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We study the fluctuation properties of large-scale quantum spectra of the hydrogen atom in a uni-
form magnetic field. The present data are of a statistical significance not reached by any other study
of these topics. This allows us to tackle a number of problems, whose treatment has been prevented
hitherto by the lack of sufficiently long spectral sequences. We mainly focus on the dependency of
fluctuation properties on the parameter describing the classical transition from regularity to irregu-
larity. Our results strongly indicate that there are no universal distributions for the nearest-
neighbor spacings in the transition regime. Generally, fluctuation measures can show extraordinary
behavior, which can be understood only by a detailed knowledge of the underlying classical dynam-
ics rather than by a knowledge of the global classical phase-space structure.

I. INTRODUCTION

This is the first of two planned papers which will deal
with spectral properties of strongly perturbed Coulomb
systems. We will give a comprehensive description of
both fluctuation properties in this paper and long-ranged
correlation properties in the planned companion paper.'
Most of the spectra analyzed refer to the hydrogen atom
in a uniform magnetic field. Recent progress in experi-
mental and computational techniques has elevated this
system to one of the best evaluated Coulomb and perhaps
even general “complex’ quantum system to date.>” '8

An analysis of level spectra by statistical methods is
the natural approach when the spectra are too complex
to be analyzed level by level. Spectra can be separated
quite generally into a smoothly varying average part and
a fluctuating part describing the deviations from the aver-
age. The statistical analysis then concentrates on the
fluctuating part. The characterization of these level fluc-
tuations has received much interest in the past years. It
has been conjectured!® that complex systems exhibit
universal fluctuation properties. This conjecture is sup-
ported now by the results of a large number of studies
dea12i7ng with both experimental?®®~2¢ and theoretical spec-
tra.

Much interest has centered on the question of how
complex a system must be to obey the universal fluctua-
tion laws. The results to date indicate that it is sufficient
to have a (Hamiltonian) system with at least two degrees
of freedom. Universal fluctuation properties then occur
when the corresponding classical system is either integra-
ble (random number fluctuations) or chaotic (or ergodic)
(random matrix fluctuations). Thus the appearance of
universal fluctuation patterns in quantum spectra is
linked to the global structure of the underlying classical
dynamics.

It often occurs, however, that the classical dynamics of
a Hamiltonian system are neither chaotic nor integrable,
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but regular and irregular motion coexist. In fact, this
seems to be the general case. Spectral fluctuations of
Hamiltonian systems having a mixed phase space struc-
ture have been studied in the literature.”® 33 Neverthe-
less, the knowledge of their spectral properties is far from
complete. All that is known is that their fluctuations are
intermediate between the limiting universal patterns,
Poisson and random matrix.

Perturbed Coulomb systems are ideally suited for the
study of spectral properties. One major advantage is that
they are often “real” and can be studied in the laborato-
ry. Furthermore, the relevant interactions are usually
known to a high precision and this may enable the perfor-
mance of classical and quantum calculations without any
approximation of the system under study. Spectra of
Coulomb systems often consist of infinitely many bound
levels and a structured continuum which results in a
wealth of possible effects occurring. The classical dynam-
ics of a perturbed Coulomb system may also show an
unexpected behavior because the Kol’'mogorov-Arnol’d-
Moser theorem?* is not applicable for pure Coulomb sys-
tems. Hence, all kinds of behavior may occur by addition
of a perturbation; the system may remain regular (e.g.,
Stark effect’®), it may display a smooth transition to
chaos (e.g., the hydrogen atom in a uniform magnetic
field®?), or it may become ergodic at once (e.g., the aniso-
tropic Kepler problem3®%7),

In this paper we will concentrate on the spectral fluc-
tuation properties of a hydrogen atom in a uniform mag-
netic field in the transition regime between regularity and
irregularity. The results complement preliminary data on
the nearest-neighbor spacing distributions*? and gives
new results for various fluctuation measures not con-
sidered so far. The data is of a statistical significance not
reached in any previous study of these topics. This al-
lows us to tackle a number of problems whose study has
been inhibited so far by the lack of sufficiently long spec-
tral sequences, e.g., #i dependencies of fluctuations and
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39 SPECTRAL PROPERTIES OF STRONGLY PERTURBED. ..

the behavior of the nearest-neighbor spacing distribution
for small spacings.

The paper is organized as follows. We will introduce
fluctuation measures in Sec. II and fluctuation models in
Sec. III. This is done quite briefly and we refer to review
articles giving more detailed information.?”3 74" Section
IV gives a brief description of the physical model under
consideration, viz., the hydrogen atom in a uniform mag-
netic field. For more details we again refer to recent re-
view articles.>® Section V gives the results which are
summarized and concluded in Sec. VI.

II. FLUCTUATION MEASURES

In this part we will briefly introduce the measures fre-
quently used to characterize level fluctuations. Let us
consider a discrete spectrum of levels {E;}. Let N(E) be
the spectral staircase function which counts the number
of levels below E. N (E) consists of an average part and a
fluctuating part,*!

N(E)=N,,(E)+Ny(E) . )

Asymptotically, the average part is given by the semiclas-
sical rule, that each quantum state of a d-dimensional sys-
tem occupies a volume (277#)“ of the total phase space T,

N, (E)=T(E)/Qm#)". )

Equation (2) can be used!® to separate the fluctuating part
of the level sequence { E;} by the transformation

{e;} =[N (E)D} . (3)

The level sequence {¢;} now has unit mean spacing. In
the following all fluctuation measures will apply to this
sequence instead of {E;}.

We are now able to define spectral fluctuation mea-
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(i) The distribution P (s) of spacings s between adjacent
levels [nearest-neighbor spacing (NNS) distribution]. The
NNS distribution is simply the probability P for finding a
separation s of neighboring levels in the spectrum.

(ii) The number statistic n (L) of the distribution and
the moments associated with it. Given an interval
[a,a+ L] of length L, n(a,L) counts the number of lev-
els within this spectral range. Averaging over the spec-
trum (i.e., over a) yields the moments of the distribution.
Here we consider the leading moments: variance 2,(L),
skewness y,(L), and excess y,(L).*> The first moment
(mean value) is simply L, because the mean spacing is
unity. Qualitatively we expect that the variance Z, is
small if the spectrum is stiff and large otherwise.

