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Collective Excitations of a Trapped Bose-Condensed Gas
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We investigate the low energy excitations of a dilute atomic Bose gas confined in a harmonic trap
frequencyv0 and interacting with repulsive forces. The dispersion lawv ­ v0s2n2 1 2n, 1 3n 1

,d1y2 for the elementary excitations is obtained for large numbers of atoms in the trap, to be compa
with the predictionv ­ v0s2n 1 ,d of the noninteracting harmonic oscillator model. Heren is the
number of radial nodes and, is the orbital angular momentum. The effects of the kinetic energy
pressure are estimated using a sum rule approach. Results are also presented for deformed trap
attractive forces. [S0031-9007(96)01246-X]
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Almost 50 years ago Bogoliubov [1] derived his famo
theory for the elementary excitations of a dilute Bo
gas. This theory, originally applied to homogeneo
systems, is now receiving a novel interest because
the experimental availability of Bose-condensed ga
confined in magnetic traps [2–4] (for a review on Bos
Einstein condensation, see, for instance, Ref. [5]). T
Bogoliubov theory can be shown [6] to correspond
the linear limit of the time-dependent Gross-Pitaevskii [
equation for the order parameterF:

ih̄
≠

≠t
Fsr, td ­

µ
2

h̄2=2

2m
1 Vextsrd

1
4p h̄2a

m
jFsr, tdj2

∂
Fsr, td . (1)

Here Vext is the confining potential anda is the s-wave
scattering length. This equation neglects interaction
fects arising from the atoms out of the condensate. T
is an accurate approximation for a dilute Bose gas at l
temperatures, where the depletion of the condensat
negligible. Differently from the homogeneous case, t
Gross-Pitaevskii equation in the presence of an exte
potential admits stationary solutions not only for positi
values of the scattering length but also whena is nega-
tive. In the latter case a solution of the metastable ty
is found provided the number of atoms in the trap is n
too large [8–11]. This solution does not correspond to
global minimum for the energy due to the occurrence
lower energy collapsed configurations. The solutions
the time-dependent equation (1), after linearization, ha
the well known RPA structure and have been the objec
a recent numerical investigation in the case of a trapp
atomic gas [12].

The main purpose of this work is to obtain an explic
analytic solution of (1), holding when the repulsive inte
action is large enough to make the kinetic energy press
negligible compared to the external and interparticle
teraction terms. When applied to the calculation of t
ground state this limit corresponds to the Thomas-Fe
approximation and is reached for positive and large v
ues of the adimensional parameterNayaHO, whereaHO ­
0031-9007y96y77(12)y2360(4)$10.00
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sh̄ymv0d1y2 is the harmonic oscillator length characteri
ing the trap andN is the number of atoms. In the study o
the elementary excitations this approximation correspo
to the hydrodynamic theory of Bose superfluids account
for, in homogeneous systems, the propagation of phon

In order to discuss the behavior of the elementary ex
tations in this limit (hereafter called hydrodynamic limi
it is convenient to derive explicit equations for the de
sity rsr, td ­ jFsr, tdj2 and for the velocity fieldvsr, td ­
fFpsr, td=Fsr, td 2 =Fpsr, tdFsr, tdgy2mirsr, td. These
equations can be directly obtained starting from the tim
dependent Eq. (1) and take the form

≠

≠t
r 1 =svrd ­ 0 (2)

and

m
≠

≠t
v 1 =

µ
dm 1

1
2

mv2

∂
­ 0 , (3)

where

dm ­ Vext 1
4p h̄2a

m
r 2

h̄2

2m
p

r
=2pr 2 m (4)

is the change of the chemical potential with respect
its ground state valuem. It is worth noting that these
equations do not involve any approximation with resp
to the Gross-Pitaevskii equation (1) and hold in the lin
as well as in the nonlinear regimes. They have the gen
structure of the dynamic equations of superfluids at z
temperature (see, for example, [13]). In particular, Eq.
establishes the irrotational nature of the superfluid flow

