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Polarization hydrodynamics in a one-dimensional polariton condensate
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We study the hydrodynamics of a nonresonantly pumped polariton condensate in a quasi-one-dimensional
quantum wire taking into account the spin degree of freedom. We clarify the relevance of the Landau criterion
for superfluidity in this dissipative two-component system. Two Cherenkov-like critical velocities are identified
corresponding to the opening of different channels of radiation: one of (damped) density fluctuations and another
of (weakly damped) polarization fluctuations. We determine the drag force exerted onto an external obstacle and
propose experimentally measurable consequences of the specific features of the fluctuations of polarization.
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I. INTRODUCTION

The condensation of exciton-polaritons in a semiconductor
microcavity1–4 arouse a great interest directed towards the
possible demonstration of superfluid dynamics in coupled
light-matter waves. Beautiful experiments revealed suppres-
sion of back-scattering from an obstacle,5,6 nucleation of
quantized vortices,7–10 and generation of effectively stable
oblique solitons11,12 (see also the review in Ref. 13 and refer-
ences therein). Although the definition of a genuine superfluid
behavior in these systems is still a matter of active debate
(see, e.g., the exchange in Ref. 14), it makes no doubt that
the coherent wave-mechanical flow of an exciton-polariton
condensate offers the prospect of studying a rich variety of
remarkable hydrodynamic effects. Among these, the specific
features associated to the spin of exciton-polaritons are of
particular interest. In the hydrodynamic context, they have
been revealed by the observation of the optical spin Hall
effect,15 half-vortices,16 and half-solitons.17

In the present work, we concentrate on linear spin effects;
nonlinear effects are addressed in another publication.18 We
describe the polariton condensate by a two-component order
parameter ψ± accounting for the spin degree of freedom,
corresponding to the two possible excitonic spin projections
±1 onto the structure growth axis and to the right and left
circular polarizations of emitted photons. Interactions within
the system can be described by two constants α1 and α2

corresponding to interactions between polaritons with parallel
(α1) or antiparallel (α2) spins. It is accepted that α1 > 0
and that |α2| < α1 [see the discussion after Eq. (2)]. In the
following, we always consider the standard situation where
0 < −α2 < α1. In the presence of an external magnetic field
applied parallel to the structure axis, there is a Zeeman splitting
2 h̄ � between the two circularly polarized states ψ+ and
ψ− (we neglect the possible small residual splitting of linear
polarization considered, for instance, in Ref. 19). Taking into
account the effect of the external magnetic field and of the
interactions amongst polaritons, one can write the energy
density of the uniform system as20

E = −h̄ � (ρ0
+ − ρ0

−) + α1

2
[(ρ0

+)2 + (ρ0
−)2] + α2 ρ0

+ ρ0
−, (1)

where ρ0
± = |ψ0

±|2 is the (uniform) density of polaritons with
spin ±1, and in the following we denote the total density

of the polariton gas as ρ0 = ρ0
+ + ρ0

−. Then, minimizing the
free energy of the system, one finds two regimes.20 For large
magnetic fields [h̄ � > h̄�crit = 1

2 (α1 − α2) ρ0], the system
is circularly polarized with ρ0

− = 0, and the chemical potential
reads μ = α1ρ

0 − h̄ �. For lower fields (h̄ � < h̄ �crit), the
polarization gradually becomes linear when � decreases. In
this case, one has

ρ0
± = 1

2 ρ0 (1 ± �/�crit) and μ = 1
2 (α1 + α2) ρ0, (2)

from which it is clear that, in the absence of magnetic field (that
is, when � = 0), the system is linearly polarized,1,2 a feature
that originates in the present phenomenological description
from the positiveness of α1 − α2. The fact that α1 + α2 > 0
implies that μ > 0, hence the uniform polariton gas is stable,
and it corresponds to an emission blue shift.1,21,22

