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Uniform approximation for diffractive contributions to the trace formula in billiard systems
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We derive contributions to the trace formula for the spectral density accounting for the role of diffractive
orbits in two-dimensional billiard systems with corners. This is achieved by using the exact Sommerfeld
solution for the Green function of a wedge. We obtain a uniformly valid formula for single-diffractive orbits
which interpolates between formerly separate approaghesgeometrical theory of diffraction and Gutzwill-
er’'s trace formula It yields excellent numerical agreement with exact quantum results, also in cases where
other methods fail[S1063-651X%97)12902-4

PACS numbgs): 05.45+b, 03.40.Kf, 03.65.Sq

[. INTRODUCTION more closely related to the original work of Sommerfeld and
Pauli. It relies on an extension of the method of steepest
Two-dimensional classical billiards became popular aglescent due to Pauli, which was carefully studieed on a gen-
model systems exhibiting a rich variety of dynamical behav-eral setting by Clemmow15]. The method, due to Kouy-
ior, ranging from integrable to fully chaotic. Their quantum oumjian and Pathak, is known as “uniform theory of diffrac-
counterparts attracted much interest starting in the 1980&on” and is exposed in Refd.16] and[17]. Note that we
from both the point of view of random matrix theory and the apply the uniform approximation only to orbits with a single
semiclassical periodic orbit theory. In the latter approach ondiffractive point. The treatment of multiple wedge diffraction
uses trace formulas of the type first derived by Gutzwfligr IS increasingly more involved, as can be seen in work on
and Balian and Bloch2,3]. double diffraction by half-planegsee Refs.[18—20Q) or
During the last two years, following the route opened bywedgeq21]. To our knowledge, there does not exist to date
Ref.[4], a number of studietsee Refs[5-8]) have concen- @ general uniform approximation for multiple wedge diffrac-
trated on additional contributions to the trace formula linkedtion.
to diffractive effects near regions where the classical Hamil- The paper is organized as follows. In Sec. Il we recall the
tonian flow is discontinuous. These zones of discontinuityeXact solution of the infinite wedge problem, derive a uni-
are known as “optical boundaries” in the literature. They form approximation for the Green function, and compare it

lead to contributions from nonclassidab-called diffractivg ~ With the result obtained from GTD. In Sec. Ill we use the
orbits hitting a corner of the billiard or Creeping around aGreen function obtained prewously to derive contributions to

smooth boundary. the trace formula which are uniformly valid. Readers mostly
Apart from the noticeable exception of R¢¥], all the interested in the final result can skip this part and go directly
work quoted above is based on Keller's “geometrical theoryto Sec. IV, where we discuss the previously obtained formula
of diffraction” (GTD; see, e.g[9]), i.e., on an extension of and several of its limits. In particular, we show that this
geometrical optics which accounts for diffractive effects.formula has the appealing feature of interpolating between
Keller's approach fails when the diffractive trajectory is very the semiclassical results of periodic orbit theory and the for-
close to an optical boundary, or equivalently when the dif-mulas obtained in Ref$4,6,8. Section V contains numeri-
fractive orbit is close to become an allowed classical trajeccal applications for several simple billiard systems. In some
tory (this will be clarified in the text of the paperin the  cases GTD gives reasonable results, but in other cases the
present work we use a uniform approximation for the Greertiniform approximation has to be used in order to describe
function which does not have this drawback. This allows ughe Fourier transform of the spectral density correctly. Fi-
to derive relatively simple formulas which are uniformly nally we discuss our results and possible extensions in Sec.
valid. The method is applied to billiards whose boundary has/!.
a slope discontinuity, and thus we restrict our study to wedge

d|ffra_ct|on effec_ts. To our knowledge th_ere _does notyetexist | ~oEEN FUNCTION OF AN INFINITE WEDGE
a uniformly valid formula for the contributions of creeping
orbits (despite the progress made in Rgf]). In this section we consider an infinite wedge of interior

The theory of uniform approximations for wedge diffrac- angle y (y<]0,27]) with Dirichlet boundary conditions,
tion has a long history which begins with a famous paper byand derive several approximations for the Green function.
Pauli[10]. In the late 1960s and in the 1970s the problem
was studied in detail. Much literature was devoted to several
types of approaches remedying the deficiency of the geo-
metrical theory of diffraction. The approach most widely = The exact solution of the problem was first given by Som-
used is known as “uniform asymptotic theory” and was de- merfeld for a wedge withy= 2 (a half ling and an incident
veloped in Refs[11-14. Here we have chosen a technique plane wave; sef22]. The solution of the general problem is

A. Exact result
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FIG. 1. Integration contour in the complex plane for formula
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FIG. 2. (a) displays the notations used in the te). shows two
classical trajectoriegsolid lineg and the diffractive orbit going

(3). The shaded areas are zones where the integrand diverges wh@m r’ to r (dashed ling
going away from the real axis. The black points are poles and

branch points of the integrand. The thick lines are branch cuts.

in terms of functions that are defined on a Riemann surface
with p sheets if the opening angle i&=p#/q (with p and

easily inferred from his approach, a complete treatment i§l coprime, or an infinite number of sheets whenis an

given for instance by Carslaw in Refg23,24. Here, for
completeness, we recall some properties of the solution.

The Green functio®.(r,r’,E) of the problem in dimen-
sionless units is a solution of

- -

(AF+E)G(r,r',E)=8(r—r"),
1)

G,=0 if r or r' are onthe boundary.

Choosing a system of coordinates with the origin at the
vertex and the polar axis along one of the boundaries such

that § and ¢’ are in[0,y] [see Fig. 2a)], one can write the
following integral representation for the exact solution:

G,(r,r"E)=g,(r,r',0'—0)—g,(r,r',6'+6), (2
with
9,(r,r',¢,)
[ HY (kyr2+r'2—2rr'co)
:‘MLB “TI—exp—i(z— ¢,)IN)
3

In Eq. (3) and in the following the angleg and ¢’ always
appear in the combinatior®’ =6, and we will denote
¢,=0'—06 (0==1). Other quantities appearing in Eg.
(3) areN=y/ 7, k=E, which is the modulus of the wave
vector,H{Y, which is the Hankel function of the first kind
(see[25]), andA andB, which are the contours in the com-

irrational multiple of w (see Refs[22-24).

Essentially,g, is a superposition of free Green functions
(with complex angleg). Considered as a function @f, it
has periodicity 2rN=2v, and this ensures that the Green
function (2) satisfies the boundary conditions fér=0 and
v. By moving the contourg\ andB toward the real linez
e[ —, 7], and taking into account the poles of the inte-
grand, one obtains

445

!

(1)
0

H

g,(r.r',é,)

X(kyr2+r'2—2rr’cog ¢,—2n7y))
+ho(r,r',é,), (4)

where, after a change of variable, can be written in the
form

h,(r.r',¢,)
sin(@IN) (+i=  HP(kyr?+r1'2+2rr'coz)
TT8aN ) _i. “%cod(z+ ¢,)IN]—cog #/N)

5

The first term on the right-hand side of Ed) contains the
contributions of those poles of the integrand of E).which

lie between— 7 and mr; the prime indicates that the summa-
tion is restricted to values afi such that—7<¢,—2ny
7. If ¢, is exactly equal tot 7+ 2nvy, then the corre-
sponding contribution to the summation has to be divided by
2. In Eqg.(5) the contour can be modified as long as no pole

plex plane drawn in Fig. 1. In this figure one can further sedf the integrand is crossed. A further requirement is that the

the poles of the integrand corresponding to—(@,)/N
=2n7 (with ne Z) — they appear as black points — and
branch cuts linked to the square root argumenti§f . The

shaded areas are zones where the integrand increases with

limit when one goes away from the real athis is easily
checked by using the leading asymptotic téitnof the Han-
kel function]. The integration contour is quite arbitrary as

part of the contour extending to infinity has to start at
—io, with a real part inf 0,7 and to extend to~ with a
real part in |- ,0].

OuThe discrete summation in E¢4) can be interpreted as
afising from allowed classical trajectories. For instance, the

case ¢,=6'—0 and n=0 makes a contribution
—(i/4)H{D(k|r—r"]), and corresponds to the free propaga-

long as it goes to infinity in the indicated unshaded regionstion from r’ tor. The other terms in the summation corre-
This solution was obtained by a generalization of thespond to trajectories experiencing specular reflections on the
method of images. This generalization expresses the solutidmoundaries [this is illustrated in Fig. @)]. If o=1
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(o= —1) the orbit has an evef@odd number of reflections.
These orbits correspond to successive applications of the
method of images and their contribution is known as the
geometrical term in the literature. When inserted back into
Eq. (2) they give a term which will be denoted
Ggedr,r',E) in the following.

If the angle y is of the form w/p (peN*) then
sin(@/N)=0 and the ternh(r,r’, ¢,) is zero: the geometri-
cal term alone is enough to fulfill the boundary conditions.
This is due to the fact that in this case the Green function can )
be determined by the method of images.y# «/p, then region 11
h, corresponds to the contribution from diffraction. Hence
the total Green function can be written as a sum of a geo-
metrical plus a diffractive term:

FIG. 3. Optical boundariesdashed linesfor an initial point

G,Y(F,F,,E):Ggec(F,Fl,E)+Gdiﬁ(F,F/,E), r’ in_t_he case of diffr,a_ction by a sharp wec_ig¢>(37r/2). _The
transition regiongfor r’=10\) around the optical boundaries are
with shaded.

Gair(r,r',E)=h,(r,r',0'=0)—h (r,r',0'+6). (6) InEq.(9) Ggis the free Green function evaluated using Eq.
(7), andr, is the point at the vertejsee Fig. 2a)]. Expres-
B. Geometrical theory of diffraction sions(9) and(10) give the diffractive part of the Green func-
tion in the “geometrical theory of diffraction”(see[9]).

