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Wave pattern induced by a localized obstacle in the flow of a one-dimensional polariton condensate
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Motivated by recent experiments on generation of wave patterns by a polariton condensate incident on a
localized obstacle, we study the characteristics of such flows under the condition that irreversible processes
play a crucial role in the system. The dynamics of a nonresonantly pumped polariton condensate in a quasi-
one-dimensional quantum wire is modeled by a Gross-Pitaevskii equation with additional phenomenological
terms accounting for the dissipation and pumping processes. The response of the condensate flow to an external
potential describing a localized obstacle is considered in the weak-perturbation limit and also in the nonlinear
regime. The transition from a viscous drag to a regime of wave resistance is identified and studied in detail.
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I. INTRODUCTION

The ability to move with respect to an obstacle without
dissipating energy is one of the most intuitive and appealing
definitions of superfluidity. This is the reason why the motion
of quantum fluids with respect to obstacles has been used in
several experiments aiming at revealing a superfluid behavior
in different physical systems: *He (see, e.g., Refs. 1 and 2),
3He (Ref. 3), ultracold atomic vapors,“‘8 and more recently
polariton condensates.”'

For a weakly perturbing impurity moving at constant
velocity V in a conservative atomic Bose-Einstein condensed
(BEC) system at zero temperature, the Landau criterion'*
predicts that there exists a critical velocity V.. separating
two different behaviors: (i) for V < V,; no excitations are
emitted away from the obstacle and, hence, there is no drag
force; (ii) for V > V. a Cherenkov radiation of linear waves
occurs; these waves carry momentum away from the impurity
which is thus subject to a finite drag force. The first regime is
superfluid and the second one is dissipative.'>

In a pumped nonequilibrium polariton condensate, even
when kinematically allowed, propagating disturbances are
always damped due to the finite lifetime of the polaritons.
As a result, the well-defined transition between superfluid
and dissipative regimes transforms in these damped systems
into a crossover characterized by different forms of wave
patterns: localized for small enough flow velocity, oscillatory
and extended for large enough flow velocity. The boundary
between these two regimes is typically not abrupt: Just at the
transition point the decay length of a propagating wave is
less than its wavelength and this disturbance can hardly be
distinguished from a localized perturbation. It might thus be
difficult to separate a superfluid regime from a dissipative
one by studying the wave pattern created by an obstacle.
Nevertheless, the concept of superfluidity is often employed
because it permits a simple qualitative discussion of the
processes taking place in the flow of a polariton condensate.

In the present work we study in detail the wake of a
polariton condensate past an obstacle and the associated
drag force. We argue that, for low enough damping, the
superfluid/dissipative transition is better understood in terms
of a crossover of the force experienced by the obstacle from
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a viscous drag to wave resistance, in analogy to what is
observed for capillary-gravity waves.

The paper is organized as follows. In Sec. IT we present the
phenomenological one-dimensional model we use and present
our strategy for studying the specific features of typical flows.
In Sec. IIT we set up a general perturbative analysis of the
motion of the polariton gas past a weak obstacle and discuss
the domain of validity of this approach. In Sec. IV we obtain
nonperturbative results valid for a localized narrow impurity
using several approximation schemes (the so-called hydraulic
approximation in Sec. IV A and Whitham averaging method in
Sec. IV B) and also numerical integration (Sec. IV C). Finally
we present our conclusions in Sec. V. Some technical points
are given in the appendices. In Appendix A we study the poles
of the response function of the system and in Appendix B we
present the perturbed Whitham theory we use in Sec. IV B of
the main text.

II. THE MODEL

‘We study the flow of a polariton condensate past an obstacle
disregarding possible effects of polarization of the light modes
in the cavity. We consider a configuration in which excitons are
confined in a one-dimensional quantum wire and, as a result,
the polariton condensate is described by an order parameter
¥(x,t) whose dynamics is modeled by a Gross-Pitaevskii
equation of the form

hZ
ihy, = ~om Vix + (Uex(x,1) + ap)y +i(y — To)y.

(1)

In Eq. (1) m is the polariton effective mass (in the parabolic
dispersion approximation, valid at small momenta), p(x,f) =
[¥(x,t)|* is the polariton density, and Ue(x,t) describes
the potential of a localized obstacle, possibly in motion
relative to the polariton gas. Interaction effects are described
by an effective local repulsive term characterized by the
nonlinear coupling constant « > 0. There is a whole body
of evidence showing that the overall effective interaction
between polaritons is repulsive. Some of the most direct
manifestations of this repulsion are the observed emission
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blueshift'®'® and the expulsion of the condensate from a
pumping region.'>?® Another consequence of repulsion, very
important for the present study, is the absence of scattering
from a defect—first observed in Refs. 9 and 10—and the
related emission of nonlinear excitations'® (solitons and
vortices) whose generation is typically associated with a loss
of superfluidity.' =131

Due to the finite lifetime of the polaritons, the system
needs to be pumped. Following Refs. 22-26, we schematically
describe this effect by the last term of Eq. (1): The term 7 v, =
y ¥ phenomenologically describes the combined effects of
the pumping and decay processes.”’ For y > 0 an overall gain
leads, if not compensated, to an exponential increase of the
density. This increase is counterbalanced by the term % v, =
—T'p ¢ (where I' > 0) which accounts for a saturation of the
gain at large density and allows one to reach a steady-state
configuration—resulting from dynamical equilibrium between
gain and losses—with a finite density pp = y/I'. Equation
(1) corresponds to a situation where the pumping extends
over all space. This models a system where an obstacle is
present within a large reservoir, and simplifies the theoretical
treatment because the stationary density in the absence of
external potential is constant. Results where the obstacle is
present outside of the pumping region will be presented in a
forthcoming publication.?

Localized structural defects are naturally present in many
samples; they can also be artificially created by means of
lithographic techniques or by a continuous-wave laser. If an
obstacle is introduced into the condensate, the state with
uniform density pp is disturbed. We suppose that the obstacle is
described by a potential Uex(x,#) with a finite spatial extension
[verifying Uex(x,t) — 0 as |x| — oo]. In many experiments
the condensate is put into motion with respect to the obstacle
by resonant pumping. Here we rather describe a situation with
nonresonant pumping, where condensation can be forced to
occur in a finite-momentum state by seeding the system with
a short coherent-light pulse.”® However, we believe that the
gross features of the theoretical study of the wave patterns and
of the drag force are not essentially affected by the technique
used for setting the fluid into motion. This is supported by a
comparison of the results of the present work with the one
of Ref. 29 where a continuous transition at a critical velocity
(possibly different from the speed of sound) is also observed
in a perturbative study of a resonantly driven polariton fluid.

As just discussed, in typical experiments with polariton
condensates, the obstacle does not move and instead the
condensate is put into motion with some velocity V. However
we shall sometimes use for convenience a reference frame in
which the condensate is at rest (far enough from the obstacle)
and where the obstacle moves with velocity —V: Ugx(x,1) =
Sfext(x + V). A comprehensive study of this problem can
be done in the case of an obstacle represented by a weak
potential which induces a wave disturbance corresponding
to small modifications of the parameters of the flow. In this
configuration the problem can be treated in the framework
of perturbation theory which is presented in Sec. III of the
paper; this corresponds to the extension to damped systems
of previous perturbative studies of BEC atomic vapors.’*-33
Note that the possibility of a perturbative treatment of Eq. (1)
has already been foreseen in Refs. 26 and 34; this led to the
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identification of the relevant complex wave vectors involved
in the perturbative analysis. In Sec. IV we consider the wave
pattern generated by the flow of a polariton condensate past a
strong obstacle potential, when perturbation theory no longer
applies. In this case, it is appropriate to distinguish between
wide and narrow obstacles depending on the ratio of their
sizes to the healing length & (£ is the de Broglie wavelength of
polaritons moving with the sound velocity; see its definition
in the next paragraph). When a narrow obstacle moves at
supersonic speed the downstream profile has a rather smooth
behavior which can be described by a dispersionless approach,
the hydraulic approximation which we presentin Sec. IV A. On
the other hand, the upstream-wave structure can be represented
(for small enough damping coefficient) as a weakly modulated
nonlinear periodic wave which is a damped dispersive shock
wave. Such shocks have been studied for the case of a wide
obstacle with the use of Whitham modulation theory in Ref. 35.
We present here a similar and more detailed study in the case
of a § impurity in Sec. IV B.

In the absence of external potential, a homogeneous and
stationary solution of Eq. (1) corresponds to an order parameter
of the form v (x,t) = ,/poexp(—iut/h), where py is the
uniform density and p is the chemical potential. Inserting
this expression in Eq. (1) one finds pg = y/I" (necessary
for obtaining a real u corresponding to a time-independent
density) and u = apg. The characteristic density po and energy
W are associated to characteristic velocity and distance, namely
the speed of sound®® ¢, = /apg/m and the healing length
& =h/(mcy).

