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Diffractive corrections in the trace formula for polygonal billiards

E. Bogomolny, N. Pavloff, and C. Schmit
Laboratoire de Physique The´orique et Mode`les Statistiques,* UniversitéParis–Sud, Baˆtiment 100, F-91405 Orsay Cedex, France

~Received 27 October 1999!

We derive contributions to the trace formula for the spectral density accounting for the role of diffractive
orbits in two-dimensional polygonal billiards. In polygons, diffraction typically occurs at the boundary of a
family of trajectories. In this case the first diffractive correction to the contribution of the family to the periodic
orbit expansion is of order of that of an isolated orbit, and gives the firstA\ correction to the leading
semiclassical term. Keller’s geometrical theory of diffraction is inadequate for treating these corrections and
we develop an alternative approximation based on Kirchhoff’s theory. Numerical checks show that our pro-
cedure allows reduction of the typical semiclassical error by about two orders of magnitude. The method
permits treatment of the related problem of flux-line diffraction with the same degree of accuracy.

PACS number~s!: 05.45.Mt, 03.65.Sq, 42.25.Fx
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I. INTRODUCTION

Two-dimensional billiards play a central role in the d
main of quantum chaos because of the simplicity of th
classical dynamics and the relatively easy determination
their quantum spectrum. During the last 20 years they h
been used as model systems for testing semiclassical
formulas ~following Gutzwiller @1# and Balian and Bloch
@2#! and random matrix theory~see, e.g.,@3#!.

Among these systems, plane polygonal billiards ha
been the subject of long lasting interest~see, e.g., the review
@4#!: they have zero metric@5# and topological@6# entropy,
but their dynamical properties range from integrable to p
sibly ergodic and mixing@7#, passing by the interestin
group of pseudointegrable systems@8#. Level correlations of
integrable polygonal billiards display interesting propert
@9#, not to speak of the case of pseudointegrable billiar
whose level statistics are intriguingly related to those of
Anderson model at the metal-insulator point@10,11#.

The present work is devoted to a detailed study of
trace formula in polygonal billiards. Though the gene
method of deriving the trace formula is well known@1#, its
application to polygonal plane billiards is not straightfo
ward. The main difficulty is the existence of important co
rections due to diffraction on the corners of the billiard. Th
type of correction was treated in Refs.@12–14# in the frame-
work of Keller’s geometrical theory of diffraction@15#. This
amounts to introducing in the trace formula new diffracti
orbits which obey the laws of classical mechanics eve
where except on singularities of the potential, where they
diffracted nonclassically. The result of the approach of Re
@12–14# diverges when a diffractive orbit is close to bein
allowed by classical mechanics; this deficiency was re
edied in some special cases in Refs.@16,17#. Reference@17#
studies corner diffraction in two-dimensional billiards~not
exclusively polygons!. It gives uniform formulas but is lim-
ited to single diffraction. Reference@16# treats diffraction by
a circular disk inside a billiard. It considers up to doub
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diffractive orbits, but does not provide a uniform approxim
tion. In the present paper we extend these approaches
construct improvements to the geometrical theory of diffra
tion in polygonal billiards.

This type of correction is made necessary in polygo
because in these systems the spatial extension of a fami
orbits is often stopped by a singularity of the frontier of t
billiard; as a result, the generic situation is that a diffracti
orbit appears on the boundary of each family. This traject
is on the verge of being allowed by classical mechanics
thus cannot be included in the trace formula in the fram
work of the geometrical theory of diffraction. Hence in th
following we devote special care to the treatment of diffra
tive periodic orbits lying on the boundary of a family and
its repetitions. We give explicit formulas for the correctio
to the leading semiclassical term for thenth iterate of a fam-
ily of periodic orbits.

We find in polygonal billiards a very rich variety of dif
fractive orbits. Their contributions giveA\ corrections to the
leading semiclassical term in the trace formula and all
computation of the level density with great precision. N
merical checks show that the typical semiclassical erro
reduced by one or two orders of magnitude.

The paper is organized as follows. In Sec. II we brie
present Keller’s geometrical theory of diffraction and pr
pose an alternative approximation based on Kirchho
theory that is valid near the ‘‘optical boundary’’~the separa-
tion between allowed and forbidden classical trajectori
which occurs in optics on the line separating light a
shadow!. The simplicity of the method permits a straightfo
ward generalization to the case of diffraction by a flux lin
The approximation established in Sec. II is used to trea
large number of different types of diffractive periodic orbit
We first consider corner diffraction. The contribution of
diffractive orbit on the boundary of a periodic orbit family
calculated in Sec. III. This is a typical situation for pseud
integrable billiards. Special attention is given to the diffra
tive partner of then-fold repetition of a primitive periodic
orbit. Section IV is devoted to the study of diffractive orbi
that are simultaneously on the boundary of a family and
the frontier of the billiard. Another type of diffractive orbi
belonging to the boundaries of two different families of p
3689 © 2000 The American Physical Society
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riodic orbits is discussed in Sec. V. In addition to diffracti
orbits lying exactly on an optical boundary, there exist orb
that are so close to an optical boundary that the geomet
theory of diffraction cannot be applied. Such orbits are st
ied in Secs. VI and VII. All these special cases are neces
for a careful description of the quantum density of states
pseudointegrable billiards. In Sec. VIII we illustrate the fle
ibility of our approach by presenting results for flux-line d
fraction in a rectangular billiard. In this case, solving t
question of diffraction on the optical boundary amounts
treating the nontrivial problem of~multiple! forward
Aharonov-Bohm scattering. Finally, we present our conc
sions in Sec. IX. Some technical points are given in
appendixes. In Appendix A a concise discussion of impro
ments to Keller’s theory of diffraction is given. In Append
B we discuss the computation of certain trace integrals
Appendixes C and D we derive analytically explicit expre
sions for importantn-dimensional integrals.

II. DIFFRACTIVE GREEN FUNCTION

In this section we first present Keller’s geometrical theo
of diffraction ~putting the emphasis on corner diffractio!
and then propose an alternative approximation valid near
optical boundary~when Keller’s approach fails! for corner
and flux-line diffraction.

A. Geometrical theory of diffraction

One considers the different approximate contributions
the Green functionG(rW,rW8,E) for two pointsrW and rW8 in a
polygonal billiard. The first is the semiclassical contributio
which is a sum over all possible classical trajectories go
from rW8 to rW. It is of the form

G0~rW,rW8,E!5 (
rW8→rW

classical

exp@ i ~kL2np/223p/4!#

A8pkL
, ~1!

whereL is the length of the classical path going fromrW8 to rW
andn is twice the number of specular reflections along t
path ~we consider Dirichlet boundary conditions!. We use
units such that the energy is related to the wave ve
throughE5k2.

There are other contributions toG that correspond to dif-
fractive orbits experiencing specular reflections on the fr
tier of the billiard and also nonclassical bounces on the
fractive corner. In the framework of Keller’s geometric
theory of diffraction ~see, e.g.,@15#! such an orbit with a
single diffractive bounce contributes to the Green funct
with a term

G1d~rW,rW8,E!5G0~rW0 ,rW8,E!D~u,u8!G0~rW,rW0 ,E!, ~2!

where rW0 is the position of the diffractive apex andD is a
diffraction coefficient depending on the interior angleg of
the polygon atrW0 and on the incoming~outgoing! angleu8
~u! of the diffractive trajectory with the boundary. The e
plicit expression ofD for corner diffraction reads@15#

D~u,u8!5 (
s,h561

Ds,h~u,u8!
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where

Ds,h~u,u8!5
1

N

sh

tan@~fs1hp!/2N#
, ~3!

whereN5g/p and fn5u82su ~with u and u8 in @0, g#!.
Although formula~2! is attached to the name of Keller, th
idea of treating diffraction as arising from a kind of reflectio
on the edge has a long history which goes back to You
~see Chap. 44 of@18# and Sec. 8.9 of@19#!. We also note
here that the repercussion of diffractive periodic orbits on
spectrum seems to have been first worked out within
geometrical theory of diffraction by Durso in 1988@20#.

Formula~2! can be generalized to treat multiple diffra
tion. One has then several diffraction coefficientsD1 ,D2 ,...,
one for each diffractive bounce, and between each diffrac
bounce a semiclassical propagation described by a G
function of type~1!. When diffractive trajectories are take
into account in the trace formula, one is led to consider d
fractive periodic orbits whose contributions to the level de
sity r(E) are of the form@12–14#

r~E!← Ld

2pk S )
j 51

n Dj

A8pkl j
D cos~kLd2ndp/223np/4!.

~4!

In Eq. ~4! and in many instances below, when writin
explicitly the contribution of a periodic orbit~classical or
diffractive! to the level density, we put an arrow in the d
rection of r(E) to indicate that this is one contributio
among many others. In the above expression,l 1 ,...,l n are the
lengths along the orbit between two diffractive reflection
l 11...1 l n5Ld is the total length of the diffractive periodi
orbit. nd is the Maslov index of the diffractive orbit, i.e.
twice the number of specular reflections. Repetitions o
primitive diffractive orbit appear as a special case of Eq.~4!;
in this case, however, in the first factorLd /(2pk) of the
right-hand side~rhs! of ~4!, Ld should be understood as th
primitive length of the orbit.

We recall that, in a polygon, the contribution of an is
lated periodic orbit tor(E) is of the form2 l /(4pk)cos(kl)
~for a primitive orbit of length l!. Thus Eq.~4! shows that the
contribution of a typical diffractive periodic orbit withn dif-
fractive bounces is of orderO(k2n/2) compared to that of an
isolated periodic orbit. We will study below special config
rations where this is not the case and where diffractive or
have the same weight as isolated periodic ones. We first n
to discuss the range of validity of the geometrical theory
diffraction and to define approximations alternative to E
~2!.

B. In the vicinity of an optical boundary

The approximation defined by Eqs.~2! and~3! fails when
the diffractive bounce atrW0 is ‘‘almost allowed’’ by classical
mechanics. In that limit the trajectory lies on what is call
in the literature, an ‘‘optical boundary,’’ and the coefficie
D diverges. This failure of Keller’s approximation can b
intuitively understood by noting that Eq.~2! gives a contri-
bution to the Green function of orderO(k21), whereas in the
limit that the diffractive orbit becomes allowed by cla
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sical mechanics it has to contribute at orderO(k21/2) like
any classical trajectory. Hence in this limit Eq.~2! cannot
hold. We study below a triangle with a diffractive corner
opening angleg53p/8. In this case, one can easily che
geometrically that the diffractive orbit coincides with a cla
sical trajectory if the anglesu andu8 lie on one of the lines
of @0,g#2 shown on Fig. 1. This can also be checked al
braically from formula~3!: each of the four lines of Fig. 1
corresponds to divergence of one of the coefficientsDs,h .

For corner diffraction, after the work of Pauli@21#, sev-
eral uniform approximations have been derived which c
rect the drawbacks of Eq.~2!. We recall one of these in
Appendix A 1. In this paper we use a simple approximat
to the exact formula valid only near the optical boundary. L
us consider that the trajectory lies near the optical bound
defined by one of the four couples~s,h!; then our approxi-
mation for the total Green function~semiclassical plus dif-
fractive! reads

G1~rW,rW8,E!522E
0

1`

dsG0~sW,rW8,E!nW s•¹W sWG0~rW,sW,E!

1G0~rW0 ,rW8,E!Dreg~u,u8!G0~rW,rW0 ,E!, ~5!

where the locus of pointssW is an arbitrary half-line separatin
rW8 andrW and issuing fromrW0 ~at s50); nW s is a vector normal
to thes axis and oriented towardrW @see Fig. 2~a!#. Dreg is the
nondivergent part of the diffraction coefficient~i.e., the sum
of all the Ds,h’s but the divergent one!. The diffractive
Green function@analogous to Eq.~2!# is defined from Eq.~5!
by the differenceG1d5G12G0 .