The densityr0 relative to the ground state is obtaine
settingv ­ 0 anddm ­ 0. This yields the equation

Vextsrd 1
4p h̄2a

m
r0 2

h̄2

2m
p

r0
=2pr0 2 m ­ 0 (5)

which, as expected, coincides with the Gross-Pitaev
equation for the order parameterF0 ­

p
r0 of the ground

state. The chemical potentialm is fixed by imposing the
proper normalization to the densityr0. When the number
of atoms in the trap is sufficiently large the density profi
r0srd becomes smooth, and the kinetic energy press
© 1996 The American Physical Society
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2m
p

r0
=2 p

r0 can be neglected with respect to t
interaction terms of Eq. (5). The ground state density t
takes the well known Thomas-Fermi form,

r0srd ­
m

4p h̄2a
fm 2 Vextsrdg , (6)

if m $ Vextsrd and is equal to zero elsewhere. Th
approximation provides an accurate description of
solution of the Gross-Pitaevskii equation (5), except
the surface region where the exact solution vanis
smoothly. It can be used to calculate correctly
potential energy whenN is large. It cannot be use
instead to evaluate the kinetic energy, which require
more accurate knowledge of the order parameter in
boundary region [14]. The distance from the bound
where the Thomas-Fermi approximation starts failing g
the same assa4

HOyRd1y3 [9,14], whereR is the radius of
the boundary (see below).

In the following we will neglect [15] the kinetic
energy pressure also in the solution of the time-depen
equations (2)–(4). This yields the simple express
dm ­ 4p h̄2asr 2 r0dym for the change of the chemica
potential [see Eqs. (4) and (5)]. Assuming for simplic
an isotropic harmonic oscillator potentialVextsrd ­
v

2
0r2y2m, the equations of motion (2) and (3), aft

linearization, can be written in the useful form

v2dr ­ 2
1
2 v2

0=sR2 2 r2d=dr , (7)

where drsrd exps2ivtd ­ rsr, td 2 r0srd and R2 ­
2mymv

2
0 fixes the boundary of the system where t

density (6) vanishes. In the absence of the exte
trap the same procedure yields the well known equa
v2dr ­ 2c2=2dr, wherec ­ s4p h̄2ar0ym2d1y2 is the
sound velocity of the homogeneous Bose gas.

The solutions of the hydrodynamic equations (7)
defined in the interval0 # r # R and have the form

drsrd ­ P
s2nd
, sryRdr,Y,msu, fd , (8)

where P
s2nd
, std ­ 1 1 a2t2 1 · · · 1 a2nt2n are poly-

nomials of degree2n, containing only even pow
ers of t, and satisfying the orthogonality conditioR1

0 P
s2nd
, stdPs2n0d

, stdt2,12dt ­ 0 if n fi n0. The parame-
ters, andm label the angular momentum of the excitati
and itsz component, respectively. The coefficientsa2k

satisfy the recurrence relationa2k12 ­ 2a2ksn 2 kd 3

s2, 1 2k 1 3 1 2ndysk 1 1d s2, 1 2k 1 3d. The dis-
persion law of the normal modes is given by the formu

vsn, ,d ­ v0s2n2 1 2n, 1 3n 1 ,d1y2 (9)

which represents the main result of the present wo
holding in the limitNayaHO ¿ 1. It should be compared
with the prediction of the harmonic oscillator (HO) mod
in the absence of interparticle interactions:

vHO ­ v0s2n 1 ,d . (10)

Of particular interest is the case of the lowest rad
modessn ­ 0d, also called surface excitations, for whic
we predict the dispersion law
n
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vsn ­ 0d ­
p

, v0 . (11)
The frequency of these modes lies systematically be
the harmonic oscillator resultvHOsn ­ 0d ­ ,v0. This
behavior should be taken into account in the determina
of the critical frequencyvcr ­ min,fvs,dy,g needed to
generate a rotational instability [11,16], and might provi
a competitive mechanism with respect to the creation o
vortex line. Notice that in the dipole cases, ­ 1d both
the hydrodynamic and harmonic oscillator predictio
coincide with the oscillator frequencyv0. This follows
from the fact that in an external harmonic potential t
lowest dipole mode corresponds to the oscillation
the center of mass, and is, consequently, unaffected
the interatomic forces.