(iii) Spectral rigidity A3 of the spectrum. Given a sub-
stretch [a,a+ L] of the spectrum, it measures the least-
square deviation of the spectral staircase function from
the best straight line fitting it,

AfL;a)="min [ [N(e)— 4e—BPde . (4a)
L A,B a

Note that through the transformation (3) we are dealing
with spectra whose average part is the identity,
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N, (e)=¢, but for a finite interval [a,a+L] the best
straight line fit to N,, + Ny may differ slightly. Averag-
ing over the spectrum gives the rigidity A;(L). A; is con-
nected to the variance X, by an integral transforma-
tion,*>4

2 L
A3(L)=Ff0 dx(L3—2L% +x)2,(x) . (4b)

A convenient way to calculate A; is given in Bohigas and
Giannoni.®

III. FLUCTUATION MODELS

A. Universal fluctuation models

The functional forms of the measures introduced in
Sec. II are known analytically for some specific model
spectra. Two kinds of spectra are particularly important:
(a) (uncorrelated) random level spectra (Poisson spec-
trum) and (b) random matrix spectra. In the latter case
one has to distinguish between real symmetric [Gaussian
orthogonal ensemble (GOE)] and complex Hermitian
random matrices [Gaussian unitary ensemble (GUE)].*
Spectra belonging to the preceding classes share universal
fluctuation properties. Their spacing distributions are

given by
e ° (Poisson) (5a)
P(s)= gse“”/‘”xz (GOE) (5b)
32 2o —w/ms* (GUE) . (5¢)
w

[Egs. (5b) and (5c) represent approximations which devi-
ate only very slightly from the exact distributions.] The
Poisson distribution can be obtained by a maximal entro-
py consideration under the constraints of normalization
[fg’P(s)ds =1] and unit mean spacing normalization
[fg’sP(s)ds =1]. Both the Poisson (5a) and the Wigner
(5b) distribution can be derived from a simple probability
argument, which results in an integral equation for the
distribution P (s),*

P(s)=r(s) [ "P(x)dx . (6)

The Poisson law follows if we take the level repulsion
function r(s) to be unity (no level repulsion), whereas
Wigner’s law follows from the assumption of linear repul-
sion r ~s. In fact, the essential difference of the distribu-
tions (5) is their behavior at small spacings s. While de-
generacy of levels (s =0) is the most probable spacing for
the Poisson case (5a), random matrix spectra show linear
(quadratic) repulsion for the GOE (GUE) case, i.e., the
tendency to avoid level clustering.

The spectral rigidity A, is given asymptotically (L >>1)
by
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L /15 (Poisson)

A;~ | LinL —0.007 (GOE) )
m

%lnL +0.059 (GUE).
2

The expression for the Poisson case is valid for all L. An-
alytic random matrix expressions valid for all L can be
found in Brody et al.** and Bohigas and Giannoni.?

Analytic formulas for the higher moments, skewness
and excess, are too complicated to be listed here. They
can be found in Bohigas et al.> A graphical presentation
of them will be given when discussing results in Sec. V.

Originally, analyses in the spirit of random matrix
theories applied to complex systems with many degrees of
freedom, where a statistical treatment is not only natural
but the only feasible one. However, further physical
significance of the theory stems from the following con-
jecture which was formulated first by Bohigas et al.:'°
Spectral fluctuations of classically chaotic systems coin-
cide with GOE (GUE) fluctuations, if the system is (not)
time-reversal invariant, whereas spectral fluctuations of
classically integrable systems coincide with Poisson fluc-
tuations.

Apart from the very large numerical evidence for this
conjecture, some progress has been made in putting it on
a firm mathematical footing. We mention here a semi-
classical derivation of the spectral rigidity by Berry,*
which coincides with random matrix predictions (see Sec.
III C). A further generalization of the concept of time re-
versibility in terms of antiunitary symmetries was given
by Berry and Robnik.*® The fact, that “chaotic” quan-
tum spectra share the same universal fluctuation proper-
ties as random matrices does not mean that they are in-
distinguishable from random matrix spectra, as was
shown explicitly by Wintgen.!® The reason is that most
of the fluctuation measures defined in Sec. II are short-
range sensitive and do not include correlations of levels
extending over spectral ranges larger than L. The coin-
cidence of the statistics should be understood as a local
rather than a global property of the spectra.

B. Models for generic spectra

Generally the classical dynamics of a Hamiltonian sys-
tem is neither regular nor chaotic, but both types of
motion coexist.*’” What is known about these systems is
that they obey spectral fluctuations intermediate between
Poisson and random matrices. It has been argued that no
universal distributions exist for these systems.*® Numeri-
cal studies have shown, however, that spectral properties
of such systems look very similar, supporting the idea
that they can be described at least approximately by com-
mon distributions. Various families of distributions have
been proposed to fit the NNS distributions for these sys-
tems. They depend on one parameter (or more), which
can be tuned to interpolate between the limiting cases of
regular and irregular spectra. In the following we sum-
marize some of them.

The Brody distribution is given by*’
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P(Ji)=a(q-i-l)s"e—‘"sq+l , (8)
with
19 q+1
=|r [4T=
“ g+1

The distribution interpolates between the Poisson distri-
bution (g =0) and the (GOE) Wigner distribution (g =1).
It can be derived by assuming the power-law level repul-
sion r ~s9in Eq. (6).

The Berry-Robnik distribution®

P(s)=e'971s |(1—g)%erfc —‘/2# gs

+ -(17/4)q252

e 9)

2q(1—q)+%q3s

also interpolates between the Poisson (g =0) and the
Wigner (g =1) distribution. The distribution is obtained
by superimposing an irregular spectrum obeying Wigner
statistics with a regular spectrum obeying Poisson statis-
tics. Their relative weights g and 1—gq are given by the
fraction g of classical phase space, which is irregular. A
prominent feature of this distribution is its nonvanishing
value for s =0 (as long as g#1), reflecting the absence of
level repulsion between the two different sources of super-
imposed levels.

More recently another formula has been proposed by
Hasegawa et al.,’! who applied a stochastic differential
equations approach to the level motion theory, which was
introduced in this context by Pechukas®’ and further
developed by Yukawa.’® Their distribution depends on
two parameters, A and a, and reads

P(s)=Nps(p2s2e2’”+)Lze"‘zpzsz)*1/2 , (10
with p and N given by
p=F,/Fy ,
NZP/FI ,
Fn — f wxn(x2e2x+12ea2x2)-1/2dx .
0

The underlying idea is that there are two different types
of noise in the system, one responsible for level cluster-
ing, and the other responsible for level repulsion. The pa-
rameter A measures the relative strength of the two types
of noise, whereas the ratio of the average level densities
associated with the noises is governed by a. For A=0
Eq. (10) reduces to the Poisson distribution, whereas the
Wigner distribution is obtained in the limit A— .

We have investigated two further distributions, but
with limited success. The first one was proposed by Rob-
nik.*®* He derived P(s) from a maximal entropy con-
sideration under the additional constraint that the second
moment (s?)= [*s’P(s)ds of the distribution is
prescribed. However, we found that the resulting distri-
bution

P(s)=se*Tustvs? (11)
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is unable to reproduce the regular Poisson case (A, u, and
v are determined by fixing the leading moments, (1),
(s, and {s?), to their correct values).

The second distribution, not considered so far in the
literature, is obtained by setting the repulsion function
r(s) in Eq. (6) to

s
r(s)~ g2
Again this repulsion function interpolates between Pois-
son (g =0) and Wigner (g— o) and the corresponding
NNS distribution reads

P(s)=N —exp[ —a(s*+¢*)'"?], (12)

SENE
(s2+g?)
where N and a are determined by normalization. The
distribution depends linearly on s for small spacings
s <<g. Although it possesses the correct limiting forms,
fits to the computed spectra studied below were generally
poor compared to fits with the Brody formula. Therefore
we do not refer further to this distribution. The same
state of affairs holds for the Berry-Robnik distribution
(9), which fails to describe the computed spectra for small
spacings, although the physical idea behind the formula
is very promising (see also Sec. V).