A study of spin dynamics has been done in Ref. 23 in the
case of a fully polarized ground state. In the present work, we
treat instead the weak magnetic field regime (2), and study
the dynamics of the system in the presence of (i) an external
potential representing an obstacle and/or of (ii) modulations
of the uniform ground state. We consider a one-dimensional
wire-shaped cavity structure in which the order parameter is
of the form ψ±(x,t) and we model the dynamics of the system
by the following Gross-Pitaevskii-type equation:

ih̄ ∂tψ± = − h̄2

2m
∂2
xψ± + Uext(x,t) ψ± ∓ h̄ �ψ±

+ (α1 ρ± + α2 ρ∓) ψ± + i (γ − �ρ) ψ±, (3)

where m is the polariton effective mass (in the parabolic-
dispersion approximation, valid at small momenta) and
ρ±(x,t) = |ψ±(x,t)|2. Uext(x,t) is an external potential, possi-
bly depending on time. In accordance with the description
(1), the effect of the magnetic field is accounted for in
Eq. (3) by the Zeeman term ∓ h̄ �ψ± and interaction effects
are described by local terms proportional to α1 and α2.
Due to the finite polariton lifetime, the system needs to be
pumped. Following Refs. 24–27, we schematically describe
this effect by the last term of Eq. (3): the term i γ ψ± describes
the combined effects of the incoherent pumping and decay
processes; γ > 0, indicating an overall gain counterbalanced
by the term −i �ρ ψ± (where � > 0 and ρ = ρ+ + ρ−), which
phenomenologically accounts for a saturation of the gain at
large density and makes it possible to reach a steady-state
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configuration with a finite density ρ0 = γ /�. Note that
the saturation term is proportional to ρ. Arguing on weak
cross-spin scattering, the authors of Ref. 28 used a different
type of saturation of the gain, proportional to ρ±; in this case,
the values of the stationary background densities ρ0

+ and ρ0
−

are fixed a priori, independently of the magnetic field. In the
present work, we follow Ref. 29 and use a model where the
value of ρ0

+ and ρ0
− is fixed by the thermodynamic equilibrium

between the two spin components in the presence of a magnetic
field [see Eq. (2)].

II. PERTURBATIVE POLARIZATION HYDRODYNAMICS

A small departure from the stationary configuration (2) is
described by an order parameter of the form

ψ±(x,t) = ψ0
± [1 + ϕ±(x,t)] exp(−i μ t/h̄), (4)

where |ϕ±(x,t)| � 1. In the absence of external potential
(Uext ≡ 0), the ϕ±(x,t)’s, which are solutions of the linearized
version of Eq. (3), are plane waves whose wave vector q and
frequency ω are related by D(q,ω) = 0, where

D(q,ω) = ω4 + 2 i γ ω3 −
(

q4

2
+ 2

1 + α
q2

)
ω2

− 2 i γ

(
q4

4
+ 4 �0

+ �0
−

1 − α

1 + α
q2

)
ω

+ q4

4

(
q4

4
+ 2

1 + α
q2 + 16 �0

+ �0
−

1 − α

1 + α

)
. (5)

In this expression, we note α = α2/α1 (−1 < α < 0), �0
± =

ρ0
±/ρ0 = 1

2 (1 ± �/�crit), and we use dimensionless quanti-
ties; energies are henceforth expressed in units of μ, lengths
in units of ξ [where ξ = h̄/(m μ)1/2], and velocities in units of
(μ/m)1/2. Equation (5) has already been obtained in Ref. 30
in the case of a two-component atomic Bose gas (i.e., in the
absence of damping: γ = 0) without magnetic field.

Solving the fourth-degree equation D(q,ω) = 0 yields the
dispersion relations ω = ωn(q) (n ∈ {1,2,3,4}). If ωn(q) is
a solution, then −ω∗

n(q) is also a solution. As a result, the
solutions come into pairs having either the same zero real part
or the same imaginary part and opposite real parts. The loci
of the ωn(q)’s in the complex-ω plane are shown in the upper
row of Fig. 1 (when q runs over R+ and for different magnetic
fields). The corresponding real and imaginary parts are plotted
as functions of q in the two central rows of the same figure.

In the limit of weak magnetic fields, one pair of solutions
corresponds to the usual density-fluctuation mode (in which
both components oscillate in phase) and the other one to a
polarization-fluctuation mode (with counterphase oscillations
of the two components). We henceforth keep using the denom-
inations “density mode” and “polarization mode” although the
separation between the two types of fluctuations is less strict
for finite magnetic field, as we now explain. The contribution
of each mode to the density fluctuations can be evaluated
through a study of the static structure factor S(q). This quantity
is computed as S(q) = ∫

S(q,ω) dω, where S(q,ω) is the
dynamical structure factor.31,32 At zero temperature, S(q,ω) =
− 1