Equation~5! is a simple Kirchhoff approximation to th
Green function~with Keller-type corrections! which is to be
used within the semiclassical approximation~this is illus-
trated at length in the following sections!. We show in Ap-
pendix A how it can be derived starting from a more elab
rate approach. Equation~5! is exact in the limit that the
classical path fromrW8 to rW lies on an optical boundary. It is
designed to remedy the divergence of the geometrical the
of diffraction and it is not a uniform approximation to th

FIG. 1. Solid lines: location of the anglesu and u8 for which
expression~3! for D diverges wheng53p/8. Near each line are
indicated the valuess andh of the divergentDs,h . Dashed lines:
location of the anglesu and u8 for which expression~3! for D is
zero. These correspond tou (or u8)50 org.
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-
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Green function: far from the optical boundary characteriz
by s andh, it yields a result basically of the form of Eq.~2!,
without, however, the correct form of the coefficientDs,h
~this is in accordance with the known aspects of the Kirc
hoff approximation; see, e.g.,@18#!. This should not be con-
sidered as a limitation of the approach: we show bel
~Secs. VI and VII! that it is a simple matter to make th
result derived from Eq.~5! uniform when necessary. Com
pared to the uniform expression~A1!, Eq. ~5! has the impor-
tant advantage of being easily extended to treat multiple
fraction near the optical boundary@Eq. ~9!#. In the following
sections approximation~5! will allow us to incorporate non-
standard diffractive contributions in the trace formula.

Formula~5! can be extended to treat the case of diffra
tion by a flux line. This problem has important similaritie
with corner diffraction. In some respects it can be conside
as simpler, because for an initial pointrW8 the diffractive point
~the Aharonov-Bohm flux line! is associated with a single
diffractive boundary: the forward direction. This is the re
son why formula~6! below—which is the analog of Eq
~5!—comprises only a Kirchhoff contribution and no Kelle
like correction.

We consider a particle of chargeq and a flux line located
on point rW0 such that the magnetic field isBW 5Fd(rW2rW0) ẑ.
The only relevant parameter is the ratioa of the fluxF with
the quantum of flux,a5qF/(2p\c), and one can restric
oneself to 0,a,1. The Kirchhoff approximation for the
total Green function is~see the derivation in Appendix A 2!

G1~rW,rW8,E!522E
2`

1`

dsG0~sW,rW8,E!

3nW s•¹W sWG0~rW,sW,E!eiaDf~s!, ~6!

where the locus of pointssW is an arbitrary line separatingrW8
and rW and going throughrW0 ~at s50), and Df(s) is the
angle covered by the path going fromrW8 to sW and then torW.
If df is the angle betweenrW2rW0 andrW02rW8 ~i.e., the depar-
ture from the optical boundary! then Df(s)5df
2p sgn(s). Of course, in this procedure, the orientation

FIG. 2. Graphical representation of the notations of Eqs.~5! and
~6!. ~a! refers to corner diffraction and~b! to flux-line diffraction.rW0

is the diffractive point. The dashed line issuing fromrW0 is the opti-
cal boundary on which the geometrical theory of diffraction fails.
~a! the integration alongs is stopped on the apex atrW0 . This is not
the case in~b!. There, however, near the optical boundary,udfu
!p and the integrand of Eq.~6! contributes with a phase that i
approximately2ap if s.0 andap if s,0.
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the axis (rW0 ,s) is not arbitrary. Our choice ofDf(s) corre-
sponds to an orientation such as that presented in Fig. 2~b!.

Equation ~6! has a simple physical interpretation: th
phase accumulated by a trajectory depends on the sen
rotation of the circuit around the flux line. Like Eq.~5!, it is
only valid near the optical boundary, but it is easily gener
ized to multiple diffraction in the forward direction, i.e.,
allows us to treat the problem of multiple forward Aharono
Bohm diffusion. We illustrate this property in Sec. VIII.

III. A DIFFRACTIVE ORBIT ON THE FRONTIER
OF A FAMILY

A typical occurrence of diffractive orbits is at the boun
ary of a family of trajectories. The width of a beam of cla
sical orbits is limited by a singularity of the frontier of th
billiard. Such a case is illustrated by the example shown
Fig. 3. Note that this is not the only possible type of boun
ary of a family. It may happen that the family stops on
nondiffractive corner~a corner with opening angle of th
typep/n with nPN). This is the case for one of the boun
aries of the family displayed in Fig. 3. The frontier of th
family may also be one of the frontiers of the billiard; this
illustrated in Fig. 7 below. We will also study below~Sec.
IV ! a mixed case where the boundary of the family on
partly coincides with the frontier of the billiard.

In Fig. 3 we have represented the family by one of
members~upper left triangle!. The boundary of the family is
shown in the lower left triangle. Also, to the right of the plo
instead of representing the orbit by a series of segm
bouncing off the frontier of the billiard, we have represent
it by a unique straight segment where the reflection on e
edge is replaced by continuing the path into a reflection
the enclosure. This procedure is called ‘‘unfolding the traj
tory.’’

The diffractive orbit on the boundary of a family appea
as a correction to the contribution of the family and of
repetitions. Its contribution to the trace formula cannot
evaluated from the geometrical theory of diffraction, beca
its coefficientD is infinite. However, since the diffractive
orbit is exactly on an optical boundary, it can be describ
by using Eq.~5!. The contribution of an orbit to the leve
density is evaluated in the framework of a semiclassical
riodic expansion~see, e.g., Refs.@1#, @2#!; the level density

FIG. 3. Representation of a periodic orbit which is part of
family in the triangle (p/2,p/8,3p/8) ~upper left triangle! and of
the diffractive orbit which is on the boundary of the family~lower
left triangle!. The plot to the right represents the family after u
folding. The area occupied by the family is shaded and the diffr
tive point on its boundary is marked with a black dot~as in the
lower left triangle!. The diffractive orbit in the lower left triangle
appears as the right boundary of the unfolded trajectory.
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being related to the Green function through the tracer(E)
52(1/p)Im *d2rG(rW,rW,E1i01), the Green function is ap
proximated in the vicinity of a periodic orbit@here it will be
done by using Eq.~5! but other approximations will be use
below# and the trace integral is evaluated within a sad
phase approximation near the saddle corresponding to
periodic orbit considered.

The diffractive correction to the first iterate of a family
very simple: the trace of the first diffractive contribution
the Kirchhoff Green function in Eq.~5! is zero and only the
term with a regular Keller-type diffraction appears. Hence
the family has a length l and occupies on the billiard an a
A, then its total contribution~semiclassical plus diffractive!
to r(E) is simply

r~E!← A
2p

1

A2pkl
cos~kl2p/4!

1
l

2pk

Dreg

A8pkl
cos~kl2ndp/223p/4!. ~7!

The first part of the rhs of Eq.~7! is the usual contribution
of a family of periodic orbits in two dimensions. The seco
part is of the form of Eq.~4!: it comes from the regular
Keller contribution in Eq.~5!.

In order to test the validity of our approach, we ha
compared our analytical results with the spectrum de
mined numerically in a triangular billiard with angle
(p/2,p/8,3p/8). Note that this is not a generic polygon
billiard: its classical mechanics is pseudointegrable and,
thermore, it belongs to the set of ‘‘Veech billiards’’@22#. We
chose these systems because they simplify the geome
computations: Veech billiards have the amusing prope
that there exists only a finite number of possible areas oc
pied by a family of periodic orbits. In the triangle we stud
one can show that there are only three possible areasA
51/&, (&11)/2, or (&21)/2 ~we take the hypotenuse o
the triangle as the unit length!. We emphasize, however, tha
the formulas obtained in the present paper are quite gen

The numerical spectrum was obtained by expanding
wave function near the anglep/8 in ‘‘partial waves,’’ which
are Bessel functions times a sinusoidal function of the an
c(r ,u)5(m51

mmaxJ8m(kr)sin(8mu). This automatically fulfills
the Dirichlet conditions on the two faces of the billiard th
meet at the corner with opening anglep/8. The boundary
condition on the remaining face is enforced in a man
identical to the improved point matching method presen
in @23#. This results in a secular equation whose solutions
the eigenlevels of the system. We have tested the nume
stability of our procedure by varying the numbermmax of
partial waves. We have computed the first 20 000 eigenle
and we have checked that they were determined with
accuracy of the order of 1/1000 of the mean level spacin

The agreement with the numerically determined spectr
can be checked by studying the regularized Fourier tra
form on the level density:

-
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F~x!5A b

p~Dk!2 E
kmin

kmax
dEr~E!eikxe2b@~k2kav!/Dk#2

.

~8!

In Eq. ~8! kmin andkmax are the lower and upper bound
aries of a window of the spectrum~typically kmin is the first
eigenlevel, andkmax the 5000th one!; kav5(kmax1kmin)/2 and
Dk5(kmax2kmin)/2. b is a dimensionless regularizing pa
rameter~typically b55). If kmin50, kmax→1`, andb50,
F(x) is a series of delta peaks centered on the lengths o
classical and diffractive periodic orbits.

A comparison of the result of Eq.~7! with the numerical
data is shown in Fig. 4 for the family of Fig. 3. The agre
ment is excellent. Note that in this figure~and in the follow-
ing figures of the same type! we compare different estimate
for uF(x)u, but we also plot themodulus of the difference
between the numericalF(x) and our analytical formula
which is a strong test of accuracy. Note also that to av
spurious sources of discrepancies with the numerical re
we compute the integral~8! numerically even when we us
an analytical expression forr(E) @this corresponds to wha
we still call the analyticalF(x)].

We now concentrate on the second iterate of the fam
Its contribution is less trivial than Eq.~7! and more generic
hence we will present the computation in some detail. O
has here to consider double diffraction near the opt
boundary. Equation~5! is generalized to double~and in a
similar fashion to multiple! diffraction:

FIG. 4. Comparison of the numericaluF(x)u ~dashed line! with
the result from Eq.~7! ~solid line!. The two curves cannot be dis
tinguished; this will also occur in all the following plots of the sam
type. We have taken hereb55, kmin andkmax being respectively the
first and the 5000th level. The peak corresponds to the length o
family shown in Fig. 3,l 5& ~in all the text, the hypotenuse of th
triangle is chosen as the unit length!. The modulus of the difference
between the numerical and analytical values ofF(x) is also plotted
in this figure, but is barely seen on this scale~its largest value is
531024). The usual semiclassical contribution@with only the first
term of the rhs of Eq.~7!# gives instead an error of about 1022.
he

-

d
lt

.

e
l

G2~rW,rW8,E!522E
0

1`

dsG1~sW,rW8,E!nW s•¹W sWG0~rW,sW,E!

1G1~rW0 ,rW8,E!Dreg~u,u8!G0~rW,rW0 ,E!, ~9!

whereG2 is the total~semiclassical plus diffractive! Green
function.

When unfolding the trajectory~as was done, for instance
in Fig. 3! near the diffractive boundary of the family, one
led to consider contributions such as those presented in
5. In that figure the position of a pointrW in the vicinity of the
diffractive trajectory on the boundary of the family is define
by coordinatesx andy. x is a coordinate along the orbit (0
<x< l ) andy is a transverse coordinate.

The leading order contribution ofG2 to the level density
is the usual contribution of the second repetition of a fam
of periodic orbit. It is obtained by simply making the ap
proximationG2'G0 and it is of the form

r~E!← A
2p

1

A2pkL
cos~kL2p/4!. ~10!