In addition to the distributions proposed above we cal-
culated the “real” NNS distribution P (s) of a given spec-
trum. By real we mean a smooth approximation to the
observed distribution

1 M
P(s)=Ei§1 8(s —s;) . (13)
We obtain a smoothed version of Eq. (13) by expanding
P(s) in the complete set of basis functions ®,(s)

=L5'ft (2s)e ~°, where L, are the usual Laguerre polynomi-
als,

P(s)= 3

n(n=<ng)

e ®,(s) . (14)

The cutoff value n, can be determined by the requirement
that the distribution (14) should image the cumulative
distribution within some given accuracy. The distribu-
tion P(s) rapidly converges with increasing n,. (Note
that the Poisson distribution is recovered by the n =0
term only.) By inappropriately increasing n, the distri-
bution tries to resolve fine-structure components of the
real distribution which often are statistically insignificant
and which are desired to be eliminated. In practice the
expansion (14) works very well and a typical cutoff value
is ng~12. The distributions (14) become nearly indistin-
guishable for cutoff values near n,. Although Eq. (14) is
of no great practical use in parametrizing P (s), in partic-
ular in giving the expansion coefficients ¢, any physical
meaning, the procedure enables one to get rid of the usual
histogram representation of the NNS distribution. Un-
fortunately it is often the case that the overall agreement
between the real distribution and some fit distribution
can be manipulated by a proper choice of the histogram
step size. Alternatively, the differences between the more
or less smooth cumulative spacing distributions are not as
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dramatic as the differences in the distributions them-
selves. Hence a comparison between the proposed, Egs.
(8)-(12), and the “exact” distributions, Eq. (14), is the
most objective choice.

A model for the A; (and analogously for the 2,) statis-
tic in the intermediate regime is given by the independent
superposition of a regular Poisson spectrum with weight

q and an irregular GOE spectrum with weight ¢'=1—gq.
This leads to**
A4(L;q)=A%oon(gL)+AFOE(g’'L) , (15)
3,(L;q)=3Foissongr )+ 3FO(g’L) . (16)

To derive analogous expressions by simply scaling the ar-
guments is no longer possible for ¥, and ¥, and the corre-
sponding formulas are more complicated.>

C. Nonuniversal behavior: Semiclassical models

All the distributions presented in the previous sections
are derived from a statistical point of view involving
physically more or less justified assumptions. What
would be more satisfactory is a derivation from first prin-
ciples, i.e., from a quantum-mechanical or a semiclassical
starting point. Progress in this direction has been
achieved mainly by Berry, who derived semiclassical for-
mulas for the spectral rigidity A; (Ref. 45) and the num-
ber variance =, (Ref. 56) (see also Verbaarschot*?). In the
following we will sketch the theory for A; and give the re-
sults.

The starting point of the theory is the semiclassical
representation of the fluctuating part Ng(E) of the spec-
tral staircase function (1) formulated by Gutzwiller,*’

No(E)= iyt 3 Ay(BlesplisS,(E)/A] . (7)
nj

In the sum r labels all distinct primitive periodic orbits
(and their multiple traversals j) having actions S,. The
amplitudes A4,; depend on various aspects of the particu-
lar orbit r, e.g., stability, period, etc. N is 1 for isolated
orbits (this applies to all nonintegrable systems) and equal
to the degrees of freedom for a nonisolated orbit of an in-
tegrable system. Equation (17) is used together with the
definition of A;, Eq. (4), to obtain the following general
expression for the spectral rigidity:

= dt K(t/#if(E))
t/#in(E)

with 7(E) being the mean level density dN,, /dE and G
the orbit selection function,

AL)=2 [

G(Lt /2% (E)) , (18)
mTvo t

2
. 2 .

Gy=1-902 3 d_siny
y dy y

(19)

K (t) is the spectral form factor, i.e., the Fourier trans-
form of the correlation function of the spectral density.
The difficulty is to determine the spectral form factor
K (1), which generally is characteristic of the physical
system under consideration. However, the asymptotic
behavior of K is known and depends only on global as-
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pects of the classical dynamics,® e.g., global phase-space
structure, time reversibility, etc. The expression (18) can
now be evaluated by splitting the integral and exploiting
the asymptotic properties of K and G. However, care has
to be taken when considering the asymptotic behavior of
the orbit selection function, since its argument explicitly
depends on the mean density of states 7. Thus one can
distinguish two regions, L <<L_. and L >>L_.. . L
is given by

L. =2m#a(E)/T,,, , (20)

max

max

where T, is the period of the shortest classical closed
orbit. For L <<L_,. the evaluation of the integral (18)
yields the same L dependence as given in Eq. (7), thus
providing a semiclassical justification for a random ma-
trix ansatz. The constant terms in Eq. (7) are obtained
when setting K (¢) to the appropriate random matrix
form factors, whose asymptotic behavior coincide with
the semiclassical ones. For L >>L . the integral (18)
saturates to a nonuniversal value A _, which is given ap-
proximately by*’

Aw=~1§_—12A3j : 1)
h ryj

In between the two limits, i.e., L =L ., a weak oscillato-
ry structure may be imposed on the saturating distribu-
tion.

For the number variance 2, a semiclassical analysis
has been done in the same spirit. Here, we only quote the
result,>®

8

5=~

S 4}sin’[JLT,/24R(E)]) . (22)
nJj

Again, the asymptotic part of the sum (long orbits) can be
approximated by a universal random matrix ansatz. In
contrast to the asymptotic saturation of the spectral rigi-
dity A;, the nonuniversal asymptotic behavior of the
number variance 2, consists of a (quasirandom) oscilla-
tion pattern.*»%® Semiclassical formulas for higher mo-
ments can be found in Verbaarschot.*3

IV. DERIVATION OF THE SPECTRA

Before we discuss our results in Sec. V, a short descrip-
tion of the underlying physical system is necessary. The
quantum spectra for our analysis are derived by solving
the Schrodinger equation for the hydrogen atom in a uni-
form magnetic field, for which the Hamiltonian reads®>
(atomic units used)

2
H=%—%+%yz(x2+y2). (23)
The z axis is chosen as the direction of the magnetic field
B, which is measured in units of B;=2.35X 10° T,
B =y B,. The trivial (since constant) paramagnetic term
proportional to B is omitted in (23). The Hamiltonian
(23) fails to separate in any coordinate system; only the
azimuthal quantum number m and parity 7 are good
quantum numbers and can be isolated. The Hamiltonian
(23) scales as
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H(p,5;v)=vy*H(y V3p,y*’r; y=1), (24)

with the scaled Hamiltonian being independent on the
field strength . As a consequence the classical dynamics
do not depend on energy and field strength separately,
but depend only on the scaled energy ¢,

e=Ey 2?73,

The properties of a hydrogen atom in a uniform magnetic
field have been reviewed recently.>® The classical system
displays a smooth transition from regularity to chaos as
the parameter € is varied. This is demonstrated in Fig. 1,
which shows Poincaré surfaces of section for m =0 and
for six different values of the scaled energy e: —0.8,
—0.5, —0.4, —0.3, —0.2, and —0.1 (from left to right
and from top to bottom). The surface of section is
defined by recording and plotting the phase space coordi-
nates v=V 7 —Z and its conjugate momentum p, when-
ever a classical trajectory passes through the p=0 axis.
Regular classical motion is indicated by the existence of
invariant manifolds (tori) on which the motion is confined

