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Uniform approximation for diffractive contributions to the trace formula in billiard systems

Martin Sieber,1,2 Nicolas Pavloff,1 and Charles Schmit1
1Division de Physique The´orique, Institut de Physique Nucle´aire, F-91406 Orsay Cedex, France

2Abteilung Theoretische Physik, Universita¨t Ulm, D-89069 Ulm, Germany
~Received 23 August 1996!

We derive contributions to the trace formula for the spectral density accounting for the role of diffractive
orbits in two-dimensional billiard systems with corners. This is achieved by using the exact Sommerfeld
solution for the Green function of a wedge. We obtain a uniformly valid formula for single-diffractive orbits
which interpolates between formerly separate approaches~the geometrical theory of diffraction and Gutzwill-
er’s trace formula!. It yields excellent numerical agreement with exact quantum results, also in cases where
other methods fail.@S1063-651X~97!12902-6#

PACS number~s!: 05.45.1b, 03.40.Kf, 03.65.Sq
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I. INTRODUCTION

Two-dimensional classical billiards became popular
model systems exhibiting a rich variety of dynamical beh
ior, ranging from integrable to fully chaotic. Their quantu
counterparts attracted much interest starting in the 19
from both the point of view of random matrix theory and t
semiclassical periodic orbit theory. In the latter approach
uses trace formulas of the type first derived by Gutzwiller@1#
and Balian and Bloch@2,3#.

During the last two years, following the route opened
Ref. @4#, a number of studies~see Refs.@5–8#! have concen-
trated on additional contributions to the trace formula link
to diffractive effects near regions where the classical Ham
tonian flow is discontinuous. These zones of discontinu
are known as ‘‘optical boundaries’’ in the literature. The
lead to contributions from nonclassical~so-called diffractive!
orbits hitting a corner of the billiard or creeping around
smooth boundary.

Apart from the noticeable exception of Ref.@7#, all the
work quoted above is based on Keller’s ‘‘geometrical theo
of diffraction’’ ~GTD; see, e.g.,@9#!, i.e., on an extension o
geometrical optics which accounts for diffractive effec
Keller’s approach fails when the diffractive trajectory is ve
close to an optical boundary, or equivalently when the d
fractive orbit is close to become an allowed classical traj
tory ~this will be clarified in the text of the paper!. In the
present work we use a uniform approximation for the Gre
function which does not have this drawback. This allows
to derive relatively simple formulas which are uniform
valid. The method is applied to billiards whose boundary h
a slope discontinuity, and thus we restrict our study to we
diffraction effects. To our knowledge there does not yet ex
a uniformly valid formula for the contributions of creepin
orbits ~despite the progress made in Ref.@7#!.

The theory of uniform approximations for wedge diffra
tion has a long history which begins with a famous paper
Pauli @10#. In the late 1960s and in the 1970s the proble
was studied in detail. Much literature was devoted to sev
types of approaches remedying the deficiency of the g
metrical theory of diffraction. The approach most wide
used is known as ‘‘uniform asymptotic theory’’ and was d
veloped in Refs.@11–14#. Here we have chosen a techniq
551063-651X/97/55~3!/2279~21!/$10.00
s
-

s,

e

l-
y

y

.

-
-

n
s

s
e
t

y

al
o-

-

more closely related to the original work of Sommerfeld a
Pauli. It relies on an extension of the method of steep
descent due to Pauli, which was carefully studieed on a g
eral setting by Clemmow@15#. The method, due to Kouy
oumjian and Pathak, is known as ‘‘uniform theory of diffra
tion’’ and is exposed in Refs.@16# and @17#. Note that we
apply the uniform approximation only to orbits with a sing
diffractive point. The treatment of multiple wedge diffractio
is increasingly more involved, as can be seen in work
double diffraction by half-planes~see Refs.@18–20#! or
wedges@21#. To our knowledge, there does not exist to da
a general uniform approximation for multiple wedge diffra
tion.

The paper is organized as follows. In Sec. II we recall
exact solution of the infinite wedge problem, derive a u
form approximation for the Green function, and compare
with the result obtained from GTD. In Sec. III we use th
Green function obtained previously to derive contributions
the trace formula which are uniformly valid. Readers mos
interested in the final result can skip this part and go direc
to Sec. IV, where we discuss the previously obtained form
and several of its limits. In particular, we show that th
formula has the appealing feature of interpolating betwe
the semiclassical results of periodic orbit theory and the f
mulas obtained in Refs.@4,6,8#. Section V contains numeri
cal applications for several simple billiard systems. In so
cases GTD gives reasonable results, but in other cases
uniform approximation has to be used in order to descr
the Fourier transform of the spectral density correctly.
nally we discuss our results and possible extensions in S
VI.

II. GREEN FUNCTION OF AN INFINITE WEDGE

In this section we consider an infinite wedge of interi
angle g (gP#0,2p]) with Dirichlet boundary conditions,
and derive several approximations for the Green function

A. Exact result

The exact solution of the problem was first given by So
merfeld for a wedge withg52p ~a half line! and an incident
plane wave; see@22#. The solution of the general problem
2279 © 1997 The American Physical Society
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2280 55MARTIN SIEBER, NICOLAS PAVLOFF, AND CHARLES SCHMIT
easily inferred from his approach, a complete treatmen
given for instance by Carslaw in Refs.@23,24#. Here, for
completeness, we recall some properties of the solution.

The Green functionGg(rW,rW8,E) of the problem in dimen-
sionless units is a solution of

~D rW1E!Gg~rW,rW8,E!5d~rW2rW8!,

~1!

Gg[0 if rW or rW8 are on the boundary.

Choosing a system of coordinates with the origin at
vertex and the polar axis along one of the boundaries s
that u andu8 are in @0,g# @see Fig. 2~a!#, one can write the
following integral representation for the exact solution:

Gg~rW,rW8,E!5gg~r ,r 8,u82u!2gg~r ,r 8,u81u!, ~2!

with

gg~r ,r 8,fs!

52
i

8pNEA1B
dz

H0
~1!~kAr 21r 8222rr 8cosz!

12exp„2 i ~z2fs!/N…
.

~3!

In Eq. ~3! and in the following the anglesu andu8 always
appear in the combinationu86u, and we will denote
fs5u82su (s561). Other quantities appearing in E
~3! areN5g/p, k5AE, which is the modulus of the wav
vector,H0

(1) , which is the Hankel function of the first kind
~see@25#!, andA andB, which are the contours in the com
plex plane drawn in Fig. 1. In this figure one can further s
the poles of the integrand corresponding to (z2fs)/N
52np ~with nPZ) — they appear as black points — an
branch cuts linked to the square root argument ofH0

(1) . The
shaded areas are zones where the integrand increases w
limit when one goes away from the real axis@this is easily
checked by using the leading asymptotic term~7! of the Han-
kel function#. The integration contour is quite arbitrary a
long as it goes to infinity in the indicated unshaded regio

This solution was obtained by a generalization of t
method of images. This generalization expresses the solu

FIG. 1. Integration contour in the complex plane for formu
~3!. The shaded areas are zones where the integrand diverges
going away from the real axis. The black points are poles
branch points of the integrand. The thick lines are branch cuts
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e
ch

e

out

s.

on

in terms of functions that are defined on a Riemann surf
with p sheets if the opening angle isg5pp/q ~with p and
q coprime!, or an infinite number of sheets wheng is an
irrational multiple ofp ~see Refs.@22–24#!.

Essentially,gg is a superposition of free Green function
~with complex anglesz). Considered as a function offs , it
has periodicity 2pN52g, and this ensures that the Gree
function ~2! satisfies the boundary conditions foru50 and
g. By moving the contoursA andB toward the real linez
P@2p,p#, and taking into account the poles of the int
grand, one obtains

gg~r ,r 8,fs!52
i

4(n
8H0

~1!

3~kAr 21r 8222rr 8cos~fs22ng!!

1hg~r ,r 8,fs!, ~4!

where, after a change of variable,hg can be written in the
form

hg~r ,r 8,fs!

5
sin~p/N!

8pN E
2 i`

1 i`

dz
H0

~1!~kAr 21r 8212rr 8cosz!

cos@~z1fs!/N#2cos~p/N!
.

~5!

The first term on the right-hand side of Eq.~4! contains the
contributions of those poles of the integrand of Eq.~3! which
lie between2p andp; the prime indicates that the summ
tion is restricted to values ofn such that2p<fs22ng
<p. If fs is exactly equal to6p12ng, then the corre-
sponding contribution to the summation has to be divided
2. In Eq.~5! the contour can be modified as long as no p
of the integrand is crossed. A further requirement is that
part of the contour extending to infinity has to start
2 i`, with a real part in@0,p@ and to extend toi` with a
real part in ]2p,0].

The discrete summation in Eq.~4! can be interpreted a
arising from allowed classical trajectories. For instance,
case f15u82u and n50 makes a contribution
2( i /4)H0

(1)(kurW2rW8u), and corresponds to the free propag

tion from rW8 to rW. The other terms in the summation corr
spond to trajectories experiencing specular reflections on
boundaries @this is illustrated in Fig. 2~b!#. If s51

hen
d

FIG. 2. ~a! displays the notations used in the text.~b! shows two
classical trajectories~solid lines! and the diffractive orbit going

from rW8 to rW ~dashed line!.
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55 2281UNIFORM APPROXIMATION FOR DIFFRACTIVE . . .
(s521) the orbit has an even~odd! number of reflections.
These orbits correspond to successive applications of
method of images and their contribution is known as
geometrical term in the literature. When inserted back i
Eq. ~2! they give a term which will be denote
Ggeo(rW,rW8,E) in the following.

If the angle g is of the form p/p (pPN* ) then
sin(p/N)50 and the termhg(r ,r 8,fs) is zero: the geometri-
cal term alone is enough to fulfill the boundary condition
This is due to the fact that in this case the Green function
be determined by the method of images. IfgÞp/p, then
hg corresponds to the contribution from diffraction. Hen
the total Green function can be written as a sum of a g
metrical plus a diffractive term:

Gg~rW,rW8,E!5Ggeo~rW,rW8,E!1Gdiff~rW,rW8,E!,

with

Gdiff~rW,rW8,E!5hg~r ,r 8,u82u!2hg~r ,r 8,u81u!. ~6!

B. Geometrical theory of diffraction

We now derive a simple approximation forGdiff . We first
replace the Hankel function by its asymptotic form for lar
arguments~see@25#!,

H0
~1!~z!'S 2

pzD
1/2

eiz2 ip/4 when uzu@1. ~7!

