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Quasi-Landau Spectrum of the Chaotic Diamagnetic Hydrogen Atom
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By the employment of “constant-scaled-energy spectroscopy’ as a novel spectroscopic technique, the
quasi-Landau resonance system of the diamagnetic H atom in even-partity m =0 magnetic final states is
observed for the first time in its entirety from the regular 1/n into the chaotic quasi-Landau regime. It
evolves, fully unexpectedly, into a systematically structured hierarchy of generations of resonances,
correlated to three physically different types of closed classical orbits.

PACS numbers: 32.80.—t, 05.45.+b, 32.60.+i

The physics of the highly excited diamagnetic hydro-
gen atom has recently attracted much attention, !
largely because this simple nonseparable quantum sys-
tem turns classically chaotic as it approaches the ioniza-
tion limit.®° In this context the quasi-Landau (QL) os-
cillations and their correlation to classical periodic orbits
are of particular interest.'® Until recently, it was accept-
ed that only one QL resonance type, discovered by Gar-
ton and Tomkins,!' exists. Experiments with the H
atom>™® and theoretical studies”®'>!3 have uncovered
further, basically new resonances correlated with three-
dimensional orbits. Nevertheless, the central question as
to the entire set of QL resonances resulting from final
states with a given m quantum number and parity evolv-
ing from the regular into the chaotic QL regime has
remained open.

We have addressed this basic problem and studied the
H-atom Balmer spectrum with even-parity m =0 mag-
netic final states as a function of both the excitation en-
ergy E and the magnetic field B, employing for the first
time ‘“‘constant-scaled-energy spectroscopy.” Different
from previous experiments at constant B, this tech-
nique makes a systematic search for, in principal, all
possible QL resonances associated with closed classical
orbits.!? In analogy to theoretical work, it is based on
the scaling property of the classical Hamiltonian'*:

H(r,p;y) =y*HGE,py=1),

where scaled variables are defined by F=y2, P
=y p and y=B/(2.35%x10° T). The semiclassical
Bohr-Sommerfeld quantization condition!® for the two
nonseparable coordinates p,z (cylindrical coordinates) is
transformed accordingly to scaled form '3

(2m) "' P (podp+p:d2) =ny' =, (1)
where i denotes a closed classical orbit. Since the scaled
action C depends on the scaled energy E =Ey > only,

it has a constant value C; for E =const and a given i. In
this case, C; =ny'/ 3 describes a spectrum of equidistant
lines on a scale ¥ ~'/3, the Fourier transform of which in
the conjugate coordinate, ny'’3, consists of one resonance

for each i, to which is correlated the respective orbit i.
By application of these theoretical concepts to experi-
ment, constant-scaled-energy spectra have been taken
accordmg )' to our scanning the field strength linearly
with y ~!3, simultaneously adjusting E (via the laser
wavelength) such that £ =Ey ~2?=const was obeyed.
Apart from this novel spectroscopic procedure the exper-
iments have been carried out as previously.>

Figure 1(a) shows, as a typical example, a y ~'/* spec-
trum at E=—0.45, and Fig. 1(b) the corresponding
Fourier-transform ny'”® action spectrum. The orbits
shown correlate to the respective resonances, and have
been obtained by classical trajectory calculation.*'?
Such action spectra have been taken (physically with a
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FIG. 1. (a) Scaled-energy spectrum at E =—0.45 as a
function of y ™', Range of excitation energy —77.7 cm ™'
<E=< —543 cm~! and field strength 5.19=B8=3.03 T.
(b) Fourier-transformed action spectrum of (a); closed orbits
correlated to respective resonances in (p,z) projection; z coor-
dinate vertically.
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dynamical range of ~50) in the E range —0. 50<E
= +0.20, at —030<E< —0.10 in steps AE =0.01
and at £ < —0.30 and E > —0.10 in steps AE = =0.05.
Figure 2(a) shows the spectra in a concise overlay plot E
vs Cat —0.30 < F < 0.00. For clarity the original spec-
tra have been adjusted relatively (to within a factor ~3)
to equal maximum peak height. Although intensities
cannot directly be compared, details are lost or obscured,
and not all spectra are present in the overlay, Fig. 2(a)
clearly exhibits the essential result of this work: the en-
tire QL spectrum as a function of E and C, and its evolu-
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FIG. 2. (a) Experimental quasi-Landau resonance action spectrum as a function of scaled energy Ein overlay form. Even-parity,

magnetic m =0 final state. (b) Semiclassically calculated (E,C) spectrum of quasi-Landau resonances correlated to closed classical
orbits through origin.

tion from the regular into the chaotic regime as a re-
markably well-structured system of clustered branches of
resonances, not previously predicted or anticipated.

To understand the experimental results, we have cal-
culated the complete semiclassical action spectrum, i.e.,
the positions of all resonances in the (E,C) plane corre-
lated to closed orbits through the proton by numerical
integration of Eq. (1). The result is shown in Fig. 2(b)
with E in steps of 0.01. Viewing this figure at glancing
angle, one recognizes in regions of low resonance density
strings of dots representing the (E,C) dependence of in-
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FIG. 3. Closed classical orbits in (p,z) projection. (a) Primary vibrators, (b) primary rotators, and (c) “‘exotics” X,X at origin;

z coordinate vertically.

dividual resonances. Some examples are indicated by
solid or broken lines. Evidently, there exists a striking
resemblance of Figs. 2(a) and 2(b) in the overall distri-
bution of resonances in the (E,C) plane, in that both
spectra evolve fanlike in an obviously systematic fashion
of well-distinguished clusters and branches. In fact, the
calculations show that the entire manifold of resonances
can be traced to roots of three basic resonance types with
correlated orbits: (a) “vibrators,” one-dimensional or-
bits along the z axis; (b) “rotators,” two-dimensional or-
bits in the (z=0) plane; and (c) “exotics,” genuine
three-dimensional orbits. From them evolves the whole
QL spectrum by sequential bifurcation into a system of
complex branches of higher-generation resonances with
respective three-dimensional closed orbits.

