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We consider dipole oscillations of a trapped dilute Bose-Einstein condensate in the presence of a
scattering potential consisting either in a localized defect or in an extended disordered potential. In both
cases the breaking of superfluidity and the damping of the oscillations are shown to be related to the
appearance of a nonlinear dissipative flow. At supersonic velocities the flow becomes asymptotically
dissipationless.
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One of the most spectacular consequences of phase
coherence and interactions in condensed matter is super-
fluidity, a direct manifestation of which is the capacity of a
fluid to move without dissipation. According to the stan-
dard Landau criterion, the superfluidity (SF) of a uniform
flow of, e.g., liquid 4He, or a Bose-Einstein condensate
(BEC) will be broken if an obstacle moves through the
fluid with a speed higher than a critical velocity vLc . In the
case of a BEC vLc is the sound velocity. Though this
property has been explicitly checked in 4He [1] and in a
BEC flow [2] in the presence of small impurities, experi-
ments in superfluid 4He (see, e.g., [3]) and more recently in
BEC [4,5] have shown that the critical velocity for break-
ing SF is generically lower than vLc , due to phase slips
induced by vortex (or soliton) emission, as originally pro-
posed by Feynman.

Collective oscillations of BEC confined by harmonic
traps offer new opportunities to explore the central ques-
tion of the breaking of SF and of the origin of drag and
dissipation in quantum liquids and gases. In a recent series
of experiments, damping of the oscillations (such as dipole,
quadrupole, or Bloch oscillations) in the presence of a
single localized scatterer [6], and disordered [7–9] or
quasiperiodic [10] superimposed potentials has been used
to investigate different dynamical regimes, including the
possibility of a Bose glass, (Anderson) localization or other
possible phases. These investigations have clearly shown
the experimental relevance of analyzing transport proper-
ties of BEC via the damping of collective excitations.
However the connection of the damping with localization
properties still remains to be clarified.

Our purpose here is to provide a global analysis of the
damping of dipole oscillations in the presence of a single
localized scatterer or a disordered potential. We consider
the regime where the experiments have been realized up to
now, i.e., a quasi-1D geometry where the chemical poten-
tial is larger than the typical amplitude of the perturbing
potential. The reason why we treat together the localized
defect and the random potential is that, qualitatively, sev-
eral of the main features of the dynamics are contained in
the former case. Its analysis therefore facilitates the com-

prehension of the latter, and stresses the generic aspects,
leading to a unified picture of dissipation (as illustrated in
Fig. 1). We find that in both cases there exist SF undamped
oscillations at small amplitudes. As the amplitude of os-
cillation (or the typical size of the perturbation) increases,
the system enters a dissipative regime of damped oscilla-
tions where solitons and phononlike excitations are emitted
(this regime was recently studied experimentally in
Ref. [5] for a moving obstacle). In the case of a super-
imposed disordered potential, this dissipative or resistive
phase, where nonlinearities of the system play a crucial
role, has no relation with (Anderson) localization.

The system considered is a weakly interacting BEC
confined in a cylindrically symmetric 3D harmonic poten-
tial m�!2
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2�=2 in presence of an additional po-
tential U�x�. In the limit of a highly anisotropic trap,
!? � !x, the transverse confinement is such that the
quasi-1D regime can be reached. It is important to note
that for moderate U�x� (even a disordered one) the phase
coherence of the system is preserved as demonstrated in
Refs. [8,11]. The system is thus accurately described by a
1D order parameter  �x; t�, depending on a single spatial

FIG. 1 (color online). Dynamical regimes for dipole oscilla-
tions in presence of a localized Gaussian defect. The plot
represents the fluidity factor � (see text) computed after a time
tf � 25� 2�=!x. The yellow (light gray) region correspond to
zero damping (� � 1). The dashed lines are analytic determi-
nations of the frontiers between the different regimes.
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coordinate x along the axial direction of the trap.  �x; t�
obeys the nonlinear Schrödinger equation [12,13]
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Here, n�x; t� � j �x; t�j2 is the condensate density per unit
of longitudinal length and a > 0 is the 3D s-wave scatter-
ing length. In the low-density regime (LDR, an	 1) the
density profile in the transverse direction is Gaussian
shaped and � � 1, whereas � � 1=2 in the opposite high
density regime (HDR, an� 1) where the Thomas-Fermi
approximation holds for the transverse degree of freedom.
Equation (1) does not account for transverse excitations
which may be relevant in the HDR. We checked that it
nonetheless gives an excellent account of the experimental
result on dipole oscillations of the Florence and Rice
groups [7,8] performed in the HDR.