The same approximation is also used in all the following
the geometrical and diffractive Green functions, i.e., for
the terms of Eqs.~4! and ~5!, the assumption being that th
distances measured along the paths~classical or diffractive!
going from rW8 to rW are large compared to the waveleng
l52p/k. Then, in the integral defininghg , there is a saddle
point of the exponent atz50, and a steepest descent a
proximation yields

hg~r ,r 8,fs!'
1

4pN

sin~p/N!

cos~fs /N!2cos~p/N!

eik~r1r 8!1 ip/2

kArr 8
.

~8!

Incorporating this result into expression~6! for Gdiff , one
obtains a formula which can be cast into the form

Gdiff~rW,rW8,E!'Gsc~rW,rW0 ,E!D~u,u8!Gsc~rW0 ,rW8,E!, ~9!

with

D~u,u8!5
2

N
sin

p

N F S cospN2cos
u1u8

N D 21

2S cospN2cos
u2u8

N D 21G
52

4

N

sin~p/N!sin~u/N!sin~u8/N!

S cospN2cos
u1u8

N D S cospN2cos
u2u8

N D .
~10!
he
e
o

.
n

-

r
l

-

In Eq. ~9! Gsc is the free Green function evaluated using E

~7!, andrW0 is the point at the vertex@see Fig. 2~a!#. Expres-
sions~9! and~10! give the diffractive part of the Green func
tion in the ‘‘geometrical theory of diffraction’’~see @9#!.
They have the simple interpretation of being the contribut

of a ~nonclassical! diffractive trajectory going fromrW8 to rW0
and then fromrW0 to rW @see Fig. 2~b!#. Using this approxima-
tion one can derive a trace formula for the spectral den
which accounts for diffractive effects in the GTD approx
mation ~see Refs.@4,6,8#!.

The quantityD(u,u8) is known as the diffraction coeffi-
cient. It is zero ifu ~or u8) is equal to 0 org, or if p/g is an

integer. It diverges on an optical boundary, i.e., ifrW and rW8
are such that the diffractive orbit is the limit of a classic
trajectory. This is illustrated by the simple case of diffracti
by a sharp wedge (g.3p/2) in Fig. 3. In this case there ar
two optical boundaries represented by dashed lines. T
correspond to u5u81p ~i.e., f15u82u52p) and
u5p2u8 ~i.e.,f25u81u5p). In the terminology of geo-
metrical optics, the first optical boundary separates the i
minated and shadowed regions for direct rays when the p

rW8 is considered as a light source~boundary between region
II and III!, and the second optical boundary separates
illuminated and shadowed regions for rays that are reflec
on one side of the wedge~boundary between regions I an

II !. If rW lies near one of the optical boundaries then the d
fractive path is almost an allowed classical trajectory, an

rW is moved onto an optical boundary then the diffractive p
coincides in this limit with an allowed classical trajectory.

Looking in more detail at the origin of the divergenc
one sees from Eq.~8! that it occurs when there exits a
integern such thatfs56p12nNp. In this case there is a
pole z5fs7p22nNp50 in the integral representation o
the diffractive part~5! which is at the same position as th
saddle pointz50 and thus the saddle point approximatio
breaks down. More generally, the geometrical theory of d
fraction is only valid if all poles are sufficiently far awa
from the saddle pointz50. This can be interpreted in term
of the physical trajectories in the system because, in S

FIG. 3. Optical boundaries~dashed lines! for an initial point

rW8 in the case of diffraction by a sharp wedge (g.3p/2). The
transition regions~for r 8510l) around the optical boundaries ar
shaded.
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2282 55MARTIN SIEBER, NICOLAS PAVLOFF, AND CHARLES SCHMIT
merfeld’s solution@Eqs.~2! and~3!#, the saddle point corre
sponds to the diffractive orbit, and the poles correspond
geometrical orbits.

C. A uniform approximation

As seen above, one has to refine the steepest des
evaluation ofhg in the case when there is a pole of th
integrand near the saddle pointz50. This was first done by
Pauli @10#, and here we present a slight modification of t
original procedure@16,17#. In a first step one can separa
poles which are possibly near one another by using the id
tity

2sin~p/N!

cosS z1fs

N D2cos~p/N!

5
1

tanS z1fs1p

2N D
2

1

tanS z1fs2p

2N D . ~11!

Hencehg in Eq. ~5! can be rewritten as

hg~r 8,r ,fs!5ug,1~r 8,r ,fs!2ug,2~r 8,r ,fs!, ~12!

where

ug,h~r ,r 8,fs!

5
1

16pNE2 i`

1 i`

dz
H0

~1!~kAr 21r 8212rr 8cosz!

tanS z1fs1hp

2N D ,

~13!

andh561 is a new index.
If one denotes the nearest integer to (fs1hp)/(2g) by

ns,h , thenz52(fs1hp)12 ns,hg is the pole of the inte-
grand of Eq.~13! which is nearest to the saddle pointz50.
Thanks to the separation~12! the next pole in the integran
of Eq. ~13! is at distance 2g, and its effect can safely b
neglected ifg is not a small angle~this will be assumed in
the following!. According to the method of Pauli one re
writes the integrand by multiplying the numerator and d
nominator by a function imitating the behavior of the orig
nal denominator but in which thez and fs parts are
separated. This procedure is not unique; it corresponds
specific choice of a uniform approximation, as will be d
cussed below. The choice for the function
hA2sin(z/2)1as,h , whereas,h is a measure of the separ
tion between the saddle pointz50 and the nearest optica
boundary:

as,h5A2cosS fs

2
2ns,hg D

with

ns,h5nint Ffs1hp

2g GPZ, ~14!
to

ent

n-

-

a

where nint denotes the nearest integer. Using the asymp
formula ~7! for the Hankel function, one obtains

ug,h~r ,r 8,fs!

'
e2 ip/4

8gA2pk
E

2 i`

1 i`

dz
eikAr

21r 8212rr 8cosz

hA2sin~z/2!1as,h

Fs,h~z!,

~15!

where Fs,h(z) is a smooth function atz50, even in the
vicinity of an optical boundary@when as,h→0, see Eq.
~20!#:

Fs,h~z!5
hA2sin~z/2!1as,h

~r 21r 8212rr 8cosz!1/4 tanS z1fs1hp

2N D .
Note that the integrands of Eqs.~15! and~13! both have the
pole z52(fs1hp)12 ns,hg next to the origin, as men
tioned above.

Now Eq.~15! is evaluated along the steepest descent p
at z50 by a change of variablez5htA2exp(i3p/4), with t
PR ~the factorhA2 is here for convenience!. The smooth,
nonsingular partFs,h of the integrand is simply evaluated a
t50, and the phase of the exponential function and the
nominator are expanded in the vicinity of the origin:

hA2sin~z/2!1as,h5as,h1te3ip/41O~ t3! ~16!

and

ikAr 21r 8212rr 8cosz5 ik~r1r 8!2
krr 8

r1r 8
t21O~ t3!.

~17!

Henceug,h is approximated by

ug,h~r ,r 8,fs!'
eik~r1r 8!2 ip/4

8gApk~r1r 8!

as,h

tanS fs1hp

2N D
3E

2`

`

dt
exp@2krr 8t2/~r1r 8!#

t2as,h eip/4
.

~18!

After expansion~16! of the denominator, the pole in Eq.~18!
is only approximately equal to the nearest pole in Eq.~13!,
but they coincide when the pole approaches the station
point t50. As noted above, the choice of the uniform a
proximation which leads to Eq.~18! is not unique~as dis-
cussed by Clemmow, who calls it a ‘‘partial asymptotic e
pansion’’; see @15#!. For example, another choice of
uniform approximation can be obtained by making a chan
of variable which transforms the exponent in Eq.~15! such
that it becomes an exact quadratic function, and multiply
denominator and integrand by a function which is linear
the variable. Then one obtains Eq.~18! with a different defi-
nition of as,h which is expressed in terms of a ‘‘detour p
rameter’’ such as used in the ‘‘uniform approximatio
theory’’ ~see Refs.@11–14#!. In practical applications, how
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55 2283UNIFORM APPROXIMATION FOR DIFFRACTIVE . . .
ever, the differences between different uniform approxim
tions are small. We would like to add that the uniform a
proximations can be further improved by also includi
subleading terms of the asymptotic expansion of the Han
function, and also higher-order terms of the expansion of
integrand ~see Refs.@10,15#!. However, numerical check
show ~see Fig. 4 and below! that such refinements are n
necessary here.

We continue now with integral~18!, which can be recog-
nized as an integral representation of the modified Fre
function K @see Appendix A and Eq.~A5!#, and the final
expression for the uniform approximation forug,h is

ug,h~r ,r 8,fs!'
1

4N

eik~r1r 8!1 ip/4

Apk~r1r 8!

uas,hu

tanS fs1hp

2N D
3KF uas,huS krr 8r1r 8D

1/2G . ~19!

This expression remains finite on the optical bound
fs52hp12 ns,hg. As an optical boundary is crosse
as,h goes through zero and changes sign and one has

uas,hu

tanS fs1hp

2N D 'hA2N sgn~as,h! when as,h→0.

~20!

Hence, although the problem of divergence has been el
nated, one arrives at a final form which is discontinuo
This was expected: the exact terms~5! and~13! already have
this behavior; because of the separation~6! of the total Green
function into a geometrical and a diffractive term, each co
tribution (Ggeo and Gdiff) is discontinuous at the optica
boundary, but their sum is continuous.

As a résuméof the results of this section, we write dow
the uniform approximation for the diffractive part of th
Green function which is a sum of four contributions:

Gdiff~rW,rW8,E!'
1

4N

eik~r1r 8!1 ip/4

Apk~r1r 8!
(

s,h561

shuas,hu

tanS fs1hp

2N D
3KF uas,huS krr 8r1r 8D

1/2G , ~21!

wherefs5u82su (u, andu8 being chosen in@0,g#) and
as,h is defined in Eq.~14!.

In the remaining part of this section we present so
numerical results illustrating the accuracy of the uniform a
proximation and a failure of the GTD approximation. If th
next optical boundary is sufficiently far away, one can
place the modified Fresnel function in Eq.~21! by the first
term of its asymptotic expansion~A4! and this leads to the
GTD results~9! and~10!. Roughly speaking, this approxima
tion is good when the argument of theK function is greater
than 3, and it fails when the argument is less than 1.5. T
puts a limit on the use of the geometrical theory of diffra
tion illustrated in Fig. 3: inside the dashed areas around
optical boundaries one has to use the uniform approxima
-
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~these zones are known as ‘‘transition region’’ in the liter
ture!. The figure has been drawn for the caser 8510l
(l52p/k), and the transition regions are larger if one go
to smaller values ofr 8/l. In the limit r@r 8@l, the transi-
tion width around an optical boundary at distancer from the
apex is proportional torAl/r 8 „relying on the weaker as
sumption thatr ,r 8@l, one can show that it is proportional t
@l(r 21rr 8)/r 8#1/2…. Outside of the transition region expre
sions ~9! and ~10! are valid, and show thatGdiff is a small
correction toGgeo. But near the optical boundary the tw
terms are of the same order, and exactly on the boundary
two discontinuous contributions toGgeo andGdiff have ex-
actly the same amplitude.