Here and in the rest of this sectionL5nl is the total
length of the trajectory, l is the primitive length, andn is the
repetition number~heren52).

The diffractive corrections to Eq.~10! are included into
r(E) through the following trace:

r~E!←2
1

p
Im E d2r @G2~rW,rW,E!2G0~rW,rW,E!#. ~11!

From the expression~9! of G2 one obtains the first orde
contribution toG2(rW,rW,E)2G0(rW,rW,E) in the form

he

FIG. 5. Schematic representation of the different contributio
to the Green functionG2 near a diffractive periodic orbit on the
boundary of the second iterate of a family. In this plot~and in the
following plots of the same type! the trajectory is represented afte
unfolding and the shaded areas are zones forbidden by clas
mechanics. The path represented by a solid line going fromrW to sW1 ,
sW2 , andrW contributes to the leading Kirchoff term in the first inte
gral of the rhs of Eq.~9!. The dashed path contributes at next ord
~it has one ‘‘Keller bounce’’ atrW0 with diffraction coefficientDreg).
Its contribution to the Green function corresponds to the sec
term in Eq.~14!.
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AkeikL13ip/4

2~2p!3/2Axl~ l 2x!

3H E
0

1`

ds1E
0

1`

ds2 expF i
k

2 S ~s12y!2

x
1

~s22s1!2

l
1

~y2s2!2

l 2x D G
2Q~y!E

2`

1`

ds1E
2`

1`

ds2 expF i
k

2 S ~s12y!2

x
1
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l
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This contribution corresponds to the main Kirchhoff ter
in Eq. ~9! @i.e., to the solid path fromrW to rW in Fig. ~5!# from
which the semiclassical contribution has been removed w
it exists, i.e., wheny.0 @this semiclassical contribution ha
been written as the double sum*2`

1`ds1*2`
1`ds2 in ~12!#. In

the expression~12! one has made the hypothesisuy2s1u,
us12s2u, uy2s2u!x,l . Thus, for instance,usW22sW1u. l
1(s2 /s1)2/(2l ). The above expression has to be inser
into Eq. ~11!, i.e., integrated transverse to the orbit~alongy!
and longitudinally~alongx!. This is done in Appendix B and
the resulting contribution to the level density is

r~E!←2
l

8p2k
cos~kL!. ~13!

This shows that the main diffractive correction to the co
tribution of the second iterate of a family is of order of th
of an isolated periodic orbit. Such nongeneric contributio
in the vicinity of a family have already been studied in
slightly different context in Ref.@16#.

For a better agreement with numerical data, one need
include also the next order correction to Eq.~13! in the level
density. This is done by including mixed Kirchhoff-Kelle
contributions in the Green function~9!, such as described b
the path represented in Fig. 5 by a dashed line. Along
path, the first diffraction atrW0 is of Keller type~involving a
coefficientDreg), and the second one of Kirchhoff type~with
an integral alongs2). One has two contributions, one fo
each possible location of Keller diffraction@a single one be-
ing shown in Fig.~5!#. The relevant contributions toG2 are
now of the form

DregeikL1 ip/42 indp/2

4Ak~2p!3/2Axl~ l 2x!

3H E
0

1`

ds1 expF i
k

2 S ~s12y!2

x
1

s1
2

l
1

y2

l 2xD G
1E

0

1`

ds2 expF i
k

2 S y2

x
1

s2
2

l
1

~y2s2!2

l 2x D G J .

~14!
The integral of this expression is computed in Appen

B @Eq. ~B10!#. It yields the next correction to Eq.~13! which
is of the form

r~E!← l

2pk

Dreg

A8pkL
cos~kL2ndp/223p/4!. ~15!
n

d

-

s

to

at

In Eq. ~15! nd is the Maslov index of the orbit corre
sponding to the dashed path in Fig. 5. Ifs is the relevant
index near the optical boundary considered@i.e., the one for
which Ds,h in Eq. ~3! diverges#, one can show tha
exp$2indp/2%5s.

There is a last correction to Eq.~15!, purely of Keller
type, giving a contribution of orderO(k22), but the contri-
butions~10!, ~13!, and~15! already give a very good descrip
tion of the Fourier transform of the spectrum. This can
checked in Fig. 6 for the second iterate of the family dra
in Fig. 3.

A simple remark is in order here: Eq.~10! is actually the
first term of an expansion ink21 ~or equivalently in\!. The
magnitude of the next correction can be estimated by
following argument: the exact Green function in an infin
wedge can be expressed in terms of a Hankel function~with
diffractive corrections unimportant for the present discu

FIG. 6. Same as Fig. 4 for the second iterate of the family. T
solid curve~labeled ‘‘S. Cl.1 corrections’’! corresponds to Eqs
~10!, ~13! and ~15!. In this plot and in the following plots of the
same type, we represent with a thin dashed line~denoted ‘‘S. Cl.’’!
the usual semiclassical result without diffractive corrections@which
corresponds here to Eq.~10! alone#. The modulus of the difference
between the numerical and analyticalF(x) is also plotted in this
figure, but is barely seen on this scale; its largest value is
31024, whereas the usual semiclassical approach gives an err
1.431022.
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sion! and this yields instead of Eq.~10! something like

r~E!← A
4p

J0~kL!

'
A
2p

1

A2pkL
cos~kL2p/4!

1
l

2pk

A /~8L2!

A8pkL
sin~kL2p/4!1¯ . ~16!

Equation~16! is the exact contribution of a family in a
integrable polygon. Therefore there are nondiffractive c
rections to the leading order~10! of the trace formula which
are of the same order as Eq.~15!. To Dreg in Eq. ~15! one
simply adds a factorO(A /L2) @see the last term of the rhs o
Eq. ~16!#. In all our numerical checks this correction a
peared to be negligible. By comparing the diffractive corre
tions with Eq.~16! one can note that~i! the first diffractive
term ~13! is the leadingA\ correction in the trace formula

FIG. 7. Representation of a family of periodic orbits in the t
angle (p/2,p/8,3p/8) by the technique of unfolding. The famil
has a lengthl 52 cosp/8. Its area is shaded and the diffractive po
on its boundary is marked with black dots.
-

-

and ~ii ! for long orbits~or large repetition number! the term
A/L2 in Eq. ~16! will be dominated byDreg in Eq. ~15!.

The determination of the contribution of the next iterat
of a primitive family of periodic orbits with a diffractive
boundary is patterned on the above derivation. We just s
the results here.

The main contribution is the generic semiclassical one
the form ~10!. The first correction is of a type similar to th
contribution to the trace formula of an isolated periodic orb

r~E!←2
l

pk
Cn cos~kL!, ~17!

where l is the primitive length,n is the repetition number
L5nl, and Cn is a dimensionless parameter given by t
formula Cn5(1/8p)(q51

n21@q(n2q)#21/2. We show how to
compute it in some special cases in Appendix B and in g
eral in Appendix D. Its first values areC150, C2
51/(8p), C351/(4p&),... and it has thelimiting value
C`51/8.

The next correction to Eq.~17! is of the form~15!. This is
proven in special cases in Appendix B@Eqs. ~B10! and
~B11!# and in general in Appendix C.

We have tested the excellent agreement of contributi
~10!, ~17!, and ~15! with the numerical spectrum.We illus
trate this for the fifth iterate of the family shown in Fig. 7
This family is particular in the sense that one of its boun
aries is formed by an isolated orbit which has an ex
bounce compared to the family; it lies along the lower ed
of the triangles in Fig. 7. The contribution of such an isolat
orbit has been known for some time@24,25# and is taken into
account in the comparison with numerical results display
in Fig. 8. The other boundary is a diffractive orbit of the typ
is
can be

g

FIG. 8. Same as Fig. 4 for the fifth iterate of the family shown in Fig. 7 (L.9.239). The analytical result corresponds to Eqs.~10!, ~17!,
and ~15! with n55. The modulus of the difference between the numerical and analyticalF(x) is represented by the shaded area. It
important on the left plot, because of orbits in the vicinity of the peak that are not taken into account. This overlapping of peaks
suppressed by increasingkmax @in order to decrease the width of the peaks inuF(x)u]. This is done on the right plot, which is drawn forkmax

corresponding to the 20 000th level. Then the largest discrepancy with the numerical result is 431024 whereas the error when employin
the usual semiclassical approach is 100 times larger.
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we are interested in. Its contribution to the level density
described by Eqs.~17! and ~15!.

The following diffractive corrections to the contribution
~10!, ~17!, and~15! to thenth iterate of a family correspond
to orbits havingnk Kirchhoff diffractions andng Keller ones,
with nk1ng5n. They yield corrections of orde
O(k2(ng11)/2) compared to the leading term~10!. One can
show that their contribution to the level density is of the fo

r~E!← l

2pk S D reg

A8pkl
D ng

Bn
~ng! cos~kL23ngp/42ndp/2!.

~18!

The Maslov indexnd in Eq. ~18! is related to the indexs
of the optical boundary considered@i.e., the one for which
Ds,h in Eq. ~3! diverges# by exp$2indp/2%5sng, Bn

(ng) is a
dimensionless coefficient.Bn

(1)5n21/2 @in agreement with
Eq. ~15!#, Bn

(2)5(q51
n21q23/2(n2q)21/2, and the general form

is

Bn
~ng!

5(
$qi %

)
i 51

ng

~qi 112qi !
23/2, ~19!

with the conventionqng115n1q1 . The sum is extended

over all possible sets ofng integers$qi%1< i<ng
with 1<q1

,q2,¯,qng
<n.

IV. A DIFFRACTIVE ORBIT ON THE FRONTIER
OF BOTH A FAMILY AND THE BILLIARD

In the previous section we studied the case when a
fractive periodic orbit lies on an optical boundary corr
sponding to the frontier of a family. There is a special co
figuration where such a diffractive orbit lies on two optic
boundaries. From Fig. 1 one sees that two optical bounda
meet only on the edges defining the diffractive corner~when
u or u850 or g!. Hence, in that case part of the diffractiv
trajectory crawls along the frontier of the billiard. This ha
pens, for instance, for the diffractive trajectory on the bou
ary of the family shown in Fig. 9.

Although the diffractive periodic orbit considered boun
the first iterate of a family, it is already doubly diffractive
To incorporate such a configuration into the trace formu
one can still use Eqs.~5! and~9!, but the semiclassical Gree

FIG. 9. Representation of a family of periodic orbits in the t
angle (p/2,p/8,3p/8) by the technique of unfolding. The famil
has a lengthL5(412&)1/2.2.613. Its area is shaded and th
diffractive points on its boundary are marked with black spots. T
boundary of the family partly coincides with the frontier of th
billiard.
s

f-

-

es

-
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function to be incorporated in that formula has two contrib
tions: one from the ‘‘direct’’ path~we call this path ‘‘di-
rect,’’ but it may have bounces that are not shown by
process of unfolding! and one from a path bouncing on th
frontier of the billiard which is also the frontier of the famil
~see Fig. 10!.

In that figure one has represented a configuration whe
point in the vicinity of the diffractive periodic orbit lies
along the part of the boundary of the family which does n
coincide with one frontier of the billiard~we denote byl 1 the
length of this part, and byl 2 the length of the part along a
frontier of the billiard,l 11 l 25L). Then the main Kirchhoff
contribution toG2 is of the form

AkeikL13ip/4

2~2p!3/2Axl2~ l 12x!
H E

0

1`

ds1E
0

1`

ds2

3expF i
k

2 S ~s12y!2

x
1

~s22s1!2

l 2
1

~y2s2!2

l 12x D G
2E

0

1`

ds1E
0

1`

ds2

3expF i
k

2 S ~s12y!2

x
1

~s21s1!2

l 2
1

~y2s2!2

l 12x D G J . ~20!