For a fixed value ofN the accuracy of prediction (9) i
expected to become lower and lower asn and, increase.
In fact, the high energy states are associated with ra
variations of the density in space, and, consequently,
kinetic energy contribution in Eq. (4) cannot be neglec
any longer. The energy range where our prediction
is expected to be accurate corresponds to values sm
than the chemical potentialm. For large values ofn and
,, the correct dispersion law will approach the harmo
oscillator result (10).

The effects of the kinetic energy pressure, ignored
the hydrodynamic approximation, can be investigated
calculating the energy of the collective mode through
sum rule approach [17] based on the ratio

h̄2v2 ­ m3ym1 (12)
between the cubic energy weighted and the ene
weighted moments of the dynamic structure fac
mp ­

P
n jk0jFjnlj2sh̄vn0dp . Here h̄vn0 is the excita-

tion energy of the statejnl and F is a general excitation
operator. The momentsm1 and m3 can be reduced
in the form of commutators involving the Hamiltonia
of the system. One findsm1 ­

1
2 k0fffFy, fH, Fgggg0l and

m3 ­
1
2 k0ffFy, Hg, fffH, fH, Fggggg0l. Equation (12) pro-

vides, in general, a rigorous upper bound to the energ
the lowest state excited byF. The sum rule approach ha
the merit of providing useful information on the dynam
behavior of the system using only the knowledge of
ground state. By evaluating explicitly the commutato
with the Hamiltonian [18]

H ­
X

i

p2
i

2m
1

X
i

1
2

mv2
0r2

i 1
4p h̄2a

m

X
i,j

dsri 2 rjd ,

(13)
we find, in the case of the surfacesn ­ 0d operator
F ­

P
i r,

i Y,msui , fid, the results

m1 ­
h̄2

8mp
,s2, 1 1d

Z
r2,22rdr (14)

and

m3 ­
h̄4

8m2p
,s2, 1 1d

µ
,mv2

0

Z
r2,22rdr 1 ,s, 2 1d

3
h̄2

m

Z
j=

p
rj2r2,24dr

∂
, (15)
2361
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and the excitation frequency (12) takes the form

v2sn ­ 0d ­ v2
0,f1 1 s, 2 1db,g , (16)

where b, ­ h̄2
R

j=
p

rj2r2,24drym2v
2
0

R
r2,22rdr.

For the most relevant quadrupolesn ­ 0, , ­ 2d case,
we find

vQ ­
p

2 v0s1 1 EkinyEhod1y2, (17)

where Ekin and Eho are, respectively, the expectatio
value of the kinetic and harmonic potential energies in
ground state. In the absence of interparticle interacti
one hasEkin ­ Eho, and hence one recovers the harmo
oscillator result v ­ 2v0 of Eq. (10). On the othe
hand, when the interaction is repulsive and the num
of atoms is sufficiently large, the kinetic energy te
can be neglected and one obtains the hydrodyna
prediction v ­

p
2 v0 of Eq. (11). The knowledge o

the kinetic energy relative to the ground state then per
the estimation of the quadrupole excitation energy in
general case. For higher multipolarities the determina
of the coefficientb, of Eq. (16) requires the knowledg
of finer details of the ground state. A simple estim
can be obtained using the Gaussian approximation
the wave function of the condensate, yieldingb, ­
EkinyEho, independent of,.

