used a quadrupole deformation of aznd in the case of a billiard reads

spherical billiard model within the shell correction method:

this is due to the fact that, as stated above, there is no Jahn- 722 2A(K,)
Teller deformation at shell closure. In the third column we Fgne N, T)= ——= -
show the magic numbers obtained from HG) with A

=0.63 A. The three first columns compare well with the ®

experimental ones from Chandezenal. (column 4, and  herek, is the nonoscillatory part of the quantity, defined

roughness has only a small effect on the location of th _ 32,2 . ; ; ;
magic numbers. We still produce these data because thgD p=h7K,/2m, p being the chemical potential. Agaik,,

TS I~ g . is to a good approximation equal to the bulk Fermi wave
justify the billiard model we are using: the magic numbers — o= . ) _ _
from Table | are in better agreement with experiment thar€Ctor kg . X=(m/2)7L«¢/k, is a dimensionless quantity
the one obtained with harmonic oscillatdtsor more elabo-  Which tends to zero &k =0 (7=kgT/eg is the reduced tem-
rate potentiald3“° Hence, as far as the phase difference peperature. More precisely, it can be considered as small if the
tween the contribution of its PO's to E€f) is concerned, the thermal wavelengthr=(274%/mkgT) 2js large compared
billiard model is presumably close to the experimental situto rslL (X=2w2L/kM>\$). F, is a dimensionless damping
ation, since it allows a good prediction of the minima in thefunction defined in Appendix CEqg. (C3)].

T ELZ sin(k, L+ vm/2)F(X),
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IV. DISCUSSION

One of the original interests of metal clusters was to pro-
vide a physical realization of a discrete and random spec-
trum. It was long thought that the randomness of the levels
would lead to a structureless level density, and theoretical
works were mostly devoted to the study of the two-point
form factor of the spectruf®*31t is only during the last two

= 10 - T =750 K decades that molecular beams have made it possible to work
= in a regime where the size of the cluster is well defined and
T_ 00 small compared to the electronic mean free path. In this re-
l’j’) “10 | | | gime one observes shell effects as a result of finite-size quan-

0.0 40 8.0 120 tum effectst* Nevertheless the remark of Gorkov and
NY3 Eliashberg quoted in Sec. | remains valid to some extent, and
the present work aims at reconciling these two views by
FIG. 3. E4e (expressed in eVas a function oN*3in sodium  providing a semiclassical description of shell structure in the
clusters. The upper plot is obtained by taking a constant roughnegsresence of shape disorder.

A=0.63 A. The lower plot corresponds to formulas) for a per- The model we have considered is schematic; a more
fectly spherical aggregate with a temperatureksT/e=0.02,  elaborate procedure would be to design a Lagrangian for the
i.e., T=750 K. surface deformation encompassing the effects of shell struc-

ture (in the spirit of Strutinsky shell corrections

In Fig. 3, we compare the effects of a temperatlire
750 K, with those_ of a constant roug_hne‘ss 0.63 A. The /;:gLD[dw vay 1= Eshell @y .- (10)
shell energy is displayed as a function #° for sodium
clusters of sizN<3400. There is a striking difference with This approach is typical in a study of deformations of finite
the N dependence obtained via usual temperature effects dgrmionic systems. It is used for determining the equilibrium
occupation numbers. As one notices from the figure, roughshape, i.e., the set af, , minimizing the total potential en-
ness damps the oscillations in the total energy with an overergy. Between shell closure it leads to a ground state in
all factor[of the type expt-A%rd); cf. Eq.(7)] without modi- which the equilibrium value of some of the's is nonzero
fying the qualitative features of the supershells, whereaémainly for small), contrary to what is obtained in Sec. I,
temperature leads to ai-dependent damping of schematic Where all thea’s are zero at equilibrium. Using the Lagrang-

form [cf. Appendix C, Eq(C9)]: ian (10) would also modify the stiffness of the potential near
the minimum (since a termEg,e; would be added to the
Fepei( N, T) ~ e NYEF, (7NY3)sin(N1/3) (99  potential used in Sec.)ll

Following the procedure of the present paper, one should
[as in Eq.(7), we have omitted numerical factors in the sinego one step further and study the thermally activated vibra-
andF, function]. Hence the effects of thermal distribution of tions of the normal modes in Hamiltonign0). Hence the
occupation numbers is to wash out the beating pattern of thaesual Jahn-Teller deformations correspond to the first step of
shell energy by exponentially damping the lafgeoscilla- the procedure just exposed and to a small multipolarity,

tions (see also Fig. ¥ whereas surface roughness corresponds to the second step
Note also the efficiency of a small roughness for dimin-(and to large multipolarity
ishing shell effect: for clusters of size 8@IN<1200, from It would be of great interest to verify if the agreement

