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Collective Excitations of a Trapped Bose-Condensed Gas
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We investigate the low energy excitations of a dilute atomic Bose gas confined in a harmonic trap of
frequencyw, and interacting with repulsive forces. The dispersion law= wy(2n> + 2n€ + 3n +
£)'/2 for the elementary excitations is obtained for large numbers of atoms in the trap, to be compared
with the predictionw = wo(2n + €) of the noninteracting harmonic oscillator model. Herés the
number of radial nodes andl is the orbital angular momentum. The effects of the kinetic energy
pressure are estimated using a sum rule approach. Results are also presented for deformed traps and
attractive forces. [S0031-9007(96)01246-X]

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.90.+z

Almost 50 years ago Bogoliubov [1] derived his famous(/i/mw,)'/? is the harmonic oscillator length characteriz-
theory for the elementary excitations of a dilute Boseing the trap andv is the number of atoms. In the study of
gas. This theory, originally applied to homogeneoushe elementary excitations this approximation corresponds
systems, is now receiving a novel interest because db the hydrodynamic theory of Bose superfluids accounting
the experimental availability of Bose-condensed gasefor, in homogeneous systems, the propagation of phonons.
confined in magnetic traps [2—4] (for a review on Bose- In order to discuss the behavior of the elementary exci-
Einstein condensation, see, for instance, Ref. [5]). Theations in this limit (hereafter called hydrodynamic limit)
Bogoliubov theory can be shown [6] to correspond toit is convenient to derive explicit equations for the den-
the linear limit of the time-dependent Gross-Pitaevskii [7]sity p(r, t) = |®(r, t)|*> and for the velocity field/(r, r) =

equation for the order parametér. [®*(r, )VO(r, 1) — VO*(r, 1)D(r,t)]/2mip(r,t). These

0 K22 equations can be directly obtained starting from the time-

i~ O(r, 1) = < = om T Vext(r) dependent Eq. (1) and take the form
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Here V., is the confining potential and is the s-wave and
scattering length. This equation neglects interaction ef- 9 n V<6 n 1 2) — 3
fects arising from the atoms out of the condensate. This "oy H " 0. ®)

is an accurate approximation for a dilute Bose gas at lowyhere

temperatures, where the depletion of the condensate is Amita 2
negligible. Differently from the homogeneous case, the §u = V. + p — Ve/p — o (4)
Gross-Pitaevskii equation in the presence of an external m 2m.[p

potential admits stationary solutions not only for positiveis the change of the chemical potential with respect to
values of the scattering length but also whems nega- its ground state valug:.. It is worth noting that these
tive. In the latter case a solution of the metastable typequations do not involve any approximation with respect
is found provided the number of atoms in the trap is noto the Gross-Pitaevskii equation (1) and hold in the linear
too large [8—11]. This solution does not correspond to as well as in the nonlinear regimes. They have the general
global minimum for the energy due to the occurrence ofstructure of the dynamic equations of superfluids at zero
lower energy collapsed configurations. The solutions otemperature (see, for example, [13]). In particular, Eq. (3)
the time-dependent equation (1), after linearization, havestablishes the irrotational nature of the superfluid flow.
the well known RPA structure and have been the object of The densityp, relative to the ground state is obtained
a recent numerical investigation in the case of a trappegettingyv = 0 andéu = 0. This yields the equation

atomic gas [12]. 4 ila 2
The main purpose of this work is to obtain an explicit, Ve (r) + PO 5 V2/po — m =0 (5)
analytic solution of (1), holding when the repulsive inter- VPo

action is large enough to make the kinetic energy pressunehich, as expected, coincides with the Gross-Pitaevskii
negligible compared to the external and interparticle in-equation for the order paramet®y = ,/p, of the ground
teraction terms. When applied to the calculation of thestate. The chemical potentigl is fixed by imposing the
ground state this limit corresponds to the Thomas-Fermproper normalization to the density. When the number
approximation and is reached for positive and large valof atoms in the trap is sufficiently large the density profile
ues of the adimensional paramet&r/ayo, Whereayo =  po(r) becomes smooth, and the kinetic energy pressure
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term %\;% V2 /po can be neglected with respect to the o =0) = Vlw. (11)
interaction terms of Eq. (5). The ground state density thedhe frequency of these modes lies systematically below

takes the well known Thomas-Fermi form, the harmonic oscillator resutbyo(n = 0) = €wy. This
behavior should be taken into account in the determination

(6)  of the critical frequencyw., = mindw(€)/¢] needed to
) ) . generate a rotational instability [11,16], and might provide
if u=Veu(r) and is equal to zero elsewhere. This; competitive mechanism with respect to the creation of a

approximation provides an accurate description of th&qrtex line. Notice that in the dipole cagé = 1) both
solution of the Gross-Pitaevskii equation (5), except inphe hydrodynamic and harmonic oscillator predictions

the surface region where the exact solution vanisheggincide with the oscillator frequency,. This follows
smoothly. It can be used to calculate correctly thefom the fact that in an external harmonic potential the
potential energy whenv is large. It cannot be used |oyest dipole mode corresponds to the oscillation of

instead to evaluate the kinetic energy, which requi_res %he center of mass, and is, consequently, unaffected by
more accurate knowledge of the order parameter in thg . interatomic forces.