We will see below that, for a given obstacle potential
Ucxi(x,t), the flow pattern is monitored by only two dimen-
sionless parameters: The Mach number M and the damping
parameter n defined as

M=Y and y=7. )
Cs 1

Having identified the relevant parameters of the problem one

can simplify the notations by expressing densities in units of

po, distances in units of &, times in units of £ /¢, and energies

in units of w. In these new variables Eq. (1) takes the form

iV = =3 + Uenx.) + 0¥ +in(l — o). (3)

From now on, we shall use this dimensionless form of the
damped Gross-Pitaevskii equation.

III. FLOW PAST A WEAK OBSTACLE

A. General linearized theory

In the absence of external potential Eq. (3) admits a uniform
stationary solution of the form ¥ (x,r) = exp(—it). If the
potential of the obstacle is weak, one can evaluate the density
and the flow velocity profiles of the polariton condensate
perturbatively. In this case one looks for a solution of Eq. (3)
of the form

V(x,t) =[1+@(x,0)]exp(—it), “)
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assuming that |¢(x,?)| < 1. Linearizing Eq. (3) with respect
to ¢(x,t) and Uex(x,¢) and introducing the Fourier transforms

u(q,w) @(x,1) ,
v(g,w) | = / dxdt| @*(x,t) |e @D (5)
Uext(qaw) R? UEXt(x’t)
one finds that u(q,®) and v(g,w) satisfy the following linear
system:
u(@gw)\ _  n 1
L(U(q,(,())) - Uext(qvw)<l>’ (6)
where
¢ . .
r—|[2 a)+.1 in i 1—in ). )
1+in T to+l+in

When Uem(q,a)) = 0, that is, in the absence of the external
obstacle, nontrivial solutions u(q,w) and v(g,w) of the 2 x 2
system (6) exist only when the determinant

2
D(q.0) = ¢* (qu) — o’ —2inw ®)

of the matrix £ is identically null. The resolution of the
characteristic equation D(g,w) =0 yields the dispersion
relation w(q) of the elementary excitations propagating on
top of a homogeneous and stationary profile. Let us first
consider the case » — 0 (and also in dimensional units ' — 0
in such a way that the density po = y/I" is kept constant).
In this case one finds that the excitation spectrum is the
Bogoliubov one, that is, one recovers the dispersion relation
of elementary excitations of a weakly interacting atomic Bose
gas: w(q) = £ ws(q), where

2
wp(@) =q4/1+ % ©)

In the case where 7 is not zero one gets>?

—in+i/n* —o}(q) iflgl < g.,

w(g) = (10)

—in£,/wg(@) —1* iflgl > qu
. = 26/T+ 7> = D] (1)

In the ideal case (n =0 and then g, = 0) long-wavelength
perturbations (|g| < 1) correspond to sound waves with a
linear dispersion wg(g) ~ ¢ and with a sound velocity equal
to unity in our dimensionless units. As announced in note 36,
perturbations with |g| < ¢* do not propagate in the presence
of finite damping (n # 0). However, for small , there exists a
finite region of wave number (¢, < |g| < 1) for which the
dispersion relation (10) can be approximated by the long-
wavelength limit w(g) >~ g — in describing weakly damped
sound waves.

Let us now consider the general case where Ug(x,t) is
not zero: The linear waves are generated by the external
potential and their Fourier components u(g,w) and v(g,w) can
be expressed by means of Eq. (6) in terms of this potential.
This yields the following expression for the first-order density

where
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modulation §p = ¢ + ¢* induced by Uex(x,1):

dgdw N Hgx—or)

dp(x,t) = ——5 X(q,0) Uex(q,w) " ,  (12)
r2 (27)

where

O &

Uexi(q.0)  D(q,0)

is the linear response function of the system. A configuration
of great experimental interest corresponds to the case where
the condensate moves at constant velocity with respect to a
static obstacle. In this case, in the frame where the condensate
is at rest, the external potential is of the form

Uext(xvt) = fext(x + M[), (14)

where M is, in our dimensionless units, the velocity of the
obstacle with respect to the condensate. For being specific, we
shall henceforth consider the case M > 0 which corresponds to
an obstacle moving to the left in a frame where the condensate
i§ at rest. Denoting by fexl the Fourier transform of fi [i.e.,
Jex(@) = [g dz feu(2) exp(—iqz)] the expression of §p(x,1)
in the case of an external potential of the form (14) reads

x(q,0) = (13)

d A .
so05.0) = [ 52 g, =Ma) fut) 70710
R 27

= f dz K(x + Mt — 2) fex(2), (15)
R
where
d .
K(X) = / 4, ~Mg) e (16)
R &TT

One can first remark that §p is a function of x + Mt only: The
perturbative approach predicts that the density modulations
induced by an obstacle moving at constant velocity are
stationary in the reference frame where the obstacle is at rest.
Note however that, in the absence of damping, experiments
performed on atomic condensates’ and theory?'37 show
that there is a regime of time-dependent flows for impurity
velocities close to the speed of sound. This is a nonlinear
effect which is missed by the perturbative approach. In the
presence of damping this time-dependent behavior also exits
but, in a numerical study of nonlinear effects in the presence
of a wide obstacle, it is observed in a smaller domain in the
parameter space (Intensity of Ue, V) than when n = 0.3 This
is confirmed in the case of a narrow obstacle by the numerical
results of Sec. IV C below. In this respect, the perturbative
result—being stationary—is thus more sound in the presence
of damping since in this case the domain of time-dependent
flows is reduced. We make this discussion quantitative at the
end of Sec. III B by discussing the parameters governing the
mathematical validity of perturbation theory.

A particular property of solution (15) comes from the
conservation equation

pr+ e =2np (1 —p), a7

where j = Im(y*,) is the particle current-density. Actually,
Eq. (17) is a bona fide conservation equation only when
n = 0. For nonzero n, the number of particles is not conserved
and Eq. (17) should rather be called a “nonconservation”
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equation for the current of particles. Equation (17) is a direct
consequence of (1); in the stationary regime it implies>*-

fdxp(l—p):O. (18)
R

At the perturbative level this reads fR dx §p = 0 which is
trivially verified by (15).

B. Perturbative flow past a § impurity

It is instructive to discuss in greater details the charac-
teristics of the wave pattern induced by a localized obstacle
represented by the potential

Uexi(x,t) = 28(x + Mt). (19)
Then one gets
Sp(x,t) = x K(X = x + Mt), 20)

where K(X) is defined in Eq. (16). This density modulation
is typical for the perturbations induced by a narrow obstacle
moving in the polariton condensate. Besides, the solution of the
§-impurity problem is particularly interesting because K (X)
is the Green function from which the result for any potential
is obtained by convolution [cf. Eq. (15)].

The integral (16) can be computed by the method of residues
and K (X) has different behaviors depending on the value of
M and corresponding to different arrangements of the poles of
x(q, —Mgq) in the complex g plane. The poles are the roots of
the equation D(g, —Mq)/q = 0 which reads

> +4(1 — M»q + 8inM = 0. Q21

The explicit expression of the three poles g1, ¢, and g3 as a
function of 1 and M is given in Appendix A. One obtains the
following generic expression (valid for all M):

3
K(X) =i Z sgn(Im ¢;) Res(g,) O[sgn(Im g,)X] "4 X,
=1

(22)

where ® is the Heaviside step function and Res(g,) is the
residue of (g, —Mgq) at g, (£ € {1,2,3}):

—4qy

Res = =
0= 3w )

(23)

There exists a critical velocity M below which the three
poles of x(g, —Mgq) are all located on the imaginary axis (cf.
Fig. 1 and also Appendix A) and in this case formula (22)
shows that K(X) exponentially goes to 0 when |X| — oo.
A more transparent expression can be obtained by explicitly
solving the third degree equation (21). For M < M. this
yields

Kx <oy = _2[AZB jamx 4B oy
h AlA-3B A2 _9B? ,
KX >0) = _3 A+ B e~ (A+BIX 24)
A A+3B

where A and B are positive real numbers (A > B > 0)
depending on M and 5, whose expressions are given in
Appendix A [Eq. (A3)].
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FIG. 1. (Color online) Location of the three poles ¢, ¢», and
qs; of x(q, —Mgq) in the complex ¢ plane. For positive (negative)
X = x + Mt the integral in Eq. (16) is evaluated by closing the
contour from above (below). As a result, for M > M.; (damped)
density oscillations are observed upstream from the obstacle (i.e., for
X < 0).

On the other hand, when M > M, two of the poles
acquire areal part and are symmetrically disposed with respect
to the imaginary axis (cf. Fig. 1). In this case the wave pattern
is given by the explicit formulas

4 E—iF |
K(X <0)= ——Im [ =5 oiEX ) ,FX
E E—-3iF
. (25)
KX>0 - 72FX’
( )= "o

where the expression of the positive real numbers E and F is
given in Eq. (A6).

The transition from one regime to the other takes place
when two roots of Eq. (21) (namely ¢g; and ¢») collide on the
imaginary axis, that is, when the discriminant of this equation
vanishes. This condition yields the expression of M;:

3
M =1- 3 P14+ + DV = 1+ 02 = 1'A].
(26)

When n — 0, that is, in the absence of damping, one
recovers the usual Landau threshold for emission of Cherenkov
radiation in a weakly interacting Bose gas: M.y =1 (in
dimensional units, Vi = ¢g). In this case, the perturbative
treatment states that the flow is nondissipative for velocities
below M. and dissipative above (see Refs. 32 and 33 and
the computation of the drag in Sec. III D). This is identical
to Landau’s criterion since both approaches give the same
value of velocity for the onset of dissipation and have
the same physical content: Excitation of small nonlocalized
perturbations is allowed only above M.