Egs.(6) and(8), one can see, for instance, that the effect ofobtained in Sec. Il with experimental values would persist
a small roughnesa =0.2r s=R/50 onEg, is similar to the  when describing surface oscillations with a Lagrangian such
one of a temperature of about 550 K Bg,;. In the range as £ defined in Eq.(10). This form of the Lagrangian is
300<N<500 the same roughness corresponds to a temperéegitimated by confrontation with experiments in the small
ture T=750 K, and for 56<N<250 it corresponds t&  and intermediate size domains, where it is commonly admit-
=1000 K (aroundN=200) or 1400 K(aroundN=100). As ted that clusters of sizBl<100 experience static deforma-

a result, in a range of sizes and temperatures commonlijons of small multipolaritied??* The success of the present
reached in experimentN~ 500 andT~400 K), the effect of model (which uses( , and does not include such Jahn-
roughness on shell structure is dominant compared to that dfeller deformationsin the size rang&d=100 might be ex-
thermal distribution of occupation numbers. Furthermore, aplained by the decrease of the shell-energy contributiofi to
discussed above, it seems from the experimental results ofue to an intrinsic roughness of the surface. Schematically
Ref. 34 that in about the same region, Jahn-Teller deformasne might say that there is less difference between a rough
tions of small multipolarity play a smaller role in the shape sphere and a rough ellipsoid than between a perfect sphere
of the shell energy than predicted by usual theoretical studieand a perfect ellipsoid. A similar phenomenon explains the
(see Fig. 3 of Ref. 34 Here we present roughness as adisappearance of Jahn-Teller deformations with increasing
concomitant phenomenon whidlaccording to comparison temperature; see Ref. 40, where deformation is seen to be
with the data of Ref. 3dseems more relevant for large clus- suppressed by thermal fluctuations. Note, however, that the
ters. As discussed in Sec. IV, both phenomena should bphenomenon predicted in this reference is size dependent,
taken into account for a proper description of deformations.e., not uniform for all cluster sizggs roughness would hje

of large clusters. see the precise discussion in Ref. 40.
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have already been investigated in the study of the broadening 4=

of plasma resonances of metal clusters in Refs. 44—-47 and

very recently in the study of shell structure for clusters of

size smaller tham=1003° The ideas are similar to the one " 1 (3,h)
exposed above; however, the allowed deformations are lim- 2 sifg ¢
ited to simple shapes, whereas it has been considered neces-

sary in the present work to include deformations of very The condition of volume conservation imposes

Note, finally, that thermally induced shape fluctuations 1
JdA ferKlf2 sz dQ (1+h)2+§(¢99h)2

20 +0(h3). (A3)

large multipolarities for studying surface roughness. fdQ(1+h)?=dQ(1+h)+0O(h%. Hence, comparing Egs.
(A2) and(A3), one sees that for small deformations the cur-
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APPENDIX A APPENDIX B
In this appendix we compute the curvature enevQy,, In this appendix we briefly present the results of Ref. 33

[defined in Eq.(3)] for a droplet of shape given by EQl).  for the level density in the sphere, and we make explicit the
This amounts to evaluating the integral=/dA(1/R, different terms appearing in E@6) for the perfect billiard.
+1/R,) for a boundary that is approximately spherical. ThisThe periodic orbits in the sphere are regular polygons in
can be done by noticing that ifl is the surface area of a diametral planes. They are labeled by two numbers$)( n
given boundary, the modificatioflA caused by an infinitesi- being the number of sides andhe winding number of the
mal displacement of the boundary reads.A  orbit around the centem& 2t). Note thain is here the same
=[dA 8{(1/R+ 1IR,), where 8¢ is the normal segment as the number of bouncing points appearing in the main text
between the undeformed boundary and the deformed ori&q. (6)]. The oscillating part of the level density in the
(see, e.g., Ref. 48, Chap. VIIIf this modification corre- sphere reads

sponds to a modification of Eq1) by r—r+ ér, one can

computed.A and 8¢ in terms of r. This allows us to write -
C in the form Posdk)=2 2, An (K)sin(KLy v m/2). (BD)
Jd [ rP+K 1 rsin aﬂof) The shortest orbits are the pendulating orhit=(2, t
r{ kb2 3|n0 K112 =1), the triangle (=3, t=1), and squaren(=4, t=1).
The triangle and the square are sufficient to understand the
1 rayr