boundary region [14]. The distance from the boundary gq 4 fixed value oV the accuracy of prediction (9) is
where the Th%mas-Fermi approximatior_l starts fai_ling 90€%xpected to become lower and loweraand ¢ increase.
the same agajio/R)'/? [9,14], whereR is the radius of | tact the high energy states are associated with rapid
the boundary (see below). _variations of the density in space, and, consequently, the
In the following we will neglect [15] the kinetic inetic energy contribution in Eq. (4) cannot be neglected
energy pressure also m_the_solutlon of t_he tlme—depen(_:lel%y longer. The energy range where our prediction (9)
equations (22)_(4)- This yields the simple expressiong expected to be accurate corresponds to values smaller
Sp = 4mh=a(p — po)/m for the change of the chemical ihan the chemical potential. For large values of and

potential [see Eqs. (4) and (5)]. Assuming for simplicity ¢ the correct dispersion law will approach the harmonic
an isotropic harmonic oscillator potentiaVe(r) = oscillator result (10).

por) = i = Veul®)],

wir?/2m, the equations of motion (2) and (3), after
linearization, can be written in the useful form

wbp = —% wiV(R? — r*)Vép, @)
where Sp(r)exp(—iwt) = p(r,t) — po(r) and R? =

2u/mwi fixes the boundary of the system where the . L
In the absence of the externdetween the cubic energy weighted and the energy

density (6) vanishes.

The effects of the kinetic energy pressure, ignored in
the hydrodynamic approximation, can be investigated by
calculating the energy of the collective mode through a
sum rule approach [17] based on the ratio

ﬁzcz)2 = m3/m1

(12)

trap the same procedure yields the well known equatio¥veighted moments of the dynamic structure factor

w?8p = —c2*V28p, wherec = (4mh2apo/m?)'/? is the
sound velocity of the homogeneous Bose gas.

m, = Y, KOIF|n)>(hwa)?. Here hw, is the excita-
tion energy of the statg:) and F is a general excitation

The solutions of the hydrodynamic equations (7) arePPerator. The moments:; and m3 can be reduced

defined in the intervad = r = R and have the form
3p(®) = P (r/RIF Yin(6, ¢), 8)

= P€
where Pf")(t) =1+ axt’> + .-+ + ay,t*" are poly-
nomials of degree2n, containing only even pow-

ers of ¢, and satisfying the orthogonality condition

IR Pf")(t)Pézn/)(t)tz“zdt =0 if n # n’. The parame-
ters¢ andm label the angular momentum of the excitation
and itsz component, respectively. The coefficients;
satisfy the recurrence relatiai+r = —ax(n — k) X
(2¢ + 2k + 3 + 2n)/(k + 1)(2¢ + 2k + 3). The dis-

persion law of the normal modes is given by the formula
w(n,{) = (1)0(2n2 + 2nf + 3n + 6)1/2 (9)

which represents the main result of the present workr = Y

holding in the limitNa/ayo > 1. It should be compared
with the prediction of the harmonic oscillator (HO) model
in the absence of interparticle interactions:

wpo = wo2n + £). (10)

Of particular interest is the case of the lowest radial

modes(n = 0), also called surface excitations, for which
we predict the dispersion law

in the form of commutators involving the Hamiltonian
of the system. One finds:;, = 3(O[FT,[H,F]]0) and

ms = 3(O[[FT,H),[H,[H,F]]]0). Equation (12) pro-
vides, in general, a rigorous upper bound to the energy of
the lowest state excited k. The sum rule approach has
the merit of providing useful information on the dynamic
behavior of the system using only the knowledge of the
ground state. By evaluating explicitly the commutators
with the Hazmiltonian [18]

Pi 1
H = — + —
= 2m 22’"‘0

2
%I‘iz + MZ 5(I’i - I'j),
i<j
(13)
we find, in the case of the surfada = 0) operator

i ri€Y€m(9i, (l')i), the results
52
mp = _€(2€ + l)f rze_zpdr (14)
Smm

and
4

02¢ + 1)<€mwgf X 2pdr + €€ — 1)

8m2r

2
X % f IV\/EIZrN_“dr), (15)
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and the excitation frequency (12) takes the form The above results for the dispersion law can be gen-
©2(n = 0) = W2[1 + (€ — DB], (16) eralized to the.case of a dgformed trap. This is particu-
) s s S 2 i larly relevant since the available magnetic traps are often
where B¢ = % [IV/pl*r**~*dr/m*wq [r**2pdr.  highly anisotropic. Let us consider the case of a harmonic
For the most relevant quadrupole = 0,¢ = 2) case, oscillator trap with axial symmetry along the axis:
we find Vert = mw?:s2/2 + mw?z*/2, wheres = (x* + y2)1/2
wo = V2wo(1 + Eyin/Epo)"?, (17) s the radial variable in the-y plane. In this case the

