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The periodic-orbit quantization approach of Gutzwiller, which is a semiclassical approximation of
Feynman’s path-integral formalism, is used to calculate finite-resolution densities of states for a Hamil-
tonian system whose classical motion is dominated by chaos, viz., the hydrogen atom in a uniform mag-
netic field. In spectral regions where the resolution obtained is larger than the mean level spacing, it is
possible to extract approximate eigenvalues of the quantized system. The particular role of stable
periodic orbits and their direct quantization are elaborated. Remarkable agreement with exact quantum

calculations results.

PACS numbers: 05.45.+b, 03.65.Sq, 32.60.+i

For integrable Hamiltonian systems, direct semiclassi-
cal quantization schemes such as the WKB or Einstein-
Brillouin-Keller method are well established and widely
applied.! However, it is still unknown how to extend
these methods to nonintegrable systems, although this
represents one of the oldest outstanding problems of ele-
mentary quantum mechanics. An alternative to the
direct semiclassical quantization is the ‘“global” peri-
odic-orbit quantization approach of Gutzwiller, which is
a semiclassical approximation of Feynman’s path-
integral formalism.? In contrast to the direct methods,
where a classical orbit with quantized actions defines a
semiclassical eigenstate, the spectrum of the global ap-
proach emerges from the superposition of contributions
arising from periodic orbits only. Generally the global
approach is much more complicated, which accounts for
its lack of popularity. Yet, it is the only known semiclas-
sical quantization procedure which applies to both in-
tegrable and nonintegrable (including classically chaot-
ic) systems. For integrable systems the theory yields the
same results as the direct methods,? whereas for some
classically chaotic systems the method is equivalent to
solving the Schrodinger equation.* That periodic orbits
influence quantum spectra strongly was shown very re-
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where L is the Lagrangian. The semiclassical approxi-
mation now consists in evaluating the integrals by the
method of stationary phase. Then only classical paths y
form q' to q” with energy E contribute to the integrals:

Gsc(q’,q”,E)ZZyAye (i/h)S, — phases i (2)

where S,(q,q",E) is the classical action along the path
¥, and A,(E) is an amplitude to be discussed later. The
semiclassical density of states d is now
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cently, both experimentally>® and theoretically.”® How-
ever, little is known about the quantitative applicability
of the method. Gutzwiller applied the theory to the an-
isotropic Kepler problem, which turns out to be classical-
ly chaotic.® Using a coding scheme, he was able to in-
clude all the periodic orbits of the system. The calculat-
ed eigenvalues agreed well with quantum results. 10
However, it is difficult to assess how the method works
when coding schemes are not available and only the sim-
plest periodic orbits are known.

In this Letter we apply the theory to calculate, for the
first time, a smoothed density of states for a Hamiltonian
system whose classical motion is dominated by global
chaos. The action of the longest periodic orbit included
limits in the density resolution. In spectral regions,
where this resolution is larger than the mean level spac-
ing, it is possible to approximate the quantized energy
levels. In addition, the particular role of stable orbits for
direct quantization will be explicated.

The essential formulas are reviewed in Berry and
Mount' and Berry.!! We only sketch the way in which
periodic orbits enter the central formulas of the theory. '?
The quantum Green’s function G is the Fourier trans-
form of the time-evolution propagator written as a Feyn-
man path integral
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It depends only on the classical paths which start and
end at the same point. Again the stationary phase ap-
proximation is used to integrate Eq. (3) and only orbits
with stationary actions S contribute. These orbits are of
two types: paths of zero length (this is the limit of the
direct paths as ¢'— q"), and periodic orbits, which have
the same momentum p'=p”, when they return in coordi-
nate space. The paths of zero length give rise to a
(smoothly) energy dependent mean level density d(E),
known as the Thomas-Fermi term. A single periodic or-
bit gives an oscillatory contribution to the density of
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states:

explijlS,/h —a,n/21}
[det(Mi—1)]'2

The sum in the trace formula (4) runs over all primitive
periodic orbits r and all repetitions j of a primitive orbit
with period T,, action S,, and Maslov index a,. M, is
the 2x2 stability matrix, whose eigenvalues define the
type of fixed point of the periodic orbit in the Poincaré
surface of section. The determinant in (4) is given,
dependent on the type of fixed point, by*!3

d(E)=c7(E)+ImZ;Té§6
r J

. (4)

—isinh(jA/2), hyperbolic, (5a)
7 [det(M/=1)]"2={cosh(jA/2), inverse hyperbolic, (5b)
sin(j nv), elliptic, (5¢)

where A is the Liapunov exponent for an unstable period-
ic orbit and v is the stability angle divided by 2x.