The second contribution in~20! is obtained from the first
one by the method of images. It corresponds in Fig. 10 to
path going fromsW1 to sW2 with one bounce on the frontier o
the billiard. If the pointrW of Fig. 10 lies along the part of the
orbit coinciding with the frontier of the billiard, then th
main Kirchhoff contribution toG2 is a sum of four terms
~this is detailed in Appendix B, cf. Fig. 24!. We will not give
the explicit computation here~see Appendix B!, but after

e

FIG. 10. Schematic representation of the different contributio
to the Green function near a diffractive periodic orbit on the bou
ary of a family. The boundary of the family coincides with that
the billiard along a segment of lengthl 2 . In this case, the main
Kirchhoff term in Eq.~9! contains two paths, which are represent
by solid lines in the figure.
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transverse integration alongy the final result for the first
diffractive correction to the contribution of a family such
the one presented in Fig. 9 is

r~E!←2
1

4p2k SAl 1l 21L arctanAl 2

l 1
D cos~kL!. ~21!

The next diffractive corrections to Eq.~21! are of the
order of a doubly diffractive Keller correction, and we do n
include them in our description of the family. As seen in F
11, contributions~10! and~21! already give an excellent de
scription of the Fourier transform of the spectrum in the
cinity of the length of the family drawn in Fig. 9.

V. A DIFFRACTIVE ORBIT JUMPING FROM THE
BOUNDARY OF ONE FAMILY TO THE BOUNDARY

OF ANOTHER

In the billiard we consider, an interesting combination
orbits occurs. It is formed by the gathering of two diffractiv
orbits, each being on the boundary of a family, and where
total diffractive orbit is on the optical boundary, although t
two families have no overlap. An example of such a cas
given in Fig. 12.

As seen in Fig. 12, although the diffractive orbit lies o
the optical boundary, there is no allowed classical traject
nearby. This type of orbit might be a particularity of Vee
billiards, but it is nevertheless interesting to describe its c
tribution to the level density. The schematic representatio
the neighborhood of the orbit is displayed in Fig. 13.

In the cases we have studied, the problem is complica
by the fact that one of the families considered has a bound
that partially coincides with the frontier of the billiard, i.e.,
of the type studied in the previous section. Hence, there
three relevant lengths along the orbit we consider:l 1 is the

FIG. 11. Comparison of the numerical evaluation ofF(x) with
the result of Eqs.~10! and ~21! for x close to the length of the
family shown in Fig. 9. The modulus of the difference is also pl
ted on the figure, but cannot be seen~it is lower than 1023).
t
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-

f

e
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length of one of the families andl 21 l 3 is the length of the
second one,l 2 being the length that corresponds to the p
of the boundary of the second family lying along the front
of the billiard.

The diffractive Green function to be considered here is
the the type previously studied in Sec. IV, with an addition
diffractive bounce. Hence, one defines a Green functionG3
connected toG2 in the same manner asG2 is connected to
G1 in Eq. ~9!. Due to the possible bounce along the front
of the billiard that coincides with the boundary of the famil
the semiclassical Green function to be incorporated in
formula has several contributions. This is illustrated in F
13 where there are two possible paths for going fromsW1 to sW2
~such a contribution was already present in Fig. 10!. If the
initial point rW were lying near the frontier of the billiard~next
to the part of the family of lengthl 2), one would have four
different paths: two for going fromrW to sW2 and two for going
from sW1 to rW. After transverse integration of these four co
tributions~along the variabley!, one can verify that they lead
to the same contributions as the ones displayed in Fig.
hence we will present here only the computation in the s
pler case shown in Fig. 13.

For the configuration of Fig. 13, the Kirchhoff term in th
expression ofG3 reads

-

FIG. 12. Representation of a diffractive orbit that jumps fro
the boundary of one family to the boundary of another. The a
occupied by each family is shaded. The first family transports
angleA to positionB, and the second one transports triangleB to
positionC. The diffractive orbit is the thick solid line with its three
diffractive points marked by black dots. It has a lengthLd5(10
17&)1/2.4.461.

FIG. 13. Schematic representation of the contributions to
Green function in the vicinity of a diffractive orbit that jumps from
the boundary of one family to the boundary of another~such as the
one shown in Fig. 12!. l 1 corresponds to the length of the famil
that maps triangleB onto triangleC in Fig. 12 andl 21 l 3 to the
length of the family that maps triangleA onto B. For this last fam-
ily, l 2 is the length of the part of its boundary that lies along t
frontier of the billiard.
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~2ik !3D3~x,l 1 ,l 2 ,l 3!H E
0

1`

ds1E
0

1`

ds2E
2`

0

ds3

3expF i
k

2 S ~s12y!2

x
1

~s22s1!2

l 2

1
~s32s2!2

l 3
1

~y2s3!2

l 12x D G2E
0

1`

ds1E
0

1`

ds2E
2`

0

ds3

3expF i
k

2 S ~s12y!2

x
1

~s21s1!2

l 2
1

~s32s2!2

l 3

1
~y2s3!2

l 12x D G J , ~22!

where the notationDn is defined in Appendix B. In~22!, the
second term is obtained from the first one by the method
images. It corresponds to a path going fromsW1 to sW2 with a
specular bounce off the frontier of the billiard~cf. Fig. 13!.
Note that there is no classical path contributing to~22!: it is
clear from Fig. 13 that there exists no classical traject
from rW to rW. The transverse and longitudinal integrations a
done in a manner similar to that shown in Appendix B f
the similar case of an orbit whose boundary coincides w
the frontier of the billiard~cf. Sec. IV!. The contribution of
the diffractive orbit to the level density is

r~E!←2
Ld

8p2k
cos~kLd!

3S arctanA l 2

l 31 l 1
2arctanAl 31 l 2

l 1

1arctanA l 3

l 11 l 2
2

Al 3~ l 11 l 2!

Ld
1

Al 2~ l 31 l 1!

Ld

2
Al 1~ l 21 l 3!

Ld
D , ~23!

whereLd5 l 11 l 21 l 3 is the length of the diffractive orbit.
In order to have a good description of the contribution

the orbit we are considering here, one needs~as in Sec. III! to
incorporate next order corrections, i.e., mixed Kirchho
Keller terms. This corresponds in Fig. 13 to the path w
one Keller bounce on the apex which is not on the frontier
the billiard ~dashed line! ~Keller bounces on the other apex
contribute to higher order!. We do not detail the computatio
here and just present the resulting correction to Eq.~23!. It is
of the form

r~E!← Ld

2p2k

Dreg

A8pkLd

arctanA l 3l 1

l 2Ld

3cos~kLd2ndp/223p/4!. ~24!

As one can see in Fig. 14, Eqs.~23! and ~24! give an
excellent account of the contribution to the level density
the orbit shown in Fig. 12.

VI. A DIFFRACTIVE ORBIT BOUNCING BETWEEN
THE UPPER AND LOWER BOUNDARIES OF A FAMILY

Up to now we have considered only diffractive orbits l
ing exactly on the optical boundary. Other types of diffra
f

y
e

h

f

f

f

-

tive orbit occur, which do not stand right on the optic
boundary, but close enough to prevent their description
the geometrical theory of diffraction. Such an orbit is rep
sented in Fig. 15.

In this figure, the upper left triangle and the lower rig
one are connected by a family. For legibility we do not re
resent it and its area. We represent only the diffractive o
on its boundary~the straight line between two black dots!.
This orbit is singly diffractive and its contribution correc
the one of the family as in Eq.~7!. There is a diffractive orbit
nearby, not exactly on the optical boundary, but very close
being part of the family: it starts and ends at the same p
as the diffractive orbit on the boundary of the family, but
has an extra diffractive bounce in between~see Fig. 15!. This
is the type of orbit we aim to describe in this section.
diffraction coefficient does not exactly diverge, but one

FIG. 14. Same as Fig. 4 for the orbits shown in Fig. 12. T
solid line corresponds to the results of Eqs.~23! and ~24!. The
shaded area barely seen at the bottom corresponds to the mo
of the difference between the numerical and the analytical res
~which is less than 231024). Note that the standard semiclassic
approach completely misses this peak inuF(x)u.

FIG. 15. A diffractive orbit on the boundary of a family~straight
line between two black dots!. The family is not represented, but
connects the upper left triangle to the lower right one. The ot
orbit shown is typical of those studied in this section. It is a dou
diffractive orbit close to the family, represented by the segmen
line between three black dots.
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the contributionsDs,h of Eq. ~3! is large and does not allow
a proper description of the diffractive Green function
means of Eq.~2!. For simplicity we will denote this part a
the ‘‘divergent part’’ ~the remaining being the ‘‘regula
part’’!.

The configuration we just described is of the type rep
sented schematically in Fig. 16. The projection of the up
diffractive corner onto the family separates it into two pa
of lengthsl 1 and l 2( l 11 l 25L). Typically, the upper wedge
represented in that figure is the upper boundary of the fam
In that case, ifz denotes the distance from the upper wed
to the lower extent of the family, the area occupied by
family is simply A5zL ~L being the length of the family
see Fig. 16!.

In this configuration the leading term in the Green fun
tion is obtained from the explicit expression ofG2 and reads

G2~rW,rW,E!

'
AkeikL13ip/4

2~2p!3/2Axl2~ l 12x!
E

2`

z

ds1E
0

1`

ds2

3expF i
k

2 S ~s12y!2

x
1

~s22s1!2

l 2
1

~y2s2!2

l 12x D G .
~25!

The above expression integrated transversely~along y!
and longitudinally~along x! gives the contribution of the
family and of its corrections to the level density. The res
reads

2
1

p
ImE d2rG2~rW,rW,E!

'
A
2p

1

A2pkL
cos~kL2p/4!1

Al 1l 2

4p2k
$cos~kLd!

22ApkD Re@eikLd2 ip/4K~AkD!#% ~26!

~the relevant integrals are given in Appendix B!.

FIG. 16. Graphical representation of different diffractive cont
butions for a family limited by two opposite wedges. The leadi
term in Eq.~9! corresponds to the solid line. The dashed path is
of the next order corrections, involving one Keller bounce~with a
coefficientDreg! on one of the apexes.z is the distance between th
two apexes measured transverse to the direction of the family.
-
r

y.
e
e

-

t

In Eq. ~26!, K is the modified Fresnel function defined
Appendix A. We have denoted byLd the length of the dou-
bly diffractive orbit going from the upper corner to the low
one (Ld5Al 1

21z21Al 2
21z2), by D the length difference

Ld2L, and have made the approximationD.z2L/(2l 1l 2).
The first term of the rhs of Eq.~26! is the usual contribution
of a family. The second is a diffractive correction.

Two remarks are in order here. First, it may happen t
the upper corner of Fig. 16 does not provide the up
boundary of the family because the family meets anot
nondiffractive boundary between the two diffractive corne
This is the case presented in Fig. 15. The family does
occupy all the width between the two diffractive corners:
meets first a nondiffractivep/2 corner. In this case formula
~26! remains valid, butA5zL/2. Secondly, it is interesting
to check the behavior of Eq.~26! when the two wedges ar
far apart, i.e., in the limitAkD@1. By using the asymptotic
expansion~A3! of the modified Fresnel function one obtain

2
1

p
ImE d2rG2~rW,rW,E!

'
AkD@1

A
2p

1

A2pkL
cos~kL2p/4!

1
Ld

2pk
S 2l 1l 2

LdD
D 1

8pkAl 1l 2

cos~kLd23p/2!. ~27!