FIG. 1. Poincaré surfaces of section for the hydrogen atom
in a uniform magnetic field for different values of the scaled en-
ergy e: —0.8, —0.5, —0.4, —0.3, —0.2, and —0.1 (from left to
right and top to bottom).
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for all times, whereas a typical chaotic trajectory occu-
pies a finite volume in phase space and a finite area in the
surface of section. For e = —0.8 the system behaves reg-
ularly and is hardly distinguishable from an integrable
one. Classical chaotic motion first appears near the
separatrix as we decrease (by absolute value) the scaled
energy. By further decreasing € the regular part of the
phase space becomes smaller and smaller, until the last
large regular island disappears at ¢=—0.12727. The
dependence of the classical dynamics on the scaled z com-
ponent of angular momentum I, can be neglected for our
purpose.*®

The techniques to solve the Schrodinger equation for
fixed values of the scaled energy € are described in Ref.
59. First results on the statistical behavior of these spec-
tra were reported in Refs. 7 and 32, where the nearest-
neighbor spacing distributions (NNS) were studied for
different values of €. Spectral statistics (NNS and A;, and
very recently transition strengths fluctuations®) were also
studied by Delande and Gay® and Wunner et al.,’ who
calculated quantum spectra at a fixed field strength ¥ in-
stead of fixed scaled energy €. As long as the classical dy-
namics are either completely regular or completely irreg-
ular these different approaches yield similar results, as
demonstrated in Refs. 7-9. However, a study of the
transition regime between regularity and irregularity can
only be meaningful by fixing the classical dynamics, that
is, the scaled energy ¢.

In this paper we analyze 56 spectra at fixed scaled ener-
gies, ranging from €¢=—0.4 up to e=—0.1 in steps of
0.05. Spectra are obtained for eight different subspaces
m”, m =0,1,2,3, and both parities. A typical spectrum
consists of 350 (e=—0.1) up to 1600 levels (e=—0.4).
We required a convergence of the energy levels of at least
0.1% of the mean level spacing. After checking statisti-
cal independence of the calculated statistics in the vari-
ous m " subspaces, one can average them to increase the
statistical significance. We have always done this, if not
stated otherwise. The total number of levels for the vari-
ous values of the scaled energy are listed in Table 1.

Unfolding the spectra to unit mean level density as de-
scribed in connection with Egs. (2) and (3) was done nu-
merically by fitting the spectral staircase function N by a
second order polynominal in ¥ /3. Then the coefficient
of the leading term proportional to ¥ ~2/? is given by the
phase space volume in the scaled coordinates (24). We
have checked this and generally found an agreement

TABLE I. Number N of converged eigenvalues for the
different scaled energies €.
€ N
—0.10 2980
—0.15 4800
—0.20 6000
—0.25 8000
—0.30 9600
—0.35 11200
—0.40 12800
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within the order of ppm between the calculated phase-
space volume and the leading fit coefficient of the spectral
staircase function.

V. RESULTS AND DISCUSSION

A. Level statistics for irregular behavior

As is discussed in Sec. IV and shown in Fig. 1, the clas-
sical dynamics of a hydrogen atom in a uniform magnetic
field turn out to be completely chaotic for e > —0.127 27.
Hence spectra generated for e= —0.1 are suitable to test
the hypothesis of GOE fluctuations for classically chaotic
systems. Although the full Hamiltonian including the
paramagnetic term proportional to /, is not invariant un-
der a time-reversal transformation, we expect GOE rath-
er than GUE fluctuations. The reason for this is that the
concept of time reversibility must be replaced by a more
general concept of antiunitary symmetries.*® To be con-
crete, the effective Hamiltonian (23) is invariant under
time reversal, and the full Hamiltonian is invariant under
simultaneous time reversal and reflection through the
(x,y) plane, thus yielding GOE instead of GUE fluctua-
tions.

Figure 2 shows the results for the level statistics for
e=—0.1: NNS distribution P (s), the cumulative spacing
distribution f oP (x)dx, spectral rigidity A;(L), and the
moments of the distributions, variance 2,(L), skew
v1(L), and excess y,(L). Also shown are the results for
uncorrelated random level spectra (Poisson case) and ran-
dom matrix spectra (GOE). The results shown are an
average over eight different spectra in various m” sub-
spaces, except for the spectral rigidity A;, which has been
analyzed with respect to the particular values of the z
parity. Generally, a close overall agreement is observed
between the present results and the predictions of ran-
dom matrix theories, confirming the hypothesis of univer-
sal fluctuation patterns for classically chaotic systems.
However, some deviations exist for large values of L, in
particular for A; and 2,. These deviations are related to
the breakdown of universality when L becomes larger
than the internal spectral correlation length L ., as
defined and discussed in Sec. III C [Eq. (20)].

These deviations are even more clearly shown in Fig. 3,
which shows the spectral rigidity A; for a larger range of
L values. Again Aj; is given separately for spectra belong-
ing to positive and negative z parity. Whereas A; follows
the GOE curve quite accurately up to L =6, the spectral
rigidity soon saturates to a value which we deduce from
Fig. 3 to be A} =0.28 and A_ =0.24. The fact that A,
converges to parity-dependent saturation values has not
been observed before in any numerical exploration and is
surprising at first sight. The amplitudes A4,; entering the
semiclassical saturation formula (21) for A_ are deter-
mined by pure classical quantities and, for unstable prim-
itive periodic orbits », which are traversed j times, are
given here by!>>’

.2
S V4 R (25)

2 —
7 [2sinh(jA,/2)]*
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FIG. 2. Various fluctuation measures for the spectra ob-
tained for e = —0.1: nearest-neighbor spacing distribution P (s),
cumulative distribution f;P(x)dx, spectral rigidity A;, number
variance X,, skewness 7, and excess y,. A total of 3000 calcu-
lated energy levels have entered the analysis. Also shown are
the Poisson and GOE predictions.

A, is the Liapunov exponent describing the stability of
the periodic orbit ¢. For unstable periodic orbits which
turn out to be inverse hyperbolic fixed points in the Poin-
caré surface of section the sinh has to be replaced by the
cosh in Eq. (25).%! (For details see, e.g., Ref. 57 and the
forthcoming paper.!) Thus one might expect that the sat-
uration value is independent of parity, which does not
enter Eq. (25). However, in deriving Eq. (25) care has to
be taken if the periodic orbit r coincides with a symmetry
line of the system. This is the case for the z =0 periodic
orbit perpendicular to the direction of the magnetic field.
The sinh (or cosh) in Eq. (25) is then split in its odd and
even part by expanding the sinh,

1 — w ,—(k+1/2)x
_—= . 26
Zsinh(x/2) =&, (26)

(—1)* now plays the role of a local parity of the orbit.
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FIG. 3. Spectral rigidity A; for e=—0.1 for the different z
parities.

For the orbit perpendicular to the field the local orbit
parity coincides with the exact z parity of the system. If
we consider spectra belonging to different z parity, as is
done in Fig. 3, then we have to resum Eq. (26) over odd

and even k, respectively,!>®? giving two amplitudes A,j-"
and 4,; differing by
~ )2
A, —2j1
L =e U 27)
A,

Thus the saturation value A_ becomes z-parity depen-
dent by (and only by) the z-parity dependent contribution
from the straight line periodic orbit perpendicular to the
field. Putting the actual quantities into Egs. (25) and (26)
gives a parity splitting of AL —A_ =0.043 which is close
to the observed splitting of 0.040(2).