In the presence of dissipation n # 0, and Eq. (26) shows that
My is a decreasing function of 5 (cf. Fig. 2). For M < M
(subcritical velocities) there is no Cherenkov radiation but, as
shown by the explicit computation of the drag force below,
contrarily to the n = 0 case, the dissipative effects associated
with the finite lifetime of polaritons induce a finite drag force
on the obstacle and the flow is not strictly superfluid. For
M > M, Cherenkov radiation becomes possible but dissi-
pation within the condensate induces decay of the associated
density oscillations. The corresponding density patterns are
represented in each case (M < M) in the insets of Fig. 2
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FIG. 2. (Color online) M. = Vet /cs as a function of the dimen-
sionless damping parameter 7, such as given by Eq. (26). The dashed
lines correspond to the asymptotic expressions M =~ 1 — %(n /2)*3
(for low 1) and M =~ 2/ (33 n) (for large n). The insets represent
typical density profiles in the presence of a repulsive §-peak impurity
for M < M. (lower left inset) and M > M., (upper right inset).

and the relevant analytical expressions are given by Egs. (24)
and (25).

The fact that M.y is modified by damping physically
explains why perturbation theory is more accurate in the
presence of damping. For a nondamped system, an obstacle
moving at velocity close to M. = 1 generates Bogoliubov
excitations whose typical velocity is also close to ¢, = 1. As
a result, the perturbations accumulate in the vicinity of the
obstacle (since they propagate at the same velocity), nonlinear
effects cannot be neglected, and the perturbative approach
fails.’® In the presence of damping the critical velocity M
for radiating Cherenkov waves differs from the velocity of
propagation of small amplitude perturbation and, moreover,
the damping prevents large increases of the density. As a
result there is no pile up of fluctuations in the vicinity of
the obstacle, nonlinear effects may be neglected and the
perturbative treatment is more likely to be valid.

This intuitive explanation of the increased accuracy of
perturbation theory in the presence of damping is sustained
by the mathematical reasoning we present now. In the absence
of damping the amplitude of the relative density perturbation is
of typical magnitude s/|M? — 1|'/2 (i.e., perturbation theory
indeed seriously fails when the velocity of the obstacle is close
to the speed of sound®! because the expression for 8p diverges).
This problem is partially cured in the presence of damping: For
apotential of the form (19) a possible estimate of the amplitude
of |8p(x,1)| is its value s¢ | K (0)| at the position of the obstacle.
A study of the dependence of this quantity on the velocity
and on the damping (i.e., on the dimensionless parameters
M and 7n) shows that, for a fixed value of 7, it typically
reaches its largest value when M = M. The value of the
quantity s |K(0)| at M = M. is thus the small parameter €
of the perturbation expansion, in the sense that if this quantity
is small for given s¢ and n, the perturbation theory is valid
for all velocities. This condition reads [see formula (A10)]
€ =3/(1 — M2,)"? < 1. Hence € is the small parameter of
the perturbation theory in the presence of damping. It never
diverges for finite  and this shows that perturbation theory
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is more sound with than without damping. We see that €
effectively decreases in the presence of damping because M
differs from 1, as advocated in the intuitive discussion of the
previous paragraph. For small n, Eq. (A10) yields € oc 2c~!/3
whereas for large 1 one finds € o s. One can thus equivalently
define the small parameter of the theory as

€ = » x max{1,n~"3}, 27

and indeed a numerical check shows that, at fixed n, € as
defined by (27) is a good estimate of the maximum value of
[§p(x)|forx e Rand M € R,.

We stress that the condition € <« 1 is a criterion of
applicability of perturbation theory for all M at fixed n and
2. It is a strong requirement: For given n and s failing to
fulfill the condition € < 1, there are still some velocities
for which perturbation theory holds. For instance in the
supersonic regime, when nM(M? — 1)~3/2 « 1, the condition
of applicability of perturbation theory relies on the smallness of
the upstream oscillations and reads s¢/(M? — 1)!/2 « 1 which
is verified for large M even when € is not small.

C. Generic flow pattern for a weak obstacle

For an obstacle of the generic form (14) the position of
the poles of the response function and the critical velocity
(26) play the same crucial role as for a § impurity. Equation
(15) yields the following explicit expression for the density
oscillations:

X
Sp(X) =i / dy Res(g3) fou(y) €' @)

(o]

—i / dy > Res(qe) fou) @0, (28)
X

Le{l,2}

where we recall that Res(g,) is the residue of x (¢, —Mgq) at g,
(€ = 1,2 0r3) [see Eq. (23)]. Formula (28) is valid both below
and above M. When n = 0 it reduces to the one already
obtained in Ref. 31 in the absence of damping [Eq. (45) of this
reference].

It is interesting to obtain from (28) the generic form of the
long-distance wake which exists ahead of the obstacle when
M > M. When X is negative and much larger than the range
of the obstacle potential f., the first term in Eq. (28) can be
neglected. If, furthermore, f.x decreases rapidly enough at
—00 so that ﬁxt(ql,z) exists (typically when fe(x) decreases
more rapidly than exp[—Im(q; ) x]), one can approximate the
second integral by a compact expression yielding

dp(X) = 2Im[Res(q)) feulg) e ™). (29)

We recall that Eq. (29) is an approximation of formula (28)
valid for M > M. It is of course exact for all X < O in the
case of a 6 impurity. It describes Cherenkov oscillations which
are damped by a factor exp[—Im(qg;) x], in complete agreement
with the results obtained in Ref. 35 both numerically and also
by means of Whitham averaging method [Eq. (42) of this
reference].

Note that for large velocities (M > M) the imaginary
parts of ¢ and g, tend to zero (cf. Appendix A) and the wake
(29) thus extends far ahead from the obstacle: The effective
damping of the Cherenkov radiation tends to zero. However,
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cht(X) = %6(X)

1t M < My
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» X2
Uext(X) = o/ exp <—02>

1t M < M
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P
<! 0f
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"07045,
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X

1t M > M
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FIG. 3. 6p(X = x + M) for a §-impurity potential (left panels) and a Gaussian potential (30) of width & = 0.5 (right panels) as given by
perturbation theory [Eq. (15)]. The plots are drawn for a system in which = 0.5 and in this case M. = 0.5. The two upper panels correspond
to a velocity below M; (M = 0.4) and the two lower ones to a velocity above M (M = 1.75). In the lower right panel the dashed gray line

corresponds to the approximation (29).

in this limit, |g;| gets very large (cf. Appendix A) and for a
generic potential | fox(q1)| becomes very small: The amplitude
of the wake decreases uniformly at large velocity, not because
of damping, but because the large kinetic energy of the flow
with respect to the obstacle allows one to treat this obstacle
as a small perturbation. The same effect had been predicted
for BEC of ultracold vapors in Ref. 31 and has been observed
experimentally in Refs. 7 and 8.

For being specific, we compare in Fig. 3 the density
modulations obtained within perturbation theory for a §-
impurity obstacle (19) with the ones corresponding to a
Gaussian potential of finite width o:

2
_w] . (30)

2

x
Uexi(x,t) = ——=
= ]

o

When ¢ — 0 this potential tends to the §-impurity potential
(19). As just explained, when M > M, the damping of the
oscillatory wake in front of the obstacle is more effective in
the Gaussian case than for the § impurity and is very well
described by the asymptotic form (29) as shown in the lower
right panel of Fig. 3.

D. Drag force

In order to discuss the precise influence of the finite lifetime
of the polaritons on the possible superfluidity of the flow, it is
interesting to compute the drag force F,; experienced by the

obstacle. F, is defined as>2
Fy= f 4 19D B U0, G1)
R

A natural way to compute F, is to insert the perturbative
expression (15) for §p in Eq. (31) (see, e.g., Ref. 33). Another
convenient way is to use the stress tensor 7 (x,?) in a manner
similar to what has been done in Ref. 32. The stress tensor is
defined as

T(x.0) = ~Im(*y) + 51¥cl® = 307 = p Uexr. (32)
It verifies the “nonconservation” equation
Ji+ T + p(Uex)r =20 (1 — p) J, (33)

where in dimensionless units the momentum current-density J
coincides with the particle current-density: J(x,?) = j(x,t).In
the presence of damping, in the stationary regime, integrating
this expression over position, one gets

Fd=2n/ dx(1—p)J. (34)
R
Within the perturbative approach one can show that J(X =
x+ Mt)y=—MSp(X)—2n fio dy 5p(y), and using the re-
sult (18) this yields, for an obstacle of type (14),
Fo=21M f dx [8p(x))°
R

d .
=2nM/ 2—"|x(q,—Mq>|2|fext(q)|2. (35)
R 47
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n=0.5

Fd/%2

0 : | . . .
0 0.5 1 1.5 2 2.5 3

V/es

FIG. 4. (Color online) F;/»* as a function of M = V/c, for
different values of the dimensionless damping parameter n. The
curves are drawn for the §-impurity potential (19): Ue(X) = 5 §(X).
For each curve the abscissa of the white dot spots the value of M_;(n).
For each 7 this critical velocity is reached exactly when F, /s> = %.
We emphasize that (31) is generally valid, that (34) is only
valid for a stationary regime in the presence of damping for
an obstacle moving at constant velocity, and that (35) is the
perturbative evaluation of (34).