We now derive a simple approximation fGr;; . We first ; . . . -
P’ app it They have the simple interpretation of being the contribution

replace the Hankel function by its asymptotic form for large

argumentgsee[25]), of a (nonclassicaldiffractive trajectory going fromr’ to r,
12 and then front, to r [see Fig. Pb)]. Using this approxima-
Hgl)(z)%(i eZ7 174 \when |z|>1. ) tior_n one can derive a tracg formula fqr the spectral dengity
(A which accounts for diffractive effects in the GTD approxi-

mation (see Refs[4,6,9).
The quantityD(6,6') is known as the diffraction coeffi-
cient. Itis zero if6 (or 6") is equal to O ory, or if 7/ y is an

integer. It diverges on an optical boundary, i.e.qiandr’

are such that the diffractive orbit is the limit of a classical

trajectory. This is illustrated by the simple case of diffraction

by a sharp wedgey>3w/2) in Fig. 3. In this case there are

two optical boundaries represented by dashed lines. They

correspond to §=60"+m (.e., ¢,.=0"—0=—m) and

) : sin(/N) lk(r+1")+imi2 0=m— |0’ (i.e.,¢B=f0’+6= w).l It? thedterminology of gheo-II
(r,r',¢,)=~ metrical optics, the first optical boundary separates the illu-
! 47N cog ¢, /N)—coga/N) kyrr” minated and shadowed regions for direct rays when the point

The same approximation is also used in all the following for
the geometrical and diffractive Green functions, i.e., for all
the terms of Eq94) and(5), the assumption being that the
distances measured along the paitiassical or diffractive
going fromr’ to r are large compared to the wavelength
A=2m/k. Then, in the integral defining, , there is a saddle
point of the exponent at=0, and a steepest descent ap-
proximation yields

8 -, . . .

® r’ is considered as a light sour@oundary between regions
Incorporating this result into expressi@f) for G4, one |l and lll), and the second optical boundary separates the
obtains a formula which can be cast into the form illuminated and shadowed regions for rays that are reflected

on one side of the wedgéoundary between regions | and
Gyt (.1, E)~Ggdr,ro,E)D(6,0")Gedro,r',E), (9 1. If r lies near one of the optical boundaries then the dif-
fractive path is almost an allowed classical trajectory, and if

with r is moved onto an optical boundary then the diffractive path
- - o+ 6"\ 1 coincidgs in' this limit With an allowe.d 'classical tr.ajectory.
D(6,6")= N sinN (CO“T\I_COST) Looking in more detail at the origin of the divergence,
one sees from Eq(8) that it occurs when there exits an

( T 60— 06’
— CO% —COS——

1} integern such that¢,= = 7+ 2nN. In this case there is a
N

polez= ¢,+ 7—2nN7=0 in the integral representation of
the diffractive part(5) which is at the same position as the
4 sin(a/N)sin( 8/N)sin(8'/N) saddle poinz=0 and thus the saddle point approximation
N - o+ 0 - o—0'\ " breaks down. More generally, the geometrical theory of dif-
(cosﬁ—cosT co%—cosT) fraction is only valid if all poles are sufficiently far away
from the saddle poire=0. This can be interpreted in terms
(10 of the physical trajectories in the system because, in Som-
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merfeld’s solutioEgs.(2) and(3)], the saddle point corre- where nint denotes the nearest integer. Using the asymptotic
sponds to the diffractive orbit, and the poles correspond tdormula (7) for the Hankel function, one obtains

geometrical orbits.

Uy ,(r.r', ¢,
C. A uniform approximation eI i eik‘/r2+r’2+2rr’cosz
As seen above, one has to refine the steepest descent ~——| dz : F77(2),
evaluation ofh., in the case when there is a pole of the 8y\2mk) = y\2sinz2) +a,,,
integrand near the saddle poi#t 0. This was first done by (15

Pauli[10], and here we present a slight modification of the " . . )
original procedurg16,17. In a first step one can separate Where F”7(z) is a smooth function az=0, even in the
poles which are possibly near one another by using the iden¥icinity of an optical boundarywhen a, ,—0, see Eq.

tity (20)]:
2sin(ww/N) B 1 Foa(z)= m2sinz/2)+a,,,
- Y +r'e+2rr’ tan ————
cos{ N ) cogw/N) ta 5N (rer rr'cog)~"ta oN
Note that the integrands of Eqgd.5) and(13) both have the
Tzt p—m\ 1D pole z=—(¢,+ nm)+2n, ,y next to the origin, as men-
t I'<T> tioned above.

Now Eq.(15) is evaluated along the steepest descent path
atz=0 by a change of variable= 5t/2exp{3/4), with t
eR (the factorz2 is here for conveniengeThe smooth,
ho(r',r,dg)=u, . (r',r,¢,)—u, _(r',r,é,), (120 honsingular parE”” of the integrand is simply evaluated at
AT Pe) =yt (11 80) Uy, (11 60). - (12) t=0, and the phase of the exponential function and the de-

Henceh, in Eq. (5) can be rewritten as

where nominator are expanded in the vicinity of the origin:
U, (1. by) m2sinzi2)+a, ,=a,,+ted ™+ 0t} (1)
1 jwcd HY (k\r2+r1"2+2rr ' cog) and
~16aN) . 9% Z+ o+ :
tan ———— ; 2 2 ; krr 2 3
2N ik\r?+r'2+2rr'cogz=ik(r+r')— P+ O(E).
(13 (17
and 7= =1 is a new index. Henceu,, , is approximated by
If one denotes the nearest integer th. &+ n7)/(27y) by iK(r+17)—imld
Ny, thenz=—(¢,+ nm)+2n, vy is the pole of the inte- U, (P )~ e a5,y
grand of Eqg.(13) which is nearest to the saddle point0. LA 8y \Jmk(r+r') b+
Thanks to the separatiqi2) the next pole in the integrand ta 2N
of Eq. (13) is at distance 2, and its effect can safely be
neglected ify is not a small angléthis will be assumed in < [ at exd —krr't?/(r+r’)]
the following. According to the method of Pauli one re- w t—a,, gl 4

writes the integrand by multiplying the numerator and de-
nominator by a function imitating the behavior of the origi- (18
nal denomlna_tor but in W.h'Ch the_ a”f’.% parts are After expansior(16) of the denominator, the pole in E(.8)
separated. This procedure is not unique; it corresponds to.a : .
o : . L . . iS only approximately equal to the nearest pole in Bd),
specific choice of a uniform approximation, as will be dis- g ;
- _but they coincide when the pole approaches the stationary

cussed below. The choice for the function is _~. =~ . :
J2sin@2)+a, ,, wherea, , is a measure of the separa- pointt=0. As noted above, the choice of the uniform ap-
7 a.7° 7.7 proximation which leads to Eq18) is not unique(as dis-

tion between the saddle poiat=0 and the nearest optical  ccaq by Clemmow, who calls it a “partial asymptotic ex-

boundary: pansion”; see[15]). For example, another choice of a
uniform approximation can be obtained by making a change
a, = ﬁcos{ﬁ—n ) y) of variable which transforms the exponent in Ef5) such
77 2 that it becomes an exact quadratic function, and multiply the
_ denominator and integrand by a function which is linear in
with the variable. Then one obtains EA48) with a different defi-
nition of a, , which is expressed in terms of a “detour pa-
rameter” such as used in the ‘“uniform approximation
theory” (see Refs[11-14). In practical applications, how-

" leZ, 14
5 € (14
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ever, the differences between different uniform approxima-
tions are small. We would like to add that the uniform ap-
proximations can be further improved by also including
subleading terms of the asymptotic expansion of the Hankel
function, and also higher-order terms of the expansion of the
integrand (see Refs[10,15). However, numerical checks
show (see Fig. 4 and belowthat such refinements are not
necessary here.

We continue now with integrall8), which can be recog-

nized as an integral representation of the modified Fresnel Z 20 -
function K [see Appendix A and EqA5)], and the final 5
expression for the uniform approximation foy, , is g ;
1 eik(r+r’)+i7-r/4 |a0 | i Lor Py T
uy,n(rlrriqs(r)%_ — :
AN Jmk(r+r') [ $ot 7 E .
ta T 2 00 / ! ! ! I LN
00 200 400 600 800 1000 1200
krr’ |12 0 [ degree ]
XK |a¢7,77| W (19)

_ _ _ . _ FIG. 4. Modulus ofGgg(r,r’,E) for fixedr’ andr in a wedge
This expression remains f|n|tg on the optlcgl boundaryith y=110° (r=r'=5\ and 6’ =60°). § scans the interval
¢o=—nm+2n, ,y. As an optical bo_undary is crossed, [0,y]. The upper part of the figure displays the geometry consid-
a,,, goes through zero and changes sign and one has ered, the optical boundaries appearing as dashed lines. In the lower
part, the solid line is the exact res(iEgs. (5) and (6)], the long
dashed line is the uniform approximati¢?), and the short dashed

%" < p2N h .
77\/— sgna,, ;) when a,,,—0 line is the GTD resulfEgs.(9) and (10)].

la,,,|
) bt
a ToN

(20 (these zones are known as “transition region” in the litera-

) . ture). The figure has been drawn for the case=10\
Hence, although the prob!em of dlverg'enc_e ht’v_lS begn elim A=2x/k), and the transition regions are larger if one goes
nated, one arrives at a final form which is dlscontmuous,(0 smaller values of '/\. In the limit r>r’>\, the transi-