After preparing the condensate in the ground state of the
trap [with density n0�x�, chemical potential � and, at the
center of the cloud, speed of sound c � ���=m�1=2], dipole
oscillations are excited by a sudden displacement d0 of the
harmonic potential. For U�x� � 0 the center of mass oscil-
lates freely with frequency!x, and acquires a velocity v �
!xd0 when passing through the origin. The time evolution
of the density reads n�x; t� � n0�x� Xt� where Xt �
d0 cos�!xt� is the position of the center of mass. For a
finite U�x�, which is turned on simultaneously with the
sudden displacement of the trap, Xt �

1
N

R
R xn�x; t�dx is

computed numerically up to a time tf chosen such that
Xt>tf assumes an oscillatory pattern of roughly constant
amplitude which we denote df. In order to measure the
damping of the dipole oscillations we define a fluidity
factor � � df=d0 (� � 1 in the absence of damping and
�! 0 for strong damping).

Localized defect.—We start by considering a Gaussian-
shaped defect U�x� � U0 exp��x2=2�2�. The fluidity fac-
tor � is plotted in Fig. 1 as a function of the normalized
defect strength U0=� and velocity v=c � !xd0=c. The
numerical calculations were performed for a BEC in the
LDR with chemical potential � � 40@!x selected to have
a Thomas-Fermi like density-profile along the axial direc-
tion. In this case n0�x� �N ���L� jxj�
L2 � x2�1=�

where the factor N � normalizes the density to the number

of atoms N, ��x� is the Heavyside step function and L ��������������������
2�=m!2

x

p
is half the longitudinal size of the condensate.

The parameters are N � 1:5� 104 87Rb atoms, !x �
2�� 9 s�1 � !?=10 and � � � � 0:28 �m, where � �
@=

�����������
2m�
p

is the healing length at the center of the conden-
sate. The qualitative structure of Fig. 1 is generic and does
not depend on the specific values of � and �, and is also
observed in the HDR (� � 1=2).

In the deep subsonic limit v=c	 1, the Gaussian scat-
terer induces no observable damping of the dipole oscil-
lations. Numerical results show that the oscillating

condensate is only locally perturbed in the vicinity of the
defect: a dip or a peak appear in the condensate density for
U0 > 0 and U0 < 0, respectively [see Fig. 2(a)]. These are
characteristic features of a superfluid flow, with no energy
dissipation, nor drag exerted [14], and with no damping of
the oscillations (perfect transmission through the scatterer
potential). In this regime, a perturbative treatment of
Eq. (1) and a local density approximation yield a conden-
sate density of the form

 n�x; t� � n0�x� Xt�
1� �n�x; t��; (2)

with
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2m
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where � � 2m
@
jc2
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1=2, c0 being the unperturbed local
sound velocity: mc2

0 � 2�@!?
an0�x� Xt���. The accu-
racy of this approximation is shown in Fig. 2(a); it is well
justified if mU0�=�@

2�� 	 1 when ��	 1, or
mU0=�@��

2 	 1 when ��� 1 [13], and if �	 L.
For weak defect potentials, jU0j 	 �, and if the TF size

L is large compared to the dipole oscillation amplitude, the
center of mass positionXt can be computed analytically. To
lowest order, the solution of the small-amplitude lineariza-
tion yields Xt � d0 cos
�!x � �!�t� where the defect-
induced frequency shift reads

 �! �
�1

2m!x
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dx
dn0�x�
dx

dU�x�
dx

: (4)