π
�(ω) Im[χ (q,ω)], where � is the Heaviside step function

and χ (q,ω) is the density response function that characterizes
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FIG. 1. (Color online) Dispersion relations in the case α = −0.2
and γ = 0.3.33 The three columns are drawn in the cases (from left
to right) �/�crit = 0.2, 0.5, and 0.7. The first row shows the position
of the poles ωn (n ∈ {1,2,3,4}) of the response function (6) in the
complex-ω plane when q ∈ R+. The second (third) row displays
Re(ωn) [Im(ωn)] as a function of q. The lower row displays the
contribution of the density and the polarization modes to the total
density structure factor S(q) (black dot-dashed line). In each plot the
(blue and violet), solid curves correspond to the density modes and
the (red and orange) dashed curves to the polarization modes.

how the density of the system responds to a weak external
scalar potential with wave vector q and frequency ω; denoting
by δ�̂(q,ω) and δÛext(q,ω) the Fourier transforms of the den-
sity perturbation δ�(x,t) = ρ(x,t)/ρ0 − 1 and of the external
potential Uext(x,t), one has δ�̂(q,ω) = χ (q,ω) Ûext(q,ω). The
density response function can be calculated from a perturbation
treatment of Eq. (3), leading to

χ (q,ω) = q2

D(q,ω)

[
ω2 − q2

2

(
q2

2
+ 8 �0

+ �0
−

1 − α

1 + α

)]

=
4∑

n=1

Zn(q)

ω − ωn(q)
. (6)

Then one obtains

S(q) = 1

π
Im

{ 4∑
n=1

Zn(q) ln[ωn(q)]

}
, (7)

where the quantities Zn(q) are defined by Eq. (6) and ln is
the complex logarithm defined with a branch cut along the
negative real axis.

The relative contribution to the density fluctuation of each
mode can be determined by computing in which proportion
each of the four terms in (7) contribute to S(q). This has been
done in the lower row of Fig. 1 where the (blue) solid line
corresponds to the contribution of the two density modes, the
(red) dashed line to the one of the two polarization modes,
and the (black) dot-dashed line is the total S(q). The fact
that one of the contributions can be negative originates in the
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nonconservative nature of Eq. (3), but it is interesting to note
that, despite its losses, the system keeps a constant density
and still verifies the f -sum rule:

∫ ∞
0 ω S(q,ω) dω = q2/2. As

shown by the figure, at low magnetic field one of the modes
almost exhausts all the contribution to S(q) and thus deserves
to be termed a “density mode.” However, at higher magnetic
field, the separation between density and polarization becomes
less and less relevant.

From Eq. (5) one can show that the polarization mode
is undamped (i) when �0

+ = �0
− = 1/2, i.e., in the absence

of magnetic field, and (ii) when �0
− = 0, i.e., at the critical

magnetic field. This is a first hint indicating that the damping
of the polarization mode is weak. One can further show that
this damping is zero up to order O(�2) in the external magnetic
field. A final evidence comes from the fact that the damping of
the polarization mode is always zero in the long-wavelength
limit as we discuss now. In the absence of damping and of
magnetic field (γ = 0 and � = 0, respectively), the long-
wavelength behavior of both modes corresponds to a linear
dispersion relation: the system exhibits two types of sound.
One is the usual sound of velocity cd = 1. The other is the
“polarization sound” of velocity cp = [(1 − α)/(1 + α)]1/2.
For nonzero γ , the usual sound waves are damped; this is not
the case for the polarization sound, as clearly seen in Fig. 1.
In the general case where γ and � are nonzero, looking for
a solution of Eq. (5) under the form ω(q) = cp q, in the limit
|q| � 1 and cp|q| � γ , one gets cp = [(1 − �2/�2

crit)(1 −
α)/(1 + α)]1/2.

From the knowledge of the dispersion relations one can
compute the linear response function χ±(q,ω) that character-
izes how the rescaled density �±(x,t) = ρ±(x,t)/ρ0 responds
to a weak external scalar potential with wave vector q

and pulsation ω. This makes it possible to determine the
wake generated by a weakly perturbing obstacle moving
at constant velocity V with respect to the polariton fluid.
In this case, the external potential in (3) is of the form
Uext(x,t) = fext(x + V t), and different forms of potential fext

representing the obstacle will be considered below. We do
not detail the computation that has been presented in Ref. 34
in the case of a scalar order parameter. In the present case,
there exist two particular velocities corresponding to the
opening of channels of (damped) Cherenkov radiation: V

(d)
crit

is the threshold for emission of density waves and V
(p)

crit is the
threshold for emission of polarization waves. These velocities
are functions of the losses in the system (i.e., of γ ) and of the
strength of the external magnetic field (i.e., of �). They are
represented in Fig. 2.