In Eq. ~27!, to the usual contribution of a family is adde
a term that can be matched with a contribution such as
~4! with two diffractive bounces, provided some approxim
tions are made. The term 2l 1l 2 /(LdD) stands where one
would expect a product of two coefficientsD. Indeed, one
can show that this term corresponds to the product of the
divergent partsDs,h near the optical boundary. But it is no
of the form~3! which is the only one acceptable in the lim
where Eq.~27! has been written~i.e., far from the optical
boundary!. This is a well known drawback of Kirchhoff’s
approximation already discussed in Sec. II B. It can be cu
relatively easily: if the optical boundary close to the diffra
tive orbit is characterized by the indicess andh, one has to
multiply the second term of the rhs of Eq.~26! by the factor
(uas,h

d uDs,h
d )2/2 and to expressD as uas,h

d u2l 1l 2 /Ld ~instead
of Ld2L). The termas,h appearing in these expressions
defined in Eq.~A4!. The upper indexd is meant to recall that
as,h andDs,h have to be evaluated on the diffractive pe
odic orbit of lengthLd . This procedure allows recovery o
the correct limit in Eq.~27!. Moreover, it does not affect Eq
~26! when the diffractive orbit is close to the family~i.e., in
the limit AkD!1! since in this limit (uas,h

d uDs,h
d )2/2.1 and

D.uas,h
d u2l 1l 2 /Ld .

Equation~26! is not the final contribution from the con
figuration represented in Fig. 16. This is clear from Eq.~27!:
far from the optical boundary the asymptotic evaluation
Eq. ~26! allows recovery only of the divergent part of th
diffraction coefficient. Hence one has to include other term
of mixed type Keller-Kirchhoff, as already encountered

e
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Secs. III and V. These involve the regular partDreg of the
diffraction coefficients. We must be careful though, that
have now two different diffraction coefficients: one for th
orbit along the boundary of the family~we denote it byDreg

f !
and another one for the orbit bouncing from the lower wed
to the upper one~we denote it byDreg

d ). The remaining con-
tribution tor(E) of the configuration considered in this se
tion is ~we do not detail the derivation!

r~E!← L

2pk

D reg
f

A8pkL
cos~kL2ndp/223p/4!

1
L

pk

D reg
d

A8pkL
Re@eikLd1 ip/4K~AkD!#

1
Ld

2pk

~D reg
d !2

8pkAl 1l 2

cos~kLd23p/2!. ~28!

The term involving a modified Fresnel function in th
above expression can be made uniform by a procedure s
lar to the one devised for Eq.~26!. Note also that we have
added in Eq.~28! a doubly diffractive term of purely Keller
type ~last term of the rhs!. It is a small correction and suc
terms were neglected in the preceding sections. We ke
here for consistency because far from the optical bounda
is of same order as the second term of the rhs of Eq.~26!.

The agreement with the numerical spectrum is excel
here also, as shown by Fig. 17. Note that the geometr
theory of diffraction—although yielding a nondiverge
result—is completely inadequate in this case. It amounts h
to treating the isolated diffractive orbit as truly isolated fro
the family; hence to describing the family of periodic orb
in the usual way@i.e., using Eq.~10!# and including a cor-
rection of type~4! describing the contribution of the doubl
diffractive orbit bouncing between the upper and low
boundaries of the family. This procedure gives an error
9.431022 in Fig. 17.

VII. A DIFFRACTIVE ORBIT NEAR AN ISOLATED ONE

In this section we will study, as in the previous one,
diffractive orbit standing not exactly on the optical bounda
but close to an allowed periodic orbit. Here we consider
case that the nearby orbit is an isolated one~and not part of
a family as in the previous section!. Such a configuration ha
already been studied in Ref.@17#, and we will here rederive
the result in a simpler manner~but with less generality!.

A typical occurrence of the situation we are interested
is shown in Fig. 18. The isolated orbit we consider is t
third iterate of the shortest classical periodic orbit of t
system. It has a lengthL53/&.2.121. The nearby singly
diffractive orbit has a lengthLd5(62&)1/2.2.141.

The different contributions to the Green functionG1 are
illustrated in Fig. 19. Note that for the phase-space coo
nate transverse to the direction of an orbit, a bounce o
straight segment leads to an inversion. Hence, in a polyg
enclosure, the transverse mapping near a periodic orb
either an inversion~for an odd number of bounces! and the
orbit is then isolated, or the identity~for an even number o
bounces! and the orbit is then part of a family. This is th
e
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reason for the inversion in Fig. 19 of pointrW with respect to
the axis of the isolated periodic orbit after the process
unfolding. In the figure,z is the distance from the diffractive
apex to the periodic orbit.

In the case of interest here, the Kirchhoff part of the to
Green functionG1 is @from Eq. ~5! and Fig. 19#

2
eikL2 inp/2

4pAx~L2x!
E

0

1`

ds1

3expF i
k

2 S ~y1z2s1!2

x
1

~z2y2s1!2

L2x D G , ~29!

where n is the Maslov index of the isolated orb
@exp(inp/2)521#. If nd is that of the diffractive orbit ands
characterizes the nearby optical boundary, one

FIG. 17. Same as Fig. 4 for the orbits shown in Fig. 15. T
solid line corresponds to Eqs.~26! and ~28!. Here one hasL5(1
1&)A6.5.9136 and Ld5(1013&)1/21(62&)1/2.5.9154.
The shaded area hardly seen at the bottom of the plot correspon
the modulus of the difference between the numerical and the
lytical results~which is less than 1.431023). The pure semiclassi-
cal estimate@Eq. ~10!# gives an error of 4.631022. Taking into
account only the diffractive periodic orbit standing exactly on t
boundary of the family@as in Eq.~7!# gives an even larger erro
(5.331022).

FIG. 18. A diffractive orbit ~straight line between two black
points! near an isolated orbit~straight line connecting two corner
with opening anglep/2!.
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exp(indp/2)5s exp(inp/2). OnceG0 has been removed, th
above expression yields—after transverse and longitud
integration—the main contribution of the diffractive orbit
the level density. There is also a corrective term contain
the regular part of the diffraction coefficient. Altogether o
obtains the following contribution:

r~E!← 2L

4pk
Re@eikLd2 inp/2K~AkD!#

1
Ld

2pk

Dreg

A8pkLd

cos~kLd2ndp/223p/4!, ~30!

where D5Ld2L.2z2/L. As in the previous section, w
have used a representation of the Green function base
Kirchhoff’s approximation which does not yield a uniform
formula: Eq.~30! does not permit recovery of the result
the geometrical theory of diffraction far from the optic
boundary, i.e., when the isolated and diffractive orbits are
apart. As in Sec. VI, one can easily remedy this deficiency
the optical boundary to which the diffractive orbit is close
characterized by the indicess andh, one multiplies the first
term of the rhs of Eq.~30! by s(Ld /L)uas,huDs,h /& and
replacesAD in the argument of the modified Fresnel functio
by uas,huALd/2. This procedure does not affect Eq.~30! in
the limit that the diffractive and isolated periodic orbits a
close and it allows recovery of the result of the geometri
theory of diffraction when these two orbits are well sep
rated.

The agreement of formula~30! with the numerical result
is very good, as shown in Fig. 20. Note that the geometr
theory of diffraction is not totally inadequate here~as it was
in the previous section!. It gives an error only four times
larger than our approach. The reason is that the classica
diffractive orbits considered here are not very close to e
other. Of course, the distance between two orbits mus
measured relatively to the wavelength. As a result the ac
racy of the geometrical theory of diffraction depends on
window of the spectrum chosen for evaluatingF(x). For
instance, evaluatingF(x) keeping only the first 500 level

FIG. 19. In this figure the isolated periodic orbit connects
two open circles. A nearby path fromrW to rW is represented. There i
an inversion along the periodic orbit for the transverse coordinay
~see the text!. The diffractive periodic orbit goes from one ope
circle to the apex atrW0 and to the other open circle. It has a leng
Ld.L12z2/L.
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~instead of the first 5000 levels as in Fig. 20! gives for the
geometrical theory of diffraction an error 10 times larg
than in our approach.

VIII. A RECTANGULAR BILLIARD WITH A FLUX LINE

In this section we depart from the previous exampl
which treat corner diffraction, and consider instead diffra
tion by a flux line. We consider a rectangular billiard~with
sides of lengtha andb! with a flux line located at pointrW0
inside the billiard@cf. Fig. 21~a!#.

We will not restart here a detailed study of a large num
of different cases of diffraction in the system~as was done in
Secs. II–VII for a triangular billiard!; first, because
Aharonov-Bohm diffraction is in a sense simpler than corn
diffraction and leads to fewer exceptional cases and sec
because we chose this example merely to illustrate the fl
ibility of Kirchhoff’s approach devised in Sec. II. We wil
show that Eq.~6! permits us to tackle the problem of mu
tiple forward Aharonov-Bohm scattering.

This problem is encountered, for instance, when evalu
ing the contribution to the trace formula of the two familie
drawn in Fig. 21~a!. For each of these families the period
orbit that encounters the pointrW0 twice on its way gives a
doubly diffractive contribution. The schematic contributio
to Eq.~6! for a nearby closed path is illustrated in Fig. 21~b!.
In this figure there is a reflection on the frontier of the b
liard between the two flux lines and this has the effect
changing the sign ofa on the second flux line@equivalently,
one could keep the samea and change the orientation of th
axis (rW0 ,s2)]. From Eq.~6! the diffractive Green function of
the problem is written as

FIG. 20. Same as Fig. 4 for the orbits shown in Fig. 18. T
solid line corresponds to the contribution of the isolated diffract
orbit ~which has a lengthL53/&.2.121! plus the contribution of
the nearby diffractive orbit@Ld5(62&)1/2.2.141#. The shaded
area at the bottom of the plot corresponds to the modulus of
difference between the numerical and the analytical results~which
is less than 531024). We have used here the uniform version
Eq. ~30! ~see the text!; the use of the plain formula gives a twic
larger discrepancy with the numerical data.
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G2d~rW,rW,E!5
Akei ~kl2p/2!

2pA8pxl2~ l 12x!

3E
2`

1`E
2`

1`

ds1ds2 expF i
k

2 S ~y2s1!2

x

1
~s22s1!2

l 2
1

~y2s2!2

l 12x D G
3$exp@ ipa~sgns12sgns2!#21%, ~31!

where l is the length of the periodic orbit. The flux lin
~encountered twice! separates the orbit into three parts ha
ing lengths denoted byx, l 2 , and l 12x in Eq. ~31! and Fig.
21~b! ( l 11 l 25 l ). Transverse integration yields

E
2`

1`

dyG2d~rW,rW,E!52
Al 1l 2

2pkl
eikl 1 ip/2@cos~2pa!21#,

~32!

and this gives a contribution to the level density of

r~E!←2
Al 1l 2

p2k
sin2~pa!cos~kl !. ~33!

We check in Fig. 22 the very good agreement with t
Fourier transform of the spectrum in the vicinity of th
length of the families drawn in Fig. 21~a!. In this figure, the
numericalF(x) is computed using Eq.~8! with b55, kmin
andkmax being respectively the first and the 1400th level.
the numerical computation we tooka51/2 because in this
case the diffractive effects on the level density are at a m
mum @see Eq.~33!#. The shaded area hardly seen at the b
tom of the plot is the modulus of the difference between
numerical and analyticalF(x). To obtain the excellen
agreement of Fig. 22 we have taken into account class
isolated boundary orbits~of the type already encountered fo
the family drawn in Fig. 7! and simple nearby diffractive
periodic orbits which can be treated within the geometri
theory of diffraction ~the relevant formulas are given i
@26#!. Not taking into account the diffractive contributio
~33! would give a much larger error, which is represented
the thin dashed line.