For concreteness we now give the explicit expression of the
perturbative drag (35) in the case where the potential is a Dirac
peak of the form (19). One gets

%2
Fy=—— ) sgmg)qResq).  (36)
£e{1,2,3}

Substitution of the explicit expressions for the poles yields

Ay M(1 — M*) 732

Fy= :
¢ cos § (cos § + \%sin %) (cos & ++/3sin %)
(37)
for M < M, and
8s*n M
Fj=—— 38
T F(EX +9F?) (38)

for M > M [in the above expressions 0, E, and F' are given
by Egs. (A1) and (A6)]. The behavior of F,; as a function of
M is displayed in Fig. 4 for several values of n. For each n
the critical velocity M. is reached exactly when the drag is
F; = 25¢*/9. The corresponding points are shown as white
dots in the figure. One can also show that for all n one has
F;=25x*/3when M = 1.
From formulas (36), (37), and (38) one finds

nM when M — 0,

2 when M — o0, (39

Fd ~ %2 X {
in agreement with the main features of Fig. 4. It is interesting to
notice that the drag force is proportional to nM when M — 0
(a similar behavior has already been observed in Refs. 26 and
29). This means that at low velocity the obstacle experiences
a force which is similar to a viscous drag of Stokes type: (i) it
is proportional to the velocity; (ii) it is linked to diffusion of

PHYSICAL REVIEW B 86, 165304 (2012)

momentum as shown in the polariton case by Eq. (33) and by
the fact that the associated wave vector is imaginary.

When M increases and reaches the value M = M, a
wake begins to be emitted ahead of the obstacle. It consists of
(damped) Cherenkov radiations and one could say, pursuing
the analogy with fluid mechanics, that this marks the onset of
wave resistance. One can push the analogy one step further
and compare the present results with the ones obtained in
experimental studies of the drag force exerted on objects
moving at the surface of several viscous fluids. In such
experiments it is typically observed, as in Fig. 4, that the
transition to the wave drag is continuous,® but also that
F,; considered as a function of V has a quasidiscontinuous
behavior for decreasing viscosity.*” An exactly discontinuous
behavior is typical for the perturbative drag in superfluids’?
and is also expected on the basis of Raphaél-de Gennes theory
of wave resistance in the context of capillary-gravity waves at
the surface of inviscid fluids.*' This discontinuity disappears
for finite viscosity.*> Moreover, it is interesting to remark that
from Fig. 4 one might erroneously guess (as is sometimes
done in the analysis of fluid mechanics experiments) that the
relevant critical velocity for the onset of wave drag does not
depend on viscosity (i.e., on 1 in our case) and that at finite
viscosity the behavior of F,;(M) is just smoothed around the
inviscid value [252®(M — 1) in our case]. From our analytical
analysis we know that in reality the wave drag sets in at M
[which is not equal to the inviscid value M (n = 0) = 1] and
that it is not possible, when M >~ M or 1, to disentangle
in the expression of F; a viscous component from a wave
resistance. This is clear from Fig. 4 where the onset of wave
drag is shown by thick white dots: At these points F; remains
a smooth function of M.

In Fig. 4 all curves merge at M = 1, and it is intriguing to
remark that the drag for a fixed velocity M larger than unity
decreases for increased damping. This counterintuitive effect
has already been observed in a study of the motion of nitrogen
drops floating at the surface of a liquid bath.*? It is explained
by the fact that viscous effects reduce the range of the wake
and accordingly diminish the wave resistance which is the
dominant source of drag when M > 1.

At large velocity all curves in Fig. 4 tend to the same
constant value, which is the result for the drag force in the
absence of damping. The fact that the large velocity drag does
not depend on M is an artifact of the §-impurity potential,
as demonstrated by the results obtained in the more standard
case where the obstacle is described by a Gaussian potential
of the form (30). In this case formula (31) or (35) leads to the
expression

2
n
Fo=—— Z qeRes(qe) e 7 41
te1.2,3)

x [sgn(lm qe) + erf (%)] . (40)

The corresponding curves are shown in Fig. 5. The coun-
terintuitive n dependence already observed in the case of a
§-impurity potential is here even more striking: The maximum
drag is larger at small n (compare the curves obtained for
n =0.2and n = 0.6).
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2’fext(Q1\1)|2
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V/es

===

FIG. 5. (Color online) F;/»* as a function of M = V/c, for
different values of the dimensionless damping parameter 7. The solid
curves are drawn for a Gaussian-impurity potential of width o = 0.5.
The black dashed line is the corresponding asymptotic result (45).
The gray dashed line is the result for a §-impurity potential, shown
for comparison.

In order to better understand the large-velocity behavior of
the perturbative estimate of the drag force we now derive an
explicit asymptotic expansion valid for any potential of the
form (14) moving at large velocity. From expressions (15) and
(31) one gets

Fy

. [ dq P 2
—1 2_‘])((‘]»_M‘Z)|fext(q)|
R &TT

d .
—i[ dx z—qq x(q, =Mq) fexio fex(x) e, (41)
R2 T

In Eq. (41) fext © fext is the convolution of f. with itself. The
integral over ¢ in this formula can be evaluated by the method
of residues. For positive (negative) x the contour has to be
closed from below (above). Considering that when M > M.
the poles ¢ and g, which lie in the lower half of the complex
q plane verify ¢o = —g{ and Res(q,) = —[Res(g;)]*, one gets

[}
Fq = —2Re |:q1 Res(ql)/ dx fextofext(x) eiqlx]
0

0
+qs ReS(éIs)/ dx fexio fex(x) e (42)

At large velocity one obtains, from Egs. (23) and (A8),

q1 Res(ql) =-2 + 0 (WZrl_—l)Sﬂ) s
(43)

M
g3 Res(q3) = O ((M277_—1)3/2> .

From this, and using the fact that f. 0 fex is an even function
of x, one can cast the leading-order contribution to F; in
Eq. (42) under the form

Fy=2 f dx e~Re@)x gm@)lxl £ o (4
R

| fexd(@I*. (44)

. 2/ dq —2Imgq
R 27 [Re(q1) — q1* + Im’q,

PHYSICAL REVIEW B 86, 165304 (2012)

The last expression in Eq. (44) is obtained using Parseval-
Plancherel theorem. At large velocity the imaginary part of g,
is of order nM(M? — 1)~!, whereas its real part is Re g, ~
gy = 2(M? — 1)!/2 [cf. Eq. (A8)]: The Lorentzian in Eq. (44)
is thus a good approximation of the Dirac distribution §(g¢ —
qu)- This directly yields the following large velocity result:

A M
Fi = 2| fou(qu)l? [1 +0 <W2"_—1)3/2ﬂ SENCO)

This means that the typical drag depends on velocity (through
g,) and tends to zero at large velocity** contrarily to what
occurs for the §-impurity obstacle. Itis interesting to notice that
the result (45) does not depend on 7 at leading order (i.e., that
the large-velocity drag corresponds to pure wave resistance).
Besides, as already remarked in Sec. III C [paragraph between
Egs. (29) and (30)], the obstacle can always be treated as a
perturbation at large velocity and the associated drag force
decreases (the large velocity limit was accordingly denoted as
“quasiideal” in Ref. 45).

We end this section by noting that the drag force has
not only a methodological interest, but that it is also a
measurable quantity. This is clear in the context of classical
hydrodynamics.?>*’ This is also partially true in the context
of Bose condensation where one can have an indirect grasp on
F; by measuring the rate of the part of energy dissipation
associated with the force experienced by the obstacle?3*:
dE/dt = —MF,. For instance, the experiment of Raman
et al.* demonstrates breaking of Landau criterion, not through
the emission of a wake (which is present, but not measured),
but by an increase of the measured thermal noncondensed
fraction. This increase is due to the dissipation of the work
done by the finite drag force.

IV. NONLINEAR THEORY FOR A NARROW OBSTACLE

In this section we present results valid for strong obstacle
potentials, in regimes where the perturbative approach of the
previous section typically fails. In the limit of small damping
(n < 1) one can expect that other approximations are valid.
For example, in the case of an obstacle represented by a
strong § potential, one can assume that the condensate is
strongly disturbed at the location of the obstacle, so that
the difference 1 — p(0) is not small; however, the derivative
of the distribution p(x) downstream from the obstacle (for
x > 0) is controlled by n and can be considered as small
in the case of small damping. Hence we can develop for
this region a so-called hydraulic approximation by neglecting
higher order dispersive effects in our equations (see, e.g.,
Ref. 35). On the other hand, upstream from the obstacle (in
the region x < 0) a supercritical flow generates a stationary
oscillatory structure whose oscillation’s amplitudes are not
small, contrarily to what was assumed in the previous section.
However, in the case of small 5 this oscillatory structure can
be represented as a slowly modulated nonlinear wave and,
hence, the Whitham modulation theory can be applied to its
description. In this section we shall use these two approximate
methods (hydraulic approximation and Whitham averaging
technique) and compare their results with the exact numerical
solution of the problem.
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In all this section we restrict ourselves to the stationary
version of Eq. (3) in the presence of a § impurity. We find
it more convenient to work in a reference frame where the
obstacle is at rest while the condensate moves from left to
right with an asymptotic velocity and density, respectively,
equal to M and 1 at both infinities. The equation to be solved
is the following:

M? 1 .
(7 + 1)1// = —wax + (e d(x) + p)¥ +in(1 — p)i.