This was expected: the exact tertss and(13) already have o \width around an optical boundary at distamdeom the

this peha_vior; because 9f the separgﬁﬁho_f the total Green apex is proportional ta y\/r’ (relying on the weaker as-
fu_nct|_on into a geometnca! an(_:i a dlffractlve term, each_ Con'sumption that,r’> N\, one can show that it is proportional to
tribution (Ggeo and Ggi) is discontinuous at the optical [N(r?+rr")/r']¥?. Outside of the transition region expres-
boundary, but their sum is continuous. . sions (9) and (10) are valid, and show thab i is a small
h As a}fresumeof th? res_ults fOf thr']S sgpffﬂon,_we write cfiovr\:n correction t0Ggye,. But near the optical boundary the two
tGreeeunnI]‘S;Ttioar]pwr?ixclk:ngngnsuror: (;[f (faourl c;rgr??r\i/beut?c?r:;'o the terms are of the same order_, and exactly on the boundary the
' two discontinuous contributions 164, and Gy have ex-
o 1 ekt +inla onla, | actly the same amplitude. . .
(P N = P — A AT The comparison between the uniform approximati@b,
AN Jzk(r+r')on==1 tar‘( botmm the geometrical theory of diffractiofEgs.(9) and(10)], and
2N the exact resulkEgs.(5) and(6)] for G« is made quantita-
tive in Fig. 4. In this figure one considers a wedge of interior
, (21) angley=110°. The source poinjc’ is fixed atd’ =60° and
r’=5\. The observation poirﬁ is at fixed distance from the
where ¢,=6'— a6 (6, and @' being chosen ifi0,y]) and  Vertex (=r’) and ¢ scans the intervgl0,y]. The modulus
a,., is defined in Eq(14). of Gy is then plotted as a function @. In the figure one
In the remaining part of this section we present somefannot distinguish the uniform approximation from the exact
numerical results illustrating the accuracy of the uniform ap-esult. The geometrical theory of diffraction diverges on the
proximation and a failure of the GTD approximation. If the OPtical boundarie¢represented as dashed lines in the upper
next optical boundary is sufficiently far away, one can re-Part of Fig. 4. Furthermore, it is in clear disagreement with
place the modified Fresnel function in EQ1) by the first the exact result for all values @f. Hence one can infer that
term of its asymptotic expansio@4) and this leads to the @ trace formulg based on E) will not correctl_y describe
GTD results(9) and(10). Roughly speaking, this approxima- the spectrum in cases such as presented in Fig. 4.
tion is good when the argument of tikefunction is greater
than 3, _an_d it fails when the argument is less than 15 ThiS ||| DIFFRACTIVE ORBITS IN THE TRACE FORMULA
puts a limit on the use of the geometrical theory of diffrac-
tion illustrated in Fig. 3: inside the dashed areas around the We consider now a closed two-dimensional regibwith
optical boundaries one has to use the uniform approximatioa boundarys smooth everywhere except at a finite number

krr' 1/2

X K —_—
r+r’

|2,
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of points where its slope is discontinuous. The spectral den-
sity d(k) of this system has semiclassical contributions from
periodic orbits as well as from diffractive orbits. The latter
ones are closed orbits which have a finite number of points
on vertices of the billiardwe call these points diffractive or
corner points in the following and follow the law of geo-
metrical optics between two diffractive points. Within the
framework of the geometrical theory of diffraction, the con-
tribution of a diffractive orbit¢ to the level density has been
derived in[4,6,8], and it is given by

o l_p[ D, S(kL T 3w )
_ Lo —'  _lco oV 4 P
¢ 7 | i=1 J87k|(M;) 19 2 a

22
22 FIG. 5. Typical path contributing to E¢29). A precise defini-

HerelL, andL are the primitive and total length of the tra- tion of the anglesy; can be found in Appendix B.
jectory, respectivelyp is the number of diffractive points,
D; is the diffraction coefficient in théth corner[cf. Eq.  hand side of Eq(23). The zeros of Eq(24) are the exact
(10)], (M,)1, is the 12-element of the stability matrix at unit quantum energies of the system, and the oscillatory part
energy for a part of the trajectory between two corners, andi(k) of the level density can be expressed as
v is the number of conjugate points plus twice the number of 1 g
reflections on the boundary between corners. ~ P
According to Eq.(22) each corner point decreases the d(k)=—_1m d_kln detl —Q(k))
contribution of a diffractive orbit by an ord@(k~*9. This .
is correct only if the diffractive trajectory is sufficiently far 1 1d ~n
away from the optical boundaries in every corner point. In T Imnzl o gkl TR (K1,
the opposite case that the trajectory lies on an optical bound-
ary in every corner point it can be shown that its contributionyjth
is of the same order ik as that of a regular periodic orbit
(see below In the following we will go beyond the GTD A - -
approximation, and derive a contribution dgk) from dif- TrQ“(k)z(—Z)”J’aBdsl‘ ++d8hdn, Go(r2,r1,E)
fractive orbits with one point in a corner that interpolates
between these two regimes. For this purpose we will use a XﬁﬁzGo(stzyE)' 05 Go(r1,F,E).
method of uniform approximation similar to that exposed in "
Sec. Il (26)
The starting point of our derivation is the boundary ele- . )
ment method. It is a reformulation of the quantum-For a system with a boundaty that is smooth everywhere,
mechanical eigenvalue problem in terms of a Fredholnthe integrals in Eq(26) can be evaluated in stationary phase
equation of the second kind for the normal derivative of theapproximation. In this way TQ" is expressed in terms of a
wave function on the boundafigee, e.g., Ref§26—32 for  sum of contributions arising from periodic orbits with
discussion and application in the context of the trace forspecular reflections. Inserting this approximation into Eg.

mu|a> More Speciﬁca”y, if we denote b&(s) a point of the (25) y|e|d5 GUtZVV-i”er,S trace formula, as shown, for ex-
boundary with curvilinear abscissaand byu(s) the normal ~ample, in Appendix B. _ _ _
derivative of the wave function at this point, one has the The standard approach described above is not convenient

following integral equation for the case of Dirichlet bound- for deriving contributions of diffractive orbits, since the dif-
ary conditions fractive effects of the corners are hidden in this formulation.

Instead, we use a modification of the boundary element
- method by formulating it in terms of a Green function ac-
u(s")= _ZLBdS us)d wGo(r,r',E), (23)  counting for the diffractive effects of a corner.
We restrict ourselves to a consideration of diffractive or-
wherer = F(s) F’=F’(s’) A7 is the outward normal vector bits with a single corner point which are not influenced by
R Y o ; the other corners of the billiard. To obtain the contribution of
to 9B at pointr’, 5, is the projection of the gradient onto gy,ch an orbit to the trace formula, it suffices to include the
n’, and Go(r,r’,E)=—(i/l4)H(kIr—r"|) is the free diffractive effect of only one corner. We further restrict our-
Green function. The integral relatiq®23) has nonvanishing selves in this section to corners in which the limit of the
solutionsu(s) only if curvature of the boundary is zero when the corner is ap-
o proached from either side. Modifications caused by nonvan-
det(l —Q(k))=0, (24 ishing curvature are discussed in Appendix D.
Let us first consider a simple billiard system which is
where| is the identity, and@(k) is an integral operator bounded by a wedge of anglg and an additional smooth
which, when applied to the function(s), gives the right- curveC which connects the two sides of the wedgach as

(29
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represented in Fig. 6 for instanic®©ne can derive an integral partC of the boundary, anG,takes care of the reflections
equation in terms of the Green functi@, of the infinite  on the wedge part. Hence the total number of specular re-
wedge — analogous to ER3) — in which the integration  fiections ondB in Eq. (29) may be greater than.

is restricted to the curv€. The oscillatory part of the spec- We continue now with the further evaluation of Eg9)

tral density is then again given by E@5), where the trace  \hich we perform in the casa#1. The calculations for

of Q" now has the form n=1 can be treated by identical methods, and yield the same
final result.
TrONK) =(—2 nf ds,---ds.d: G.(Fy.F1,E In Eq.(29), n-2 bo_u_ndary integrals can be evaluz_ited by
Uk =(~2) c 51 Sy A12:11.E) applying the composition lawB1) for Green functions,

.. .. which is derived in Appendix B:
Xaﬁsz(r31r21E)'"ﬁﬁnGy(rlrrnyE)- (27)

- (o E)~(—2)(""2) .
Note that similar techniques have been used in REffor a”ZGSC(rl’rz’E) (=2) deSS dsy
deriving diffractive contributions in the Sinai billiard, and in

Ref. [33] for reformulating Fredholm’s theory in the case of x&ngge&F3,F2,E)~ . -&ﬁnGge()(Fl,Fn,E),
triangles.
The Green functior,, can be split into geometrical and (30

diffractive parts, as was done in Sec. I, and, consequently,

G,(r,r",E)=Ggedr,I",E)+Ggg(r,r',E), (28 — (=22 d o
di”(k)= Im — | ds;ds,d5 G(r2,r1,E)
where the diffractive Green function is given by expressions ™ dkJc
(6), (12), and(13). Inserting Eq{(28) into Eq.(27) results in i N
2" integrals. The stationary points of these integrals corre- X‘?nzesc(rl’rZ’E)' (3D

spond to periodic and diffractive orbits of the billiard system . o ) ]

(and possibly also to ghost orbits as in the case of billiards Here Gy is the contribution to the semiclassical Green
without cornery and the number of points in a corner of a function from trajectories with {—2) reflections on the
diffractive orbit is determined by the number of diffractive Poundary curveC (and possibly further reflections on the
parts Gy appearing in the integral. Since we restrict our-Wedge part of the boundary

selves to orbits with one point in a corner, we can replace

n—1 of the Green functions in E427) by their geometrical - - 1 T 37
. ; ! Gsc(rl,rz,E)—Z ———exp ikl—izv—i—1,
part. This can be done in ways which cancels the factor ¢ \J8wk|myy 2 4
1/n in Eq. (25). Then the contribution to the level density (32)
from orbits with n reflections on the boundar@ and one
point in a corner are contained in wherem is the stability matrix(see Appendix Band| the
2 g length of the classical orbit going from, to ry. 7 is the
A (k) = | _J o R Fo i E number of conjugate points plus twice the nEmber of specu-
1 (K) m dk cdsl dsqaany(rz r1,E) lar reflections on the boundary. We use herand lower