B. Level statistics in the transition regime

1. Nearest-neighbor spacing distribution

The nearest-neighbor spacing distribution is perhaps
the most popular fluctuation measure. It is a very sensi-
tive measure if a regular system is perturbed only slightly.
In this context the behavior of the spacing distribution
for small spacings is of particular interest, because it con-
tains information of the spectrum on its finest scale (near
degeneracies). In contrast to the semiclassical derivation
for the spectral rigidity as described in Sec. III C, no sa-
tisfactory theory exists for the spacing distribution in the
transition regime between regularity and irregularity. All
that is known is that the distribution is intermediate be-
tween Poisson and Wigner, and that the distribution
must vanish for spacing zero (degeneracies), reflecting the
noncrossing rule of Von Neumann and Wigner.*! Never-
theless, accidental exact degeneracies may occur,% but
their measure is zero. Even the behavior of the distribu-
tion for small spacings is unknown and most of the pro-
posed distributions (8)—(14) presented in Sec. III B differ
in their analytic behavior at small spacings. Before we
discuss the dependence of the distributions on the under-
lying classical dynamics, we will briefly discuss two
points: first the accuracy of the multiparameter expan-
sion (14), and second possible # dependencies of the spac-
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ing distributions.

As an example, Fig. 4 shows the cumulative spacing
distribution obtained with the spectra for e=—0.25 to-
gether with the integrated fitted distribution (14) with
ny=13. The two curves are nearly indistinguishable not
only in their overall behavior but even on a small scale.
This observation also holds for n, equal to 12 or 14. Asa
further check we calculated the normalization integrals
of the fitted distribution and obtained, e.g., for n,=13,
(1)=1.0001 and (s)=1.0047. Note, that the coeffi-
cients ¢, in Eq. (14) are determined by a linear fit without
invoking the normalization conditions for the distribu-
tion. The fitted distribution (14) represents the smoothed
“measured” spacing distribution (13) with great accura-
cy, so that we can get rid of the usual histogram represen-
tation. This fact will be exploited throughout this paper.

The great advantage in analyzing spectra of scale-
invariant systems is that the underlying classical dynam-
ics do not vary with energy. In all studies so far it is as-
sumed that statistics are then stationary along the spec-
trum (or at least that they quickly settle down to a given
distribution). Of course, proposing a distribution which
should fit real spectra implicitly assumes stationarity. Al-
though the classical dynamics of scale-invariant systems
do not vary with energy, the quantum dynamics do. This
can be expressed quantitatively via the commutation rela-
tions of the scaled quantum-mechanical operators associ-
ated with the scaled classical variables; for our model
Hamiltonian (24) this reads, e.g.,

(p.,z]=iy'"*#% . (28)

At a fixed scaled energy & determining the classical
mechanics the dependence of the quantum mechanics on
the magnetic field strength ¥ can be accounted for by an
effective field strength dependent Planck’s constant y /34,
Thus approaching small field strengths (or equivalently
high excitation energies) leads to a small but finite
effective Planck’s constant. The influence of a varying
effective Planck’s constant on statistical measures is not
known and in view of recent suggestions*® one would also
like to know whether such distributions are valid at all in
the intermediate regime. Very recently a chaotic system

L 0.03

FIG. 4. Cumulative spacing distribution for ¢=—0.25 to-
gether with the multiparameter fit (14) (smooth line), see text.

has been analyzed in this spirit and a strong # depen-
dence of statistical measures has been found.>’ # depen-
dencies of spectral properties are also of interest when
very weak symmetry-breaking interactions are pre-
sent, 264

If one assumes a statistical distribution to converge to
a well-defined one, then one might expect a behavior as
shown in Fig. 5(a). The figure shows the nearest neighbor
spacing (NNS) distribution for four different ‘“windows”
in the e= —0.35 spectra, that is each single spectrum is
analyzed in four groups (windows) containing an equal
amount of levels. Whereas the NNS distribution of the
lowest excitation window (large effective #) differs consid-
erably from the other three curves, the distributions de-
rived from higher excited windows seem to settle down
quickly to a common curve (apart from some fluctuations
which may be due to the finite length of the samples
used). A completely different behavior is observed how-
ever, if we change the scaled energy only slightly to the
value €= —0.30, see Fig. 5(b). Now there is a systematic
trend for avoiding small and large spacings for higher ex-
citations and one cannot expect that the distribution con-
taining all the four windows has settled down to the exact
distribution, which we would obtain by considering all, in
fact infinitely many, levels. As we will see later in this
section, the distributions belonging to e= —0.3 generally
do not show the typical dependence of the distributions
on the classical parameter €. Thus Fig. 5(b) is exceptional
in that it represents the most extreme # dependence we
have observed. However, large differences between the
window distributions are quite generally present when

FIG. 5. Nearest-neighbor spacing distribution for (a)
€= —0.35 and (b) e=—0.30. Each analysis is made for four
different excitation windows (the shorter dashed the curves, the
higher the excitations).
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the classical behavior is very complex, whereas the distri-
butions seem to approach a common curve rather quickly
when the classical phase-space structure becomes simple
(i.e., the system is either close to a regular or close to an
irregular one).

We now come to the dependence of the NNS distribu-
tions on the parameter € governing the classical dynam-
ics. Figure 6 shows the distributions for ¢=—0.15,
—0.25, —0.35, —0.40 (solid lines), and —0.30 (dashed

lines). The distribution for €= —0.20 is not shown, be-
cause it is close to that of e= —0.25. For the solid lines
we find the expected behavior, the crossover from a
Wigner-like distribution for e=—0.15 to a Poisson-like
distribution for e=—0.40. However, as is mentioned
above, the distribution for e = —0.3 (dashed line) shows a

different behavior than the general trend. This may be
due to the fact that in this case the distribution still has
not converged [see Fig. 5(b)]. In any case this behavior is
surprising and its origin obscure.

A remarkable feature of the distributions is that they
do not tend to zero for small spacings s. This is not an
artifact related the basis set expansion (14), as we have
seen in connection with Fig. 4, where the fitted curve ac-
curately represents the real cumulative distribution even
down to very small spacings. The dependence of the dis-
tributions for small spacings is shown more clearly in Fig.
7, where we plot the cumulative distributions on a double
logarithmic scale. Note that the maximal spacing includ-
ed is only 0.1 of the mean spacing. The slope of the
curves gives information on the power-law behavior near
s =0. Linear and quadratic dependence of the cumula-
tive distribution corresponding to nonvanishing and van-
ishing spacing probability near s =0 are indicated on the
figure. The curves obviously show quadratic dependence
(linear level repulsion) for e=—0.10 and €= —0.15,
which are both close to the Wigner distribution, but
linear dependence (partly vanishing level repulsion) for
the other distributions. Since we know from general
grounds that P(s) must be zero for s =0, the curves
showing linear dependence must drop down somewhere,
but as we can see from Fig. 7 this must appear for ex-
tremely small spacings s, which is then not noticeable on
the scale of Fig. 6. Note that the curve belonging to

FIG. 6. Nearest-neighbor spacing distribution for different
values of the scaled energy «.
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FIG. 7. Cumulative spacing distribution for small spacings
for different values of the scaled energy €. Linear and quadratic
dependence on the spacing is indicated.