(46)

Contrarily to the case of a weak obstacle, where one can show
that a stationary solution always exists within perturbation
theory (see Sec. IIT A), it is not a priori evident that Eq. (46)
admits a solution. Hence, the assumption of existence of a
stationary nonlinear regime has to be validated by exhibiting
the corresponding solution and demonstration of its stability.
If such a solution cannot be found, this means that only time-
dependent flows exist for the chosen values of 7, s, and M,
which are the three parameters characterizing the flow.
By means of the substitution

Y(x) =/ p(x)exp [zf dx’ u(x/)i| , 47

PHYSICAL REVIEW B 86, 165304 (2012)

the Gross-Pitaevskii equation (46) can be cast—outside the
range of action of the obstacle potential—into a hydrodynamic
form for the rescaled density p(x) and flow velocity u(x):

(pu)y =2np(—p),
2 2 2
v Py P M
2 TPt T 1, T 2

We shall use these hydrodynamic notations in this section.

(48)

A. Hydraulic approximation in the downstream region
of a supersonic flow

In the hydraulic approximation the derivatives are supposed
to be small; hence we can neglect the two last terms in the
left-hand side of the second of Egs. (48) to get u?/2 + p =
M?/2 + 1. Then u(x) can be expressed in terms of p(x) and
substituted into the first of Egs. (48) to give

[ovVM>+2(1 = )] =2np(1 = p). (49)
The solution of this equation, with the boundary condition
p(0) = p, (50)

can be easily expressed in terms of elementary functions:

1
X =— M
2n < M

_i)ln(l—,5)[M2+1—p+M\/M2+2(1—,0)]
(1= p[M2 41—+ My/M?+2(1 - p)]

i P 2= M+ 20+ 21— p)]

(51

p[M2+2—p+/(M*+2)(M2+2(1 — p))]

This formula implicitly defines the dependence of the density
ponx.

In the supersonic case, in the far downstream region, one
has I — p(x) < 1 and one can linearize Eq. (49) with respect
to 5o = p — 1. This yields®

2nM

[6p(x)| o< exp T 1 x ). (52)
The perturbation theory used in the previous section predicts
the same behavior when nM(M? — 1)73/2 « 1 [8p is found
to be proportional to exp(ig3;x), where g3 is given by (A8)].
However, the range of validity of Eq. (52) is different: The
condition of smallness of the derivative yields the following
condition of applicability of the hydraulic approximation:

nM
M? -1

As a consequence of these different regimes of validity one can
make the following remark: If 1 — g <« 1, the linearization of
Eq. (49) can be extended down to x = 0, yielding p(x > 0) ~
1 — (1 —p)exp[—2nMx/(M?* — 1)]. As we shall see in the
numerical Sec. IV C, this approximation has a larger range
of validity than the pure perturbation approach of Sec. III.
This larger range of validity of the linearized version of (51)

<1 (53)

is a result of a drawback of the hydraulic approximation: The
value of p = p(0) is not predicted by this method and has to be
specified before comparison with numerical results. However,
we will see in Sec. IV C that once this is done, Eq. (51) gives an
excellent account of the downstream wave pattern with slow
gradients in a supersonic flow.*’

B. Whitham approximation in the upstream region
of a supersonic flow

Upstream from the obstacle (when x < 0) supercritical
flows typically generate a dispersive shock wave which is the
nonlinear version of the oscillatory wake observed in Sec. III.
Now the amplitude of this wave cannot be considered as small,
but for small 5 its parameters are poorly modified over one
wavelength. Therefore we can describe such a flow within
Whitham modulation theory which is a nonlinear adiabatic
approach.*®

In the absence of damping ( = 0) the nonlinear progressive
periodic wave solutions of (48) can be written in the form (see,
e.g., Refs. 37 and 49):

p(x.t) = (b — Ay — A3 + Aa)® 4+ (g — 22)(hs — As)
x sn*(y/(h — 23) (Ao — M) (x — V,, 1),m), (54)
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and

B J
) = Vo ks, (55)

where sn is the sine elliptic Jacobi function,

1 (M = A2)(A3 = A4)
== , (56)
=3 E © (O — A3k — Ag)
and
J=3(=h = A+ A3+ As)
X(=A1+ A — A3+ M)A — Ay — A3+ Ag).  (57)

The parameters A; < Ay < A3 < A4 are called the Riemann
invariants of the system. In the case of strictly periodic
solutions they are constant and they determine characteristics
of the wave such as the phase velocity V,, [Egs. (56)], the
current j evaluated in the frame where the wave is standing
[Eqg. (57)], the amplitude of the oscillations,

a= (1 —A2)(A3 — A4), (58)

and their wavelength,

_ 2K(m)
VO =330 = 14)

K(m) being the complete elliptic integral of the first kind.
In the modulated dispersive shock wave occurring in the
upstream region, the A’s become functions of position and
time which vary weakly over one wavelength and one period.
We consider here the stationary solution and in this case these

parameters do not depend on time ¢ and the phase velocity V,,
is equal to zero:

(59)

4
1
=5 Z,\i =0. (60)
i=1

However, because 7 is not strictly zero, in the upstream region,
even if the A’s do not depend on time they are functions of
position and their x dependence is determined by the perturbed
Whitham equations (see Appendix B):

dhi 2 G+ Gy

Qi 2 Ot O o034, (61
&x =L pata— iy €1 b 6D

where
V2 1 —
Gi=—y [ av =
R(v) 62)
G — 77\/‘)1‘121)%/
? «/R(v

R(v) and vy, vy, v3 being defined by Eqgs. (B14) and (B15).
According to Eq. (60), the system (61) admits the first integral
Z?zl Ai = 0. We shall now show that it admits another integral
and can thus be reduced to a set of two (coupled) differential
equations. To this end, we shall use the Jacobi identities

4 )\,k
—+t =0 for
; Hm;&i()‘i - )\m)

4

0<k<2, and

(63)
> !
i=1 Hm;&i()‘i - )\m) ’
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to obtain 4L =0 = d” and

dx
d 2G d 2G
@ _ 2 de 2 (64)
dx L dx L
where the s’s are symmetric functions of the A’s:
S1=Z)»i, S2=Z)»i)\j,
i i<j (65)

§3 = Z )‘i)"j)‘kv S4 = )»1)\2)»3)»4.
i<j<k

Here s, and s, are the integrals of our system. The value of s;
is already known from Eq. (60): s; = 0. In order to determine
the value of s, we calculate the asymptotic values of the
Riemann invariants at x — —oo, where the flow is stationary
with p = po=1 and u =uy = M > 0. The amplitude of
the oscillations vanishes here; hence we find from (58) that
A1 = Ay (another possible choice is A3 = A4; it corresponds
to a flow with M < 0). Then, from Eq. (B15) we have the
equation

dim p(x) =po=1=vi=v =10 -2’ (66)
as well as the expression for the current density,
— 2) (=241 + A3 + M),
(67)

Jim j(x) = pouo = M = § (A3
from which we get another equation:
M = 3(=2X1 4 A3 + M) (63)

With account of Eq. (60) (that is, 2A; + A3 + A4 = 0) we find,
atx — —o0,

M=h=— M=—-1, M=

+ 1. (69)

Hence,

M2

—— =1 70

> (70)
From the definition (65) of the s;’s it is clear that the A;’s are
the solutions of the fourth degree equation A* — s;1% + 5,12 —
s3A + 54 = 0. The two parameters s; and s, having just been
determined [s; = 0 and the value of s; is given in Eq. (70)]
we can define the functions A; = A;(s3,s4) as being the roots
of the equation

4 M2 2
AT — 74‘1 A —S3)\.+S4:O, (71)

ordered accordingto A} < Ay < A3 < A4. Substitution of these
functions into (B15) and of the results into (64) yields the
system of two differential equations for s3 and s4,

dss  2Gi(s3,s4)  dsa  2Go(s3,84)
dx — L(sy,sa) = dx  L(s3,s9)

We now have to find the initial conditions for this system,
that is, to determine the values of s3 and s4 at x = 0. To this
end, we take into account that Whitham theory implies that the
parameters of the wave weakly change over a distance of about
one wavelength. Therefore we can assume that, to the left of the
obstacle and close enough to it, the wave can be approximated

(72)
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by the cnoidal wave solution (54), (55) and to the right of the
obstacle it is given by a hydraulic approximation parametrized
by the value p of the density at the location of the § obstacle.