R .. case letters fom and| in order to distinguish these quanti-
X 35,Gged 3,12,E) -+ 95 Gged 1,1, E);  (29)  ties from those of the whole diffractive orbit. The normal
derivative of the Green function is given in leading order by
an example is given in Fig. 5.
Let us discuss Eq29) in more detail. The contribution of 95,Gsd F1,12,E)~ik COS1,Gedr1,12,E), (33
a diffractive orbit is obtained by evaluating the integrals in
the vicinity of the stationary points, i.e., in the vicinity of the wherea, is the outgoing reflection angle éi (see Fig. 5.
points of specular reflection of the orbit on the boundary. If |, the following, we will consider the contributions of the
one approximate§,, in the framework of GTD, this results geometrical and diffractive parye, and G to the Green
in Eq. (22) (with p=1) for the contribution of the diffractive  ;nction G, in Eq. (31) separately. As discussed above, the
orbit. In the following we will improve on this method by geometrical part will yield the contributions of periodic or-
using a uniform approximation for the Green functiGy.  pjts The reason why it also has to be included for the deri-
In both cases, however, only local information about the revation of the contributions of diffractive orbits is that both

flection points and the corner enters the appr_o.xim'ation. It I 4 andG g, are discontinuous at the optical boundésge
then obvious how expressi¢R9) has to be modified in order he giscussion in Sec.)llFor that reason the boundary con-

to derive semiclassicabr uniform) contributions tad(k) for  tipytion of Ggeo Which arises from this discontinuity has to

more complicated diffractive orbits in billiards with several pq included in order to cancel the analogous contribution of
corners: for every straight part between two reflection pointgg

a free Green function has to be included, and for every part
of the trajectory which hits a corner between two reflections

a Green function for an infinite wedge with the same angle.
The reason whyG g, appears in Eq(29) and notG, is that From (6), (7), (12), and (13), the diffractive part of the
in the above formulation we consider only reflections on theGreen functionG,, can be approximated by

A. Diffractive contribution
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Guii(T2,F1,E)~ >

= point, and¢,= 6, — o0, (see Fig. 5 Similarly to Eq.(33),

the normal derivativel; yields a factorik cosy;. We insert
exp[ik\/rf+ r§—2r1r2coz} Eq. (34) and one contributio from Eq.(32) into Eq.(31),
+¢,+nm)| ' and consider the contribution from the vicinity of a station-
T) ary point which is chosen as origin of ttsevariables. The
main contribution to thez-integral comes from values near
(39 z=0, and the exponent is expandedzinp to second order:

( )1’2 _'”’4J iz wherer (r,) is the distance from, (r,) to the diffractive
o

(r2+r3—2r;rcoz)'*ta

T_ 37

(_2)2 d 2 l/2e*i77/4ex IEV_IT
d; gir(K)~ Im — o (—) ik)2cosx;cosy
&dﬁ( dk(nggtl Y wk 167 87Tk“ﬂlﬂ ( 1 2

_ riro 2
exp{|k<|(51-52)+r1(31)+r2(32)_m2 )]

joo
X fcdsldszfiixdz Py y—— , (35
ri+r, tan ——g—

where the index labels the diffractive orbit. A stationary phase approximation of all integrals would yield the contribution of
the diffractive orbit in the GTD approximation. This approximation diverges at an optical boundary. In order to obtain a finite
uniform approximation the effect of the nearest polete0 has to be included. We treat this pole again by the method of

Pauli,
z+Ad¢,
1 - 1 +”fs"'< ) 1 a,., i
Z_k‘ﬁo:+ n B Z_%‘ﬁo:+ n Vf‘ Z+”A(ﬁa (ﬁ010+-ﬂ77 Z+HA(#U, ( )
i =N | BTN ) et BTN et 5

whereg, ( is the value of¢,, at the stationary pointh ¢,= ¢,— ¢, 0, anda, , is evaluated using Eq14) at the stationary
point. Inserting Eq(36) into Eq. (35), we obtain

T
k COSalCOSaZeXp[ - 'E v]

d; gin(K) ~1 d > 8o
¢ diff dk o,n=*1 an 8772’)/\/(r1+l’2)|m12| ¢0’,0+ 7777)
tan ———
2N
. rlr2 2
expy ik| 1(51,8) +r1(S))+ry(s))—5——=2
xfmd d f' d 2t re) (37)
[S z .
I Qg+ M2+ A D)2

The quantitied(s,,S,), r1(s;), andr,(s,) are now expanded up to second ordesjrands,. The expansion coefficients can
be obtained from Eqg. (B8). Furthermore we expandA¢, up to first order in s; and sy
A, (S1,S,)~S1C05n; /11— 0S,CO0q0, /15, After a substitution

2 2

51—>—77Fm151, sze—n@sz, z—— 2z, (38)

we obtain the following expression:

5 kexp[—i%?]

4 (K~ —1m o J dsdJ dz
f,d|ff( ) dk 5. =1 77772)/ 8(r1+r2)|m12| tal ¢(r0+7777) 1%

exp{ k

) 2
l+r,+r,+a’'si+b'ss+ m—slsz—cz2
12
X

; (39
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where quirement that the exponent in the integrand has no mixed
guadratic terns’s. The evaluations are done with Maple and
_my 2 +£ My 2 1 result in
my, Ricosyy  ry’ my, Rycosw, 1y’
an
kL exp[ikL—i —"17]
ro 2
=2 (40) d; gn(k)~—Re > o7
r1+r2 & dif o,n==*1 ’772')/ 8(I’1+I’2)|m12|
Here the quantitiesy, r,, andl without argument denote the g,y
values at the stationary point. The derivative with respect to Xﬁ j ds ds
k in Eq. (39 vields in leading order a factoilL, where ta M)
L=r,+r,+1 is the length of the diffractive orbit. In the next 2N
step we simplify the integrals by applying a transformation i~ explik(as+bs'2—c)}
of the s variables such that the denominator of the integrand f _ Tes , (42
depends only on one of thevariables: -l ZTS7 84,y
s S, where
s=——0—, s =drys;+(1l—od)rys,. (41)
i T2 e M .C ~ Mp—c(TiM—02)
The form ofs’ is chosen such that the Jacobian of the trans- Mi—c( TrM—02)’ Myl 11 5C ’
formation is 1, and the value af is determined by the re- (43

c(or,Rico0s¥yMy1— 20T 1Mo+ R COS¥ Mo+ ,R COSY 1)
B r,R;c0821[M,—c( TrM — 02)] ’

M is the stability matrix of the diffractive orbit, i.e., the ikacai’,]
stability matrix of the classical trajectory starting from the xex Ta—-c
corner going through, andr; and back to the corner. There 2
is a relation betweem, the signs ofa andb and the Maslov ; k
index v of the diffractive orbit erfc |aa,,,| i(a—c)
L ™ fcfl (ke )™ H @5
T T L . — erfc| |a,,, ,
exp{ Izv+l40a+l40'bJ [ exp{ |2VJ, (44) i(a—c)

whereo,= sgn@), o= sgn®). Hencev is equal tov plus ~ Where 7,= sgn@c/(a—c))= sgnM,/( TrM—02)). As
the number of negative signs af andb (modulo 4. This will be seen in Sec. Ill B, the first error function in E@L5)
can be seen, for example, by evaluating $heands, inte- is the contribution from the discontinuity @& which is
grals in Eq.(39) by the stationary phase method. Then fromcanceled by the corresponding contribution fr@ge,.

the composition law of Green functions the Maslov index

v of the whole diffractive orbit is obtained by successive

applications of Eq(B12). Since a stationary phase approxi- B. Geometrical contribution
mation after the transformation, E¢41) has to yield the For a giveno and » the geometrical orbit that corre-
same result, relatioh44) follows immediately. sponds to the nearest pole arises when

The integral oves’ can now be evaluated, and the double ¢, —2n,, ,y=— 5w, and it exists if n(2n, ,y— ¢,) <.

integral overs andz is calculated in Appendix CEqQ.(C9)].  This can be reexpressed in the form
The result is

o _Zno' . A o A o

2
Lexp{ikL—ig"ﬁ] @6)
d k)~ —Re onT
gan(l)~ 0772+1 7 T y\8(rit+ro)mpb(a—c)l
la, | In the following we derive the contribution from the discon-
% 7.7 gl m(ltoatopt,)/a tinuity of Gye,. For that purpose we apply exactly the same
ta oot T approximations t@s 4., that were used foB ;s . This is done
2N by writing Gge, in the form
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Gge((Fval’E)

>

o,n=*1

2 1/2ei wl4
o2 %

exp[ik\/ri—i-rg—Zrll’zCOS((ﬁ(r_zn
(r2+r5—2r,r,coq ¢,—2n

2 1/2e—i77'/4
:_0',772=i1 ®(A)(H) 16y

p—);
oY)

explik \ri+r5—2rr,cos}

Z+ ¢+
2N

X %dz
(r2+r3—2r,r,coz) tar(

(47)

whereA=a, ,+ V2sin(zA¢,/2). The integration contour of

thez integral encircles the nearest polezte O counterclock-
wise. Expressioni47) differs from Eq.(34) only by a factor

(— ), the® function and the integration contour. We repeat
now all the steps from Eq$35)—(42). The only difference is

a multiplicative factor ¢ ») which results from the substi-
tution z— — 7+/2z (it did not appear previously because of
the different integration contourWe arrive at an expression

corresponding to Eq42),

T
kL exp[ikL—iEv) a
~Re >, 27
vrz—+1 77 2y\8(ry+r5)|myy r<¢fro+ nw

xf ds ds 3€dz 0(a,,,—s)

><exp[ik(as:2+ bs'?—cZ)}
z+s—a,, '

(48)

The triple integral is denoted Hy The integrals oves’ and
z can now be evaluated and result in

1/2
_ Tl aO’Jl . . 2
| = 27ﬂ<kb> fﬁm ds explikas’—ikc(s—a, ,)%}
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1/2
=—sgna,,,) 7, 2mi

1"

kb
2
aa,, kac
><exp{|k(a c)| s+ AT/ [ a@n}
—C a—c
=— sgr(a )T W—Z— i(ml4)(1+ o+ op+7,)
777k (b(a=c)

1/2
ac
><exp{— 3’2”7] erfc{laaU A ]
s :

where 7,= sgn(ac/(a—c)), as before. Substituting’ for
the triple integral in Eq(48) yields

L ikL i3
exp i i

yV8(r1+1,)mpb(a—c)|

i(a—c)
(50)

de gedk)~Re X

o,n==*1

onT,

|2,
ta ¢(r,0+ nw
2N

p[ ikacaﬁn}
Xexp — ———
a-c
k 1/2
xerfe{|aa(,,,]| i(a—c)) }

Comparison with Eq(45) shows that this contribution ex-
actly cancels the first error function in E@5).

ei(ﬂ'/4)(1+ oatoptT,)

(51)

C. Joint contribution

We now can write down the final formula of this section.