€= —0.30 again does not conform to the general trend.

We now turn to the question of how good the spacing
distributions can be imaged by one of the proposed distri-
butions (8)-(12). As we remarked in Sec. III B 1, distri-
bution (11) is unable to reproduce the limiting (regular)
Poisson distribution and the success with distribution (12)
was only limited. Although the Berry-Robnik distribu-
tion (9) is the only one having a nonvanishing probability
for very small spacings, fits were generally poor. The
reason for this is the pronounced minima of the observed
distributions for small spacings, which cannot be repro-
duced with formula (9) (see also Refs. 32 and 33). Gen-
erally the best one-parameter fits were obtained with the
Brody formula (8) and, unexpectedly, this formula was
comparable or even better suited than the two-parameter
distribution (10). This is shown in Fig. 8, where we have
plotted the real distributions (solid curves) together with
the best-fit Brody distributions, Eq. (8) (dotted curves),
and the Hasegawa distributions, Eq. (10) (dashed curves),
for three values of the scaled energy €. The fit parame-
ters used are tabulated in Table II. None of the distribu-
tions is able to reproduce satisfactorily the broad hump
near s =0.5 for €e=—0.20 (which is also present for
e= —0.25, see Fig. 6), but the agreement is quite fair for
€= —0.30 and €= —0.40. Note that the Brody distribu-
tion, although not having the correct analytic behavior
near s =0, is particularly suited to describe the distribu-
tion for small spacings at e = —0.4.

Thus from a practical point of view the Brody formula
seems to be the most favorable choice for a simple param-
etrization of NNS data. This is in some sense unsatisfac-
tory, first because the derivation of the formula was pure-
ly heuristic and second because the analytic behavior for
very small spacings seems to be wrong (but nevertheless
acceptable in practice). On the other hand the present re-
sults give some indication that the Berry-Robnik formula
may become well suited in the extreme semiclassical lim-
it, although it is of no great practical use for our data,
even though it involves continuous sequences of the order
of 103 levels.
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FIG. 8. Nearest-neighbor spacing distributions (solid lines)
for (a) e=—0.4, (b) —0.3, and (c) —0.2, together with the best
fitting Brody (dotted lines) and Hasegawa distributions (dashed
lines).

2. Spectral rigidity

Again we will discuss first the # dependence of the
spectral rigidity described by the A; statistics. The #
dependence is explicitly present in Eq. (21) and via the
level density in the general semiclassical formula (18).
For small effective # we have a large level density and for
a large effective i we have a small level density. In the
latter case the spectrum is more stiff as expressed by the
asymptotic saturation of the spectral rigidity A;, as was
discussed and demonstrated in chapter V A.

Figure 9 shows the spectral rigidity A; of the m™=
spectrum at €= —0.4 for four different windows of the
spectrum. The windows are chosen such that the lowest
and highest level involved are (8n)* and [8(n +1)]?
n=1,2,3,4. With this choice the level density in the
different windows is roughly proportional to n, so that
the internal correlation length L . , defined by Eq. (20),
increases linearly with n. This is represented qualitative-
ly in Fig. 9, which shows a roughly linearly increasing
saturation value of the spectral rigidity. However, the
values of the internal correlation length L .., which are
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FIG. 9. Spectral rigidity A; for the m”=1" spectrum and
€= —0.4. The analysis is made for four different excitation win-
dows of the spectra (see text). The arrows indicate the L values
where the semiclassical formula (20) predicts the crossover from
universal to saturation behavior.

indicated by arrows in the figure, are largely overestimat-
ed by Eq. (20). The crossover from universal to satura-
tion behavior appears for L values approximately 2-3
times smaller than L ,,. Thus, the spectrum is much
more rigid than one might expect at first sight. The
reason for this is that there are indeed strong correlations
in the spectra on a smaller scale than L ,, and we will
see below that they are caused by the most simple stable
(isolated) periodic orbits of the system.

In deriving Eq. (20) it is assumed® that the 8-function
singularities in the density of states [discontinuities in the
spectral staircase function (1)] are determined by very
long orbits, whereas the short orbits give rise to the long-
est oscillations in the density of states [see Eq. (17)].
Then L _,, is determined by the period of the shortest
periodic orbit, which gives rise to the longest oscillation
in the expansion (17) for the fluctuating part of the spec-
tral staircase function.** This seems to hold (at least in
most cases) for integrable systems and systems having
only unstable periodic orbits, but not for generic systems.
To see this we have to consider the contribution of a sin-
gle stable periodic orbit to the level density. The orbit
must be isolated, but this is generally fulfilled for nonin-
tegrable systems. The orbit is then characterized by its
action S, its period T, Maslov index a, and its winding
number ¥ (or equivalently its stability angle v=27y)

TABLE 1I. Best-fit parameters g for the Brody formula (8)
and best-fit parameters A and a of the Hasegawa formula (10)
obtained for the spectra of various scaled energies €.

€ q A a
—0.15 0.95 0.17 6.0
—0.20 0.78 0.09 5.41
—0.25 0.76 0.04 8.77
—0.30 0.46 0.34 1.28
—0.35 0.36 0.11 1.66
—0.40 0.17 0.09 1.11
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describing the behavior of nearby orbits. Its contribution
to the level density is'>>’

—iT . eli(S/fi—an/2)
29
i 7 2sin(jv/2) @9
Evaluating the sin in Eq. (29) gives
2 E etj[S/ﬁ~a1r/2*(k+1/2)v] . (30)
h j k=0
Equation (30) can be summed analytically to give'®®®
L5 85 /5= 2mn +am/2)—(k +1w) 31
#i nk

and a contribution to the spectral staircase function of

S(E) _
Zﬂ'ﬁ

n+2

N, Y |~y (32)

2

orblt 2 S

The essential point now is that y is independent of energy
for scaling systems and hence Eq. (31) predicts a two-
dimensional harmonic-oscillator-like level set associated
with this single periodic orbit.®® Harmonic-oscillator
spectra are known to posess peculiar statistical proper-
ties, particularly being far from Poissonian. They have a
regular level spacing determined by the fundamental
periods of the oscillations, which modifies the assumption
made in deriving L, namely that the exact position of
the quantum states is determined by the very long orbits.
Furthermore, regular level sequences appear whose spac-
ings are determined by the fractional part (and also by
one minus the fractional part) of the winding number.
Locally these sequences are indistinguishable from a level
set arising from a harmonic oscillator with a frequency
given by this fractional part, thus yielding a lowered
internal correlation length of the spectra. By inspecting
the winding numbers of the important stable orbits®®
(these are the straight line periodic orbits parallel and
perpendicular to the field which we identify as the elliptic
fixed points surrounded by the large elliptic islands in
Fig. 1) we find that the L values for the crossover to satu-
ration behavior should be approximately smaller by the
inverse fractional part of these winding numbers, which
gives roughly a factor of 2.5. These values approximately
coincide with the L values where we observe saturation in
Fig. 9.