The comparison between the uniform approximation~21!,
the geometrical theory of diffraction@Eqs.~9! and~10!#, and
the exact result@Eqs.~5! and~6!# for Gdiff is made quantita-
tive in Fig. 4. In this figure one considers a wedge of inter
angleg5110°. The source pointrW8 is fixed atu8560° and
r 855l. The observation pointrW is at fixed distance from the
vertex (r5r 8) andu scans the interval@0,g#. The modulus
of Gdiff is then plotted as a function ofu. In the figure one
cannot distinguish the uniform approximation from the ex
result. The geometrical theory of diffraction diverges on t
optical boundaries~represented as dashed lines in the up
part of Fig. 4!. Furthermore, it is in clear disagreement wi
the exact result for all values ofu. Hence one can infer tha
a trace formula based on Eq.~9! will not correctly describe
the spectrum in cases such as presented in Fig. 4.

III. DIFFRACTIVE ORBITS IN THE TRACE FORMULA

We consider now a closed two-dimensional regionB with
a boundary]B smooth everywhere except at a finite numb

FIG. 4. Modulus ofGdiff(rW,rW8,E) for fixed rW8 andr in a wedge
with g5110° (r5r 855 l and u8560°). u scans the interval
@0,g#. The upper part of the figure displays the geometry cons
ered, the optical boundaries appearing as dashed lines. In the l
part, the solid line is the exact result@Eqs. ~5! and ~6!#, the long
dashed line is the uniform approximation~21!, and the short dashed
line is the GTD result@Eqs.~9! and ~10!#.
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2284 55MARTIN SIEBER, NICOLAS PAVLOFF, AND CHARLES SCHMIT
of points where its slope is discontinuous. The spectral d
sity d(k) of this system has semiclassical contributions fro
periodic orbits as well as from diffractive orbits. The latt
ones are closed orbits which have a finite number of po
on vertices of the billiard~we call these points diffractive o
corner points in the following!, and follow the law of geo-
metrical optics between two diffractive points. Within th
framework of the geometrical theory of diffraction, the co
tribution of a diffractive orbitj to the level density has bee
derived in@4,6,8#, and it is given by

dj~k!5
L0
p F)

i51

p Di

A8pku~Mi !12u
GcosS kL2

p

2
n2

3p

4
pD .

~22!

HereL0 andL are the primitive and total length of the tra
jectory, respectively,p is the number of diffractive points
Di is the diffraction coefficient in thei th corner @cf. Eq.
~10!#, (Mi)12 is the 12-element of the stability matrix at un
energy for a part of the trajectory between two corners,
n is the number of conjugate points plus twice the numbe
reflections on the boundary between corners.

According to Eq.~22! each corner point decreases t
contribution of a diffractive orbit by an orderO(k21/2). This
is correct only if the diffractive trajectory is sufficiently fa
away from the optical boundaries in every corner point.
the opposite case that the trajectory lies on an optical bou
ary in every corner point it can be shown that its contribut
is of the same order ink as that of a regular periodic orb
~see below!. In the following we will go beyond the GTD
approximation, and derive a contribution tod(k) from dif-
fractive orbits with one point in a corner that interpolat
between these two regimes. For this purpose we will us
method of uniform approximation similar to that exposed
Sec. II.

The starting point of our derivation is the boundary e
ment method. It is a reformulation of the quantum
mechanical eigenvalue problem in terms of a Fredho
equation of the second kind for the normal derivative of
wave function on the boundary~see, e.g., Refs.@26–32# for
discussion and application in the context of the trace f
mula!. More specifically, if we denote byrW(s) a point of the
boundary with curvilinear abscissas and byu(s) the normal
derivative of the wave function at this point, one has t
following integral equation for the case of Dirichlet boun
ary conditions

u~s8!522E
]B
ds u~s!] nW 8G0~rW,rW8,E!, ~23!

whererW5rW(s), rW85rW8(s8), nW 8 is the outward normal vecto
to ]B at point rW8, ]nW 8 is the projection of the gradient ont
nW 8, and G0(rW,rW8,E)52( i /4)H0

(1)(kurW2rW8u) is the free
Green function. The integral relation~23! has nonvanishing
solutionsu(s) only if

det„Î2Q̂~k!…50, ~24!

where Î is the identity, andQ̂(k) is an integral operato
which, when applied to the functionu(s), gives the right-
n-

ts

d
f

d-

a

-

e

-

e

hand side of Eq.~23!. The zeros of Eq.~24! are the exact
quantum energies of the system, and the oscillatory p
d̃(k) of the level density can be expressed as

d̃~k!52
1

p
Im

d

dk
ln det„Î2Q̂~k!…

5
1

p
Im(

n51

`
1

n

d

dk
@ TrQ̂n~k!#, ~25!

with

TrQ̂n~k!5~22!nE
]B
ds1•••dsn]nW1G0~rW2 ,rW1 ,E!

3]nW2G0~rW3 ,rW2 ,E!•••]nWnG0~rW1 ,rWn ,E!.

~26!

For a system with a boundaryB that is smooth everywhere
the integrals in Eq.~26! can be evaluated in stationary pha
approximation. In this way TrQ̂n is expressed in terms of
sum of contributions arising from periodic orbits withn
specular reflections. Inserting this approximation into E
~25! yields Gutzwiller’s trace formula, as shown, for e
ample, in Appendix B.

The standard approach described above is not conven
for deriving contributions of diffractive orbits, since the di
fractive effects of the corners are hidden in this formulatio
Instead, we use a modification of the boundary elem
method by formulating it in terms of a Green function a
counting for the diffractive effects of a corner.

We restrict ourselves to a consideration of diffractive o
bits with a single corner point which are not influenced
the other corners of the billiard. To obtain the contribution
such an orbit to the trace formula, it suffices to include t
diffractive effect of only one corner. We further restrict ou
selves in this section to corners in which the limit of th
curvature of the boundary is zero when the corner is
proached from either side. Modifications caused by nonv
ishing curvature are discussed in Appendix D.

Let us first consider a simple billiard system which
bounded by a wedge of angleg, and an additional smooth
curveC which connects the two sides of the wedge~such as

FIG. 5. Typical path contributing to Eq.~29!. A precise defini-
tion of the anglesa i can be found in Appendix B.
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represented in Fig. 6 for instance!. One can derive an integra
equation in terms of the Green functionGg of the infinite
wedge — analogous to Eq.~23! — in which the integration
is restricted to the curveC. The oscillatory part of the spec
tral density is then again given by Eq.~25!, where the trace
of Q̂n now has the form

TrQ̂n~k!5~22!nE
C
ds1•••dsn]nW1Gg~rW2 ,rW1 ,E!

3]nW2Gg~rW3 ,rW2 ,E!•••]nWnGg~rW1 ,rWn ,E!. ~27!

Note that similar techniques have been used in Ref.@7# for
deriving diffractive contributions in the Sinai billiard, and i
Ref. @33# for reformulating Fredholm’s theory in the case
triangles.

The Green functionGg can be split into geometrical an
diffractive parts, as was done in Sec. II,

Gg~rW,rW8,E!5Ggeo~rW,rW8,E!1Gdiff~rW,rW8,E!, ~28!

where the diffractive Green function is given by expressio
~6!, ~12!, and~13!. Inserting Eq.~28! into Eq. ~27! results in
2n integrals. The stationary points of these integrals co
spond to periodic and diffractive orbits of the billiard syste
~and possibly also to ghost orbits as in the case of billia
without corners!, and the number of points in a corner of
diffractive orbit is determined by the number of diffractiv
partsGdiff appearing in the integral. Since we restrict ou
selves to orbits with one point in a corner, we can repla
n21 of the Green functions in Eq.~27! by their geometrical
part. This can be done inn ways which cancels the facto
1/n in Eq. ~25!. Then the contribution to the level densi
from orbits with n reflections on the boundaryC and one
point in a corner are contained in

d̃1
~n!~k!5

~22!n

p
Im

d

dkECds1•••dsn]nW1Gg~rW2 ,rW1 ,E!

3]nW2Ggeo~rW3 ,rW2 ,E!•••]nWnGgeo~rW1 ,rWn ,E!; ~29!

an example is given in Fig. 5.
Let us discuss Eq.~29! in more detail. The contribution o

a diffractive orbit is obtained by evaluating the integrals
the vicinity of the stationary points, i.e., in the vicinity of th
points of specular reflection of the orbit on the boundary
one approximatesGg in the framework of GTD, this results
in Eq. ~22! ~with p51) for the contribution of the diffractive
orbit. In the following we will improve on this method b
using a uniform approximation for the Green functionGg .
In both cases, however, only local information about the
flection points and the corner enters the approximation. I
then obvious how expression~29! has to be modified in orde
to derive semiclassical~or uniform! contributions tod(k) for
more complicated diffractive orbits in billiards with sever
corners: for every straight part between two reflection po
a free Green function has to be included, and for every
of the trajectory which hits a corner between two reflectio
a Green function for an infinite wedge with the same ang
The reason whyGgeo appears in Eq.~29! and notG0 is that
in the above formulation we consider only reflections on
s

-

s

-
e

f

-
is

s
rt
s
.

e

partC of the boundary, andGgeo takes care of the reflection
on the wedge part. Hence the total number of specular
flections on]B in Eq. ~29! may be greater thann.

We continue now with the further evaluation of Eq.~29!
which we perform in the casenÞ1. The calculations for
n51 can be treated by identical methods, and yield the sa
final result.

In Eq. ~29!, n22 boundary integrals can be evaluated
applying the composition law~B1! for Green functions,
which is derived in Appendix B:

]nW2Gsc~rW1,rW2,E!'~22!~n22!E
C
ds3•••dsn

3]nW2Ggeo~rW3,rW2 ,E!•••]nWnGgeo~rW1,rWn,E!,

~30!

and, consequently,

d̃1
~n!~k!5

~22!2

p
Im

d

dkECds1ds2]nW1Gg~rW2 ,rW1 ,E!

3]nW2Gsc~rW1 ,rW2 ,E!. ~31!