By using the definitions o, b, andc the sum of Eqs(45)
and(51) can be written in the form

L p{|kL—| Z/LO.]

d.k)~—Re Tye—
0 mzrln ™ | TM—o2]
172 2
_ a
2m<kb> f dsexp{lk(a c) s+ ¢ % | 0,77|
2N\/§ta M
kacd 2N
—i—=1. (49)
a-c¢ ikaZ , Mg,
XOP T TIM—o2

We are interested only in the boundary contribution of the
geometrical part. Expressio@8) in general also contains

contributions from periodic orbits. This is the case if the Xerfcrlao ol

integration range in Eq49) contains a stationary point, i.e.,

if aa, ,/(a—c) is positive. Then the stationary point contri-

bution has to be subtracted which corresponds to a subtragshere we dropped the second indexdgf o for simplicity of
tion of the integral from—o to . For the boundary we notation. Furthermoreyg,=v+(1—0)+«,, 7,=1-2k,,
obtain contribution and «, is defined as

1/2
i( TrM— 02)) ’ (52)
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) M1, smooth boundany but it is more generally valid because it
0 Iif m>0 relies only on local properties of the system near the consid-

Ky= (53  ered diffractive orbit(as usual in semiclassical approxima-
1 if Mo -0 tions). Hence it applies to billiards of any shape, provided
TM—0c2 the singularity of the boundary corresponds locally to the

intersection of two straight lines. However, the present ap-

We recall thatM in Egs. (52) and (53) is the stability proach has to be refined if applied to curved edges; we dis-
matrix (at unit energy of the classical trajectory starting and cuss this point in Appendix D. We also remind the reader
ending at the corner point: is the number of conjugate that formula(54) is only valid for single diffraction. The
points of this trajectory, plus two times the number of specusame formalism can in principle also be applied to diffractive
lar reflections. The definition gk, in terms ofv andk, is  orbits with more than one diffractive point; however, the
similar to the definition of the Maslov index of a periodic formulas become increasingly more complex. For example,
orbit in terms of that of the Green functidi5]. The o in the case of double diffraction, one has already 16 instead
dependence is due to the fact that positiveralues are as- of four terms, and they also involve double Fresnel integrals
sociated with geometrical orbits that are reflected an eveas can be inferred from the treatment of diffraction at two
number of times near the corner, as an optical boundary iwedges in[21]. The formulas can only be simplified if the
approached, and negative values with orbits with an odd diffraction in some of the corners can be treated in the GTD
number of bounces. This is explained in more detail in Ap-approximation.
pendix D. In the limiting case that the diffractive orbit be-  Note also, that the factdrTrM —2¢|~ 2 in Eq. (54) di-
comes a periodic orbit, its contribution comes only from oneverges for a parabolic diffractive orbit(i.e., when
of the values ofr (the other cancelsand its stability matrix ~ TrM = *=2), and the present approach cannot be used in this
is M or —M, depending on whether the number of bouncescase. This is very similar to divergences in Gutzwiller’s trace
of the orbit in the corner is even or oddf. the discussion in formula due to nonisolated orbits. For diffractive orbits,
Sec. IV B). Thusu, is identical to the Maslov index of the TrM=*2 can have several causes; for example, the diffrac-

periodic orbit in these limiting cases. tive orbits can appear in families as is the case in a circular
In terms of the Fresnel integrél formula (52) can writ-  sector, or bifurcations of diffractive orbits can occur, or the
ten in a slightly shorter form, diffractive orbit can become a part of a family of periodic
orbits when the optical boundary is approached. The latter
. T case can occur, for example, in triangular billiards. In this
410 R 2 exp{lkL—| E“U] case it is, however, often possible to treat the divergent part
dK)~—Re NTg (one of theo valueg in the GTD approximation if the dif-

=l 7 N[ TM=o2| fractive orbit is well separated from the torus of periodic

la, | KMy |12 o_rbits, and apply the _uniform approximatiqn only to th_e non-

‘2}”4_ o K[|av,n|ika<m) } dlverlgent part, as will be demonstrated in a numerical ex-

o - ample in Sec. V.
Nﬁtar( o )

) , . ) ) After these basic remarks we now study three simple lim-
Equation(54) is the main result of this paper. It provides o of £q (54). The first one is the geometrical theory of

a uniform approximation for the contribution of an isolated itfraction which is valid sufficiently far away from the op-

diffractive orbit with a single corner point to the trace for- yiea| houndary. In this limit the argument of thefunction is
mula. For completeness we recall several deﬂmuonsiarge’ and the function can be replaced by its leading

bo= 0100, where al_and 0, are 'Fhe incoming and out- asymptotic term in Eq(A4). This immediately yields
going angles at the diffractive poir{fmeasured from the

same edge, witl#; and 6,[0,y]) anda, , is defined by L D(6y,6,)

dg(k)%— coskL—vw/2—3xw/4), (56)
b
Ay, = ﬁcos{ i nm,?y)

T \ 87Tk| M 12|

which agrees with the general formy®2) in the case of one

diffractive point. Analogous formulas have been derived and
e7. (55 tested in4,6,8]. They have the advantage of allowing one to

treat general diffractive problemsther than wedge diffrac-
. -~ . ) ] tion), and can easily be generalized to multiple diffraction
Note finally that the modified Fresnel function of imaginary [see Eq(22)]. However, they diverge on the optical bound-
argument(encountered whewr,=1) can be computed nU- gry and(as shown in the examples Secs. V A and V B be-
merically from Eq.(A3). low) they are unable to describe the limit that a diffractive
orbit is close to become a real trajectory.

¢t
2y

with n, = nin\[

IV. DISCUSSION OF THE RESULT

In this section we discuss properties and the range of va- B. Limit y=a/p

lidity of formula (54). As mentioned above, the derivation  Let us now study the limit that the diffraction anghe
has been done for a specific cagewedge connected to a goes tow/p (peN*). For these values of there is no
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diffraction, since the corner can be treated by the method oflassical approximationis not enforced by complex trajec-
images. As a consequence, the contributions of most diffradories but by diffractive orbits. This effect will be demon-
tive orbits disappear, but there are also diffractive orbitsstrated in the examples below.

which are replaced by periodic orbits which contribute to the
level density according to the Gutzwiller trace formula. Their
contribution can be obtained from the diffractive contribu-

C. In the vicinity of an optical boundary

tion (54) in the limit y—«/p. The situation is actually

slightly more complicated, since the diffractive contribution

of these orbits for angley=m/p+ € is discontinuous at
e=0 (it changes sign The reason for this is that periodic
orbits split from the diffractive orbit as goes through zero
(for example, as the billiard is deformedvhich can be con-

sidered as a kind of bifurcation. As a consequence both di
fractive and periodic orbit contributions are discontinuous a
€=0, but their sum remains continuous. In order to discus o
this in more detail we have to consider the cases of odd anapemﬁcally,

evenp separately.

(i) Casey=(w/2p)+e. In the limit e=0 the contribu-
tions from the twoz values cancel foor=—1. The same
occurs foro=+1, except ifd,= 6. If this condition is ful-
filled, one obtains

d(k)— sgr(e) 7+ )dpo(K), (57
where
dpo(k)= p [TV — 2]72 when y= ﬁ (58)

The discontinuity in Eq(57) at e=0 is directly related to

The case that a diffractive orbit lies on an optical bound-
ary, or crosses an optical boundary when the billiard is de-
formed, is very similar to the casg— w/p. Again the dif-
fractive orbit contributes on the optical boundary at the same
order ofk as a periodic orbit, but now only with half the
amplitude of a periodic orbit. The diffractive contribution is

gain discontinuous since it changes sign as an optical
poundary is crossed, and the reason for this is that a periodic
é)rbit arises which bifurcates from the diffractive orbit. More

let us consider the case that for a given value of
o andn one hasp,—2n, ,y+ nm=e¢, wheree is small. In

the limit e—0 the contribution from these values afand

7 to the spectral density is given by

- % 77, SN E)dpo(k)

L cogkL— u,m/2)
7™ | TrtM = 20|

and one can verify that the discontinuity of E§1) is due to

a neighboring periodic orbit which coincides with the dif-
fractive orbit ate=0. As above, the condition for the exist-
ence of the periodic orbit ia, ,7,>0 which now is equiva-
lent to yer,>0.

where dp(k)= , (61

the appearance of periodic orbits. This can be seen from the

discussion in Sec. 1l B: in Eq49) one has contributions of
periodic orbits in the vicinity of the diffractive orbit if

a,,,7,>0, and the periodic orbits coincide with the diffrac-

V. SOME EXAMPLES

In this section we illustrate the results of the last sections

tive orbit whena,, ,=0. For the considered case the abovewith several examples. We study mainly a billiard consisting

inequality is equivalent te- sgn(e) 7)>0. Hence where
goes through zero, two periodic orbits appéardisappedy
one for each value of, assuring the continuity of the sum of
contributions att=0.

(ii) Casey=m/(2p+1)+e. Now the two contributions
to o=+1 cancel ax—0, and foroc=—1 there is only a
contribution if 6,= y— 6#,. This contribution is of the form

dg(k)— sgrie) 7 dpo(K), (59
and the periodic orbit contribution now is given by
LcogkL—w(_ym/2) T
Ao K= Tt 272 When v= 557
(60)

Comparing with Eq.(58), the reason for the change of
sign of M is the odd number of classical reflections on the

vertex in the casey=w/(2p+1). Generally, the stability
matrix M of the closed trajectory in Eq54) becomes equal

of a wedge of opening angle whose two edges are con-
nected by an arc of constant radius of curvat&keThe
angles between arc and wedge are chosen t/Beon both
sides. Ifh denotes the “height” of this billiardsee Fig. &
thenR=hsin(y/2)(sin(y/2)— 3) 1. This billiard has only one
diffractive corner(at point S of Fig. 6) and the curvature
ensures that the shortest diffractive and periodic orbits have
TrM # =2 (they are displayed in Fig.)6In the following

we call this billiard a “rounded triangle/3,7/3,y).”