Although we have seen that saturation of spectral rigi-
dity takes place for comparatively low L values, the
different window curves in Fig. 9 nearly coincide for
values of L smaller than the spectral correlation length
L°°", which we define as the L values at the crossover
from universal to saturation behavior. In this regime we
expect a dependence of A; on L as described by the in-
dependent superposition of a regular and an irregular
spectrum, see Eq. (15). The weights ¢ and 1—gq are
directly related to the fraction of the regular and the ir-
regular part of the phase space. As an example, Fig. 10
shows the best-fit curves (dotted lines) for (a) e= —0.25,
positive z parity, and (b) e=—0.40, negative z parity.
Fits were obtained by considering only the part L =L,
with Ly=4 (¢=—0.25) and L,=8 (e=—0.4). The
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FIG. 10. Spectral rigidity A; for (a) e=—0.25 and (b)
€= —0.40 (solid lines) and fitted curves using formula (15).

agreement between the fitted and observed curves is very
good up to L values 50% larger than L,, where satura-
tion begins to set in.

Once the fitted g values are extracted, one can compare
them with the fraction g, of the regular part of the phase
space. This is done in Table III. The values g were tak-
en from Wunner et al.®’ Both the classical and the fitted
g values have an estimated error of +0.02. The close
agreement between both g values is surprising when one
considers that the Berry-Robnik formula (9) for the NNS
distribution, whose derivation is based on the same philo-
sophy, gives unsatisfactory results. This may be linked to
the fact that A; is not so extremely sensitive to small re-
sidual interactions between regular and irregular levels as
the NNS distribution.

Figure 11 now shows the spectral rigidity as calculated
from the spectra for the different values of the scaled en-
ergy €, together with the A; curves for Poisson and GOE
spectra. Again we see the crossover from GOE to Pois-
son statistics for the nonsaturated parts of A;. However,
we also find here that A; for e=—0.30 does not conform
to the general trend: it has an extraordinary large satura-
tion value compared to, e.g., e=—0.20 and €= —0.35,
and a nonmonotonic behavior of its derivative. As is
demonstrated in Fig. 12, this behavior arises mostly from
the high-lying part of the spectrum.

TABLE III. Fractional part g, of regular classical phase
space and g values obtained by fitting the spectral rigidity to Eq.
(15). The estimated errors are +0.07 for €= —0.30 and +0.02
otherwise.

€ qa q
—0.15 0.04 0.01
—0.20 0.12 0.11
—0.25 0.16 0.13
—0.30 0.24 0.17
—0.35 0.40 0.36
—0.40 0.66 0.61
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FIG. 11. Dependence of the spectral rigidity A; on the scaled
energy €.

At this stage, we will not make an attempt to explain
this behavior, because it is sufficient to understand the
number variance Z,, to which the spectral rigidity A, is
related via the integral transformation (4b). This will be
done in Sec. VB 3.

Finally, we discuss a point for which we have no quan-
titative explanation at present. The z-parity dependence
of the spectral rigidity, as discussed in Sec. V A, persists
even in the intermediate regime, where the symmetry or-
bit perpendicular to the field is stable. These splittings
are tabulated in Table IV. In contrast to the case where
the instability of the symmetry orbit leads to a parity-
dependent magnitude of the amplitudes entering Egs. (17)
and (21), these amplitudes coincide (apart from a phase)
when the orbit is stable, i.e.,

L etV
Ay 2j sin(jv) ° 33
Thus the amplitudes are of same magnitude and no parity
splitting should occur. We have checked the validity of
Eq. (33) in different ways. First, we compared the ampli-
tudes for j =3 with those derived from a Fourier trans-
form of the quantum spectra and generally found good
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FIG. 12. Dependence of the spectral rigidity A; for e=—0.3
on the excitation energy. Levels included in the analysis are 100
to 400 (solid line) and 800 to 1200 (dotted line).
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TABLE IV. Observed parity splitting of the saturating value

of the spectral rigidity A;.

£ AT —A7
—0.15 0.036
—0.20 0.016
—0.25 0.008
—0.30 0.031
—0.35 —0.008
—0.40 0.008

agreement.'> Second, the contributions to the level densi-
ty including all traversals j of this orbit are a two-
dimensional oscillatorlike level set, as discussed in con-
nection with Egs. (29)-(32). The only difference for pari-
ty then is a shift of these subspectra, which is determined
solely by the stability angle v, see Eq. (31). It is also here
that we found excellent agreement with these predictions
(see Ref. 1). A shift of these subspectra should have no
influence on the rigidity of the complete spectra, howev-
er. A possible reason may be that the observed parity
splitting is related to the termination of the sum over the
transversal quantum number k in Eq. (31). The cutoff
value of k is related to the size of the stable elliptic region
surrounding the orbit. Thus termination of the level sets
associated with the stable orbit is parity dependent.

3. Moments of the number statistics

In this section we will report the results obtained for
the moments of the number statistics =,, y;, and 7,.
This will be done only briefly because the results are very
similar to those reported in Sec. VB 1 and VB2. This is
demonstrated, e.g., in Fig. 13, which shows the results for
the number variance 3,. Again we observe the transition
from GOE to Poissonlike statistics and the nonuniversal
departures for larger L values, and again the results for

€= —0.3 show an extraordinary behavior. In the follow-
ing we will mainly concentrate on what is different for
€= —0.3, which then will explain why it is extraordinary.

o
N F
(@]
»

FIG. 13. Dependence of the number variance 3, on the
scaled energy e.
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The differences observable in Fig. 13 become more pro-
nounced for larger L values and are shown in Fig. 14.
The very fast oscillations indicate statistical errors (of
course the variance itself has a variance, for example),
but whereas there are only moderate modulations of the
nearly constant curves for e=—0.25 and €e=—0.35, a
very pronounced sinusoidal modulation is present for
€= —0.30. This is even more strikingly visible in Fig. 15,
showing X, for e=—0.3 in the range up to L =80. The
smooth curve in Fig. 15 is obtained by a data smoothing
procedure*? with the dotted curve for 3,. The wave-
length of the strong modulation in Fig. 15 is determined
tobe L 4=~17.5=1.

We will show now, that the extraordinary behavior of
the statistical quantities for e=—0.3 is related to the
level-density contribution of the symmetry orbit z=0
perpendicular to the magnetic field. This orbit is stable
for e <gqu=—0.127268 612. ¢, defines the onset of global
chaos, i.e., we have not found any stability islands in the
Poincaré surfaces of section for larger values of €,% see
also Fig. 1. In the stable regime its stability angle v de-
scribes the classical behavior of nearby orbits. This quan-
tity changes its value continuously from 27 for e=—
down to 7 for € =g, where the elliptic fixed point associ-
ated with this orbit in the surface of section changes into
an inverse hyperbolic one. In the stable regime the orbit
contribution to the level density of a given m subspace is
governed by Egs. (29)-(32). When considering spectra
with fixed z parity the sin in Eq. (29) has to be split in its
odd and even part as discussed in connection with Egs.
(25) and (33) above. This yields the z-parity-dependent
contributions

—iT
(B 2sin(jv)

eij(S/ﬁ—aﬂ'/Ziv/Z)

(34)

The essential difference between Egs. (29) and (34) is the
additional factor of 2 in the argument of the sin (the addi-
tional phase of v/2 is of minor interest in what follows).
One notices that some terms in Eq. (34) become divergent
when the winding number y =v /2 approaches a ration-
al number. The winding numbers y for the different
values of € are tabulated in Table V. There we find the
solution for the extraordinary behavior for e = —0.30, in

FIG. 14. Same as Fig. 13, but for larger L values.
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FIG. 15. Number variance =, for e= —0.3 (dotted line) and
its average (solid line). Levels 100 up to 1200 included.

that the winding number is very close to the low rational
number 2. Thus the amplitude (34) is extraordinary large
for j =2 traversals of the orbit. As a consequence, the
spectrum (31) consists of a two-dimensional harmonic os-
cillator level set with near-commensurable frequencies
and hence many systematic near degeneracies. By in-
specting the quantum spectra we indeed found these
near-degenerate states (see Ref. 1).