HereGsc is the contribution to the semiclassical Gre
function from trajectories with (n22) reflections on the
boundary curveC ~and possibly further reflections on th
wedge part of the boundary!:

Gsc~rW1 ,rW2 ,E!5(
j

1

A8pkum12u
expH ikl2 i

p

2
ñ2 i

3p

4 J ,
~32!

wherem is the stability matrix~see Appendix B! and l the
length of the classical orbit going fromrW2 to rW1. ñ is the
number of conjugate points plus twice the number of spe
lar reflections on the boundary. We use hereñ and lower
case letters form and l in order to distinguish these quant
ties from those of the whole diffractive orbit. The norm
derivative of the Green function is given in leading order

]nW2Gsc~rW1 ,rW2 ,E!' ik cosa2Gsc~rW1 ,rW2 ,E!, ~33!

wherea2 is the outgoing reflection angle atrW2 ~see Fig. 5!.
In the following, we will consider the contributions of th

geometrical and diffractive partsGgeo andGdiff to the Green
functionGg in Eq. ~31! separately. As discussed above, t
geometrical part will yield the contributions of periodic o
bits. The reason why it also has to be included for the d
vation of the contributions of diffractive orbits is that bo
Gdiff andGgeo are discontinuous at the optical boundary~see
the discussion in Sec. II!. For that reason the boundary co
tribution ofGgeo which arises from this discontinuity has t
be included in order to cancel the analogous contribution
Gdiff .

A. Diffractive contribution

From ~6!, ~7!, ~12!, and ~13!, the diffractive part of the
Green functionGg can be approximated by
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Gdiff~rW2 ,rW1 ,E!' (
s,h561

shS 2

pkD
1/2e2 ip/4

16g E
2 i`

i`

dz

3
exp$ ikAr 121r 2

222r 1r 2cosz%

~r 1
21r 2

222r 1r 2cosz!1/4 tanS z1fs1hp

2N D ,
~34!
wherer 1 (r 2) is the distance fromrW1 (rW2) to the diffractive
point, andfs5u12su2 ~see Fig. 5!. Similarly to Eq.~33!,
the normal derivative]nW1 yields a factorik cosa1. We insert

Eq. ~34! and one contributionj from Eq. ~32! into Eq. ~31!,
and consider the contribution from the vicinity of a statio
ary point which is chosen as origin of thes variables. The
main contribution to thez-integral comes from values nea
z50, and the exponent is expanded inz up to second order
on of
a finite
d of

n

dj,diff~k!'
~22!2

p
Im

d

dk (
s,h561

shS 2

pkD
1/2e2 ip/4

16g

expH 2 i
p

2
ñ2 i

3p

4 J
A8pkum12u

~ ik !2cosa1cosa2

3E
C
ds1ds2E

2 i`

i`

dz

expH ikS l ~s1 ,s2!1r 1~s1!1r 2~s2!2
r 1r 2

2~r 11r 2!
z2D J

Ar 11r 2 tanS z1fs1hp

2N D , ~35!

where the indexj labels the diffractive orbit. A stationary phase approximation of all integrals would yield the contributi
the diffractive orbit in the GTD approximation. This approximation diverges at an optical boundary. In order to obtain
uniform approximation the effect of the nearest pole toz50 has to be included. We treat this pole again by the metho
Pauli,

1

tanS z1fs1hp

2N D5
1

tanS z1fs1hp

2N D
as,h1hA2sinS z1Dfs

2 D
as,h1hA2sinS z1Dfs

2 D '
1

tanS fs,01hp

2N D
as,h

as,h1h
z1Dfs

A2

, ~36!

wherefs,0 is the value offs at the stationary point,Dfs5fs2fs,0 , andas,h is evaluated using Eq.~14! at the stationary
point. Inserting Eq.~36! into Eq. ~35!, we obtain

dj,diff~k!'Im
d

dk (
s,h561

sh

k cosa1cosa2expH 2 i
p

2
ñ J

8p2gA~r 11r 2!um12u

as,h

tanS fs,01hp

2N D

3E
2`

`

ds1ds2E
2 i`

i`

dz

expH ikS l ~s1 ,s2!1r 1~s1!1r 2~s2!2
r 1r 2

2~r 11r 2!
z2D J

as,h1h~z1Dfs!/A2
. ~37!

The quantitiesl (s1 ,s2), r 1(s1), andr 2(s2) are now expanded up to second order ins1 ands2. The expansion coefficients ca
be obtained from Eq. ~B8!. Furthermore we expand Dfs up to first order in s1 and s2:
Dfs(s1 ,s2)'s1cosa1 /r12ss2cosa2 /r2. After a substitution

s1→2h
A2

cosa1
s1 , s2→2h

A2
cosa2

s2 , z→2hA2z, ~38!

we obtain the following expression:

dj,diff~k!'2Im
d

dk (
s,h561

sh

k expH 2 i
p

2
ñ J

p2gA8~r 11r 2!um12u

as,h

tanS fs,01hp

2N D E2`

`

ds1ds2E
2 i`

i`

dz

3

expH ikS l1r 11r 21a8s1
21b8s2

21
2

m12
s1s22cz2D J

z1
s1
r 1

2s
s2
r 2

2as,h

, ~39!
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where

a85
m11

m12
2

2

R1cosa1
1

1

r 1
, b85

m22

m12
2

2

R2cosa2
1

1

r 2
,

c5
r 1r 2
r 11r 2

. ~40!

Here the quantitiesr 1, r 2, andl without argument denote th
values at the stationary point. The derivative with respec
k in Eq. ~39! yields in leading order a factoriL , where
L5r 11r 21 l is the length of the diffractive orbit. In the nex
step we simplify the integrals by applying a transformati
of thes variables such that the denominator of the integra
depends only on one of thes variables:

s5
s1
r 1

2s
s2
r 2
, s85dr2s11~12sd!r 1s2 . ~41!

The form ofs8 is chosen such that the Jacobian of the tra
formation is 1, and the value ofd is determined by the re
e
e
e

m
ex
ve
i-

le
o

d

-

quirement that the exponent in the integrand has no mi
quadratic terms8s. The evaluations are done with Maple an
result in

dj,diff~k!'2Re (
s,h561

sh

kL expH ikL2 i
p

2
ñ J

p2gA8~r 11r 2!um12u

3
as,h

tanS fs,01hp

2N D E2`

`

ds ds8

3E
2 i`

i`

dz
exp$ ik~as21bs822cz2!%

z1s2as,h
, ~42!

where

a5
M12c

M122c~ TrM2s2!
, b5

M122c~ TrM2s2!

m12r 1r 2c
,

~43!
d5
c~sr 1R1cosa1m1122sr 1m121sR1cosa1m121r 2R1cosa1!

r 2R1cosa1@M122c~ TrM2s2!#
,

-
en

n-
e

M is the stability matrix of the diffractive orbit, i.e., th
stability matrix of the classical trajectory starting from th
corner going throughrW2 andrW1 and back to the corner. Ther
is a relation betweenñ, the signs ofa andb and the Maslov
index n of the diffractive orbit

expH 2 i
p

2
ñ1 i

p

4
sa1 i

p

4
sbJ 5 i expH 2 i

p

2
nJ , ~44!

wheresa5 sgn(a), sb5 sgn(b). Hencen is equal toñ plus
the number of negative signs ofa and b ~modulo 4!. This
can be seen, for example, by evaluating thes1 ands2 inte-
grals in Eq.~39! by the stationary phase method. Then fro
the composition law of Green functions the Maslov ind
n of the whole diffractive orbit is obtained by successi
applications of Eq.~B12!. Since a stationary phase approx
mation after the transformation, Eq.~41! has to yield the
same result, relation~44! follows immediately.

The integral overs8 can now be evaluated, and the doub
integral overs andz is calculated in Appendix C@Eq. ~C9!#.
The result is

dj,diff~k!'2Re (
s,h561

shts

L expH ikL2 i
p

2
ñ J

gA8~r 11r 2!um12b~a2c!u

3
uas,hu

tanS fs,01hp

2N D e
ip~11sa1sb1ts!/4
3expH 2
ikacas,h

2

a2c J
3F erfcH uaas,huS k

i ~a2c!
D 1/2J

2 erfcH uas,huS kac

i ~a2c!
D 1/2J G , ~45!

where ts5 sgn(ac/(a2c))5 sgn(M12/( TrM2s2)). As
will be seen in Sec. III B, the first error function in Eq.~45!
is the contribution from the discontinuity ofGdiff which is
canceled by the corresponding contribution fromGgeo.

B. Geometrical contribution

For a givens and h the geometrical orbit that corre
sponds to the nearest pole arises wh
fs22ns,hg52hp, and it exists ifh(2ns,hg2fs),p.
This can be reexpressed in the form

as,h5A2cosS fs,022ns,hg

2 D.2A2sin
hDfs

2
'2

hDfs

A2
.

~46!

In the following we derive the contribution from the disco
tinuity of Ggeo. For that purpose we apply exactly the sam
approximations toGgeo that were used forGdiff . This is done
by writing Ggeo in the form
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Ggeo~rW2 ,rW1 ,E!

'2 (
s,h561

sQ~A!S 2

pkD
1/2eip/4

4

3
exp$ ikAr 121r 2

222r 1r 2cos~fs22ns,hg!%

~r 1
21r 2

222r 1r 2cos~fs22ns,hg!!1/4

52 (
s,h561

sQ~A!S 2

pkD
1/2e2 ip/4

16g

3 R dz
exp$ ikAr 121r 2

222r 1r 2cosz%

~r 1
21r 2

222r 1r 2cosz!1/4 tanS z1fs1hp

2N D ,
~47!

whereA5as,h1A2sin(hDfs /2). The integration contour o
thez integral encircles the nearest pole toz50 counterclock-
wise. Expression~47! differs from Eq.~34! only by a factor
(2h), theQ function and the integration contour. We repe
now all the steps from Eqs.~35!–~42!. The only difference is
a multiplicative factor (2h) which results from the substi
tution z→2hA2z ~it did not appear previously because
the different integration contour!. We arrive at an expressio
corresponding to Eq.~42!,

2Re (
s,h561

sh

kL expH ikL2 i
p

2
ñ J

p2gA8~r 11r 2!um12u

as,h

tanS fs,01hp

2N D
3E

2`

`

ds ds8 R dz Q~as,h2s!

3
exp$ ik~as21bs822cz2!%

z1s2as,h
. ~48!

The triple integral is denoted byI . The integrals overs8 and
z can now be evaluated and result in

I52p i S p i

kbD
1/2E

2`

as,h
ds exp$ ikas22 ikc~s2as,h!2%

52p i S p i

kbD
1/2E

2`

0

ds expH ik~a2c!S s1
aas,h

a2c D 2

2 i
kacas,h

2

a2c J . ~49!