FIG. 21. ~a! The rectangular billiard and the two bouncing ba
orbits ~the vertical and the horizontal one!. The flux line is located
at point rW0 marked by an open circle.~b! Representation of the
typical contribution to the Green function~6! in the vicinity of the
doubly diffractive orbit belonging to one of the bouncing ball fam
lies. The path going fromrW to sW1 andsW2 and back torW represented
in the figure accumulates a phase exp(22ipa) ~see the text!.
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IX. CONCLUSION

In this paper we have studied diffractive corrections to
semiclassical trace formula for the level density of polygo
billiards. Special care has been devoted to the treatmen
diffractive periodic orbits lying on~or in the vicinity of! the
optical boundary, i.e., on the verge of being allowed by cl
sical mechanics. In particular, we derived a systematic
pansion for the corner-diffractive corrections to thenth iter-
ate of a family of periodic orbits.

The method employed@based on approximation~5!# al-
lows us to treat a rich variety of different cases with gre
precision~Secs. II–VII!. This method is easily extended t
similar diffraction problems. In particular, our approach
the diffractive correction of thenth iterate of a family allows
treatment of the nontrivial problem of multiple forwar
Aharonov-Bohm diffusion~Sec. VIII!.

The main purpose of our study was to establish the b
of a trace formula in pseudointegrable systems, with con
butions from diffractive orbits. It seems that these diffracti
corrections are responsible for particular forms of spec
statistics observed in many such models@11#. Further inves-
tigation will elucidate this relationship.
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APPENDIX A

In this appendix we derive Kirchhoff-like formulas for th
Green function in the cases of corner and flux-line diffracti
@Eqs.~5! and~6!#. Here we compare Eqs.~5! and~6! with the
exact diffraction in the free plane: diffraction by an infini
wedge~in Appendix A 1! and by a flux line in the plane~in

FIG. 22. Comparison of the numericaluF(x)u ~dashed line! with
the result from Eqs.~10! and ~33! ~solid line!. The large peaks
correspond to the lengths of the families shown in Fig. 21~a!. In our
computations we have taken the sides of the rectangle to bea54
andb5p and the bouncing ball families then have lengthsl 58 and
2p. The shaded line barely seen at the bottom is the modulus o
difference between the numerical and analyticalF(x). We also
show as a thin dashed line the value of this difference when
contribution~33! is not included.
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Appendix A 2!. Adding boundaries to the problem~e.g., put-
ting the flux line in a billiard! amounts—through the metho
of images—to adding other sources of diffraction. In th
case we describe multiple diffraction by using a natural g
eralization of Eqs.~5! and ~6! @see, e.g., Eq.~9!#.

1. Corner diffraction

A uniform approximation for diffraction on a single co
ner was first given by Pauli@21#. The subject was studied i
detail in the late 1960s and in the 1970s. We describe h
one possible uniform approximation~detailed derivation and
references can be found in@17#!:

G1d~rW,rW8,E!5
1

4

eikLd1 ip/4

ApkLd
(

s,h561
uas,huDs,h

3KF uas,huS kll 8

Ld
D 1/2G , ~A1!

where l 8 and l are the lengths of the classical trajector
from rW8 to rW0 and fromrW0 to rW (Ld5 l 81 l ).

K is a modified Fresnel function defined by

K~z!5
1

Ap
exp$2 iz22 ip/4%E

z

`

dteit 2

5
e2 iz2

2
erfc~e2 ip/4z!, ~A2!

and which has the following limiting properties:K(0)51/2
and

K~z!'
eip/4

2zAp
S 12

i

2z22
3

4z4 ¯ D
when uzu→1` with 2p/4,arg~z!,3p/4. ~A3!

In Eq. ~A1!, as,h is a kind of measure of the angula
distance from the trajectory to the optical boundary. On
optical boundary characterized bys and h, as,h50. Far
from the optical boundary its precise value is irrelevant sin
one can use Keller’s approximation@which corresponds to
keeping only the first term in expansion~A3!#. In the transi-
tion region one has to use a specific form ofas,h , which
characterizes the type of uniform approximation chosen.
take here~see@17#!

as,h5& cosS fs

2
2ns,hg D ~A4!

where ns,h5nint@(fs1hp)/2g#PZ, ‘‘nint’’ denoting the
nearest integer andfs5u82su, whereu8(u) is the incom-
ing ~outgoing! angle of the diffractive trajectory with the
boundary.

In the rest of this appendix, we will use the uniform a
proximation~A1! to justify the approximation~5!, which is
valid in the vicinity of an optical boundary. Let us consid
that for one of the four couples of values of~s, h! one is near
the optical boundary. In the contribution of the three oth
terms in Eq. ~A1!, the modified Fresnel function can b
-

re

s

e

e

e

r

evaluated by keeping only the first term in expansion~A3!,
and this gives the second contribution in the rhs of Eq.~5!.

To obtain the first contribution of the rhs of Eq.~5! one
needs to make explicit computations. The configuration
study has been represented in Fig. 23 for an orbit near
optical boundary@the optical boundary for trajectories issu
ing from rW8 is the dashed line of Fig. 23~a!#. Note~from Ref.
@17#! that the classical orbit on the optical boundary h
properties depending ons and h. If s51(21) it has an
even ~odd! number of bounces near the corner; ifh
51(21) it bounces first on the lineu5g(0). If onewrites
fs5fs01dfs ~where fs052ns,hg2hp is the value of
fs on the optical boundary!, by examining the four different
configurations, one can convince oneself geometrically
Fig. 23 that the oriented angle between (rW02rW8) and (rW
2rW0) is hdfs . If hdfs,0, there is no classical orbit from
rW8 to rW. If hdfs.0, the classical orbit is allowed and it ha
a Maslov indexn such that exp$inp/2%5s. Since one is near
the optical boundary, the angledfs is small and in Eq.~A1!
one can make the approximationsas,h'hdfs /&, Ds,h
'2sh/dfs @compare with the exact formulas~A4! and~3!#.
One has alsol 1 l 82uas,hu2l l 8/Ld'L, whereL is the length
of the classical path fromrW8 to rW. Altogether one obtains
from Eq. ~A1!

G1d~rW,rW8,E!'sgn~hdfs!
eikL2 inp/2

2pA2kL
E
Ak~Ld2L !

1`

eit 2
dt

1G0~rW,rW0 ,E!Dreg~u,u8!G0~rW0 ,rW8,E!

~A5!

and

G1~rW,rW8,E!5G1d~rW,rW8,E!1Q~hdfs!G0~rW,rW8,E!,
~A6!

whereQ is the Heaviside function.
We will now show that this expression matches Eq.~5!.

For that purpose we will explicitly evaluate Eq.~5! by choos-
ing a particular axis of coordinates, shown in Fig. 23~b!. In
that figure we have chosen the locus of pointssW such that the
distance fromrW8 and rW to its perpendicular is small~this is
consistent with the fact that the trajectory is near the opt
boundary!. If one denotes byd(d8) the distance betweenrW0
and the projection ofrW(rW8) on the perpendicular and b
y(y8) the algebraic distance fromrW(rW8) to the perpendicular
@see Fig. 23~b!#, one has

FIG. 23. Representation of a diffractive trajectory going fromrW8
to rW. ~a! displays the notations of Eq.~A5! and ~b! of Eq. ~A7!. In
the figure,hdfs.0 ~or equivalentlyy8/d81y/d.0! and the clas-
sical trajectory fromrW8 to rW is allowed.
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22E
0

1`

dsG0~sW,rW8,E!nW s•¹W sWG0~rW,sW,E!

'2
eik~d1d8!2 inp/2

4p E
0

1`

ds

3expF i
k

2 S ~s2y8!2

d8
1

~s2y!2

d D G Y Add8

'2
eikL2 inp/2

2pA2kL
E

2sgn~hdfs!Ak~Ld2L !

1`

eit 2
dt, ~A7!

where one has made the change of variablet
5Ak(d1d8)/(2dd8)@s2(dy81yd8)/(d1d8)# and one has
used the facts thatLd2L'(dd8/2)(y8/d81y/d)2/(d1d8)
and sgn(y8/d81y/d)5sgn(hdfs). This expression inserte
into Eq. ~5! is equivalent to expression~A6! for the Green
function. Hence, starting from the uniform approximati
~A1!, we have proven the validity of Eq.~5! near the optical
boundary.

2. Flux-line diffraction

In the case of diffraction by a flux line, a uniform solutio
has been worked out by Aharonov and Bohm@27#. The cor-
responding expression for the Green function, as given
Sieber@26#, reads

G1~rW,rW8,E!5G0~rW,rW8,E!eia~f2f8!

1sin~ap!
eikLd1 i ~f2f8!/21 ip/4

A2pkLd

3KFA2kll 8

Ld
cosS f2f8

2 D G , ~A8!

wheref andf8 are here the angular coordinates of a po
system with origin on the flux linerW0 . They have to be
chosen such thatuf82fu,p. The other notations are iden
tical to those of Eq.~A1!. In the configuration illustrated in
Fig. 2 this means that ifdf is the angle betweenrW2rW0 and
rW02rW8 @df is the analog ofhdfs of Fig. 23~a!#, one has
f2f85df2p sgn(df). Note also that as in Ref.@26# we
restrict ourself to the case of nonsingular behavior near
flux line ~i.e., vanishing wave functions!.

We will now follow the same procedure as in Append
A 1 and show that Eqs.~6! and ~A8! are equivalent in the
limit of small df. In this limit the geometrical theory o
diffraction fails, and indeed it is well known that th
Aharonov-Bohm scattering amplitude diverges in the f
ward direction. The computations are very similar and
simplicity we choose here the arbitrary locus of pointssW
perpendicular to the optical boundary that is the line go
from rW8 to rW0 ; theny850 @the notations are defined in Fig
23~b!#. In the semiclassical limit, Eq.~6! reads
y

r

e

-
r

g

G1~rW,rW8,E!'2
eik~d1d8!1 iadf

4pAdd8
E

2`

1`

ds

3exp@2 i sgn~s!p#expF i
k

2 S s2

d8
1

~s2y!2

d D G .
~A9!

Using the facts thatL'd1d81(1/2)y2/(d1d8) and Ld
'd1d81y2/(2d) this can be rewritten as

G1~rW,rW8,E!'2
ei ~kL1adf!

pA8k~d1d8!

3H e2 iapE
2eAkD

1`

dteit 2
1eiapE

2`

2eAkD
dteit 2J ,

~A10!

whereD5Ld2L ande5sgn(df)5sgn(y). Simple manipula-
tions show that

G1~rW,rW8,E!'G0~rW,rW8,E!eia~df2ep!

1
sin~ap!

A2pkLd

ei ~kLd1p/42ep/2!K~AkD!,

~A11!

and this expression matches Eq.~A8! when udfu!p.

APPENDIX B

In this appendix we give some useful formulas that c
respond to transverse integration of the different types
Green functions appearing in the main text.

Let us first defineF(x,y,s1 ,...,sn) by

F~x,y,s1 ,...,sn!5expF ik

2 S ~s12y!2

x
1

~s22s1!2

l 2
1¯

1
~sn2sn21!2

l n
1

~y2sn!2

l 12x D G , ~B1!

andDn(x,l 1 ,...,l n) by

Dn~x,l 1 ,...,l n!5
eikL23~n11!ip/4

~8pk!~n11!/2Ax~ l 12x!l 2 ¯ l n

,

~B2!

whereL5 l 11¯1 l n and 0<x< l 1 .
In Sec. III, for treating the first order diffractive correctio

to the nth repetition of a family, one needs to compute t
following integral @cf., e.g., Eq.~12!, which after transverse
integration yields the expression ofI 2( l ,l )#:
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I n~ l 1 ,...,l n!5~2ik !nDn~x,l 1 ,...,l n!E
2`

1`

dyS E
0

1`

¯ E
0

1`

ds1 ¯ dsn F~x,y,s1 ,...,sn!