This gives �! � ��4� 3�� 3U0�
8�3=2 !2

x
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�m
p

for a Gaussian

defect, in excellent agreement with our numerical results.
Hence the analytical evaluations of the density profile (2)

FIG. 2 (color online). Density profile after a time t � 3=4�
2�=!x for U0=� � 0:24 at different initial velocities:
(a) v=c � 0:1, (b) v=c � 0:67, (c) v=c � 1:2, (d) v=c � 2:5.
The confining potential is represented as a full (red) curve. Insets
blow up the density around the defect. (Other parameters as in
Fig. 1)
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and of the center of mass motion confirm the superfluid
behavior of the oscillations in the deep subsonic regime.

The situation changes as the velocity increases at fixed
U0=� or as U0=� is increased at constant velocity. In the
former case, at some critical velocity vc � vLc � c, that
depends on the strength of the defect potential, the system
looses SF, damping is observed and the fluidity factor
diminishes. Using a local Landau criterion [15] we identify
the border between the SF and this ‘‘dissipative region’’ as
the locus of points where the maximum local condensate
velocity v�x; t� equals the local speed of sound c�x; t� �
�2�@!?=m�1=2
an�x; t���=2. The former can be computed
from mass conservation and Eq. (2). For an impurity
localized at x � 0 this yields

 vc
c
� 
1� �nc�1=2�1=� if U0 > 0;

vc
c
� 1 if U0 < 0;

(5)

where �nc is the factor �n�x; t� [Eq. (3)] evaluated when
x � Xt � 0. The lower dashed lines in Fig. 1 show that
these estimates coincide well with the numerical findings.

When the system enters the dissipative regime, one or a
few gray solitons detach from the defect during the first
oscillations, as well as some phononlike excitations [see
Fig. 2(b)]. As time goes on, the interactions of the solitons
among them, with the defect and with the phononlike
excitations produce time-dependent fluctuations of the
shape. During this process the condensate does not loose
phase coherence, but the center of mass motion looses
collectivity, part of the kinetic collective energy being
transformed into density fluctuations. The damping pro-
cess continues until the center of mass velocity becomes
comparable with vc. Thereupon, though presenting local
density fluctuations, the amplitude of the oscillations re-
main constant in time. Deeper in the dissipative regime, an
increased emission of gray solitons and phononlike exci-
tations is observed, leading to a massive distortion of the
initial condensate profile [see Fig. 2(c)]. The BEC enters a
strongly irregular time-dependent regime, the collectivity
of the dipole motion is totally lost, and the damping
increases drastically.

Finally, at sufficiently high supersonic velocities, a dif-
ferent phase is reached where the damping tends again to
zero (�! 1). In this regime, that we denote as ‘‘quasi-
ideal’’, the kinetic energy of the condensate is large com-
pared to the strength of the external potential, and inter-
actions tend to be negligible. We find, in agreement with
previous theoretical studies [13,14], a strong suppression
of dissipation as the velocity increases. The condensate
density is again only locally distorted in the vicinity of the
defect (cf. Figure 2(d)]. This local distortion is very well
described by applying the combination of perturbative and
local density approach already used in the SF regime. The
density is of the same form as in Eq. (2) with here [13]

 �n�x; t� �
4m

@
2�

�
U�x�
�
����x _Xt�Imfei�xÛ���g

�
; (6)

where Û is the Fourier transform of U. This form indeed
corresponds to almost perfect transmission, with small
reflexion on the defect (see the inset of Fig. 2(d)], the
amount of which decreases at large velocity (�! 1).

The frontier between the dissipative and the quasi-ideal
region can be estimated by studying the related problem of
a homogeneous condensate flowing through a barrier po-
tential [16]. In this simplified configuration it is possible to
determine analytically the velocity at which the system
undergoes a transition from a local perturbation to an
irregular fluctuating density profile [13]. We find that this
estimate fits very well the numerically determined super-
sonic frontier (see Fig. 1). This stresses the qualitative
similarities between Fig. 1 and the phase diagram obtained
for a defect moving through a homogeneous fluid [13,14].
Interestingly, the existence of the three regions (SF, non-
linear dissipative, and quasi-ideal weakly-damped) has
been recently observed experimentally for a localized de-
fect in Ref. [5].