We are interested only in the boundary contribution of
geometrical part. Expression~48! in general also contain
contributions from periodic orbits. This is the case if t
integration range in Eq.~49! contains a stationary point, i.e
if aas,h /(a2c) is positive. Then the stationary point contr
bution has to be subtracted which corresponds to a sub
tion of the integral from2` to `. For the boundary we
obtain contribution
t

e

c-

I 852 sgn~as,h!ts 2p i S p i

kbD
1/2E

0

`

ds

3expH ik~a2c!S s1U aas,h

a2c
U D 22 i

kacas,h
2

a2c J
52 sgn~as,h!ts

p2

k

1

Aub~a2c!u
ei ~p/4!~11sa1sb1ts!

3expH 2 i
kacas,h

2

a2c J erfcH uaas,huS k

i ~a2c!
D 1/2J ,

~50!

where ts5 sgn„ac/(a2c)…, as before. SubstitutingI 8 for
the triple integral in Eq.~48! yields

dj,geo~k!'Re (
s,h561

shts

L expH ikL2 i
p

2
ñ J

gA8~r 11r 2!um12b~a2c!u

3
uas,hu

tanS fs,01hp

2N D e
i ~p/4!~11sa1sb1ts!

3expH 2
ikacas,h

2

a2c J
3erfcH uaas,huS k

i ~a2c!
D 1/2J . ~51!

Comparison with Eq.~45! shows that this contribution ex
actly cancels the first error function in Eq.~45!.

C. Joint contribution

We now can write down the final formula of this sectio
By using the definitions ofa, b, andc the sum of Eqs.~45!
and ~51! can be written in the form

dj~k!'2Re (
s,h561

hts

L

p

expH ikL2 i
p

2
msJ

Au TrM2s2u

3
uas,hu

2NA2tanS fs1hp

2N D
3expH 2

ikas,h
2 M12

TrM2s2 J
3erfcH uas,huS kM12

i ~ TrM2s2!
D 1/2J , ~52!

where we dropped the second index offs,0 for simplicity of
notation. Furthermore,ms5n1(12s)1ks , ts5122ks ,
andks is defined as
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ks5H 0 if
M12

TrM2s2
.0

1 if
M12

TrM2s2
,0.

~53!

We recall thatM in Eqs. ~52! and ~53! is the stability
matrix ~at unit energy! of the classical trajectory starting an
ending at the corner point.n is the number of conjugate
points of this trajectory, plus two times the number of spe
lar reflections. The definition ofms in terms ofn andks is
similar to the definition of the Maslov index of a period
orbit in terms of that of the Green function@35#. The s
dependence is due to the fact that positives values are as-
sociated with geometrical orbits that are reflected an e
number of times near the corner, as an optical boundar
approached, and negatives values with orbits with an odd
number of bounces. This is explained in more detail in A
pendix D. In the limiting case that the diffractive orbit b
comes a periodic orbit, its contribution comes only from o
of the values ofs ~the other cancels!, and its stability matrix
is M or 2M , depending on whether the number of bounc
of the orbit in the corner is even or odd~cf. the discussion in
Sec. IV B!. Thusms is identical to the Maslov index of the
periodic orbit in these limiting cases.

In terms of the Fresnel integralK formula ~52! can writ-
ten in a slightly shorter form,

dj~k!'2Re (
s,h561

hts

L

p

expH ikL2 i
p

2
msJ

Au TrM2s2u

3
uas,hu

NA2tanS fs1hp

2N D KF uas,hu i ksS kuM12u
u TrM2s2u D

1/2G .
~54!

Equation~54! is the main result of this paper. It provide
a uniform approximation for the contribution of an isolat
diffractive orbit with a single corner point to the trace fo
mula. For completeness we recall several definitio
fs5u12su2, whereu1 and u2 are the incoming and out
going angles at the diffractive point~measured from the
same edge, withu1 andu2P@0,g#) andas,h is defined by

as,h5A2cosS fs

2
2ns,hg D

with ns,h5 nintFfs1hp

2g GPZ. ~55!

Note finally that the modified Fresnel function of imagina
argument~encountered whenks51) can be computed nu
merically from Eq.~A3!.

IV. DISCUSSION OF THE RESULT

In this section we discuss properties and the range of
lidity of formula ~54!. As mentioned above, the derivatio
has been done for a specific case~a wedge connected to
-

n
is

-

e

s

:

a-

smooth boundary!, but it is more generally valid because
relies only on local properties of the system near the con
ered diffractive orbit~as usual in semiclassical approxim
tions!. Hence it applies to billiards of any shape, provid
the singularity of the boundary corresponds locally to t
intersection of two straight lines. However, the present
proach has to be refined if applied to curved edges; we
cuss this point in Appendix D. We also remind the read
that formula ~54! is only valid for single diffraction. The
same formalism can in principle also be applied to diffract
orbits with more than one diffractive point; however, th
formulas become increasingly more complex. For exam
in the case of double diffraction, one has already 16 inst
of four terms, and they also involve double Fresnel integr
as can be inferred from the treatment of diffraction at tw
wedges in@21#. The formulas can only be simplified if th
diffraction in some of the corners can be treated in the G
approximation.

Note also, that the factoru TrM22su21/2 in Eq. ~54! di-
verges for a parabolic diffractive orbit~i.e., when
TrM562), and the present approach cannot be used in
case. This is very similar to divergences in Gutzwiller’s tra
formula due to nonisolated orbits. For diffractive orbit
TrM562 can have several causes; for example, the diffr
tive orbits can appear in families as is the case in a circu
sector, or bifurcations of diffractive orbits can occur, or t
diffractive orbit can become a part of a family of period
orbits when the optical boundary is approached. The la
case can occur, for example, in triangular billiards. In th
case it is, however, often possible to treat the divergent
~one of thes values! in the GTD approximation if the dif-
fractive orbit is well separated from the torus of period
orbits, and apply the uniform approximation only to the no
divergent part, as will be demonstrated in a numerical
ample in Sec. V.

A. GTD limit

After these basic remarks we now study three simple l
its of Eq. ~54!. The first one is the geometrical theory o
diffraction which is valid sufficiently far away from the op
tical boundary. In this limit the argument of theK function is
large, and the function can be replaced by its lead
asymptotic term in Eq.~A4!. This immediately yields

dj~k!'
L

p

D~u1 ,u2!

A8pkuM12u
cos~kL2np/223p/4!, ~56!

which agrees with the general formula~22! in the case of one
diffractive point. Analogous formulas have been derived a
tested in@4,6,8#. They have the advantage of allowing one
treat general diffractive problems~other than wedge diffrac-
tion!, and can easily be generalized to multiple diffracti
@see Eq.~22!#. However, they diverge on the optical boun
ary and~as shown in the examples Secs. V A and V B b
low! they are unable to describe the limit that a diffracti
orbit is close to become a real trajectory.

B. Limit g5p/p

Let us now study the limit that the diffraction angleg
goes top/p (pPN* ). For these values ofg there is no
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diffraction, since the corner can be treated by the metho
images. As a consequence, the contributions of most diff
tive orbits disappear, but there are also diffractive orb
which are replaced by periodic orbits which contribute to
level density according to the Gutzwiller trace formula. Th
contribution can be obtained from the diffractive contrib
tion ~54! in the limit g→p/p. The situation is actually
slightly more complicated, since the diffractive contributio
of these orbits for anglesg5p/p1e is discontinuous at
e50 ~it changes sign!. The reason for this is that periodi
orbits split from the diffractive orbit ase goes through zero
~for example, as the billiard is deformed!, which can be con-
sidered as a kind of bifurcation. As a consequence both
fractive and periodic orbit contributions are discontinuous
e50, but their sum remains continuous. In order to disc
this in more detail we have to consider the cases of odd
evenp separately.

~i! Caseg5(p/2p)1e. In the limit e50 the contribu-
tions from the twoh values cancel fors521. The same
occurs fors511, except ifu25u1. If this condition is ful-
filled, one obtains

dj~k!→ sgn~e!t~1 !dpo~k!, ~57!

where

dpo~k!5
L

p

cos~kL2m~1 !p/2!

u TrM22u1/2
when g5

p

2p
. ~58!

The discontinuity in Eq.~57! at e50 is directly related to
the appearance of periodic orbits. This can be seen from
discussion in Sec. III B: in Eq.~49! one has contributions o
periodic orbits in the vicinity of the diffractive orbit if
as,hts.0, and the periodic orbits coincide with the diffra
tive orbit whenas,h50. For the considered case the abo
inequality is equivalent to2 sgn(e)t (1).0. Hence whene
goes through zero, two periodic orbits appear~or disappear!,
one for each value ofh, assuring the continuity of the sum o
contributions ate50.

~ii ! Caseg5p/(2p11)1e. Now the two contributions
to s511 cancel ase→0, and fors521 there is only a
contribution if u25g2u1. This contribution is of the form

dj~k!→ sgn~e!t~2 !dpo~k!, ~59!

and the periodic orbit contribution now is given by

dpo~k!5
L

p

cos~kL2m~2 !p/2!

u TrM12u1/2
when g5

p

2p11
.

~60!

Comparing with Eq.~58!, the reason for the change o
sign ofM is the odd number of classical reflections on t
vertex in the caseg5p/(2p11). Generally, the stability
matrixM of the closed trajectory in Eq.~54! becomes equa
to plus @minus# the monodromy matrix of the periodic orb
wheng is p/(2p) @p/(2p11)#. The explanation of the dis
continuity of Eq.~59! is the same as above, with the on
difference that the condition for the existence of neighbor
periodic orbits can now be expressed by2 sgn(e)t (2).0.

In billiards with corners one has therefore a new kind
bifurcation: the continuity of wave mechanics~in the semi-
of
c-
s
e
r

if-
t
s
d

he

g

f

classical approximation! is not enforced by complex trajec
tories but by diffractive orbits. This effect will be demon
strated in the examples below.

C. In the vicinity of an optical boundary

The case that a diffractive orbit lies on an optical boun
ary, or crosses an optical boundary when the billiard is
formed, is very similar to the caseg→p/p. Again the dif-
fractive orbit contributes on the optical boundary at the sa
order of k as a periodic orbit, but now only with half th
amplitude of a periodic orbit. The diffractive contribution
again discontinuous since it changes sign as an op
boundary is crossed, and the reason for this is that a peri
orbit arises which bifurcates from the diffractive orbit. Mo
specifically, let us consider the case that for a given value
s andh one hasfs22ns,hg1hp5e, wheree is small. In
the limit e→0 the contribution from these values ofs and
h to the spectral density is given by

2 1
2hts sgn~e!dpo~k!

where dpo~k!5
L

p

cos~kL2msp/2!