. . relevant differential equation (7) should be replaced by
where Ey;, and Ey, are, respectively, the expectation

. . . . . . 1
value of the kinetic and harmonic potential energies in the @?8p = —3 V[wi (S* — s%) + w(Z* — z)]Vép,
ground state. In the absence of interparticle interactions, (1)
one hasty;, = E}, and hence one recovers the harmoninith mwiSZ/z = mw?Z2/2 = pu
; :

oscillator resultw = 2wy of Eq. (10). On the other  ga 556 of the axial symmetry of the trap, the third com-
hand, when the interaction is repulsive and the numbep,nent, of the angular momentum is still a good quan-
of atoms is sufficiently large, the kinetic energy termy, nymper. However, the dispersion law will depend on
. Explicit results are available in some particular cases.

prediction o = v2w of Eq. (11). The knowledge of .. example, functions of the fordy = (¥, (6, ¢) are
the kinetic energy relative to the ground state then permitss| solutions of Eq. (21)fom = +¢andm = +(¢ — 1).

the estimation of the quadrupole excitation energy in thepy,o resulting dispersion laws are

general case. For higher multipolarities the determination

of the coefficientB, of Eq. (16) requires the knowledge w’(m = *€) = {w] (22)
of finer details of the ground state. A simple estimate,q

can be obtained using the Gaussian approximation for

the wave function of the condensate, yieldimgy = w’(m =% 1) = - Dol + o’. (23)

Exin/Eno, independent of. Equations (22) and (23) provide a full description of the
In a similar way, starting from Eq. (12), one can yinole excitation(¢ = 1) whose frequencies coincide, as

determine the frequency of the compression modes. FQIypected, with the unperturbed harmonic oscillator val-
the lowest monopole mode = 1, ¢ = 0), excited by the | o5 wp(m = +1) = @, andwp(m = 0) = w.. How-

operatorF” = 3, r/, we find ever, for the quadrupolet(= 2) mode, Egs. (22) and
2R, (23) account only for then = *2 (w = V2w ) and
= 7N<r ) a8 =+ [w = (0] + ®2)"?] components. The solu-

tion with m = 0 involves a coupling with the monopole
o (n = 1,€ = 0) excitation, and the dispersion law of the

ms = (4Ein + 4Eno + 9Eint), (19) two decoupled modes is given by

and

where Ew = 27h%a/m [ drpd(r) is the interaction en- @’(m = 0) = wi(z + 3% F 5V0rt — 1642 + 16)’
ergy. Using the virial identit2Ey;, — 2En, + 3Eipy =
0, holding for the ground state, we finally obtain the fol- (24)
lowing result for the monopole frequency: With A = @./w .. WhenA — 1, one recovers the original
B B 12 solutions (17) and (20) corresponding, respectively, to the
oy = @05 = Exin/Eno) ", (20) quadrupole and monopole excitations in a spherical trap.
yielding the valuew = 2w, in the harmonic oscillator WhenA > 1 (disk-type geometry) the two solutions ap-
model and w = v/5w, in the large N limit, where proach the frequencigfl0/3 w , and+/3 w., respectively.
Evxin/Eno tends to zero. We stress again that results (16)-On the other hand, wheh <« 1 (cigar-type geometry), the
(20) provide a rigorous upper bound to the frequency ofwo frequencies becomg5/2 w. and2w | .
the lowest states excited by the corresponding multipole For systems interacting with attractive forces< 0)
operators. the hydrodynamic results discussed above do not provide
Predictions (17) and (20) can be compared with thean adequate description of the dispersion law, and, in this
results recently obtained in Ref. [12] by solving numeri-case, the sum rule approach becomes particularly useful.
cally the time-dependent Gross-Pitaevskii equations for &he kinetic energy contributio®y;, entering Egs. (17)
trapped atomic gas interacting with repulsive forces. Theand (20) can never be neglected, being larger thgn
conditions of Ref. [12] correspond to the value= 43wy  and the monopole mode turns out to be located below
for the chemical potential and to the valués for the ratio  the quadrupole one. Physically, this reflects the tendency
between the kinetic and harmonic oscillator energies. Thisf the system to become more compressible. In Fig. 1,
yields, using Egs. (17) and (20), the valueg = 1.54wy  we show the behavior of the monopole and quadrupole
and wy = 2.20wy, in excellent agreement with the find- frequencies obtained using Egs. (17) and (20) as a func-
ings of [12] (1.53w¢ and2.19wy, respectively). tion of the adimensional parametdia/ayo. The ratio
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w0,/ very close agreement with the lowest solution of Eq. (24)
(/5/2 w, for small values ofp).

13 Stimulating discussions with Lev Pitaevskii are ac-
| knowledged. | am also indebted to Keith Burnett, Mark
: M Edwards, and Alexander Fetter for useful information on
: 2< their works.
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