The physical meaning of these velocities can be verified by
inspecting the perturbations induced by the obstacle and which
are represented in Fig. 2 in the simplest case where the external
potential is of the form Uext = κ δ(x + V t). The plots are
drawn in the frame where the obstacle is at rest at the origin and
where the polariton fluid moves from left to right at velocity
V > 0. In this frame the perturbations are stationary. In Fig. 2,
we do not display separately δ�+ = �+ − �0

+ and δ�− = �− −
�0

− but we rather plot the relevant physical observables: the
fluctuations of the total density (δ� = δ�+ + δ�−) and of the
polarization (δ� = δ�+ − δ�−). When V is lower than both
V

(d)
crit and V

(p)
crit , no wake is emitted, the density and polarization

FIG. 2. (Color online) (Upper right) Critical velocities V
(d)

crit (solid
lines) and V

(p)
crit (dashed lines) as a function of γ for different strengths

of the magnetic field. The plot is drawn when α = −0.2. (Upper
left and lower) Rescaled fluctuations of the density [δ�(x)/κ: black
curves] and of the polarization [δ�(x)/κ: red curves] induced by a
δ-peak potential κ δ(x + V t). The modulation patterns are drawn for
α = −0.2, γ = 0.2, and �/�crit = 0.1. In this case, V

(d)
crit = 0.69(4)

and V
(p)

crit = 1.21(9). The figures are drawn in the frame where the
obstacle stays at rest at the origin and where the polariton fluid moves
from left to right at velocity V > 0. For the upper left panel,V = 0.5,
for the lower left panel V = 1.1, and for the lower right one V = 1.5.

perturbations remain localized near the obstacle. Instead, when
V

(d)
crit < V < V

(p)
crit (which is the case considered in the lower left

plot of Fig. 2) the obstacle emits (damped) density fluctuations,
but there is no polarization wake.35 Finally, when V gets larger
than both V

(d)
crit and V

(p)
crit , the wake consists in both density

and polarization fluctuations (see Fig. 2, lower right plot). We
also note that a direct computation of the density patterns �±
for several intensities of the magnetic field shows, as stated
above, that the polarization wave is weakly damped at low and
at high field, facilitating the experimental observation of the
polarization signal compared to that of density fluctuations.

The existence of two critical velocities has also an important
effect on the behavior of the drag force Fd experienced by
the obstacle. This is illustrated in Fig. 3 where Fd is plotted
as a function of V for two types of obstacles: a pointlike

FIG. 3. (Color online) Drag force Fd/κ
2 as a function of the

velocity V of the obstacle relative to the condensate for two damping
parameters: γ = 0.001 (solid black curves) and γ = 0.3 (solid red
curves). The left plot corresponds to a point-like obstacle and the
right plot to a Gaussian potential of width � = 0.5. The computation is
done for α = −0.2 and � = 0.5 �crit. In this case, V (d)

crit = 0.76(2) and
V

(p)
crit = 1.37(7) when γ = 0.001, whereas V

(d)
crit = 0.50(5) and V

(p)
crit =

1.17(3) when γ = 0.3. All these threshold velocities are indicated by
vertical colored dashed lines in the figure.
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P.-É. LARRÉ, N. PAVLOFF, AND A. M. KAMCHATNOV PHYSICAL REVIEW B 88, 224503 (2013)

scatterer of intensity κ, for which fext(X) = κ δ(X), and a
Gaussian potential of same intensity and of width �, for which
fext(X) = κ

�
√

π
exp(−X2/�2). In the Gaussian case, the drag

Fd reads

Fd = −κ
2

2

5∑
ν=1

qν Res(qν)

×
[

sgn(Im qν) + erf

(
i � qν√

2

)]
e−�2q2

ν /2, (8)

where the qν’s are the five poles of χ (q, − V q),36 where
χ is the response function (6) and the Res(qν)’s are the
corresponding residues. The � = 0 limit of Eq. (8) yields
the expression of the drag experienced by a δ scatterer,
which reaches the finite constant value 2 κ

2 when V → ∞
(cf. Fig. 3, left plot). In the opposite case of a penetrable
obstacle, the external potential becomes, at large velocity,
a weak perturbation compared to the kinetic energy of the
beam. As a result, in the limit V → ∞, the flow is less and
less perturbed by the obstacle and Fd → 0, in agreement with
physical intuition.