For numerical convenience we restrict ourselves to angles
of the formy= par/q with (p,q) € N?. The quantum energies
are determined by expanding the wave functions around
point Sin “partial waves” which are Bessel functions times
a sinusoidal function of the angle:

Nmax

W(r,0)= 21 an,p(kr)sin<n—pq a). (62)

Equation (62) automatically fulfills the Dirichlet condition

to plus[minus| the monodromy matrix of the periodic orbit on the straight faces of the billiard. The boundary condition

whenvy is w/(2p) [#/(2p+1)]. The explanation of the dis- on the arc opposite t8 is enforced in a manner identical to

continuity of Eq.(59) is the same as above, with the only the improved point matching method presentefi34l. This

difference that the condition for the existence of neighboringesults in a secular equation whose solutions are the eigen-

periodic orbits can now be expressed bysgn(e) 7(-y>0. levels of the system. We have tested the numerical stability
In billiards with corners one has therefore a new kind ofof our procedure by varying the numbey,,, of partial

bifurcation: the continuity of wave mechani@is the semi- waves included in the expansion(typically nNpax
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FIG. 7. Modulus|F(x)| of the Fourier transform of the level
density — see Egqg.(63) — for the rounded triangle
(m/3,713,y=7m/15). The solid line corresponds ®©gy(X), the
L, =4 h sin (y/2) L,=L,=R long dashed line tdya(Xx), and the short dashed line Esp(x)
(see the text The arrows mark the lengths of the diffractive and
y<m ¥>7 periodic orbits. The scale of lengths and wave vectors is fixed by
takingh=1.

FIG. 6. Shortest periodic and diffractive orbits in the “rounded
triangular billiard™ studied in Sec. V. For the diffractive orbit, the |, js discontinuougcf. Eq. (57)], and this exactly cancels
diffractive point is marked with a black point. The upper plot de- the discontinuity due to the disappearance of the arpand
fines the geometry and the notations. its time reverse.
We determined the spectrum numerically foe=77/15

~ ninf pkh/q]). For each of the values of studied below and 87/15. The corresponding moduli of the Fourier trans-
we have computed the first 2000 eigenlevels, and wdorm |F(x)| are plotted in Figs. 7 and 8. In these figures the
checked that they were determined with an accuracy of theolid lines correspond tfFqu(x)|, the long dashed lines to

order of 1/1000 of the mean level spacing. |Fua(X)|, and the short dashed line tFgp(x)|. The

In order to visualize the importance of periodic and dif- lengths of the included orbits are marked with back arrows.
fractive orbits we study in the following the regularized Fou- One notices the failure of GTD and the excellent agreement

rier transform of the level density, of approximation(54) with the exact resulfthe agreement
remains equally good when plotting the real and imaginary
; part of F(x)]. As stated above, it can be seen that in the
| e ikx— ak2 vicinity of an optical boundary diffractive and periodic orbits

FX) fo vk d(ldk 63 contribute in the same order to the level density.

) ) ] B. y near «w
KmaxiS the last eigenvalue computed numerically and we take

herea= 10k, The multiplicative factor/k in Eq. (63) is
included in order to cancel the singularitylet 0 of a con-
tribution of type(56). F(x) is denotedFqoy(x) if we use in
Eq. (63) the exact quantum spectrum. It is denotggh(x)
[Feto(X)], when Eq.(54) [Eq. (56)] is used together with
the periodic orbit contributioné821).

This case also pertains to the discussion of Sec. IV B, but
now in the vicinity of y=m/(2p+1). Again the diffractive
orbit ensures continuity of semiclassical mechanics when
vy= . the two periodic orbitd , andL, of Fig. 6 disappear

as soon ay <, and the contribution df , is discontinuous

at y=, but the joint contribution is continuous. Here we
computed numerically the levels for=197/20 and present
the results fotF(x)| and RéF(x)} in Fig. 9. Again one can

A. y near /2 verify the failure of the geometrical theory of diffraction and
This case is relevant to Sec. IV B above. ket /2 the :Zzutlatxcellent agreement between Esf) and the quantum

shortest orbit is a periodic one and has lengil= 2h siny.

It disappears as soon &> /2. For y# /2, one also has a
diffractive orbit of length L,=2h (see Fig. & When
v= /2 these orbits coalesce, and give a single periodic orbit In this subsection we depart from the previous examples
of length 2h. Their contribution to the level density is con- and study the spectrum of a straight triangular billiard with
tinuous aty=m/2 as explained above: the contribution of angles ¢/4,7/6,77/12), which has one diffractive wedge

C. Triangle (#/4,7/6,7w/12)
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800 r QM
——- UA & /\ m\
600 |- -ooen GTD L =2 L, ~2.83 . L,~346
40.0 - :'“I:l
:: 20.0 =0T QM
e ——. UA
- ST-Y . J) GTD
0.0
10.0
200 Lz La oy
»
~ 5.0
] 1 1 1 — [
1.0 15 20 25 3.0 35 -
X 0.0
FIG. 8. Same as Fig. 7 foy=8/15.
wor L L L
y=T7/12. This billiard is of interest becaus® it allows us ' # :
to compare the performances of the uniform approximation ) , , , , |
with GTD in a regime where this last approximation is not 1.0 15 2.0 25 3.0 35 4.0
inaccurate, and alsdii) because it provides an example X

where our approach is not completely justified. Indeed in the
case of a polygonal billiard all the trajectories have a mono- FIG. 10. Same as Fig. 7 for the flat triangle/8,=/6,7w/12).
dromy matrix with TM==*2, and this leads to a diver- The upper part displays the shortest orbits of the sy<ththree
gence in Eq(54). As noted in Sec. IV, this is linked to the are diffractive, the classical periodic orbits occur at greater lepgths
possible deformation of any diffractive orbit of the system
considered toward a family of periodic orbits. Fortunately, in
the present case the first diffractive orbits are far from an
allowed family of periodic orbits, and we can evaluate the
K function relevant to the divergent term in E§4) with the
asymptotic expansiotA4): this cancels the divergence. This
was done on Fig. 10 for the three first diffractive orbits of the
system.

Again the agreement with the numerical result is excel—dif
lent, but here the geometrical theory of diffraction already

ives a sensible description. Note, however, that the small
peak due to the diffractive boundary orbit of lendth is
“missed” by GTD because its diffractive coefficiet0) is
zero(see the discussion in Sec. I).Brhe correct description
of the peak was obtained by using half the contributisf)
of a usual diffractive orbit.

For a more detailed comparison we plot the moduli of the
ferences|Fya(x) —Fom(X)| and |Fgrp(X) —Fom(X)| in
Fig. 11: even quite far from any optical boundary, Es4)
supersedes the GTD resif6). This plot emphasizes the

. 500 - I‘Ai a;:curalt_:y ?_f Eq(54) in cases slightly out of its original range
Py —_—- of application.
< I GID PP
S == "-‘\/,7 -------- VI. CONCLUSION
& B In this paper we have studied the inclusion of diffractive
500 | s . ! orbits in semiclassical trace formulas for billiards in which
1.0 15 20 25 3.0 the boundary has wedgelike singularities. In many cases the
50.0 ~ simple_ geqmetrical theo_ry of diffrac'_cio[g] is ina_dequz_ite,
especially if the energy is not very high. A consideration of
= a0 L the mathematical structure of the exact Green function near a
x wedge permits us to remedy this shortcoming: it leads to a
= oo uniform approximation of the Green functi¢f6] which, in
- . turn, allows us to derive contributions to the trace formula
, , , | which properly account for the role of isolated diffractive
1.0 15 20 25 3.0 orbits in the quantum spectru(B4). The formula was illus-

X trated in several examples, and was shown to give excellent
agreement with numerical data. Its main feature is that it
FIG. 9. Same as Fig. 7 foy=197/20. Here we also plot interpolates between the usual Gutzwiller trace fornjdla
Re[F(x)} for illustrating the quality of the agreement between the and previous approaches relying on the geometrical theory of
phases of gy andFy, . diffraction [4,6,8].
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e In this appendix we define the modified Fresnel function
00 == ‘ ‘ 1 K(z) used in the main text and list several of its properties.
(i) The functionK(z) (zeC) is defined by

x } aire est une unitele recherche des universt®aris X| et
3 20t Paris VI associe au CNRS.

= H ! 3

| FoA A A

~ 10 L Y '," \xl': APPENDIX A: MODIFIED FRESNEL FUNCTION

\b_i ------------- . s F K P .

[

-10 F L L L,

e iz2
) 1 \ 1 1 | K ( Z) -
1.0 15 2.0 25 3.0 35 40 N z 2
X (A1)

—i(Z2+mlh) o

eV’ dy= erfale”'z),

FIG. 11. [Fua(X)—F ou(¥)| (long dashed linpand |F oro(x) ~ Where erfc is the complementary error functitsee, e.g.,
~Fou(¥)| (short dashed linefor the triangle ¢/4,7/6,7=/12).  [25])- In Eq. (A1) the path of integration is subject to the
We consider only the three shortest orbits of the system. The folf€striction argy) — «, with 0<a<mw/2 asy—« along the
lowing orbits are not taken into account, and this is the reason fopath. =0 and 7/2 are permissible if Réy?) remains
the increasing errors in vicinity of~4. bounded to the right.

The function K has the following properties:

- -1

Note also that we included a derivation of a semiclassicaF(Jroo) =0.K(0)=2,
composition law for Green functions for billiard systems g2
(B1) and(B13) which allows us to recover Gutzwiller's trace K(Z)+K(=2z)=e"", (A2)
formula in a simple fashioiicf. Appendix B. Similar laws nd
can also be obtained for the composition of diffractive and
geometrical Green functions. sy oy aiZ?