2Q~y!E
2`

1`

¯ E
2`

1`

ds1 ¯ dsn F~x,y,s1 ,...,sn! D . ~B3!

It is easy to see that thex dependence disappears in expression~B3! after integration overy. This is the reason why we did
not includex in the list of arguments ofI n .

We obtain

I 2~ l 1 ,l 2!5
eikL1 ip/2

4pkL
Al 1l 2, ~B4!

I 3~ l 1 ,l 2 ,l 3!5
eikL1 ip/2

8pkL
@Al 1~ l 21 l 3!1Al 2~ l 31 l 1!1Al 3~ l 11 l 2!#, ~B5!

I 4~ l 1 ,l 2 ,l 3 ,l 4!5
eikL1 ip/2

16pkL SAl 1~ l 21 l 31 l 4!1Al 2~ l 31 l 41 l 1!1Al 3~ l 41 l 11 l 2!1Al 4~ l 11 l 21 l 3!1A~ l 11 l 2!~ l 31 l 4!

1A~ l 11 l 4!~ l 21 l 3!1
2

p
Al 1~ l 21 l 31 l 4! arctanA l 2l 4

l 3~ l 21 l 31 l 4!

1
2

p
Al 2~ l 31 l 41 l 1! arctanA l 3l 1

l 4~ l 31 l 41 l 1!
1

2

p
Al 3~ l 41 l 11 l 2! arctanA l 4l 2

l 1~ l 41 l 11 l 2!

1
2

p
Al 4~ l 11 l 21 l 3! arctanA l 1l 3

l 2~ l 11 l 21 l 3!
D ~B6!

and

2I 5~ l 1 ,l 2 ,l 3 ,l 4 ,l 5!5I 4~ l 11 l 5 ,l 2 ,l 3 ,l 4!1I 4~ l 11 l 2 ,l 3 ,l 4 ,l 5!1I 4~ l 1 ,l 21 l 3 ,l 4 ,l 5!1I 4~ l 1 ,l 2 ,l 3

1 l 4 ,l 5!1I 4~ l 1 ,l 2 ,l 3 ,l 41 l 5!2I 3~ l 11 l 21 l 5 ,l 3 ,l 4!2I 3~ l 1 ,l 21 l 31 l 4 ,l 5!

2I 3~ l 1 ,l 21 l 3 ,l 41 l 5!2I 3~ l 1 ,l 2 ,l 31 l 41 l 5!1I 2~ l 1 ,l 21 l 31 l 41 l 5!. ~B7!

Although this is not apparent in the above expression, explicit computation shows that formula~B7! is—like Eqs.~B4!,
~B5!, and~B6!—invariant under cyclic permutation of the indices.

Expressions~B4! to ~B7! greatly simplify when all the l’s are equal. One obtains

I n~ l ,...,l !5
Cn

k
eikL1 ip/2, ~B8!

with C150, C251/(8p), C351/(4p&), C45(114/))/(16p), andC55(11A6/3)/(8p). A general formula forCn is
given in Appendix D. From Eq.~B8! the contribution~17! to the level density follows directly.

The next order correction to Eq.~B3! requires the computation of the following integral:

Jn~ l 1 ,...,l n!5~2ik !n21DnE
2`

1`

dyS Dreg
~1! E

0

1`

¯ E
0

1`

ds2 ¯ dsnF~x,y,0,s2 ,...,sn!

1Dreg
~2! E

0

1`

¯ E
0

1`

ds1ds3 ¯ dsnF~x,y,s1,0,s3 ,...,sn!1•••

1Dreg
~n! E

0

1`

¯ E
0

1`

ds1 ¯ dsn21F~x,y,s1 ,...,sn21,0! D . ~B9!

This expression corresponds to a sum ofn trajectories; thej th trajectory having one Keller bounce on apexj ~with the
regular part of the diffraction coefficient denotedDreg

( j ) , j 51,...,n! and Kirchhoff contributions from the other apexes@for
instance, Eq.~14! corresponds after transverse integration toJ2( l ,l )].

We obtain
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J2~ l 1 ,l 2!5~Dreg
~1! 1Dreg

~2! !
eikL13ip/4

4kA8pkL
~B10!

and

J3~ l 1 ,l 2 ,l 3!5
eikL13ip/4

8kA8pkL

3FDreg
~1! S 11

2

p
arctanAl 1l 2

l 3L D
1Dreg

~2! S 11
2

p
arctanAl 2l 3

l 1L D
1Dreg

~3! S 11
2

p
arctanAl 3l 1

l 2L D G ~B11!

The expression forJn when all the l’s are equal is

Jn~ l ,...,l !52
eikL2 inp/4

4pn/2kA2kl
nDregJ̃n21 , ~B12!

where

J̃n5E
0

1`

¯ E
0

1`

dx1 ¯ dxn

3ei @x1
2
1~x22x1!21¯1~xn2xn21!21xn

2
#. ~B13!

It is shown in Appendix C thatJ̃n5(eip/4Ap)n(n
11)23/2. From this result and Eq.~B12!, formula ~15! fol-
lows immediately.

In Sec. IV, in order to compute the first order correcti
to the contribution of a family whose boundary partly coi
cides with the frontier of the billiard, one needs to compu
the following integral:

M2~ l 1 ,l 2!

5I 2~ l 1 ,l 2!2~2ik !2D2E
2`

1`

dyE
0

1`

ds1E
0

1`

ds2

3expF ik

2 S ~s12y!2

x
1

~s21s1!2

l 2
1

~y2s2!2

l 12x D G .
~B14!

This equation corresponds to the transverse integratio
Eq. ~20! after removing the contribution of the direct pa
~i.e., of G0). The last integral in the rhs of Eq.~B14! corre-
sponds to the orbit going fromrW to rW and bouncing on the
boundary of the family that is also a frontier of the billiar
The termI 2( l 1 ,l 2) corresponds to the direct diffractive tra
jectory. One obtains

M2~ l 1 ,l 2!5
eikL1 ip/2

4pkL SAl 1l 21L arctanAl 2

l 1
D .

~B15!

Here we want to develop a point stated in the main tex
rW lies near the part of the optical boundary that coincid
e

of

if
s

with the frontier of the billiard, the Green function has fo
contributions which, after integration overy, give the same
contributions as Eq.~B15!.

If one defines

h1~x,y,s1 ,s2!

5expF ik

2 S ~s22y!2

x
1

~s12s2!2

l 1
1

~y2s1!2

l 22x D G ,
h2~x,y,s1 ,s2!

5expF ik

2 S ~s21y!2

x
1

~s12s2!2

l 1
1

~y2s1!2

l 22x D G ,
h3~x,y,s1 ,s2!

5expF ik

2 S ~s21y!2

x
1

~s12s2!2

l 1
1

~y1s1!2

l 22x D G ,
~B16!

h4~x,y,s1 ,s2!

5expF ik

2 S ~s22y!2

x
1

~s12s2!2

l 1
1

~y1s1!2

l 22x D G ,
then, for a pointrW near the boundary of the orbit that coin
cides with the frontier of the billiard, the four contribution
to the Green function integrated transversely to the direc
of the orbit read

M2
1~x!5~2ik !2D2~x,l 2 ,l 1!E

0

1`

dy

3F E
0

1`

ds1E
0

1`

ds2h1~x,y,s1 ,s2!

2E
2`

1`

ds1E
2`

1`

ds2h1~x,y,s1 ,s2!G ~B17!

and

M2
j ~x!5~21! j 11~2ik !2D2~x,l 2,l 1!

3E
0

1`

dyE
0

1`

ds1E
0

1`

ds2hj~x,y,s1 ,s2!

for j 52,3,4. ~B18!

Note that the transverse integration~over the variabley! is
only possible here from 0 to1` because one is near th
frontier of the billiard~see Fig. 24!. The four contributions
~B17! and ~B18! correspond to different paths going fromrW
to rW: M2

1 corresponds to a path going fromrW to sW2 , to sW1 , and
back torW ~for this part one has to withdraw the semiclassic
Green function!; M2

2 corresponds to the path going fromrW to
sW2 with a reflection on the boundary of the orbit that coi
cides with the frontier of the billiard, then going fromsW2 to
sW1 and back torW etc. This is illustrated in Figure 24.

The M2
j ’s separately depend onx, but one obtains
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M2
1~x!1M2

3~x!5
eikL1 ip/2

4pkL
Al 1l 2

and

M2
2~x!1M2

4~x!5
eikL1 ip/2

4pk
arctanAl 2

l 1
. ~B19!

Hence, whenrW lies near the frontier of the billiard, on
obtains M2

1(x)1M2
2(x)1M2

3(x)1M2
4(x)5M2 , where M2

is given by Eq.~B15! and corresponds to transverse integ
tion whenrW is not in the vicinity of the frontier of the bil-
liard. Thus the result of the transverse integration of
Green function does not depend on the positionx of the point
rW along the orbit. This leads directly to formula~21!.

In Sec. VI, for evaluating the contribution of a diffractiv
orbit jumping from one boundary of a family to another, o
needs to compute the following integral@which is the trans-
verse integration of Eq.~25!#:

N2~ l 1 ,l 2!5~2ik !2D2~x,l 1 ,l 2!

3E
2`

1`

dyE
2`

z

ds1E
0

1`

ds2F~x,y,s1 ,s2!.

~B20!

The y integration is trivial and~as is now usual! removes
the x dependence. One obtains

FIG. 24. Schematic representation of the path encompasse
the contributionM2

j @Eqs.~B17! and ~B18!# to the transverse inte
gration of the Green function (j 51,...,4). The plot labeled~j! cor-
responds toM2

j (x). One has here four different contributions b
cause the initial pointrW lies along the part of the boundary of th
family that coincides with the frontier of the billiard. The simple
case thatrW is not in the vicinity of the frontier of the billiard is
represented in Fig. 10.
-

e

N2~ l 1 ,l 2!5
2eikL

4pAl 1l 2

3E
0

1`

du1E
0

1`

du2eikL~u11u22z!2/~2l 1l 2!

5
Al 1l 2

4ipkL
eikLd2

zeikL

A8p2kL
E

2AkD

1`

dueiu2

5
Al 1l 2

4ipkL
eikLd2

zeikL1 ip/4

A8pkL
@12eikDK~AkD!#,

~B21!

whereLd is the length of the diffractive orbit close to th
family of length L and D5Ld2L@D.z2L/(2l 1l 2)#. In the
above expression, the last term simply reexpresses the p
ous one using the modified Fresnel integral defined in
~A2!. The longitudinal integration~which simply amounts to
a multiplication byL! of Eq. ~B21! yields the contribution to
r(E) of the configuration studied in Sec. VI. More precise
this contribution reads2(L/p)Im N2(l1,l2). This results in
Eq. ~26!.

APPENDIX C

The purpose of this appendix is the explicit computati
of the integral~B13!:

J̃n5E
0

1`

¯E
0

1`

dx1¯dxneiFn~xI !, ~C1!

whereFn(xI ) is the following quadratic form:

Fn~x!5x1
21~x12x2!21¯1~xn212xn!21xn

2. ~C2!

Note that throughout this appendix we deno
n-dimensional vectors byxI 5(x1 ,...,xn). A key point in the
evaluation of integral~C1! the existence of a group generate
by a set of transformations$Tj%1< j <n which leaves the qua
dratic form invariant:

Tj~xI !5xI 8 with H xj852xj1xj 111xj 21

xk85xk for kÞ j , J ~C3!

where j 51,...,n and we have adopted the conventionx21
5xn1150.