- ?0% (Al)  eg., Refs. 50 and 31Each orbit bounces on the surface
S| with a constant normal anglé, ;= (1—2t/n)«/2, and has a

where K(Q)zr2+(00r)2+((9¢r)2/sin20. Then, writing lengthL,, ;=2nR cosé,;. The pendulating orbit occurs in a

_ ; two-parameter family(the parameters determine the direc-
0)=R[1+h(Q d lecting t f ord ter . .
trkEan)(’)(h[Z) on(e 33),[;?15 riegiecting ferms ot order greater tion of bouncing, whereas all the other orbits form three-
' parameter families. Hence the bouncing balith n=2t)

has to be treated separately. The explicit formulas4¢k)

qualitative features of the shell and supershell structsee,
K1/2

C=2Rf dQ{ 1+h+ l( )2+ L (940)2} +O(h®). andv in Egs.(6) and(B1) are ¢=1)
sirté
(A2) 0 if n=2t,
T lnts2 it n>2t (B2)
The surface area can be expressed in a similar manner
(see Ref. 48 and
dskR?
-2 t if n=2t
aa

0s 6 .
2dg(—1)'sin(26, ) nn’tR(Rk)3’2 if n>2t,
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whereds=2 is the spin degeneracy. X X?coshX
One sees that the amplitude corresponding to the pen- Fl(x):ma FZ(X):WX_’

dulating orbit is proportional tl, whereas the other families

have a larger weightproportional tok®?). Generally speak- 3 .

; N X sink?X

ing, one can show that the contribution ofdaparameter Fa(X)= = 1+ . (C3
family has an extr&k®? power with respect to that of an sinfX| 2

isolated orhit?

For obtaining the total energy starting from EG.1), one
first determines the chemical potentiathrough the equality
N=AM(u), whereN is the number of electrons antl{ u)

In this appendix we derive approximate analytical expres—= [ p(€) ¢(e— u)de. Like p(e), N can be separated in a
sions for the oscillatory part of the total energy, and of thesmooth termV (the Weyl term plus an oscillating pam/ysc.
free energy at finite temperature. Similar results concerning\ccordingly, « can be separated in a smooth function\bf

the entropy, the free energy, etc. were previously obtained iBIus an oscillating termu = x + e, whereszT/(;).
Refs. 53 and 54. We nevertheless briefly outline the deriva- Then the total electronic energy iE=[ed(e

tion of the formulas because the references just quoted are )p(€)de. It can also be separated into a smooth [&rt
not very explicit and difficult to follow. The formulas are _ #/PL€/Ye P o2

derived in the framework of a general PO expansion: thetnd an oscillating part which is denotBghe throughout the

level density is noteg(e); it is separated in a smooth term BZE;L[rrgoirr? ggiglr?jiﬁéhe\%/i?ﬁ-%éngt:r?efarfi%rt];t(iaogg tiimt-he
p(€) and an oscillating termys{ €). In the present work, we &4 E ’ reads, approximately
denote all the smooth terms with an upper bar and the oscif— + shell ' ’

lating terms with a subscript “osc,” except for the oscillat- . o
ing part of the energies which have a subscript “shell” ac- Eshe”=J ep(e)qb(e—,u)de—J ep(€)dp(e—u)de
cording to the general convention in the fiela,s{€) is
supposed to be of the form

APPENDIX C

= f () ple— ) — poseh' (e— ) 1de

posd €)=ReX, B(e) &5/, (CD _ _
Fo —f ep(€) p(e—p)de
where S(e) is the action of the PO considerefi(e) is an
orbit-dependent amplitude which is of order ! for chaotic — d
systems, ordefi ~? for typical integrable systems in three :f €posd €) P(e— pu)det posu du |-
dimensions, and order~°? for rotationally symmetric sys- K’
tems as the spherical billiard where families of orbits are — . =
characterized by three paramet&s. —Mosc| (e—p)p(€)p’(e—p)de. (CH
We will estimate the asymptotic form of several integrals,
all of the same type, and we first display a formula often The last term on the right-hand side of EG4) is sub-
used below. Leg(e) be a slowly varying function ot [as  dominant; moreover, it is zero at zero temperature, and hence
B(€) is supposed to Beandg’ its first derivative. Letp(e  we drop it in the following. Then, from Eq$C1) and(C2),
— ) =[1+exp{(e—u)/kgT}] ! be the Fermi functiony be-  one obtains
ing the chemical potential. IB(w)>#%, one has