It is known (see, e.g., Ref. 49) that a nonmodulated cnoidal
wave solution p(x) satisfies the equation

px =2/ R(p), (73)
where the coefficients of the polynomial
R(v) =@ —v)(v — ) —v3)
=3+ 250% + (s% — 4S4)v — s% (74)
are expressed in terms of the symmetric functions s;, s3, and

s4. Then the solution (54), (55) (with V,, = 0) can be expressed
in terms of the zeros vy, v,, v3 of this polynomial as follows:

p(x) =v;+ (v — U])Snz(«/\@ — v x,m),

. (75)
= ey
where
m=2"" g = 2K (76)
V3 — vy V=i

In the stationary modulated situation we consider that vy, vs,
V3, §3, m, and L do not depend on time in Eqgs. (75) and (76),
but they all depend on x.

It follows from Eq. (17) that the current of polaritons is
preserved in transition through the § potential: j(07) = j(0™).
Then the second of Egs. (75) yields (under the assumption that
the hydraulic approximation is valid for x > 0 because n < 1)
the value of s3(0):

53(0) = u(0)p(0) = pv M?* + 2(1 — p). (77

For calculating the value of s4(0) we use the matching
condition at x = O:

px(07) = pi(07) = 45¢p(0). (78)

Pursuing the use of the downstream hydraulic approximation
already used in Eq. (77) we write p(0) = p and, from Eq. (49),

2np (1 — p)yM?* +2(1 — p)
M2 +2-3p '

In the same spirit of a small-n approximation we have from
Eq. (73) px(07) = —2/R(p), so that Eq. (78) reads

p(07) =

(79)

2
_ _ npd—p)M*+2(1-p)
= |2xp — . (80
R(p) [ #p M 1235 (80)
This yields

(v1v2 + Vv + V3V)x—0
[45¢p — pe (0T

= 57 — 454(0) = - +QM* +4-3p)p,
4p
(81)
and then
2 2
54(0) = 1 [M —2M*+2)5 + 352}
4 4
2

_ n(1—p)yM?+2(1 - p)

—r [” T aMP+2-3p) } - (62
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TABLE I. Values of p for different values of s in the case M = 3
and n = 0.05. The row p (Whitham) corresponds to the value of
p = p(0) found by solving Whitham Egs. (83) and imposing the
condition (85) (see the text). The row p (numerics) corresponds to
the value of p(0) found via a numerical resolution of Eq. (46).

” 0.5 1.0 1.5 2.0 25
p (Whitham)  0.9370  0.7932  0.6384  0.5056  0.4011
p (numerics) 09352  0.7916  0.6377  0.5055  0.4013

We note here that for small values of 7, the analytical
expression (82) can be simplified by replacing Eq. (79) by
the simple approximation p,(0") = 0. This amounts to also
replacing 1 by 0 in the expressions (80) and (82). This simple
scheme is accurate when n < 0.5.

Equations (77) and (82) give the initial conditions for the
system

dss  2nq V25358 (1 — )

E - _T 1 (53,54) \/W ’ (83)
dsy sy [0 1y

dx L J 550 VRO

where v;(s3,84) (i = 1,2,3) are determined as being the roots
of the equation R(v,s3,s4) = 0, where

R(,s3,54) = v> — (M? 4+ 2)?

M? :
+[(7+1) —4S4:|v—s32. (84)

In Egs. (83) L is also expressed in terms of the v’s [see
Eq. (76)].

In the present application of Whitham modulation theory
it is important to notice that for fixed values of s, 71, and
M, the solution of Whitham equations depends on a single
parameter p which is also a function of the same set of physical
parameters (s, n, M) prescribed by the external potential and
the boundary conditions of the Gross-Pitaevskii equation.
Hence, the parameter p can be found from the condition
that the solution of Whitham equations satisfies the correct
boundary condition at x — —oo, namely that the envelopes
of the density oscillations tend to the asymptotic value of the
density:

vi(x),nwx)—1 as x - —o0. (85)

Some values of p calculated in this way are listed in the second
row of Table I for n = 0.05, M = 3, and several values of s.
We compare them with the values of p obtained by exact
numerical solution of Eq. (46). As we see, the agreement is
very good.

The s dependence of p = p(0) is shown in the right panel
of Fig. 6 for several values of M. The n dependence of p is
displayed in the left panel of the same figure for several values
of s¢. This plot shows that p does not tend to unity in the limit
n — 0. This means that, in this limit, the flow pattern does
not uniformly converge along the whole x axis to the exact
solution found in Ref. 31 in the case n = 0. Indeed, for the
exact n = 0 solution, the downstream density is a constant [and
then p = p(0) = p(+00) = 1]. Rather, for small and finite 5,
the actual profile matches the exact n = 0 one in the large
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FIG. 6. p = p(0)as afunction of n for M = 3 and different values
of s (left panel) and as a function of s for n = 0.05 and several values
of M (right panel).

region —1/n < x < 1/n and then relaxes to the asymptotic
density [p(£o00) = 1] at |x| > 1/n. This is confirmed by the
numerical simulation performed in Sec. IV C.

A striking feature of the plot in the left panel of Fig. 6
is the extremely weak n dependence of p. This important
property of the theory can be explained by the simple fact that
the space coordinate x and the parameter n enter into both the
hydraulic approximation and Whitham equations only through
the combination n x [see Egs. (51) and (83)]. As aresult, n can
be rescaled out of the exact relation (18) after averaging over
fast oscillations in the dispersive shock region x < 0, so that
we arrive to an equation which depends on 1 only through the
small value of p,(0") [see Egs. (79) and (82)]. If we neglect
this term, then the resulting equation yields p as a function of
M and ¢ only.

When p is found, all the parameters of the dispersive
shock wave are determined, the functions v;(x), v(x), vz3(x)
can be computed by solving Egs. (83), and their substitution
into Egs. (75) yields the oscillatory structure upstream from
the obstacle. The same value of p determines the hydraulic
solution downstream from the obstacle. Thus, we reach a
complete description of the nonlinear wave generated by a
supercritical flow past a § obstacle.

The accuracy of the theory is illustrated by Fig. 7. As we see,
the agreement between the results of the combined Whitham
and hydraulic approaches and the numerical computations is
excellent. Note that Whitham method is perfectly valid in a
regime where the perturbative theory of Sec. III seriously fails
(]p(x) — 1] is not small in Fig. 7). For illustrative reasons we
have chosen a relatively large value of 1 (n = 1): We wanted
to work in a regime where the overall modulations of the
oscillating pattern occur over a characteristic length which is
not too large with respect to the wavelength of the oscillations.
As we see, even in this unfavorable case the agreement with
the exact numerical results is very good.

The solution of the system (83) exists, and the upstream
pattern can be described as a slowly modulated cnoidal wave,
as long as its initial conditions can be found, that is, as long
as the equation R(v,s3(0),54(0)) = 0 has three real roots. If
n is strictly zero, then, choosing the normalization p = 1 of
Ref. 31, this equation reads

VI (M2 +20% + (1 +2M?% 4+ 4520 — M? = 0. (86)

Two of the roots coalesce and go into the complex plane when
the discriminant of Eq. (86) vanishes. This corresponds to a
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FIG. 7. (Color online) Comparison of the Whitham theory with
the numerical solution of Eq. (46). The plot is drawn in the case
n =1, M =3, and s = 4. The numerics corresponds to the dashed
black line. Whitham envelopes are shown by thin red solid lines, and
the upstream dispersive shock wave oscillatory structure obtained by
substitution of the solution of the Whitham Egs. (83) into Egs. (75)
is shown by a red solid line (for x < 0). The downstream (x > 0)
hydraulic approximation is shown by a green solid line.

boundary between possible parameters in the plane (s¢,M)
determined by the condition

s = S[M(M? + 82 + M* —20M* —8].  (87)

The same boundary was already found in a different analytical
form in Ref. 31 for a nondamped system. In our problem
(n # 0, p # 1), this boundary is changed and can be found
by numerically determining when the discriminant of Eq. (84)
vanishes. However, when 1 # 0, as we shall see in Sec. IV C,
new stationary solutions appear when 3¢ gets so large that
the upstream flow is not described by a modulated cnoidal
wave, making the determination of the domain of validity of
Whitham approach less crucial than when = 0.

C. Numerical results

In this section we present results of the full numerical
solution of Eq. (46). We used a shooting method, starting
the numerical integration from large and positive x with an
initial behavior given by the prediction of perturbation theory.
Typical results are displayed in Fig. 8.

The upper plots of this figure are drawn for M = 3 which is
a velocity deep enough in the supersonic regime for Whitham
theory of Sec. IV B to apply over a rather large range of values
of sc. The left plot of the upper row corresponds to > = 0.5. For
this value of s, perturbation theory is valid upstream (x < 0)
but fails for positive x, whereas the hydraulic approximation
is quite accurate in this region, as shown by the dashed line
in this plot. For s = 4 (right plot of the upper row of Fig. 8),
the density profile shows the same features, but in this case
perturbation theory seriously fails, whereas the downstream
wave pattern being typical for a damped cnoidal wave is
very well described by Whitham theory (not shown, because
indistinguishable from the numerical result).