The present work suggests further developmefisRe- K@) +K(-iz)=e*, (A3)
sult (54) might be extended to allow the treatment of diffrac-\are the bar denotes complex conjugation.
tive orbits in the vicinity of a family of periodic orbitdii) (i) By successive integrations by parts one obtains the
Although the inclusion of general multiple diffraction in a folowing asymptotic expansion:
uniform formula seems to be a difficult task, one may rea-

sonably hope to include double diffraction in the formalism el T i\
(cf. [21])). (iii) Further possible extensions concern the treat- K(z)=—— E (5) ;2—>
ment of other types of diffraction, like regions near curved 22w i=0 n

wedges where surface diffraction becomes important so that

contributions from creeping and whispering gallery orbits

have to be included, or diffraction effects arising from dis- . . 1

continuities of the curvature of the boundary like in the sta-Vhere G)n=T'(n+3)/1°(3)=1x3x - ><.(2n—1)/2”. In

dium billiard. the region argf) 5]37/4,777/4{ one obtains an asymptotic
Finally we would like to emphasize the important role of expansion by combl_nmg Equz_). and(Ad). .

diffraction in semiclassical approaches. Diffractive and peri-f (|||2hThfe“|nte_res'§ 'P thel m?dt'_f'eq Fresnel function comes

odic orbits are fundamentally different in the sense that therom € foflowing Integral refation.

former are not obtained via a systemdii@xpansion in the be e B

vicinity of glassmal sc_)lutlons o_f_ Hamilton’s eqpauc_n(tﬁey f dt =2irm K(Tefiwm\/ﬁz), (A5)

are rather linked to discontinuities of the Hamiltonian flow - t—z

However, diffractive orbits provide the first correction to the

leading order in the trace formula, with contributions typi- where e R*, ze C and = sgn(lm(z)).

cally of order% smaller than the contributions of isolated ~ Hence the functiorK allows us to generalize the steepest

periodic orbits. In addition, in the vicinity of optical bound- descent method to cases where poles appear in the integrand.

aries the two types of orbit contribute with approximately theAs explained in the textSec. 1) this corresponds — in the

same order to the trace formula. An image emerging fronSommerfeld solution of the diffraction problem — to the

our study(cf. Secs. IV B and IV Cis that diffractive orbits occurrence of diffractive orbits near classical trajectories. We

allow one to enforce semiclassically the continuity of wavewill not prove Eq.(A5) here, it can be done easily by noting

mechanics in the vicinity of discontinuities or bifurcations of that (t—z) “*=i7f§ “exdir (z—t)x] dx [cf. the evaluation of

classical mechanics. integral (C6) in Appendix Q.

for |z| -+~ and —w/4< argz)<3wl/4, (A4)
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APPENDIX B: COMPOSITION LAW FOR GREEN denote the momentum of a classical trajectory by a vector
FUNCTIONS p of modulusk, whose direction is the direction of propaga-

In this appendix we derive a simple semiclassical Compoj[ion of the clri\ssical particle. The momentum of an outgoing
sition law for Green functions which is expressed by inte-trajectory isp;, and «; is the angle between the normal

grals over the boundary5 of the billiard. The formulas vectorﬁi of the boundary(which points outsid)eand—ﬁi.

established below are simple, and are connected to Baliafhe momentum of an incoming trajectory p¢, and a/ is
and Bloch’s multiple reflexion expansidgé]. Although they '

are clear from a semiclassical interpretation of this expansio

see, e.g., Ref$3, 27, 28) we include a derivation for com- . X . . .
foletenegs Thjcompos?gion law can be used in order to SirAgcal coordinate systems of the trajectories with coordinates

plify expressions obtained from the boundary elememparaHEI and perpendicular to the trajectory, t_he tangential
method|[cf. Eq(31)]. We first prove the semiclassical ver- and normal vectors of the boundary can be written as
sion and then give the exact formulation of this law due to

bhe angle between; andp/ . For this choicex/ ande; both
Ie in the interval between- 7/2 and #/2. In terms of the

. . . o = B S 1 20 e
Balian and Bloch. We further show that it allows us to derive Nj= —COSx;€|+ Sina;€, =COosx; € —Sina; €,
Gutzwiller's trace formula in a straightforward manner. (B5)
We assume in this appendix that the boundaf is
smooth everywhere. The semiclassical version of the compo- ti=— sinaié”— cosyi€, =sina; éli +cos/ €] .

sition law has the form
We continue by evaluating the integral in E84) using the
(_z)nJ ds,---ds,Go(ry,r",E)d;.Go(r,,r1,E)- - - stationary phase approximation. The normal derivative of the
B ! Green function is given in leading semiclassical order by
X 9 Go(I T, E)~GW(r,1" E), B1 > - N1 Ve
3, Go(1Fn B)=Goc (.1 E) (B2 9;Go(Fi11,Fi,E)=~=in-piGR(Fi 11,1 ,E)
where r;=r(s;)). The approximate sign signifies that the =ik coxr;GO(ri, 1.1, ,E), (B6)
evaluation is done by approximating the free Green function

Go by its leading asymptotic term for large argument, andynq in Eq.(B4) the stationary points are determined by the
evaluating the integrals in the stationary phase approximasgndition

tion. The functiorGg';)(F,F’ ,E) on the right-hand side of Eq.
(B1) is the part of the semiclassical Green function from all

: . . > = — 710 f Mcr. r!
trajectories withn bounces on the boundary betwegnand 0 d31[| (rra) +1(ry,r)]
: S
S I O
GO E) =S Kk
sc \lol )
& V8mkIMY)| = sina; + sina} (B7)
. (n) . m (n) . 37T . . . g .
Xexp ikl*™ —i SVl (B2) ie., bya;=—a}, which is the condition for elastic reflec-

tion. The sum over all stationary points thus expresses the
Here |™ denotes the length of the trajectony(™ is the integrall by a sum over all trajectories with+ 1 reflections
on the boundary. In EqB7) and in the following, the length
is given two arguments when it is necessary to specify the
starting and end point of the trajectory.

For the determination of the second derivatives of the
lengths at a boundary poist, one has to evaluate the de-
rivatives of the angles; and«; which consist of two parts.
One is due to the change of the normal vector vgthand
one to the change of the direction of the trajectories:

number of conjugate points froni to r plus twice the num-
ber of reflections on the boundary, aMf" is the stability
matrix for unit energy. An index, of the above quantities
has been omitted in order to simplify the notations.

Equation(B1) is proven by mathematical induction. For
n=0 it is correct since

Go(r.r" E)=GR(r.1"E), (B3)
and one has to show that di™(ririy) daf
—————=cosy| ——
dst ds
e M7 7BV (T ,
= ( Z)LBdslec(rl,r \E)d5 Go(r.r1,E) ) ’ 1 +C0$ai' dp/,
_COSCY| Ri k dqi/i

~G*Y(r 1 E). (B4)

) cosy] cofa MYy
We will use the following notation at a point of the bound- "R + M
ary: primed quantities correspond to the incoming trajectory, ! 12
and unprimed quantities to the outgoing trajectory. We will (B8)



55 UNIFORM APPROXIMATION FOR DIFFRACTIVE ... 2295

which the stationary phase approximations are carried out.

(TN da; 1 cosy 9P
;—5'12*1) cos, d: cosy;j| — ﬁ_TI dqli Thus one can conclude directly that
I I
cosy, +co§ai|v|<1”l> (—2)J ds;GR/(ry, 1", E)ds GL(r.r1,E)
- _ B
) Mz ( )
n+m+1), 2 =/
. o . ~ I E). Bl
At a stationary point, it follows from these relations that Cec (r.r",E) (B13
d2 cola M(n+l) Equations(B1) and (B13) were derived in the semiclassical
_sf[l(O)(F’ ;1)+|(n)(;1’p)]: (01) - (B9) approximation by evaluating the boundary integrals only lo-
d M1 M3z cally in the vicinity of stationary points. For that reason the

same composition law can be applied in order to obtain the

(n+1) = p (0) (n) i (0) R . . - .
whereM MTB,M™, and the matrice/™ andBy  wibytions of the geometrical orbits in billiards with cor-

are given by ners; this is done in Eq30).
-1 0 We note that Egs(B1) and (B13) are the semiclassical
. 1 1@ versions ofexactrelations for the Green functio® of a
MP=lg 1] B1= 2 _1 |- (B0 piliard system. These exact relations are obtained by a mul-
Ricosy, tiple reflection expansion of the Green functi@Gn[2],

The matricesv andB correspond to the linearized flow near i .
the considered trajectory. Note that our definition is slightly E M(r,r’ (B14)
different from usual conventior(see, e.g.[1,35]|): consider- n=

ing that herdp| =k, theM, (M ;) matrix element would be
generally dividedmultiplied) by k. Here we work with the
stability matrix at unit energy: this choice is connected to the

scaling property of the dynamics in billiard systems. It does G(“>(F,F’,E)=(—2)”j ds; - - -dShGo(Fl.F',E)
not affect the trace and the determinant of the matrix, and B

allows us to have energy-independent matrix elements with a
simple geometrical meaning.

where

X d5,Go(r2,11,E) - - 9 Go(T, Iy, E),

Now the stationary phase approximation for the integral (B15)
in Eq. (B4) is carried out, and results in
and the equation analogous to E§13) follows directly.
comlexp[ ikl M+ _j (n)] Finally, we show that Gutzwiller's trace formula can be
obtained in a straightforward way by using E§1). From

I~

& 47 IMIMY)| the boundary element method, one obtains
. co§a MG WL o1 d
1 ™ 3
~3 = _expliki™ Vi nrh_j= 4 where
gl VKM Y] p[ 2" 4
(B11) TrQ“(k>=<—2>”f ds; -+ dsyds Go(r2.r 1, E)
B

wherel "D =1©)4|(M gnd .- - -
X 5,Go(r3,r2,E)- -5 Go(ry,ry,E).