One sees in Fig. 3 that, at very weak damping, Fd is negli-
gible at small velocity and shows pronounced thresholds when
V reaches the critical velocities V

(d)
crit and V

(p)
crit , demonstrating

that in the limit γ → 0 the drag uniquely consists in wave
resistance. This corresponds to the Landau criterion for the
onset of dissipation: At each opening of a radiation channel
(i.e., at V = V

(d)
crit and V

(p)
crit ) the drag is abruptly increased.

This reflects the work imparted to the fluid and dissipated by
generating a wave pattern which irreversibly radiates energy
away from the obstacle. For finite values of γ instead, the
flow is never perfectly superfluid: The obstacle experiences
a finite force even at low velocity,27,37 which corresponds to
diffusion of momentum, i.e., to a viscous drag. In this case,
there is no Landau criterion, but the system exhibits a smooth
crossover from a drag dominated by viscous-like phenomena
(at low velocity) to one dominated by wave resistance (at large
velocity). Thus it is more appropriate to term the velocities
V

(d)
crit and V

(p)
crit Cherenkov (or Mach) rather than Landau critical

velocities.
We also note that in the absence of external magnetic field

(in the case � = 0, not shown in the figure) no step is seen
in the drag, even for γ → 0. This is due to the fact that,
despite the opening of a new radiation channel at V = V

(p)
crit ,

the external scalar potential cannot excite polarization waves
in this case for symmetry reasons, since no term in Eq. (3)
can distinguish the spin-up from the spin-down component
when � = 0. This is reminiscent of what occurs for the first
and the second sound in superfluid HeII; the second sound
that corresponds to a temperature (and entropy) wave cannot
be excited by oscillations of the container wall, contrarily to

the usual density waves associated to the first sound; see, e.g.,
Ref. 38.

Finally, we emphasize that another effect of the existence
of the spin degree of freedom is revealed in the absence
of obstacle by the quantum fluctuations of the polarization.
One can show that in a homogeneous condensate in the
absence of damping and of magnetic field, g(2)

p (x,x ′) = 〈:
δ�̂(x) δ�̂(x ′):〉 is a universal function of cp|x − x ′| which goes
to zero when |x − x ′| → ∞. One gets g(2)

p (x,x) = − 2
π

cp < 0.
This corresponds to local sub-Poissonian fluctuations of the
polarization. These fluctuations are strongly modified in the
presence of a (polarization) sonic horizon. They acquire
nonlocal features associated to the correlated emission of
analogous Hawking radiation, as first shown in Refs. 39 for
density-density correlations. The present results suggest that
in polariton systems the polarization-polarization correlation
function g(2)

p (x,x ′) should be a quite efficient observable for
witnessing Hawking radiation, even in the absence of an
external magnetic field.40

III. CONCLUSION

In summary, we have analyzed the linear flow of a one-
dimensional polariton condensate in motion with respect to
an obstacle in a situation of nonresonant pumping, taking
into account polarization effects. We have shown that there
exist two Cherenkov velocities, which are the thresholds
for emission of density and polarization waves. In the
present work, we have considered the situation where the
two components of the polariton field interact attractively
[α2 < 0 in Eq. (3)]. However, the value of α2 depends on
the detuning between the photon and the exciton modes, on
the biexciton energy, and on the structure of the cavity, and
may be positive, as observed in Refs. 29,41–43. In this case,
the polarization Cherenkov velocity would be lower than the
density Cherenkov velocity, and the present treatment predicts
a phenomenon easily testable experimentally: an obstacle
moving with respect to the polariton condensate would emit
a polarization wake at velocities for which no density wake
is observed. In the opposite case where α2 > 0, a more subtle
but related effect is expected; the polarization wake appears at
higher velocities than the density wake, but its spatial extend
is expected to be much larger. We hope that these phenomena
can be studied in future experiments.
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40P.-É. Larré and N. Pavloff, Europhys. Lett. 106, 60001 (2013).
41M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin,

A. Miard, A. Lemaı̂tre, J. Bloch, D. Solnyshkov, G. Malpuech,
and A. V. Kavokin, Phys. Rev. B 82, 075301 (2010).

42A. Amo, S. Pigeon, C. Adrados, R. Houdré, E. Giacobino, C. Ciuti,
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