The two rows below the upper one correspond to M = 1.2
and M = 1. They are interesting because they show that,
whereas perturbation theory fails in the absence of damping
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FIG. 8. (Color online) Different profiles p(x) for flows past a §-impurity potential of type (19). For all the profiles the damping parameter
is 1 = 0.05. For the upper row M = 3, then M = 1.2 for the row below, M = 1 for the following one, and finally M = 0.5 for the lower row.
The value of s is indicated in each plot. In each plot the black solid line corresponds to the numerical solution of Eq. (46), the (red online) thin
line to the perturbative result and the (green online) dashed line to the result of the hydraulic approximation which is only relevant for x > 0

(see Sec. IV A).

when M ~ 1, for n # 0 it has a regime of validity even
for velocities M close to unity. This is illustrated by the
good agreement of the perturbative results with the numerics
displayed in the two left plots of the central rows (which are
both drawn in the case s = 0.05). It is also interesting to
remark that for M = 1, no stationary solution exists when
n =0, whereas here we could find such solutions up to
s = 0.3 (see the right plot of the third row). The values M = 1
and s = 0.3 are close to the boundary marking the end of the
existence of stationary solutions when 1 = 0.05. In this case
the downstream wave pattern shows small scale disturbances
which were recognized in Ref. 35 as typically occurring near
the end of the stationary regime.

The second upper row of Fig. 8 corresponds to M = 1.2.
In this case, when n = 0, there is no stationary solution for
2 > 0.0495 [see Eq. (87) or Ref. 31]. As seen on the figure,
when n = 0.05, one can find stationary solutions for much
larger values of ¢ (up to » >~ 1.2; see the corresponding plot).
However, the density profile found in this case is very different
from a damped cnoidal wave. It seems to be a stationary version
of a type of time-dependent profiles studied in Ref. 50 for the
case 7 = 0: A plateau develops just upstream from the obstacle

which terminates when x — —oo by a dispersive shock wave.
Here, when n # 0, the plateau and the shock wave are damped
because the specific form of the modified Gross-Pitaevskii
Eq. (3) favors relaxation towards p = 1.

The lower row of Fig. 8 displays results corresponding
to a subsonic obstacle (M = 0.5). For this value of the
velocity, there is no stationary solution in the n = 0 case
for 3¢ > 0.59.31°! As illustrated by the right plot of this row
(drawn for s = 0.7) in the presence of damping, solutions
exist for slightly larger values of . However we find that,
when 7 passes from 0 to 0.05, the range of values of s
allowing for a stationary solution does not increase in the
subsonic case as much as it does in the supersonic region.
This is illustrated by Fig. 9 where we represent the domain
of existence of stationary flows in the (s¢,M) plane. This
domain corresponds to the shaded region in the figure and
was numerically determined in the case n = 0.05. The large
increase of the stationary domain for supersonic flows in the
presence of damping is due to the occurrence, when n # 0, of
a new class of profiles with an upstream plateau, as explained
above and illustrated in the right plot of the second row from
the left in Fig. 8 (corresponding to M = 1.2 and » = 1.2).
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1.5

FIG. 9. (Color online) Different regimes of flow past a §-impurity
potential of type (19) in the (32,M = V/c,) plane. The main plot
corresponds to the dissipative system (with n = 0.05). The inset is
drawn for n = 0. In both plots the shaded regions correspond to
stationary flows, the white ones to time-dependent and dissipative
flows and the horizontal dashed line indicated the transition from a
localized wake to a regime of Cherenkov emission as predicted by
perturbation theory. In the inset, the subsonic (M < 1) shaded region
is superfluid and the supersonic (M > 1) one is dissipative; the exact
equation of the boundaries between the different domains is given
in Ref. 31. In the main plot the dots with error bars represent the
numerically determined boundary of the stationary domain. They are
connected by a dashed line to guide the eye. The other dashed line in
this plot represents the = 0 result (shown for comparison).

This type of profile cannot be stationary with the boundary
condition p(x — F00) = 1 in a nondissipative system. Here,
the damping term in Eq. (3) provides a mechanism allowing
the downstream relaxation from p(0) < 1 to p(x — o0) = 1
and the upstream dispersive shock is stabilized by dissipation.

The inset in Fig. 9 represents the exact domain of stationary
flows for n = 0, as analytically determined in Ref. 31. One can
identify three regimes depending on the value of the parameters
»and M = V /cg: (1) subsonic, stationary, and superfluid, (ii)
dissipative and time dependent, (iii) dissipative, stationary, and
supersonic. As seen in this inset, regimes (i) and (iii) are always
separated by the time-dependent region (ii). This feature is
also valid for a thick obstacle®” and is in contradiction with the
(wrong) prediction of perturbation theory for n = 0. Indeed,
in the nondissipative case, perturbation theory always fails
when V is close to ¢,>! and in this case the true flow gets time
dependent. On the contrary, for finite < 1 we showed in Sec.
III that the perturbative prediction of existence of a stationary
flow pattern for all velocities is valid until »c ~ '/3. This is
corroborated by the numerical results displayed in Fig. 9 for
n = 0.05. In this case n'/? ~ 0.3 whereas the largest value of
2 for which a stationary flow exists for all M is numerically
found to be ~0.1.

V. CONCLUSION

In the present work we have analyzed the flow of a
one-dimensional polariton condensate in motion with respect
to an obstacle in a situation of nonresonant pumping. We
solved the problem perturbatively and showed that at this
level there exists a smooth crossover from a viscous flow
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to a regime where the drag is mainly dominated by wave
resistance. Perturbation theory predicts that this occurs at a
velocity M., independent of the potential representing the
obstacle. We argued that in the case of a § impurity [represented
by a potential of type (19)] the perturbative approach is valid
for all velocities in the regime » x max{1,n~'/3} « 1, where
n is the dimensionless damping parameter defined in Eq. (2).
As shown in the previous section this implies that stationary
profiles indeed exist for all velocities if s < min{1,7'/?}. In
this case there is a continuous transition from a dissipative
drag to a regime dominated by the wave resistance.

However, from Fig. 9 we are led to refine this discussion
of the transition between a regime where the wake is localized
in the vicinity of the obstacle and a regime of (damped)
Cherenkov radiation: We see on the example of the § impurity
that for a strong enough potential the two types of flows are
separated by a time-dependent regime, as typically observed
in BEC atomic vapors. In this case one cannot state that the
crossover is smooth.

The comparison of our results with the ones of Ref. 29
leads to the conclusion that the gross features of the wave
pattern discussed in the present work are quite independent
of the technique used for setting the fluid into motion with
respect to the obstacle. However, we use a specific model
[Eq. (1)] with nonresonant pumping which is more relevant
for the experiment presented in Ref. 9. In this experiment, a
two-dimensional supersonic cloud of polaritons colliding with
an obstacle was observed to induce a rather well defined wake,
with oscillations having an apparently specified wavelength.
The same feature was observed numerically in Ref. 26 (see
also the discussion in Refs. 34 and 52). The perturbative results
allow one to understand this phenomenon in a one-dimensional
setting: The pattern of the upstream oscillatory wake in a
supercritical flow (V > V) is governed by the complex
wave vectors ¢g; and g,; see Sec. III. Also in the nonlinear
approach (Whitham theory of Sec. IV B) does the wake keep a
simple shape: Perturbation theory fails to properly account for
the amplitude of the oscillations, but it still approximatively
describes their wavelength.

An important result of our work is the demonstration that it
is difficult to assess on the superfluidity of a polariton system
just by studying the density perturbation past a localized
obstacle. In particular, we showed that the absence of long-
range wake cannot be used as a criterion for the absence of
dissipation.

Finally, this work naturally calls for developments. One
would first like to precisely determine the domain of time-
dependent nonlinear flows in presence of damping. Secondly,
one would like to extend the present work for taking into
account polarization effects, and, thirdly, it is natural to apply
the perturbative approach to higher dimensions. Works in these
directions are in progress.
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APPENDIX A: POLES OF THE RESPONSE FUNCTION
x(qg, —Mgq)

In this Appendix we determine—as a function of M—the
location in the complex g plane of the poles of the response
function (13) evaluated at ® = —Mg. Considering the expres-
sion of x one sees that these poles are the three zeros of D(gq, —
Mgq)/q. We denote them as ¢, g2, and g3. They are solutions
of Eq. (21). This equation has three imaginary solutions when
itsdiscriminant A = 256(1 — M?)3/27 — 64 n> M? is positive.
The condition A > 0 is equivalent to M < M, where the
expression of M is given in Eq. (26). In this case, defining

6 = arctan (8'7M> (A1)
= ar —_— .
JA
one finds
4i 1-M?2 (60 =
=4 sinf=-—-=1,
a V3 373
1—M2 (6
T N (5) , (A2)

Alternatively one can write g; = i(—A + B),q» = —2i B, and
g3 = i(A + B) with

Al 5 cos(6/3)
|:B:| =/l-M [%sin(@ﬂ) : (A3)
If A <O0C(.e.,if M > M), defining
Dy = (4nM £ 11A]2)!7, (A4)
one finds
q1 = D) exp(—im/6) — D exp(in/6),
g2 = =Dy exp(in /6) + D exp(—in/6),  (AS)

q3 = i(D(1y + D).