Disordered potential.—Keeping the same parameters as
in Fig. 1, we now replace the single localized impurity by a
disordered potential and compute, as before, the fluidity
factor as a function of velocity and of the intensity of the
(now random) potential. Figure 3 corresponds to the case
where U�x� is an optical speckle potential of mean value �U
with a correlation length lc such that L=lc � 30, typical of
experimental configurations [17]. The picture is generic
and does not depend on the details of the disorder. The
main result that emerges from the comparison of Figs. 1
and 3 is that, in the weak-disorder limit ( �U=�	 1), the
global properties of the damping phase diagram are quali-
tatively similar in both cases. The same three phases
observed for the localized defect are again present.
However, their relative importance is quite different. One
observes a considerable shrinking of the SF and quasi-ideal
weakly damped regions, compared to the nonlinear dissi-
pative one. The symmetry of �with respect to the sign of �U

FIG. 3 (color online). Fluidity factor � of dipole oscillations in
presence of a speckle potential.
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is greatly enhanced in the disordered case (Fig. 3). We
interpret this as an effect of particle number conservation
[18].

In the presence of disorder, important experimental
efforts have been undertaken for understanding the pos-
sible connection of damping of dipole oscillations with
Anderson localization. Our analysis shows that damping
occurs in the dissipative phase. However, the dissipative
mechanism observed in this phase is—as in the case of a
localized defect—connected to the loss of collectivity due
to the emission of solitons and linear excitations, and not to
a localization phenomenon. From what is known in the
case of a homogeneous flow, genuine Anderson localiza-
tion might only occur in the deep supersonic regime
v=c� 1 [19]. Without going into a detailed analysis of
the experimental results [7,8], let us mention that the
displacement of the harmonic potential (around 700 �m)
used at Rice University gives v=c  2:8, while the lowest
speckle height considered is �U=�  0:04, which locates
the system in the dissipative phase (under the experimental
conditions, we find that at v=c  2:8 the dissipative phase
border is at �U=�  0:008). Similarly, from the data pub-
lished in Ref. [7] our analysis shows that the experiments at
Florence were also performed in the supersonic dissipative
region. These simple remarks explain the experimentally
observed damping, and locate the experimental configura-
tions in a regime where the effects of Anderson localization
are at best indirect.

In the subsonic SF regime it is possible to compute the
frequency shift due to the disordered potential similarly as
in the one-peak case. The approach is found to be equiva-
lent to the sum rule approach developed in [7]. One can
also derive a simple relation for the variance of the fre-
quency shift:

 h��!�2i �
ZZ

R2

dxdx0

4m2!2
x

d2n0�x�

dx2

d2n0�x0�

dx02
hU�x�U�x0�i;

(7)

where h. . .i denotes ensemble average. For small �U=�
Eq. (7) is found to be in very good agreement with nu-
merical integration of Eq. (1), as seen in Fig. 4.

To conclude, we have presented a comprehensive picture
of the damping properties of dipole oscillations of BEC in
the presence of a scattering potential. Strong analogies are
stressed between different types of potentials. Three differ-
ent phases are shown to exist: superfluid (v=c < 1), non-
linear dissipative (v=c� 1) and quasi-ideal (v=c > 1). The
mechanism that breaks SF and leads to damped oscillations
is shown to correspond to a generic onset of dissipation
which, in the presence of disorder, is unrelated to localiza-
tion properties. As the strength of the disorder potential
increases the nonlinear dissipative phase occupies most of
the phase diagram. Our findings allow us to give a simple
interpretation of experimental results.
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FIG. 4 (color online). Relative standard deviation
!�1
x h�!

2i1=2 as function of average speckle intensity. The
analytical results correspond to Eq. (7). The insets compare
numerical and analytical frequency shifts for different realiza-
tion of disorder for �U=� � 0:035 in the HDR and LDR.
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