Rotators.—The basic rotators, R, (p=1,2,...) in
Fig. 2(b), form a series of exact harmonics in ny '3, with
the fundamental R being the original Garton-Tomkins
resonance. Except for R, from the harmonics bifurcate
directly first-generation resonances, R} (u > v), exam-
ples of which (v=1, u=2,3,4) are indicated in Fig.
2(b). These R, resonances are correlated to a topologi-
cally homologous set of three-dimensional orbits [Fig.
3(b)] characterized by common symmetry in the angle
with respect to the (z=0) plane. Only a few rotators
(Ry, Ry, and R;3) are observed in this experiment with
m =0 final states, a fact rationalized below. The strong-
est one is R| observed at E > —0.02 generally increas-
ing in strength with E. R; and Rj3 occur only in narrow
E regions around E ~ —0.3 [Fig. 2(a)] and E~ —0.45
[Fig. 1(b)], respectively.

Vibrators.— The basic vibrators, V,, (u=1,2,...) in
Fig. 2(b), form also a harmonic series with V| the funda-
mental. Correlated to the V,’s are the one-dimensional
orbits along the z axis.*'> From them bifurcate directly

first-generation vibrators, indicated by v (v=1,2,...)
in Fig. 2(b). The first series, V1, is just the one previous-
ly discovered*'® and called there “regular” (or “v
type”). From ¥, bifurcates V3, a subseries (v=2,4,...)
of which is the exact first harmonic of V{; from V3 bifur-
cates VY, a subseries (v=3,6,...) of which is the exact
second harmonic of V{; and so on. The systematics of
the whole first-generation vibrators, V};, is strikingly mir-
rored by the geometrical nature of the correlated classi-
cal closed orbits: They form a topologically homologous
matrix set of three-dimensional orbits [Fig. 3(a)]l with
characteristic common symmetry in the absolute azi-
muthal angle with respect to the z axis.

As to the further evolution of vibrators, the calcula-
tions show that sequential bifurcation into higher genera-
tions increases rapidly in the higher clusters. However,
any systematics gets quickly lost with increasing reso-
nance density. Also, the correlated closed orbits do not
show more topological systematics.

Identification of individual experimental resonances
with calculated ones is, in general, not possible except for
a few isolated features in regions of sparse density.
What can be said, however, is that the gross overall fan-
like structure within the well-separated clusters along the
left-hand side of the respective basic ¥, lines is, on the
whole, determined by three-dimensional vibrators. Fur-
thermore, the fact that well-developed structures occur
even in regions with high resonance density [Fig. 2(b)]
shows that only relatively few vibrators are actually ex-
cited. Concerning specifically the first cluster (along the
left of V), the observed resonances can be vibrators of
the V7 series since only the V{’s do not bifurcate further.
This is true at least in the region C <3 and except for a
few intersparsed rotators and exotics (see below).

Exotics.— Surprisingly, some resonances are observed
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in regions where, according to the calculations, neither
rotators nor vibrators exist that originate from the basic
ones, directly or by sequential bifurcation. Examples of
such “exotic” resonances are indicated in Fig. 2(a)
(cross, circles, and dotted lines). Consistent with the ex-
perimental observation, the calculations also reveal the
existence of exotics. Figure 2(b) (circles and dotted
lines) shows examples in sparse-density regions definitely
free of ordinary rotators and vibrators. According to the
calculations, “exotics” have the following characteristics:
They appear suddenly at singular (E,C) points with evi-
dently random distribution in the (E,C) plane. The
correlated closed orbits bifurcate right at the point of
origin and generally have no characteristic symmetry.
For illustration, orbits correlated to X; and X at origin
are shown in Fig. 3(c).

Concerning the intensity of QL resonances, this is gen-
erally determined by the angular dependence of the ex-
cited final wave function and the stability of the correlat-
ed orbits.>!'® According to previous work,® the transition
from regularity to irregularity occurs roughly at
—0.5SEX<—0.14. In the present case, where the
final-state orbital |d;m=0) is mostly oriented in the z
direction, one expects preferential excitation of reso-
nances correlated to orbits generally centered along the z
direction, that is, orbits originating from basic vibrators,
V,. Consistent with this model, in the observed spectrum
vibrators are, on the whole, more strongly excited than
rotators. Excitation of final states with orbital wave
functions oriented preferentially in the z=0 plane (e.g.,
|m | =2) will thus be expected to result in distributions
shifted more towards the rotators.

In summary, employing ‘“‘constant-scaled-energy spec-
troscopy” as a novel technique, we have investigated the
magnetized H-atom QL spectrum for the first time sys-
tematically as a function of both excitation energy and
magnetic field strength from the regular into the com-
pletely chaotic regime. Furthermore, systematic semi-
classical calculations have resulted in the position spec-
trum of all QL resonances in this regime. The main re-
sult is the discovery of an overall structure of the whole
QL spectrum as a quasiperiodically ordered system of
clusters and branches of resonances. They evolve from
three physically distinct basic resonance types with
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correlated closed classical orbits: one-dimensional “vi-
brators,” two-dimensional ‘‘rotators,” and genuinely
three-dimensional “‘exotic” orbits.
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