1 if (n+1)y _ (n
V(n+1): V(n)+2+ I SQr(M ) Sgr(MlZ) (Bl?)
0 if sgnM5Y)# sgnMiy).
(B12) With Eq. (B1), it follows that
Equation(B12) coincides with the expected definition of the
Maslov index: »("* 1) is the number of conjugate points from d(k)~ d(k)— — ImE f dsap G V(rr E)|i—i
r' tor plus twice the number of reflections on the boundary;
an additional conjugate point has occurred betwegand 2 1 kI Deosy
r if and only if sgnM{3" )= sgnM{?) (remember that Nd(k)__ Re N
I y 1 g Q\/I ) g (M12) ( 87Tk|M12

there is one sign change due to the reflection on the bound-
ary). This completes the proof of E¢B4), and thus also of . T T
Eq. (BY). xf ds exp[ikl(”1)(r,r)—i5v<”1)—iz .
A further relation follows from the fact that the evaluation =
of the integral in Eq(B1) does not depend on the order in (B19)
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The stationary phase condition is again given by APPENDIX C: EVALUATION OF A DIFFRACTION
sine=—sina’, and thus the integral yields contributions from INTEGRAL

periodic orbits withn specular reflections on the boundary.
More accurately, it givesi/r , (identica) contributions for
every periodic orbit, wherg,, is the repetition number of the

orbit, since there ara/r y, different starting position§= r' pias?—icz?

on dB. I—f dsJ dz (Cy
The derivatives of the angles and «’ now have addi- Z+s—so’

tional contributions, since both initial and final points of the

trajectory are changed by varyirsy

In this appendix the integral

is evaluated for positive and real nonvanishing and s;.

da’ 1 coxx’ dp| cosx dp| This is the basic integral which appears in the derivation of
ds —§+ kK da | Tk E the uniform approximation for diffractive contributions to
Ailq, al the trace formula.

(-1 First thez integral is rotated onto the real axis. The rota-
_ 1 +CO‘°D‘ ‘M2 '+ cosx tion is performed counterclockwise: since-0, this yields
R Mgg 1 ’ no contribution from infinity. There are, however, poles of
(B19) the integrand on the real line. We take them into account
by giving to s, a small imaginary pars,— Sg+ioge, and
consider the limit:—0 in the end. Herery= sgn(s,) and
£>0. For this choice one obtains a pole contribution from
a, the rotation of thez-integral for those values of for which
(so—s) has a different sign thas,. One obtains

1 cosxM{} Y+ cos’

= RT M(n iy
io —|cz —|cz2
It then follows at a stationary point that inwd Zrs—s, Sllinof dzz+s So— 1000
d? . coa( TIMV -2 i a2
_Sz|(n*1)(r,r - ( - po )’ (B20) +2mi e 5700 (go(S—Sp))-
d (Mpo)lz

(C2

where M{)=B,M ™", and the stationary phase approxi-

mation results in We consider now the two contributions of the right-hand side

| of Eq. (C2 to the integral in Eq.(Cl) separately,

po I =1y+14, wherely contains the pole contribution arg the
dik= d(k)+ nz nzpo rpo\/l TrM 2| contribution from the rotated-integral. Forl 5, we have
xco%klgg—gupo], (B21) s L,
lo=2i ooj ds O (og(s—sp)) €'as ic(s=%0)
where
(n (n =2i Uofc ds das’—ic(s=Iso)?
H n n
,Uf“)—,,(n Dyt 0 if (Myg)i/( TrMjg—2)>0 Isol
i (n) (n) _
10 (Mpg)aa/ (TrMpo Z)TBOZIZ) _ i 7o o iacss ort —ia|so|
J=i(a—c) a-c J=i(a=¢c) |’
Note that the derivation presented here has the same starting (C3)

point as Ref[28]. But the composition lawB1) permits us

to bypass the computation of large determinant28f. Fur-

thermore, it allows us to keep track of the Maslov indices, - -

(which were not derived ifi28]) in a simple way. \[/;rg]a)rel er:]:s |fh;h§)r$:1)mplementary error functicsee, e.g.,
Finally we add a remark on ghost contributions. In gen- ot

eral, the semiclassical approximation for the Green functions

GM(r,r’,E) can also contain contributions from ghost tra- . B ias2—icz?
jectories that satisfy the stationary phase conditions, but have [,=— lim f dSJ dz——— | (C4)
parts that are outside the billiard region. These ghost orbits, s0d —» J-= ZtS—Sy—loge

however, do not make a contribution to the level density
d(k), since they cancel with ghost contributions from differ-

entn or from d(k) [3,28,30,36. By a linear transformation of the variables,
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APPENDIX D: CURVED WEDGES

In this section we discuss the effect of curved wedges on
the contributions of diffractive orbits to the level density.

the double integral splits into a product of two single inte—-l-he uniform approximation54) has been derived for a

grals

% o 7i[ac/(a7c)]u2
. a2 e
l,=—1lim | dvel@ C>vf du——.
— o0 U_SO_|O'08

e—0J —*

(C6)

In Eg. (C6) the integral over can be computed easily. Fur-
thermore, the denominator in tleeintegral can be expressed

in terms of an integral

1/2
. 77 . «
|1=—I00(m) lim ﬂcdu

e—0
% fmdw e—i[ac/(a—c)]uz—iaow(u—so—igoa)
0

iac

- - 1/2
:_'Uo(—i(a—c))

% fxdw é[(a—c)mac]wzﬂ\so\w
0

im\mog iac%] fc[ s iac 1’2}
=— exp — erfe] —i|sol| ——| .
J=i(a—c) a—c “Na—c

The whole result=1,+1, is given by

I im\mog F{_iacsﬁ” fc{ —ialsg| ]
B —i(a—c)ex a—c¢ o y—i(a—c)

: 12
_ iac
- erfc{ —||So|<ﬁ) } .

(C8)

It is convenient to rewrite this result in a form in which the
phases of the complex arguments of the error functions ard®
always between- 7/2 and/2. This can be done by consid-

ering all the possible cases for the signsaofind @—c)
separately, and using the relation edcf2— erfc(—2).

The results for the different cases can be combined again aﬁ

written in the form

| = M Qi (14 oat 7)oy _iacsﬁ
Vla—c| a-c

f s | d| |( ac |12
er Jao erfe) [sol| a=o)

whereo,= sgn@) and = sgn@/(a—c)).

X

(C9

boundary with zero curvature on both sides of the corner. It
has to be modified for curved wedges, otherwise the sum of
diffractive and periodic orbit contributions is not continuous
any longer as an optical boundary is crossed. Additional
complications can arise due to surface diffraction effects, i.e.,
creeping orbit or whispering orbit contributions can interfere
with the diffractive orbit contributions. We will discuss when
these effects have to be taken into account, but we will
modify the uniform approximation only in those regions in
which these additional effects can be neglected.

The modified formula is derived by using a method of
Ref. [16] for obtaining a uniform approximation for the
Green function in the case of a curved wedgee also Ref.
[17]). We refer to the original references for a discussion of
this method, and state here only the result which consists of
a change of the argument of the Fresnel function in(Zdj)
such that the approximation is continuous across an optical
boundary. For the diffractive orbit contribution to the level
density, this has the consequence that only the stability ma-
trix M is changed in Egs(52), (53), and (54): there are
additional contributions td/ from reflections on the curved
boundary.

In order to discuss these modifications, we first list several
properties of geometrical orbits corresponding to an optical
boundary which is specified by the values @f », and
n, ,. In particular, we consider the trajectories which con-
tribute to the Green function and list for them the number of
reflections on the boundary and the side of the corner on
which the first reflection occurs. Furthermore, we give re-
strictions for the numbers,, , which are implied by their
definition. (i) o=+1, »=+1:n, ,=0, (2n, ,) reflections,
first on the line 6=vy. (i) o=+1, »=-1: n, ,<0,
(—2n,, ,) reflections, first on the lin=0. (iii) o=—1,
n=+1:n,,=0, (2n,,—1) reflections, first on the line
6=1v. If n, ,=0 the optical boundary cannot be reached.
This case can occur only foy>m. (iv) o=—-1, n=—1:

n, ,<1, (1-2n, ,) reflections, first on the lin@=0. The
optical boundary cannot be reachedf ,=1. This case can
cur only fory>r.

With these properties we can now discuss the modifica-
tion of the stability matrixM in the case of curved wedges:
M then has an additional contribution for all of the reflec-
jons mentioned above. In the following we denote the limits
of the radii of curvature as the corner is approached from
either side byR, andR, where the first one corresponds to
the sidef#=0 and the second one t=y. ThenM has to be
replaced byBM, where

(D1)

and
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j=1 Rosin(2jy—6,) il JEO Rysin((2j+l)*y— 6,)

g o1 9 i—no,,] 2

>

56 Rosin(2jy+6,) /=4 R,sin((2j—1)y+6y)

a.n 2 na.,,7—1 2
‘ if o=+1,p=+1

=3

™M

if o=+1,7=—1

- + — it o=~1,7=
=1 Rosin(2jy—6,) =6 R,sin((2j+1)y—6)) 7
-n -n

a.7 ) Ea.ﬂ o)
<6 Rosin(2jy+6;) /=4 Rsin((2j—1)y+86,)

if o=—-1,9=—-1.

\

This approximation is only valid as long as all sine functionschecked for deciding whether surface diffraction effects are
in Eq. (D2) are positive and not close to zero. The case of amportant)

almost vanishing sine function corresponds to near grazing |he nonuniqueness of the approximation is a direct con-
incidence on a side of the corner. Then surface diffractiopeduence of the fact that the uniform approximation for the

. ) i . . reen function of Ref.[16] is not symmetric under
effects become important and interfere with the d|ffract|ve91H 9. It is another example for the nonuniqueness of uni-

orbit contribution, and the uniform approximation is No form approximationgcf. the discussion in Sec. I1\CHow-
longer valid. In the case that some sine functions are negaver, as an optical boundary is approached, both choices give
tive and not small, the orbit is not close to an optical bound-the same result as they should. Let us discuss in more detail
ary and the GTD approximation can be ugéds the same the difference between these two choices. It can be shown
as in the case of non-curved wedges that interchangingd, and 6, amounts to evaluate E¢D2)

There is a disadvantage of the definition Bf given ~ With 61=06,+2n, ,y—nm instead of6,. This then di-
above. Since there are two possibilities for choosiagnd rectly suggests a possible way by which this ambiguity can

. : ) ... be removed, namely, by replacingy in Eq. (D2) by the
0, corresponding to the two arms of a diffractive orbit in aaverage v of botz )(/alupes Ir@\)vr:ich q i(s 391(3002
corner, it follows from Eq(D2) that the uniform approxima- +2n, ,y—nm)/2. As an optical boundary is approached,

tion is not uniquely definedNote that both cases have to be this combination again becomes identicaléto
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