Au TrM22su
, ~61!

and one can verify that the discontinuity of Eq.~61! is due to
a neighboring periodic orbit which coincides with the d
fractive orbit ate50. As above, the condition for the exis
ence of the periodic orbit isas,hts.0 which now is equiva-
lent tohets.0.

V. SOME EXAMPLES

In this section we illustrate the results of the last sectio
with several examples. We study mainly a billiard consisti
of a wedge of opening angleg whose two edges are con
nected by an arc of constant radius of curvatureR. The
angles between arc and wedge are chosen to bep/3 on both
sides. Ifh denotes the ‘‘height’’ of this billiard~see Fig. 6!
thenR5hsin(g/2)„sin(g/2)2 1

2…
21. This billiard has only one

diffractive corner~at point S of Fig. 6! and the curvature
ensures that the shortest diffractive and periodic orbits h
TrMÞ62 ~they are displayed in Fig. 6!. In the following
we call this billiard a ‘‘rounded triangle (p/3,p/3,g).’’

For numerical convenience we restrict ourselves to ang
of the formg5pp/q with (p,q)PN2. The quantum energie
are determined by expanding the wave functions aro
pointS in ‘‘partial waves’’ which are Bessel functions time
a sinusoidal function of the angle:

c~r ,u!5 (
n51

nmax

Jnq/p~kr !sinS nqp u D . ~62!

Equation ~62! automatically fulfills the Dirichlet condition
on the straight faces of the billiard. The boundary conditi
on the arc opposite toS is enforced in a manner identical t
the improved point matching method presented in@34#. This
results in a secular equation whose solutions are the ei
levels of the system. We have tested the numerical stab
of our procedure by varying the numbernmax of partial
waves included in the expansion~typically nmax
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' nint@pkh/q#). For each of the values ofg studied below
we have computed the first 2000 eigenlevels, and
checked that they were determined with an accuracy of
order of 1/1000 of the mean level spacing.

In order to visualize the importance of periodic and d
fractive orbits we study in the following the regularized Fo
rier transform of the level density,

F~x!5E
0

kmaxAk eikx2ak2d~k!dk. ~63!

kmax is the last eigenvalue computed numerically and we t
herea510/kmax

2 The multiplicative factorAk in Eq. ~63! is
included in order to cancel the singularity atk50 of a con-
tribution of type~56!. F(x) is denotedFQM(x) if we use in
Eq. ~63! the exact quantum spectrum. It is denotedFUA(x)
@FGTD(x)#, when Eq.~54! @Eq. ~56!# is used together with
the periodic orbit contributions~B21!.

A. g near p/2

This case is relevant to Sec. IV B above. Forg,p/2 the
shortest orbit is a periodic one and has lengthL152h sing.
It disappears as soon asg.p/2. ForgÞp/2, one also has a
diffractive orbit of length L252h ~see Fig. 6!. When
g5p/2 these orbits coalesce, and give a single periodic o
of length 2h. Their contribution to the level density is con
tinuous atg5p/2 as explained above: the contribution

FIG. 6. Shortest periodic and diffractive orbits in the ‘‘round
triangular billiard’’ studied in Sec. V. For the diffractive orbit, th
diffractive point is marked with a black point. The upper plot d
fines the geometry and the notations.
e
e

e

it

L2 is discontinuous@cf. Eq. ~57!#, and this exactly cancels
the discontinuity due to the disappearance of the orbitL1 and
its time reverse.

We determined the spectrum numerically forg57p/15
and 8p/15. The corresponding moduli of the Fourier tran
form uF(x)u are plotted in Figs. 7 and 8. In these figures t
solid lines correspond touFQM(x)u, the long dashed lines to
uFUA(x)u, and the short dashed line touFGTD(x)u. The
lengths of the included orbits are marked with back arrow
One notices the failure of GTD and the excellent agreem
of approximation~54! with the exact result@the agreement
remains equally good when plotting the real and imagin
part of F(x)#. As stated above, it can be seen that in t
vicinity of an optical boundary diffractive and periodic orbi
contribute in the same order to the level density.

B. g near p

This case also pertains to the discussion of Sec. IV B,
now in the vicinity ofg5p/(2p11). Again the diffractive
orbit ensures continuity of semiclassical mechanics wh
g5p: the two periodic orbitsL4 andL48 of Fig. 6 disappear
as soon asg,p, and the contribution ofL2 is discontinuous
at g5p, but the joint contribution is continuous. Here w
computed numerically the levels forg519p/20 and present
the results foruF(x)u and Re$F(x)% in Fig. 9. Again one can
verify the failure of the geometrical theory of diffraction an
the excellent agreement between Eq.~54! and the quantum
result.

C. Triangle „p/4,p/6,7p/12…

In this subsection we depart from the previous examp
and study the spectrum of a straight triangular billiard w
angles (p/4,p/6,7p/12), which has one diffractive wedg

FIG. 7. ModulusuF(x)u of the Fourier transform of the leve
density — see Eq. ~63! — for the rounded triangle
(p/3,p/3,g57p/15). The solid line corresponds toFQM(x), the
long dashed line toFUA(x), and the short dashed line toFGTD(x)
~see the text!. The arrows mark the lengths of the diffractive an
periodic orbits. The scale of lengths and wave vectors is fixed
takingh51.
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g57p/12. This billiard is of interest because~i! it allows us
to compare the performances of the uniform approximat
with GTD in a regime where this last approximation is n
inaccurate, and also~ii ! because it provides an examp
where our approach is not completely justified. Indeed in
case of a polygonal billiard all the trajectories have a mo
dromy matrix with TrM562, and this leads to a diver
gence in Eq.~54!. As noted in Sec. IV, this is linked to th
possible deformation of any diffractive orbit of the syste
considered toward a family of periodic orbits. Fortunately,
the present case the first diffractive orbits are far from a
allowed family of periodic orbits, and we can evaluate t
K function relevant to the divergent term in Eq.~54! with the
asymptotic expansion~A4!: this cancels the divergence. Th
was done on Fig. 10 for the three first diffractive orbits of t
system.

Again the agreement with the numerical result is exc
lent, but here the geometrical theory of diffraction alrea

FIG. 8. Same as Fig. 7 forg58p/15.

FIG. 9. Same as Fig. 7 forg519p/20. Here we also plot
Re$F(x)% for illustrating the quality of the agreement between t
phases ofFQM andFUA .
n
t

e
-

y

l-
y

gives a sensible description. Note, however, that the sm
peak due to the diffractive boundary orbit of lengthL2 is
‘‘missed’’ by GTD because its diffractive coefficient~10! is
zero~see the discussion in Sec. II B!. The correct description
of the peak was obtained by using half the contribution~54!
of a usual diffractive orbit.

For a more detailed comparison we plot the moduli of t
differencesuFUA(x)2FQM(x)u and uFGTD(x)2FQM(x)u in
Fig. 11: even quite far from any optical boundary, Eq.~54!
supersedes the GTD result~56!. This plot emphasizes the
accuracy of Eq.~54! in cases slightly out of its original range
of application.

VI. CONCLUSION

In this paper we have studied the inclusion of diffractiv
orbits in semiclassical trace formulas for billiards in whic
the boundary has wedgelike singularities. In many cases
simple geometrical theory of diffraction@9# is inadequate,
especially if the energy is not very high. A consideration
the mathematical structure of the exact Green function ne
wedge permits us to remedy this shortcoming: it leads t
uniform approximation of the Green function@16# which, in
turn, allows us to derive contributions to the trace formu
which properly account for the role of isolated diffractiv
orbits in the quantum spectrum~54!. The formula was illus-
trated in several examples, and was shown to give excel
agreement with numerical data. Its main feature is tha
interpolates between the usual Gutzwiller trace formula@1#,
and previous approaches relying on the geometrical theor
diffraction @4,6,8#.

FIG. 10. Same as Fig. 7 for the flat triangle (p/4,p/6,7p/12).
The upper part displays the shortest orbits of the system~all three
are diffractive, the classical periodic orbits occur at greater lengt!.
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Note also that we included a derivation of a semiclass
composition law for Green functions for billiard system
~B1! and~B13! which allows us to recover Gutzwiller’s trac
formula in a simple fashion~cf. Appendix B!. Similar laws
can also be obtained for the composition of diffractive a
geometrical Green functions.

The present work suggests further developments:~i! Re-
sult ~54! might be extended to allow the treatment of diffra
tive orbits in the vicinity of a family of periodic orbits.~ii !
Although the inclusion of general multiple diffraction in
uniform formula seems to be a difficult task, one may re
sonably hope to include double diffraction in the formalis
~cf. @21#!. ~iii ! Further possible extensions concern the tre
ment of other types of diffraction, like regions near curv
wedges where surface diffraction becomes important so
contributions from creeping and whispering gallery orb
have to be included, or diffraction effects arising from d
continuities of the curvature of the boundary like in the s
dium billiard.

Finally we would like to emphasize the important role
diffraction in semiclassical approaches. Diffractive and pe
odic orbits are fundamentally different in the sense that
former are not obtained via a systematic\ expansion in the
vicinity of classical solutions of Hamilton’s equations~they
are rather linked to discontinuities of the Hamiltonian flow!.
However, diffractive orbits provide the first correction to th
leading order in the trace formula, with contributions typ
cally of orderA\ smaller than the contributions of isolate
periodic orbits. In addition, in the vicinity of optical bound
aries the two types of orbit contribute with approximately t
same order to the trace formula. An image emerging fr
our study~cf. Secs. IV B and IV C! is that diffractive orbits
allow one to enforce semiclassically the continuity of wa
mechanics in the vicinity of discontinuities or bifurcations
classical mechanics.

FIG. 11. uFUA(x)2F QM(x)u ~long dashed line! and uF GTD(x)
2FQM(x)u ~short dashed line! for the triangle (p/4,p/6,7p/12).
We consider only the three shortest orbits of the system. The
lowing orbits are not taken into account, and this is the reason
the increasing errors in vicinity ofx'4.
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APPENDIX A: MODIFIED FRESNEL FUNCTION

In this appendix we define the modified Fresnel functi
K(z) used in the main text and list several of its properti

~i! The functionK(z) (zPC) is defined by

K~z!5
e2 i ~z21p/4!

Ap
E
z

`

eiy
2
dy5

e2 iz2

2
erfc~e2 ip/4z!,

~A1!

where erfc is the complementary error function~see, e.g.,
@25#!. In Eq. ~A1! the path of integration is subject to th
restriction arg(y)→a, with 0,a,p/2 asy→` along the
path. a50 and p/2 are permissible if Re(iy2) remains
bounded to the right.