Alternatively, one can write ¢ = E —iF, ¢o = —E —iF,
and g3 = 2i F with

V3 1
E=—(Dq =Dy, F =D+ D). (A6)

One can verify that Zz:, q¢ = Ofor all values of M, as already
clear from the form of Eq. (21). A similar relation holds for
the residues of x(q, —Mgq) whose expressions are given in
Eq. (23): 37_, Res(q,) = 0.

The typical M dependence of the position of the poles in
the complex plane is illustrated in Fig. 10. When M = 0 one
has & =0, g» = 0, and g3 = —¢q; = 2i. When M is increased
from zero, g and g, get closer on the imaginary axis until they
collide (when M = M) and then acquire a finite real part.
When M — 00, g3 — i 0T, and g 2) = (+,—)o0 —i 0T, A
similar behavior has already been found in Refs. 26 and 34.

A useful approximation for the expression of the poles is
obtained when nM/|M? — 1|>/? « 1. In this case one obtains,
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FIG. 10. (Color online) Position of gy, g, and g5 in the complex
g plane. The figure is drawn in the case n = 0.1. The arrows indicate
the direction of motion of the poles when M increases from 0 to 00’3,

when M < M,

M
qa1.3) =i [(—,+)2v 1—M?+ 1 zM2i| ,
nM (A7)
~ 0i
0 YV
and when M > M4,
M
dun =~ (+ 2/ M — 1 —i —1—
M2 —1 A8
nM (A8)
~ 2 ——.
b=y

The above expressions are valid up to corrections of relative
order n>M?/|M?* — 1|3. It is interesting to notice that expan-
sions (A7) and (A8) are equally valid at large velocity and at
small damping. Indeed, as discussed at the end of Sec. IIID,
at large velocity the effects of damping are negligible.

From the explicit expressions (A2) and (AS) of the g,’s it
is a simple matter to evaluate the integral (16) which permits
one to compute the function K (X). One gets

K(X > 0) = i Res(q3) "%,

‘ ‘ A9
K(X <0) = —i[Res(q)) €'Y + Res(gn) e'?¥]. (49

Formulas (A9) are valid for all M, but the explicit expressions
for the g,’s depend on M. For instance, when M < M.
the g,’s are all imaginary and K tends rapidly to zero when
|X| — oo.On the other hand, when M > M the exponential
decrease of K(X) gets weaker (because the imaginary part
of the ¢g,’s is smaller) and K (X < 0) oscillates (because ¢,
and g, acquire a real part). The typical density perturbations
associated with K [i.e., for a §-peak potential of the form (19)]
are sketched in the insets of Fig. 2. Note that the value of
the g,’s does not depend on n when M = 0 [i.e., within the
theoretical description corresponding to Eq. (1)], the density
perturbation induced by a motionless obstacle does not depend
on the damping.

The expressions (A9) are equally valid in the absence of
damping (i.e., when n = 0). In this case M.;; = 1, ¢, = 0, and
g3 = —q for M < M and for M > M., g3 = 0 whereas g
and g, are real and opposite [cf. Eqs. (A7) and (A8)]: For M >
M and n = 0 one observes undamped Cherenkov radiations
ahead of the obstacle as discussed in the main text. For

165304-15



P-E. LARRE, N. PAVLOFF, AND A. M. KAMCHATNOV

M > M and n # 0 these Cherenkov radiations are damped
since in this case ¢g; and ¢, have a nonzero imaginary part.

Finally, we need to evaluate the order of magnitude of the
quantity > |[K(0)| at M = M, since, as argued in the main text
(Sec. III B), this is the small parameter of perturbation theory
for a §-impurity obstacle. For M = M one gets 0 = m/2,
g1 =q>» = —q3/2 = —2i/(1 — M2,)/3 [cf. Egs. (A2)] and
this yields

i%\/g
V - Mgril

From the expression (26) for M one sees that (1 —
M2 )12~ \%(2/77)1/3 when n < 1 and tends to unity at
large n, from which one obtains the estimate (27).

» K(0) = when M = M.;. (A10)

APPENDIX B: DERIVATION OF PERTURBED
WHITHAM EQUATIONS

The general method of derivation of the Whitham equations
for perturbed integrable equations which in their nonperturbed
form belong to the Ablowitz-Kaup-Newell-Segur scheme was
developed in Ref. 54 and it can be formulated as follows. Let
the evolution equations of some field variables u; have the

form
d il m 82 m
i =K | uy,,e “ ,ez—u,...
ot ox ax2
ou 9%u
Ri | ume—= 82—, ... ), Bl
+ k(u Y 92 ) (B1)

where a small parameter ¢ < 1 is introduced which measures
the dispersion effects. It is supposed that a nonperturbed
system,

ouy ou,, 232um
e— =Ky lup,e—,6°———,... 1|,
ot ax ax2

can be represented as a compatibility condition of two linear
equations,

(B2)

&2 = Ay,
XXX ? (B3)
Xt = —3Bxx + Bxa,

where A and B depend on the u;’s, their space derivatives,
and on the spectral parameter A. It is assumed that the system
(B2) has a periodic solution with wavelength L o ¢ and it is
parametrized by the constant parameters A; which appear in
the finite-gap integration method in the following way. The
second-order linear equations (B3) has two basis solutions x.
and their product g = x4 x— satisfies a third-order differential
equation which can be integrated once to give

&2 g2

88— 78— Ag’ = P(b), (B4)

where o is determined by the sign of the highest order term
in A as a function of A (i.e., A ~ —o A" as A — 00). Periodic
solutions are distinguished by the condition that P(}) is a
polynomial in A and then A; are its zeros. We shall confine
ourselves to the one-phase periodic solutions which physical
variables depend on a single variable x — V,, t only.

In a modulated wave the parameters A; become slow
functions of x and ¢ whose evolution is described by the
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Whitham equations which in the case of (B1) and (B3) can be

written in the form
ar;  (B/g) oA

B (1/g) ax
o

lim
=0 { <1/g> ]—Im;éi()‘i — Xm)

0A dA IR,

— R+t , (BS
where ¢; denotes the highest order of derivative of u; entering

in A. The angle brackets denote the averaging over one
wavelength:

1 L
(F) = —/ dx F. (B6)
L Jo
The spectral parameter A should be put equal to A; after

averaging.
‘We shall apply here this scheme to the perturbed nonlinear
Schrodinger (NLS) equation,

ie Y + 12V — Y 1PY = iG(¥ DY, (B7)

where G(p) is a real function of the density p = |/|>. Equation
(3) pertains to this type [with G(p) = n(1 — p)]. In the
case of Eq. (B7) we have two field variables ¥, ¥*, and,
correspondingly, two terms of perturbation in Eq. (B1):

Ry = G(p)W/e. Ry = G(p)y*/e. (BS)

For nonperturbed NLS equation the linear system (B3) is
specified as

e B 3
A=—-A l&‘)»?-}-l/flﬁ 5 v +TW’ (B9)
PN

B= A+2w. (B10)

Substitution of (B9) and (B10) into (B5) shows that, in the
expression to be averaged [in the right-hand side of (BS)],
the leading term in powers of ¢ is equal to 2(Gpg)/e. The
averaging can be performed with the use of equations known
from the theory of periodic solutions of the NLS equation (see,
e.g., Ref. 49):

dita
& e 22/%,

= A — Wa,
& H dx
Jleve sy, 28 (B11)
2w 2 2

L yg da
= & b
2= P(pha)
where P(i,) = [[;(ta —2:) and s = ), A;. The quantity
W, 1s known as the auxiliary eigenvalue in the finite-gap
integration method. Hence, we obtain
——. (B12)

1\ [/ 1 \_ 20L B_1+
gl \r—pua/  Lar’ \g/ L 9x;

For calculating (Gpg) we also take into account that 11, can be
expressed as a function of p in the following way (see Ref. 49):
51, —Jj+ivR(p)

Ha(p) = 7 + T,

S1 oL

(B13)
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where
ROW) =@ —v)W =)V —v3), j>=vs, (Bl4)
vi =30 — Ay — Az + Aa),
vy =30 — A2+ Az — Aa)’, (B15)
vy = ;O + Ao — A3 — Aa)’,
and
dp
e— = 2JR. (B16)
dx

Then we obtain the Whitham equations for the Riemann
invariants A; in the form,

i O vimm/2
or " ox Ts i — Am)
2 / gy GONGi = 51/4v + j/2]
L), VRD) ’

B17)
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with

_s (2L € {1,2,3.4].  (BIS)
Ul_ La)\,l ’ 14 g ey .

In the stationary case (i.e., when dA; /9t =0and s; =2V, =
0), the Whitham equations simplify to

dhi 2 Gidi+Gy

Sz - == B19
dx L l_[m;é,‘()‘-i - )‘-m) ( )
where
V2 vG(v)
GI = — dV N
Vi \% R(U)
(B20)

i, G
G2 = ) /l:l dv —R(U)
For G(p) = n(1 — p) we arrive at Egs. (61) and (62).
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