The contributions (34) are contained, however, in the
semiclassical formulas for 2, and A;, see Egs. (21), (22),
and (33). Now we can understand the very large satura-
tion value of Aj;, which essentially is the squared sum of
the orbit amplitudes, divided by j times the orbit actions.
In addition, the strong sinusoidal modulations of the
number variance 3, shown in Figs. 14 and 15 are caused
by the j =2 term of the orbit contribution (34). This can
be checked easily by inserting the actual numbers into
Eq. (22). Depending on whether we choose 7% as the
arithmetic or geometric mean of the level densities at the
lower and upper bound of the spectrum involved we ob-
tain L3, =16.6 and 19.8, respectively. Considering this
rough estimate for the averaging of the mean level densi-
ty (7 varies between 17 and 60 over the whole spectrum
analyzed) the agreement with the deduced value of L4
is remarkably good. A further check is shown in Fig. 16,
where we have plotted the smoothed variance =, ob-

TABLE V. Winding number y of the periodic orbit perpen-
dicular to the field.

€ Y
— o0 l
—0.40 0.797
—0.35 0.770
—0.30 0.740
—0.25 0.703
—0.20 0.657
—0.15 0.588
—0.12727 0.5




39 SPECTRAL PROPERTIES OF STRONGLY PERTURBED. ..

tained by considering the spectra between level 600 and
1100 (solid lines). The dotted curve is the 2, contribution
of the periodic orbit perpendicular to the field with up to
three traversals. We have taken the amplitudes from Ref.
12 and 7 as the level density at level 900.% Figure 16
shows that the strong modulations of the variance X, are
indeed caused only by the periodic orbit perpendicular to
the field. The agreement between the curves in Fig. 16
becomes even better when a more sophisticated average
of the mean level density 7 is chosen.’”® Thus all the ob-
served extraordinary features in the spectral statistics for
€= —0.30 are linked to the accidentally low resonant
value of the winding number ¥ for the stable periodic or-
bit perpendicular to the field.

In the light of these results one is not surprised to find
similar effects for the higher moments of the distribu-
tions, and for completeness we show results in Fig. 17 for
v, and in Fig. 18 for y,. What is noteworthy is that the
transition to Poisson statistics is much slower than for
the other statistical measures analyzed so far, particularly
for L values larger than 2.5. Furthermore, for L >2 all
curves for y, are below the GOE prediction and thus not
intermediate between GOE and Poisson. Again the be-
havior for e=—0.3 is abnormal and pronounced modula-
tions with the same wavelength as for X, are again
present as predicted by semiclassical formulas*’ (see Fig.
19 for y ).

VI. SUMMARY AND CONCLUSIONS

To summarize we have studied the fluctuation proper-
ties of large scale quantum spectra derived from the clas-
sically scale-invariant Hamiltonian describing the hydro-
gen atom in a uniform magnetic field. The data presented
are of a statistical significance hitherto not achieved by
any other study of these topics. We particularly focussed
on the dependence of the fluctuation properties on the
parameter € governing the transition from regularity to
irregularity in the classical system.

The most important conclusion that can be drawn
from the present analysis is a definite statement concern-

O L L L " 1 -
0 20 40 L 60" 80

FIG. 16. Smoothed number variance X, for e= —0.3 (solid
line, levels 600 up to 1100 included), and the semiclassical con-
tribution of the periodic orbit perpendicular to the field to =,,
see text.
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FIG. 17. Dependence of the skewness ¥, on the scaled energy

ing the question: Suppose we know the global structure
of the classical phase space. Does this knowledge allow
us to make any quantitative prediction concerning the as-
sociated quantum spectra?’! As we have seen in Sec. V
this is generally not the case, but a more detailed
knowledge of the classical dynamics is necessary. Only
for systems whose classical motion is dominated by glo-
bal chaos or by complete regularity (integrability) such
predictions seem to be possible (universal fluctuation
properties).

As was demonstrated in Sec. V all the statistical mea-
sures are strongly influenced by the presence of stable
periodic orbits surrounded by large elliptic islands in
phase space. This includes (i) a significantly lowered
value of where spectral rigidity saturation sets in and (ii)
extraordinary behavior of all statistical measures when
the winding numbers of certain periodic orbits are close
to low rationals.

Although we cannot prove (ii) for the NNS it seems
reasonable that the observed deviations are also linked to
the presence of harmonic-oscillator-like level sets in the
spectra. Considering that no spacing distribution exists
for harmonic oscillators,””> we conclude that there is no
universal family of NNS distributions for the transition

FIG. 18. Dependence of the excess ¥, on the scaled energy €.
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FIG. 19. Skewness y, for e= —0.3 (dotted line) and its aver-
age (solid line).

regime between regularity and irregularity. We can ex-
pect at best that NNS distributions are close to a family
of common distributions interpolating between Poisson
and Wigner, but the deviations from such common
curves can be large. This may also explain why the
Berry-Robnik formula (9) fails to parametrize the spacing
distributions: the regular part of the spectra can be far
from Poissonian.

Finally, we remark on the generality of the present re-
sults. As was shown, the presence of stable periodic or-
bits surrounded by large elliptic islands gives rise to a d-
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dimensional harmonic-oscillator-like level set (d =2 in
our case) embedded in the complete spectrum. This is a
generic property of all scale-invariant Hamiltonian sys-
tems. The observed extraordinary behavior is related to
the nongeneric statistical behavior of harmonic oscilla-
tors and not to the fact that levels exist which are associ-
ated with the regular part of the phase space. For non-
scaling systems the winding numbers become explicitly
energy dependent. As a consequence the regular part of
the spectrum will deviate strongly from a harmonic-
oscillator-like pattern. Scaling systems are nongeneric
with respect to this and for nonscaling systems we expect
absence of extreme extraordinary behavior. Unfortunate-
ly this can hardly be proved because the phase-space
structure is varying in any case for nonscaling systems
and this effect must be controlled separately. The best
way to test this hypothesis would be to consider a system
with one dominantly contributing stable periodic orbit,
for which the winding number of the nearby orbits varies
strongly. This also leads to strong deviations from a
harmonic-oscillator-like level set associated with the
periodic orbit.
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FIG. 1. Poincaré surfaces of section for the hydrogen atom
in a uniform magnetic field for different values of the scaled en-
ergy e: —0.8, —0.5, —0.4, —0.3, —0.2, and —0.1 (from left to
right and top to bottom).