The function K has the following properties
K(1`)50, K(0)5 1

2,

K~z!1K~2z!5e2 iz2, ~A2!

and

K~ z̄!1K~2 iz!5eiz
2
, ~A3!

where the bar denotes complex conjugation.
~ii ! By successive integrations by parts one obtains

following asymptotic expansion:

K~z!5
eip/4

2zAp
(
n50

1` S 12D
n
S 2 i

z2 D n
for uzu→1` and 2p/4, arg~z!,3p/4, ~A4!

where (12)n5G(n1 1
2)/G(

1
2)51333•••3(2n21)/2n. In

the region arg(z)P]3p/4,7p/4@ one obtains an asymptoti
expansion by combining Eqs.~A2! and ~A4!.

~iii ! The interest in the modified Fresnel function com
from the following integral relation:

E
2`

1`

dt
e2bt2

t2z
52 i tp K~te2 ip/4Abz!, ~A5!

wherebPR1, zPC andt5 sgn„Im(z)….
Hence the functionK allows us to generalize the steepe

descent method to cases where poles appear in the integ
As explained in the text~Sec. II! this corresponds — in the
Sommerfeld solution of the diffraction problem — to th
occurrence of diffractive orbits near classical trajectories.
will not prove Eq.~A5! here, it can be done easily by notin
that (t2z)215 i t*0

1`exp@it (z2t)x# dx @cf. the evaluation of
integral ~C6! in Appendix C#.

l-
r
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APPENDIX B: COMPOSITION LAW FOR GREEN
FUNCTIONS

In this appendix we derive a simple semiclassical com
sition law for Green functions which is expressed by in
grals over the boundary]B of the billiard. The formulas
established below are simple, and are connected to Ba
and Bloch’s multiple reflexion expansion@2#. Although they
are clear from a semiclassical interpretation of this expans
~see, e.g., Refs.@3, 27, 28#! we include a derivation for com
pleteness. The composition law can be used in order to s
plify expressions obtained from the boundary elem
method@cf. Eq.~31!#. We first prove the semiclassical ve
sion and then give the exact formulation of this law due
Balian and Bloch. We further show that it allows us to deri
Gutzwiller’s trace formula in a straightforward manner.

We assume in this appendix that the boundary]B is
smooth everywhere. The semiclassical version of the com
sition law has the form

~22!nE
]B
ds1•••dsnG0~rW1 ,rW8,E!]nW1G0~rW2 ,rW1 ,E!•••

3]nWnG0~rW,rWn ,E!'Gsc
~n!~rW,rW8,E!, ~B1!

where rW i5rW(si). The approximate sign signifies that th
evaluation is done by approximating the free Green funct
G0 by its leading asymptotic term for large argument, a
evaluating the integrals in the stationary phase approxi
tion. The functionGsc

(n)(rW,rW8,E) on the right-hand side of Eq
~B1! is the part of the semiclassical Green function from
trajectories withn bounces on the boundary betweenrW8 and
rW,

Gsc
~n!~rW,rW8,E!5(

jn

1

A8pkuM12
~n!u

3expH ikl ~n!2 i
p

2
n~n!2 i

3p

4 J . ~B2!

Here l (n) denotes the length of the trajectory,n (n) is the
number of conjugate points fromrW8 to rW plus twice the num-
ber of reflections on the boundary, andM (n) is the stability
matrix for unit energy. An indexjn of the above quantities
has been omitted in order to simplify the notations.

Equation~B1! is proven by mathematical induction. Fo
n50 it is correct since

G0~rW,rW8,E!'Gsc
~0!~rW,rW8,E!, ~B3!

and one has to show that

I :5~22!E
]B
ds1Gsc

~n!~rW1 ,rW8,E!]nW1G0~rW,rW1 ,E!

'Gsc
~n11!~rW,rW8,E!. ~B4!

We will use the following notation at a pointrW i of the bound-
ary: primed quantities correspond to the incoming trajecto
and unprimed quantities to the outgoing trajectory. We w
-
-

an

n

-
t

o-

n
d
a-

l

,
l

denote the momentum of a classical trajectory by a vec
pW of modulusk, whose direction is the direction of propag
tion of the classical particle. The momentum of an outgo
trajectory is pW i , and a i is the angle between the norm
vectornW i of the boundary~which points outside! and2pW i .
The momentum of an incoming trajectory ispW i8, anda i8 is

the angle betweennW i andpW i8. For this choicea i8 anda i both
lie in the interval between2p/2 andp/2. In terms of the
local coordinate systems of the trajectories with coordina
parallel and perpendicular to the trajectory, the tangen
and normal vectors of the boundary can be written as

nW i52cosa ieW i1sina ieW'5cosa i8eW i82sina i8eW'8 ,

~B5!

tW i52sina ieW i2cosa ieW'5sina i8eW i81cosa i8eW'8 .

We continue by evaluating the integral in Eq.~B4! using the
stationary phase approximation. The normal derivative of
Green function is given in leading semiclassical order by

]nW iG0~rW i11 ,rW i ,E!'2 inW i•pW iGsc
~0!~rW i11 ,rW i ,E!

5 ik cosa iGsc
~0!~rW i11 ,rW i ,E!, ~B6!

and in Eq.~B4! the stationary points are determined by t
condition

05
d

ds1
@ l ~0!~rW,rW1!1 l ~n!~rW1 ,rW8!#

5 tW•F2
pW 1
k

1
pW 18

k
G

5sina11sina18 , ~B7!

i.e., bya152a18 , which is the condition for elastic reflec
tion. The sum over all stationary points thus expresses
integralI by a sum over all trajectories withn11 reflections
on the boundary. In Eq.~B7! and in the following, the length
is given two arguments when it is necessary to specify
starting and end point of the trajectory.

For the determination of the second derivatives of
lengths at a boundary pointsi , one has to evaluate the de
rivatives of the anglesa i anda i8 which consist of two parts.
One is due to the change of the normal vector withsi , and
one to the change of the direction of the trajectories:

d2l ~n!~rW i ,rW i21!

dsi
2 5cosa i8

da i8

dsi

5cosa i8S 2
1

Ri
1
cosa i8

k

dpi'8

dqi'8
D

52
cosa i8

Ri
1
cos2a i8M22

~n!

M12
~n! ,

~B8!
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d2l ~n!~rW i11 ,rW i !

dsi
2 5cosa i

da i

dsi
5cosa iS 2

1

Ri
2
cosa i

k

dpi'
dqi'

D
52

cosa i

Ri
1
cos2a iM11

~n!

M12
~n! .

At a stationary point, it follows from these relations tha

d2

ds1
2 @ l ~0!~rW,rW1!1 l ~n!~rW1 ,rW8!#52

cos2a1M12
~n11!

M12
~0!M12

~n! , ~B9!

whereM (n11)5M (0)B1M
(n), and the matricesM (0) andB1

are given by

M ~0!5S 1 l ~0!

0 1 D , B15S 21 0

2

R1cosa1
21D . ~B10!

The matricesM andB correspond to the linearized flow ne
the considered trajectory. Note that our definition is sligh
different from usual conventions~see, e.g.,@1,35#!: consider-
ing that hereupW u5k, theM12 (M21) matrix element would be
generally divided~multiplied! by k. Here we work with the
stability matrix at unit energy: this choice is connected to
scaling property of the dynamics in billiard systems. It do
not affect the trace and the determinant of the matrix, a
allows us to have energy-independent matrix elements wi
simple geometrical meaning.

Now the stationary phase approximation for the integ
in Eq. ~B4! is carried out, and results in

I' (
jn11

cosa1expH ikl ~n11!2 i
p

2
n~n!J

4pAuM12
~0!M12

~n!u

3E
]B
ds1expH 2 ik

cos2a1M12
~n11!

2M12
~0!M12

~n! s1
2J

' (
jn11

1

A8pkuM12
~n11!u

expH ikl ~n11!2 i
p

2
n~n11!2 i

3p

4 J ,
~B11!

wherel (n11)5 l (0)1 l (n) and

n~n11!5n~n!121H 1 if sgn~M12
~n11!!5 sgn~M12

~n!!

0 if sgn~M12
~n11!!Þ sgn~M12

~n!!.

~B12!

Equation~B12! coincides with the expected definition of th
Maslov index:n (n11) is the number of conjugate points from
rW8 to rW plus twice the number of reflections on the bounda
an additional conjugate point has occurred betweenrW1 and
rW if and only if sgn(M12

(n11))5 sgn(M12
(n)) ~remember that

there is one sign change due to the reflection on the bou
ary!. This completes the proof of Eq.~B4!, and thus also of
Eq. ~B1!.

A further relation follows from the fact that the evaluatio
of the integral in Eq.~B1! does not depend on the order
e
s
d
a

l

;

d-

which the stationary phase approximations are carried
Thus one can conclude directly that

~22!E
]B
ds1Gsc

~n!~rW1 ,rW8,E!]nW1Gsc
~m!~rW,rW1 ,E!

'Gsc
~n1m11!~rW,rW8,E!. ~B13!

Equations~B1! and ~B13! were derived in the semiclassica
approximation by evaluating the boundary integrals only
cally in the vicinity of stationary points. For that reason t
same composition law can be applied in order to obtain
contributions of the geometrical orbits in billiards with co
ners; this is done in Eq.~30!.

We note that Eqs.~B1! and ~B13! are the semiclassica
versions ofexact relations for the Green functionG of a
billiard system. These exact relations are obtained by a m
tiple reflection expansion of the Green functionG @2#,

G~rW,rW8,E!5 (
n50

`

G~n!~rW,rW8,E!, ~B14!

where

G~n!~rW,rW8,E!5~22!nE
]B
ds1•••dsnG0~rW1 ,rW8,E!

3]nW1G0~rW2 ,rW1 ,E!•••]nWnG0~rW,rWn ,E!,

~B15!

and the equation analogous to Eq.~B13! follows directly.
Finally, we show that Gutzwiller’s trace formula can b

obtained in a straightforward way by using Eq.~B1!. From
the boundary element method, one obtains

d~k!5d̄~k!1
1

p
Im(

n51

`
1

n

d

dk
TrQ̂n~k!, ~B16!

where

TrQ̂n~k!5~22!nE
]B
ds1•••dsn]nW1G0~rW2 ,rW1 ,E!

3]nW2G0~rW3 ,rW2 ,E!•••]nWnG0~rW1 ,rWn ,E!.

~B17!