It is instructive to study the contribution to the level
density of a single periodic orbit with all its repetitions j.
For unstable periodic orbits, the sum over j in (4) yields
nearly Lorentzian contributions® centered on the ener-
gies E, given by S(E,) =2nh(n+a/4). Thus, a single
unstable periodic orbit manifests itself as a modulation
of the level density rather than a sequence of quantum
states. It is the interference of the modulations coming
from different orbits, which leads to singularities (quan-
tum states) in the density of states. For stable periodic
orbits, Eq. (4) can be summed analytically and gives &
functions in the density of states at energies E . satisfy-

ingM

S(Ew) =2nhln+ (k+ §)v+a/d]. (6)

The quantum number n counts the number of nodes
along the periodic orbit while k gives the excitation of
the normal-mode frequency of harmonic perturbations
about the periodic orbit. For nonvanishing de Broglie
wavelengths the harmonic approximation for transversal
excitation generally breaks down at some finite value of
k, but the essential point is that the theory predicts se-
quences of regularly spaced quantum states associated
with each stable periodic orbit.

We now use the above theory to calculate the density
of states for a hydrogen atom in a uniform magnetic field
B=1(0,0,7Bo), Bo=2.35x10° T. The Hamiltonian (in
a.u.)

= 1pi=r Tl 2 x ) Q)

fails to separate in any coordinate system of R?; only the
azimuthal quantum number m and parity = are good
quantum numbers and can be separated off. The Hamil-
tonian (7) scales as

H(p,r;7) =y"*H(y " Pp,yPr;y=1),
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which simplifies the application of Eq. (4) considerably,
since all classical quantities on the right-hand side are
energy and field strength independent (apart from scal-
ing). The classical system displays a smooth transition
from regularity to chaos as the parameter e=Ey %3 is
varied.!> In the following we will study the density of
states as a function of ¥ ~ '/ for fixed scaled energy ¢ and
m™=0%. An algorithm to solve the Schridinger equa-
tion for fixed scaled energy is described in Ref. 16.
Quantum spectra studied here consist typically of
350-1600 levels.

To enumerate all the periodic orbits of the classical
system is a difficult task. No general scheme to find
them is available. By solving the equations of motion
numerically, we calculated all periodic orbits up to a
given scaled action Spax, Which obey two of the following
properties: (i) orbits which pass through the origin, (ii)
orbits which pass perpendicularly through a symmetry
axis, and (iii) orbits which run on the boundary of the
classically allowed region. There is some evidence that
these orbits cover all the periodic orbits up to Smax=3.
Details of these calculations will be published elsewhere.

We first turn to the problem of direct quantization of
stable periodic orbits. The most simple periodic orbit
(shortest period and shortest action) is the motion per-
pendicular to the field. This orbit remains stable up to
€o=—0.1273 and becomes unstable for ¢> ¢.!” Equa-
tion (6) now predicts series of quantum states of equidis-
tant spacing Ay ~'”*~1/S given by the scaled action S of
the primitive periodic orbit. We searched for such states
in quantum spectra for various values of the scaled ener-
gy € and found them with excellent agreement. Since for
this orbit the “local parity” (—1)* of the transversal ex-
citation coincides with the exact z parity, only even k
have to be considered in the m*=0" spectra. Resum-
mation over k then leads to an additional factor of 2 in
the argument of the amplitude function (5¢). Table I
summarizes the results: Spacings and phases for k =0
and the amplitudes A; for j traversals of the orbit are
given both classically and quantum mechanically. The
quantum amplitude of each cosine modulation in Eq. (4)
is extracted from a Fourier transform of the quantum
spectra.” The results for e=—0.1 given in Table I cor-
respond to the case in which the orbit has become unsta-
ble and we have used Eq. (5a) in calculating the classical
amplitudes. Then, it was not possible to identify a regu-
larly spaced sequence of states in the corresponding
quantum spectrum, in agreement with the theory which
only predicts regular modulations in the density of states
when the orbit is unstable. Again, the corresponding
quantum value of the spacing of these modulations is ex-
tracted from a Fourier transform.

We now turn to the calculation of a smoothed density
of states by application of Eq. (4). The mean level den-
sity is simply proportional to ¥ ~'/> and we concentrate
on the fluctuating part, that is the double sum in Eq. (4)
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TABLE I. Spacings, phases, and modulation amplitudes A; for the jth traversal associated with the periodic orbit perpendicular
to the field for various values of the scaled energy ¢. Values marked with an asterisk have some uncertainty or could not be deter-
mined because the corresponding peak in the Fourier transform was not fully resolved.