o\ o
+o ~_ _ iS(u)lh
J' g(f)(,‘b(f_/i) eis(é)/ﬁde Eshel(NlT) Re;) (IS,(;) B(/-L)FZ(X)e ’
0 (CH)
= é -elsw)/h ()F1(X)— ﬁ 9'(w Fo(X) whereX is computed a¥, with ; replacingu.
i S'(u) 9m)Fs i S'(u) 2 The free energy=(N,T) is a quantity more appropriate
than the total energy to evaluate the effects of electronic
fhg(u)S" (1) temperature on the abundance of clusters in the bea®
+ T [S'(u)]? Fa(X)+--- 1, (€2 the discussion in the main tgxtt is defined by

where the integral has been evaluated by a contour integra- e

tion in the complex planésee, e.g., Ref. 55In the evalua- FIN,T)=uN+ fo dep(€)P(e—p),
tion of the integral we have neglected the contribution of a

part of the contour located on the positive imaginary axiswhere

this is legitimate provided the temperature is small compared

to the Fermi energydegenerate Fermi gas approximajion ®(e—p)=—kgT In(1+er~keTy, (C6)
X=aS'(u)kgT/% is a dimensionless quantity which can be
considered as small if the peridd of the orbit is small The oscillating part of the free energy is denoted by

compared to a characteristic thermal tifiygT. F1, F,, and  F4,o(N,T), and can be evaluated similarly to what has been
F5 are dimensionless damping functions: done in(C4). This yields
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2
B(p)F y(X)e'Swih,
(C7)

In the particular case of a billiard whose level density is of
the type(B1), Eq. (C7) reads

Fene(N, T)=—Re>,
PO

iS' ()

— _
hzku 2A(k,)

2m 5 kL2

F el sin(k,L+ va/2)F1(X),

(C8)

wherek, is defined by,u=ﬁ2ki/(2m). A formula of this o
type seems to have been derived first by Dingle in Ref. 56.™~
We have verified that this formula is of very good accuracy 3
in the spherical billiardsee Fig. 4. An equally good agree-
ment is obtained for the comparisonBf,.;[as given by Eq.
(C5)], with the exact result. For relatively low valuesgt®
(S_ayN%/3<6)’ an even b_etter agreement can be Obta'_ned_ by FIG. 4. F 4, (expressed in units of the bulk Fermi energ) as
still using the semiclassical Igvel density, but evaluating in-; function of N3 in a perfectly spherical aggregatE. is de-
tegrals such as E4C6) numerically. notedF 4N, T) in the main text. The different plots correspond to
In the sphere, the main contribution to EE8) comes  temperaturesr=0.01 (upper ploi and r=0.02 and 0.03(lower
from orbits occurring in three-parameter familigs. Appen-  piots), where r=kgT/er. For sodium these values correspond to
dix B). Considering thafﬂ is of orderxkg~1/rg, and that. T=376, 752, and 1128 K. The solid lines correspond to a determi-
and R scale likergN*3, one obtains the following leading nation of Fp, obtained by using thexactspectrum of the spheri-

order: A(?M)~R(RE)3’2~rSN5/6. Hence the schematic cal billiard, and the dashed lines to EE.8).
largeN behavior of Eq.(C8) reads

120

Note, finally, that here we have computed the thermody-
namical quantities in the grand canonical ensemble. The
number of electrons in a cluster being exactly conserved, the
canonical description should be used instdagnce we
should have noted (w,T) instead ofF(N,T): in this Ap-

F sheir— e eNYeF 1 (7TNY3)sin(N173), (C9

wherer=kgT/ef is the temperature expressed in units of the
bulk Fermi energy. Here for clarity we have dropped impor-
tant but dimensionless factors in the sine &ydunction: we ;
just want to illustrate the typicall dependence dF o). We pendix,N sh(_)uld be understood as the mean number of elec-
have adopted the same type of notation in the tEXjs. (7) f[ron_s]. The difference petween the two gnser_nbles was stud-
and(9)]. The behaviofC9) is in agreement with the findings ied in Ref. 57, where it was shown to give discrepancies of
in Refs. 53 and 54, and with Ref. 18 where Bohr and Mot-order of 0.05 eV(or 0.1 eV at bestin the free-energy dif-
telson used schematic forms of the level density. We emphderenceF(N—1)—F(N). This difference is expected to de-
size that here we have used a generic PO expansion, and Egsease in the larghk limit, and moreover it plays no role in
(C5) and(C7) are valid for any systerchaotic or integrable  the discussion of the effects of temperature given in the main
of independent fermions moving in an external potential. text.
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