With Eq. ~B1!, it follows that

d~k!'d̄~k!2
2

p

d

dk
Im(

n51

`
1

nE]B
ds]nW 8Gsc

~n21!~rW,rW8,E!urW5rW8

'd̄~k!2
2

p
Re(

n52

`
1

n

kl ~n21!cosa

A8pkuM12
~n!u

3E
]B
ds expH ikl ~n21!~rW,rW !2 i

p

2
n~n21!2 i

p

4 J .
~B18!
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The stationary phase condition is again given
sina52sina8, and thus the integral yields contributions fro
periodic orbits withn specular reflections on the boundar
More accurately, it givesn/r po ~identical! contributions for
every periodic orbit, wherer po is the repetition number of the
orbit, since there aren/r po different starting positionsrW5rW8
on ]B.

The derivatives of the anglesa anda8 now have addi-
tional contributions, since both initial and final points of th
trajectory are changed by varyings,

da8

ds
52

1

R
1
cosa8

k

dp'8

dq'8
U
q'

2
cosa

k

dp'8

dq'
U
q

'8

52
1

R
1
cosa8M22

~n21!1cosa

M12
~n21! ,

~B19!

da

ds
52

1

R
2
cosa

k

dp'

dq'
U
q

'8
1
cosa8

k

dp'

dq'8
U
q'

52
1

R
1
cosaM11

~n21!1cosa8

M12
~n21! .

It then follows at a stationary point that

d2

ds2
l ~n21!~rW,rW !52

cos2a~ TrMpo
~n!22!

~Mpo
~n!!12

, ~B20!

whereMpo
(n)5B1M

(n21), and the stationary phase approx
mation results in

d~k!5d̄~k!1
1

p (
n51

`

(
jn,po

l po
~n!

r poAu TrMpo
~n!22u

3cosH klpo~n!2
p

2
mpo

~n!J , ~B21!

where

mpo
~n!5n~n21!121H 0 if ~Mpo

~n!!12/~ TrMpo
~n!22!.0

1 if ~Mpo
~n!!12/~ TrMpo

~n!22!,0.
~B22!

Note that the derivation presented here has the same sta
point as Ref.@28#. But the composition law~B1! permits us
to bypass the computation of large determinants of@28#. Fur-
thermore, it allows us to keep track of the Maslov indic
~which were not derived in@28#! in a simple way.

Finally we add a remark on ghost contributions. In ge
eral, the semiclassical approximation for the Green functi
G(n)(rW,rW8,E) can also contain contributions from ghost tr
jectories that satisfy the stationary phase conditions, but h
parts that are outside the billiard region. These ghost orb
however, do not make a contribution to the level dens
d(k), since they cancel with ghost contributions from diffe
entn or from d̄(k) @3,28,30,36#.
ing
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APPENDIX C: EVALUATION OF A DIFFRACTION
INTEGRAL

In this appendix the integral

I5E
2`

`

dsE
2 i`

i`

dz
eias

22 icz2

z1s2s0
, ~C1!

is evaluated for positivec and real nonvanishinga and s0.
This is the basic integral which appears in the derivation
the uniform approximation for diffractive contributions t
the trace formula.

First thez integral is rotated onto the real axis. The rot
tion is performed counterclockwise: sincec.0, this yields
no contribution from infinity. There are, however, poles
the integrand on the realz line. We take them into accoun
by giving to s0 a small imaginary parts0→s01 is0«, and
consider the limit«→0 in the end. Heres05 sgn(s0) and
«.0. For this choice one obtains a pole contribution fro
the rotation of thez-integral for those values ofs for which
(s02s) has a different sign thans0. One obtains

E
2 i`

i`

dz
e2 icz2

z1s2s0
5 lim

«→0
È2`

dz
e2 icz2

z1s2s02 is0«

12p is0e
2 ic~s2s0!2Q„s0~s2s0!….

~C2!

We consider now the two contributions of the right-hand s
of Eq. ~C2! to the integral in Eq. ~C1! separately,
I5I 01I 1, whereI 0 contains the pole contribution andI 1 the
contribution from the rotatedz-integral. ForI 0, we have

I 052p is0E
2`

`

ds Q„s0~s2s0!… e
ias22 ic~s2s0!2

52p is0E
us0u

`

ds eias
22 ic~s2us0u!2

5
ipAps0

A2 i ~a2c!
expH 2

iacs0
2

a2c J erfcH 2 iaus0u

A2 i ~a2c!
J ,

~C3!

where erfc is the complementary error function~see, e.g.,
@25#!. I 1 has the form

I 152 lim
«→0

E
2`

`

dsE
2`

`

dz
eias

22 icz2

z1s2s02 is0«
. ~C4!

By a linear transformation of the variables,
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u5z1s, v5
cz

a2c
1

as

a2c
, ~C5!

the double integral splits into a product of two single in
grals

I 152 lim
«→0

E
2`

`

dvei ~a2c!v2E
2`

`

du
e2 i [ac/~a2c!]u2

u2s02 is0«
.

~C6!

In Eq. ~C6! the integral overv can be computed easily. Fu
thermore, the denominator in theu-integral can be expresse
in terms of an integral

I 152 is0S p

2 i ~a2c!
D 1/2lim

«→0
E

2`

`

du

3E
0

`

dw e2 i [ac/~a2c!]u22 is0w~u2s02 is0«!

52 is0S p

2 i ~a2c!
D 1/2S p~a2c!

iac D 1/2
3E

0

`

dw ei [ ~a2c!/4ac]w21 i us0uw

52
ipAps0

A2 i ~a2c!
expH 2

iacs0
2

a2c J erfcH 2 i us0uS iac

a2cD
1/2J .
~C7!

The whole resultI5I 01I 1 is given by

I5
ipAps0

A2 i ~a2c!
expH 2

iacs0
2

a2c J F erfcH 2 iaus0u

A2 i ~a2c!
J

2 erfcH 2 i us0uS iac

a2cD 1/2J G . ~C8!

It is convenient to rewrite this result in a form in which th
phases of the complex arguments of the error functions
always between2p/2 andp/2. This can be done by consid
ering all the possible cases for the signs ofa and (a2c)
separately, and using the relation erfc(z)522 erfc(2z).
The results for the different cases can be combined again
written in the form

I5
ts0pAp

Aua2cu
ei ~p/4!~11sa1t!expH 2

iacs0
2

a2c J
3F erfcH uas0u

Ai ~a2c!
J 2 erfcH us0uS ac

i ~a2c!D 1/2J G ,
~C9!

wheresa5 sgn(a) andt5 sgn(a/(a2c)).
-
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APPENDIX D: CURVED WEDGES

In this section we discuss the effect of curved wedges
the contributions of diffractive orbits to the level densit
The uniform approximation~54! has been derived for a
boundary with zero curvature on both sides of the corner
has to be modified for curved wedges, otherwise the sum
diffractive and periodic orbit contributions is not continuo
any longer as an optical boundary is crossed. Additio
complications can arise due to surface diffraction effects,
creeping orbit or whispering orbit contributions can interfe
with the diffractive orbit contributions. We will discuss whe
these effects have to be taken into account, but we
modify the uniform approximation only in those regions
which these additional effects can be neglected.

The modified formula is derived by using a method
Ref. @16# for obtaining a uniform approximation for th
Green function in the case of a curved wedge~see also Ref.
@17#!. We refer to the original references for a discussion
this method, and state here only the result which consist
a change of the argument of the Fresnel function in Eq.~21!
such that the approximation is continuous across an op
boundary. For the diffractive orbit contribution to the lev
density, this has the consequence that only the stability
trix M is changed in Eqs.~52!, ~53!, and ~54!: there are
additional contributions toM from reflections on the curved
boundary.

In order to discuss these modifications, we first list seve
properties of geometrical orbits corresponding to an opt
boundary which is specified by the values ofs, h, and
ns,h . In particular, we consider the trajectories which co
tribute to the Green function and list for them the number
reflections on the boundary and the side of the corner
which the first reflection occurs. Furthermore, we give
strictions for the numbersns,h which are implied by their
definition.~i! s511, h511: ns,h>0, (2ns,h) reflections,
first on the line u5g. ~ii ! s511, h521: ns,h<0,
(22ns,h) reflections, first on the lineu50. ~iii ! s521,
h511: ns,h>0, (2ns,h21) reflections, first on the line
u5g. If ns,h50 the optical boundary cannot be reache
This case can occur only forg.p. ~iv! s521, h521:
ns,h<1, (122ns,h) reflections, first on the lineu50. The
optical boundary cannot be reached ifns,h51. This case can
occur only forg.p.

With these properties we can now discuss the modifi
tion of the stability matrixM in the case of curved wedges
M then has an additional contribution for all of the refle
tions mentioned above. In the following we denote the lim
of the radii of curvature as the corner is approached fr
either side byR0 andRg where the first one corresponds
the sideu50 and the second one tou5g. ThenM has to be
replaced byBM, where

B5S 1 0

2b 1D , ~D1!

and



2298 55MARTIN SIEBER, NICOLAS PAVLOFF, AND CHARLES SCHMIT
ns
a
in
io
ive
o
g
d

a
-
e

are

on-
the

ni-

give
etail
own

an

d,
This approximation is only valid as long as all sine functio
in Eq. ~D2! are positive and not close to zero. The case of
almost vanishing sine function corresponds to near graz
incidence on a side of the corner. Then surface diffract
effects become important and interfere with the diffract
orbit contribution, and the uniform approximation is n
longer valid. In the case that some sine functions are ne
tive and not small, the orbit is not close to an optical boun
ary and the GTD approximation can be used~it is the same
as in the case of non-curved wedges!.

There is a disadvantage of the definition ofB given
above. Since there are two possibilities for choosingu1 and
u2 corresponding to the two arms of a diffractive orbit in
corner, it follows from Eq.~D2! that the uniform approxima
tion is not uniquely defined.~Note that both cases have to b
cs

et
t,
ca
d

ys

l.

na
n
g
n

a-
-

checked for deciding whether surface diffraction effects
important.!

The nonuniqueness of the approximation is a direct c
sequence of the fact that the uniform approximation for
Green function of Ref. @16# is not symmetric under
u1↔u2. It is another example for the nonuniqueness of u
form approximations~cf. the discussion in Sec. II C!. How-
ever, as an optical boundary is approached, both choices
the same result as they should. Let us discuss in more d
the difference between these two choices. It can be sh
that interchangingu1 and u2 amounts to evaluate Eq.~D2!
with u15su212ns,hg2hp instead ofu1. This then di-
rectly suggests a possible way by which this ambiguity c
be removed, namely, by replacingu1 in Eq. ~D2! by the
average of both values which is (u11su2
12ns,hg2hp)/2. As an optical boundary is approache
this combination again becomes identical tou1.
-
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