Scaled energy € —0.4 —0.35 —=0.3 =0.25 =0.2 —0.15 —0.1
Spacing Classical 0.92170 0.94801 0.97535 1.00371 1.03305 1.06335 1.09457
Quantum 0.92171 0.94801 0.97535 1.00371 1.03303 1.06323 1.094
Phase Classical 0.898 0.885 0.870 0.852 0.829 0.794 3/4
Quantum 0.899 0.886 0.870 0.852 0.827 0.793 3/4
A, Classical 0.54 0.54 0.56 0.60 0.71 1.17 1.0
Quantum 0.48 0.47 0.48 0.54 0.65 1.23 1.1
A Classical 0.93 2.14 4.25 1.04 0.65 0.69 0.5
Quantum 0.83 2.12 4.8* 1.03 0.58 0.81 S ®
Aj Classical 0.81 0.58 0.57 0.91 3.33 0.62 0.3
Quantum 1.02 0.48 0.49 0.94 2.9* 0.69 ce ®

only. We choose ¢= —0.2. For this value of the scaled
energy, only a small part of the classical phase space is
regular while the dominant part is occupied by chaotic
trajectories. It has been shown that short-range fluctua-
tion measures of the associated quantum spectrum are
close to those of a random matrices, which prohibits an
assignment of quantum numbers. '®

Before carrying out the calculations, Egs. (2) and (3)
must be modified. The m”™ subspaces possess discrete
symmetries such as parity. The Green’s function in Eq.
(2) has to be adapted to this symmetry before taking the
trace in Eq. (3).° As a consequence, periodic orbits con-
tribute also with half their periods to the level density, if
they are periodic under these symmetry transformations.

Figure 1(a) shows the “minimal version” of the
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FIG. 1. Smoothed fluctuating part of the density of states.
The quantum results (thick lines) are smoothed over the first
100 eigenstates. Semiclassical results (thin lines) are obtained
by including two orbits with scaled actions S < 1.33 [(a), three
contributions], and thirteen orbits with S <3 [(b), nineteen
contributions]. The lowest quantum eigenvalues are marked as
vertical bars.

theory. Only the contributions of the two simplest
periodic orbits with up to one traversal are considered
and plotted as a thin line. The smoothed fluctuating part
of the exact quantum mechanically level density is shown
as a thick line. This smoothed density has been obtained
by replacing the & function singularity of each quantum
eigenstate by

Sm“ L . .
5(x—x,~)—’j; {f_we—2”’5"5(x—x,-)dx}e2’"s"dS ,

x=y"'3 which corresponds to the same smoothing

scheme in Fourier space as for the semiclassical calcula-
tion, where only orbits with actions S < Sy are includ-
ed in the sum (4). Figure 1(a) shows that already this
minimal version is able to reproduce the gross structure
of the exact quantum spectrum with remarkable accura-
cy.
Figure 1(b) shows the results of the calculations when
all orbits with actions up to Snax =3 are included. Nine-
teen contributions from thirteen different orbits are
summed and plotted as a thin line. From these thirteen
orbits, twelve have positive Liapunov exponents and are
embedded in the chaotic part of the phase space. The
thick line shows the smoothed fluctuating part of the ex-
act quantum density of states. Again, close coincidence
is observed not only for the gross structure, but even for
the finer details.

As is shown in Fig. 1, the theory is able to describe a
finite-resolution density of states. In spectral regions
where this resolution is large compared to the mean sep-
aration of states, the peaks appearing in the level density
are caused by individual resolved quantum states. This
can be seen on the left of the figure where the positions
of the first eigenstates are marked by vertical bars. Both
the quantum eigenvalues and the positions of the first
few semiclassical peaks appearing on the left of Fig. 1(b)
are tabulated in Table II. Agreement within a few per-
cent of the mean level spacing is obtained, even down to
the ground state. This is surprising, because the present
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TABLE I1. Eigenvalues y;~ '/ of the first nine states.

State y~ 3

i Quantum Semiclassical
1 0.91 0.85
2 1.79 1.75
3 2.36 2.36
4 2.75 2.73
5 3.12 3.13
6 3.70

7 3.80 } 2375
8 4.14 4.19
9 4.47 4.54

theory assumes £ to be small and this is hardly fulfilled
near the ground-state region. Furthermore, the results
are even good up to the ninth eigenvalue, although only
thirteen orbits have been included. Similar calculations
for integrable systems needed the inclusion of many
more periodic orbits to get reliable eigenvalues. '

In summary, we have calculated semiclassically a
smoothed density of states for a nearly completely chaot-
ic Hamiltonian system by the knowledge of the most
simple periodic orbits of the system. The fluctuating
part of this density agrees well with full quantum calcu-
lations. The analysis shows that the fluctuations are far
from random, although they exhibit properties which can
be simulated by random matrices. In spectral regions
where the resolution obtained is larger than the mean
level spacing, it is possible to extract approximate eigen-
values for the quantized energy levels. A stable periodic
orbit gives rise to regular sequences of quantum states.
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