These transformations are inversions (Tj
251) and they

generate a finite group~of the An type; see, e.g.,@28#!. We
give below a method of calculation of Eq.~C1! that does not
require knowledge of the theory of finite groups.

The quadratic form~C2! can be naturally rewritten in the
form

Fn~x!52(
i 51

n

Mi j xixj , ~C4!

where then3n matrix MI is the following:

in
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M5S 1 21/2 0 0 ¯ 0 0 0

21/2 1 21/2 0 ¯ 0 0 0

0 21/2 1 21/2 ¯ 0 0 0

¯

0 0 0 0 ¯ 21/2 1 21/2

0 0 0 0 ¯ 0 21/2 1

D . ~C5!
f

to
r

n

-

.
t is
Due to the simple tridiagonal structure ofM , it easy to
perform a Gaussian decomposition of the quadratic formFn
recursively. This results in

1
2 Fn~xI !5 (

k51

n21

lkS xk2
xk11

2lk
D 2

1lnxn
2. ~C6!

where

lk5
k11

2k
, k51,...,n. ~C7!

From Eqs.~C6! and~C7! it is clear that the determinant o
M is

detM5l1¯ln5
n11

2n . ~C8!

Let us now introducen vectorsVj such that

Mi j 5Vi
•Vj . ~C9!

From Eq.~C5! it is clear that~if these vectors exist! they
are of unit length and that the angle between different vec
equals eitherp/2 or 2p/3 ~the cosines being either 0 o
21/2!. One possible solution of Eqs.~C9! can be written in
the following form:

V15~Al1,0,...,0!,

V25S 21

2Al1

,Al2,0,...,0D ,

]

Vk5S 0,...,0,
21

2Alk21

,Alk,0,...,0D ,

]

Vn5S 0,...,0,
21

2Aln21

,AlnD , ~C10!

where thelk’s are defined in Eqs.~C6! and ~C7!. From
geometrical considerations it is clear that all other solutio
can be obtained from Eq.~C10! by applying overall rotations
~and inversions!.
rs

s

Using the vectorsVj it is possible to define new coordi
nates (yj ) from the relation

yI 5(
j 51

n

xjV
j . ~C11!

Note that

yI •yI 5 (
i , j 51

n

xixjV
i
•Vj5Fn~xI !/2. ~C12!

The Jacobian of the transformation~C11! is

J5det
]yk

]xj
5detVk

j . ~C13!

It can be computed from Eqs.~C10! or by taking the
square of expression~C13!. This yieldsJ 25detM. There-
fore

E
0

1`

¯E
0

1`

dx1¯dxneiFn~xI !

5
1

udetM u1/2E ¯E
V

dy1¯dyne2i ~y1
2
1¯1yn

2
!,

~C14!

where the integration is taken over the interiorV of the hy-
perspherical simplex defined by then vectorsVj ,

V5S y5(
j 51

n

xjV
j and xj>0; j 51,...,nD . ~C15!

The next and final step of the computation of Eq.~C1! is
to show that the integration domainV in Eq. ~C14! is a
relatively simple subpart of the wholen-dimensional space
To understand geometrically the structure of this region i
convenient to add a new vectorVn11 to the list ~C10! such
that

V11¯1Vn1Vn1150. ~C16!

Angles formed byVn11 with the otherVj ’s are straight-
forwardly obtained from the expression~C5!: Vn11

•V1

5Vn11
•Vn521/2, Vn11

•Vj50 for j 52,...,n21 and
Vn11

•Vn115S i , jV
i
•Vj51.

From the (n11) vectorsV1,...,Vn11 one can define (n
11) regionsV j :
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V j5S yI 5(
j 51

n

xjW
j and xj>0; j 51,...,nD , ~C17!

where then vectorsWI j include all (n11) vectorsVk but the
vectorVj . In these notations the regionV in Eq. ~C15! co-
incides withVn11 .

It is almost evident that these (n11) regions cover the
wholeyI space without common intersection points. A form
proof of this statement can be the following.

An arbitrary point yI of the n-dimensional space has
unique decomposition on the nonorthogonal basis of
Vj ’ s( j 51,...,n) as given by Eq.~C11!. If all xj>0 thenyI
PVn11 , otherwise the set of coordinatesxj is divided into
two setsxa8 and xb9 of positive (xa8>0) and negative (xb9
,0) coordinates. Denotingzb52xb9 and by zg the maxi-
mum of thezb’ s we get

yI 5(
a

xaVa2 (
bÞg

zbVb2zgVg. ~C18!

Using the definition~C16! one can expressVg as a func-
tion of the otherV’ s and rewrite the above expression as

yI 5(
a

~xa1zg!Va1 (
bÞg

~zg2zb!Vb1zgVn11.

~C19!

As zg>zb all coefficients in this sum are non-negativ
and the pointyI hence belongs toVg . It is thus clear that
regionsV j have no common points except on boundar
where somexi50. It is also clear that the union of all th
V j ’ s( j 51,...,n11) covers all space since, given an arbitra
point yI , one can assert unambiguously from the above p
cedure to which of theV j ’ s it belongs.

Each regionV j is defined byn vectorsWj obtained from
the (n11) vectorsVk by ignoringVj . The convenient rear
rangement of vectorsWj is the following:

~Wj !1> j >n5~Vj 11,Vj 12,...,Vn,Vn11,V1,V2,...,Vj 21!.

~C20!

Let us now construct the matrix of mutual projectio
Ni j 5Wi

•Wj . It is easy to check that this matrix coincide
with the matrixM defined in Eq.~C5!. Therefore, the vectors
WI j ( j 51,...,n) will have the same mutual positions as o
initial vectorsVjs. As we noted above, this means that r
gion V j for all j ( j 51,...,n11) can be obtained from th
initial regionV(5Vn11) by overalln-dimensional rotations
~and possibly by inversions!. But the integrand in the rhs o
Eq. ~C14! is invariant under such transformations; therefo
its integration over any of theV j ’ s is the same and

E ¯E
V

dy1¯dyn e2i ~y1
2
1¯1yn

2
!

5
1

n11 E2`

1`

¯E
2`

1`

dy1¯dyn e2i ~y1
2
1¯1yn

2
!

5
~eip/4Ap/2!n

n11
. ~C21!
l

e

s

-

-

Combining this result with Eqs.~C14! and ~C8! one
obtains

J̃n5E
0

1`

¯E
0

1`

dx1¯dxneiFn~x!5
~eip/4Ap!n

~n11!3/2 ,

~C22!

which is the result needed for the explicit computation
expression~B12!. From the approach shown in this appe
dix, one can state the more general result

E
0

1`

¯E
0

1`

dx1¯dxn f „Fn~x!…

5
2pn/2

~n11!3/2G~n/2!
E

0

1`

drr n21f ~r 2!. ~C23!

APPENDIX D

In this appendix we derive the explicit form ofI n( l ,...,l )
defined in Eq.~B3!, or equivalently we give the value of th
coefficientsCn appearing in Eq.~B8!. These computations
extend the results of Appendix B@Eqs.~B4! to ~B7!# and are
valid for any n. However, they are restricted to the casel 1
5¯5 l n5 l .

To evaluate the integral~B3! it is customary to make sev
eral manipulations: One performs they integration in the first
term of the rhs. In the second term, one can decrease by 1
number of variables of integration easily, since this term
simply an elaborate manner of writingQ(y)G0(rW,rW,E). Af-
ter a scaling on the variables@yi5siAk/(2l )# one obtains a
result that can be cast in the form

I n~ l ,...l !5
eikL1 ip/22 inp/4

2kpn/2 Ĩ n21 , ~D1!

where

Ĩ n5E
0

1`

dxS E
2`

1`

¯E
2`

1`

dy1¯dyneiC(x,yI )

2E
0

1`

¯E
0

1`

dy1¯dyneiC~x,yI !D , ~D2!

and C(x,yI ) is the following quadratic form@we denote
n-dimensional vectorsyI 5(y1 ,...,yn)#:

C~x,yI !5~x2y1!21~y12y2!21¯

1~yn212yn!21~yn2x!2. ~D3!

Ĩ n in Eq. ~D2! can be expressed simply in terms of th
function cn(x) defined by

cn~x!5E
0

1`

¯E
0

1`

dy1¯dyn eiC~x,yI !. ~D4!

One first notices that forx large and positive, one ca
neglect the boundary effects in the integral~D4! defining
cn(x), and thus
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cn~x! ——→
x→1`

cn~1`!

5E
2`

1`

¯E
2`

1`

dy1¯dyn eiC~x,yI !

5~eip/4Ap!n
1

An11
. ~D5!

Hence Eq.~D2! can be written as

Ĩ n5E
0

1`

dx@cn~1`!2cn~x!#5E
0

1`

dx xcn8~x!.

~D6!

The functioncn8 in Eq. ~D6! can be cast in the form

cn8~x!5 (
m51

n E
0

1`

¯E
0

1`

dy1¯dynd~ym!eiC~x,yI !.

~D7!

This is done by first changing variables in Eq.~D4! (yj5x
1t j ), then deriving with respect tox, and finally coming
back to the original variablesyj .

Inserting this expression in Eq.~D6! and renumbering the
variables in the integral, one obtain the following express
for Ĩ n :

Ĩ n5 (
m51

n

^ym&

where

^ym&5E
0

1`

¯E
0

1`

dy1¯dyn ymeiFn~yI !, ~D8!

and the quadratic formFn is defined in Eq.~C2!. The n
integrals^ym& are computed by means of the auxiliary int
gral Pm defined as

Pm52E
0

1`

¯E
0

1`

dy1¯dyn

]eiFn~yI !

]ym

5E
0

1`

¯E
0

1`

dy1¯dym21dym11¯dyn eiFn~yI !uym50

~D9!
A.

h.
n

524i ^ym&12i ^ym11&12i ^ym21&, ~D10!

with the convention that̂ y21&5^yn11&50. The integrals
Pm are easily calculated using the results of Appendix C a
noticing thatFn(yI )uym50 is the sum of two independent qua

dratic forms Fm21(y1 ,...,ym21) and Fn2m(ym11 ,...,yn).
Therefore the integral of the rhs of Eq.~D9! is the product of
two integrals of type~C1! @whose explicit form is given in
Eq. ~C22!#:

Pm5 J̃m21J̃n2m5
~eip/4Ap!n21

@m~n2m11!#3/2. ~D11!

Then it is a simple matter to solve recursively the syst
of equations formed by Eq.~D10! and to express thêym& ’ s
in term of thePm’ s. This yields

^ym&5
meip/2

2~n11! (
q51

n

~n112q!Pq2
eip/2

2 (
q51

m21

~m2q!Pq

~D12!

and

Ĩ n5 (
m51

n

^ym&5
eip/2

4 (
q51

n

@q~n2q11!#Pq . ~D13!

Using Eq.~D11! one obtains the final formula,

Ĩ n5
eip/2

4
~eip/4Ap!n21(

q51

n
1

Aq~n2q11!
. ~D14!

From Eqs.~B8!, ~D1!, and ~D14!, the coefficientCn ap-
pearing in Eq.~17! reads

Cn5
1

8p (
q51

n21
1

Aq~n2q!
, ~D15!

which coincides with the results obtained forn52,3,4,5 in
Appendix B by a different method. Whenn→` the sum
over q can be substituted by an integral and

lim
n→`

Cn5
1

8p E
0

n dx

Ax~n2x!
5

1

8
. ~D16!
ett.
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