In a similar way, starting from Eq. (12), one c
determine the frequency of the compression modes.
the lowest monopole modesn ­ 1, , ­ 0d, excited by the
operatorF ­

P
i r2

i , we find

m1 ­
2h̄2

m
Nkr2l (18)

and

m3 ­
2h̄4

m2 s4Ekin 1 4Eho 1 9Eintd , (19)

where Eint ­ 2p h̄2aym
R

drr
2
0 srd is the interaction en

ergy. Using the virial identity2Ekin 2 2Eho 1 3Eint ­
0, holding for the ground state, we finally obtain the f
lowing result for the monopole frequency:

vM ­ v0s5 2 EkinyEhod1y2, (20)

yielding the valuev ­ 2v0 in the harmonic oscillato
model and v ­

p
5 v0 in the large N limit, where

EkinyEho tends to zero. We stress again that results (1
(20) provide a rigorous upper bound to the frequency
the lowest states excited by the corresponding multip
operators.

Predictions (17) and (20) can be compared with
results recently obtained in Ref. [12] by solving nume
cally the time-dependent Gross-Pitaevskii equations f
trapped atomic gas interacting with repulsive forces.
conditions of Ref. [12] correspond to the valuem ­ 4.3v0
for the chemical potential and to the value0.18 for the ratio
between the kinetic and harmonic oscillator energies. T
yields, using Eqs. (17) and (20), the valuesvQ ­ 1.54v0

andvM ­ 2.20v0, in excellent agreement with the fin
ings of [12] (1.53v0 and2.19v0, respectively).
2362
e
s,

r

ic

ts
e
n

r

or

–
f
le

e

a
e

is

The above results for the dispersion law can be g
eralized to the case of a deformed trap. This is parti
larly relevant since the available magnetic traps are o
highly anisotropic. Let us consider the case of a harmo
oscillator trap with axial symmetry along thez axis:
Vext ­ mv

2
's2y2 1 mv2

z z2y2, where s ­ sx2 1 y2d1y2

is the radial variable in thex-y plane. In this case the
relevant differential equation (7) should be replaced by

v2dr ­ 2
1
2 =fv2

'sS2 2 s2d 1 v2
z sZ2 2 z2dg=dr ,

(21)
with mv

2
'S2y2 ­ mv2

z Z2y2 ; m.
Because of the axial symmetry of the trap, the third co

ponentm of the angular momentum is still a good qua
tum number. However, the dispersion law will depend
m. Explicit results are available in some particular cas
For example, functions of the formdr ­ r,Y,msu, fd are
still solutions of Eq. (21) form ­ 6, andm ­ 6s, 2 1d.
The resulting dispersion laws are

v2sm ­ 6,d ­ ,v2
' (22)

and

v2sssm ­ 6s, 2 1dddd ­ s, 2 1dv2
' 1 v2

z . (23)

Equations (22) and (23) provide a full description of t
dipole excitations, ­ 1d whose frequencies coincide, a
expected, with the unperturbed harmonic oscillator v
uesvDsm ­ 61d ­ v' and vDsm ­ 0d ­ vz . How-
ever, for the quadrupole (, ­ 2) mode, Eqs. (22) and
(23) account only for them ­ 62 sv ­

p
2 v'd and

m ­ 61 fv ­ sv2
' 1 v2

z d1y2g components. The solu
tion with m ­ 0 involves a coupling with the monopol
sn ­ 1, , ­ 0d excitation, and the dispersion law of th
two decoupled modes is given by

v2sm ­ 0d ­ v2
'

≥
2 1

3
2 l2 7

1
2

p
9l4 2 16l2 1 16

¥
,

(24)
with l ­ vzyv'. Whenl ! 1, one recovers the origina
solutions (17) and (20) corresponding, respectively, to
quadrupole and monopole excitations in a spherical t
Whenl ¿ 1 (disk-type geometry) the two solutions a
proach the frequencies

p
10y3 v' and

p
3 vz , respectively.

On the other hand, whenl ø 1 (cigar-type geometry), the
two frequencies become

p
5y2 vz and2v'.

For systems interacting with attractive forcessa , 0d
the hydrodynamic results discussed above do not pro
an adequate description of the dispersion law, and, in
case, the sum rule approach becomes particularly us
The kinetic energy contributionEkin entering Eqs. (17)
and (20) can never be neglected, being larger thanEho,
and the monopole mode turns out to be located be
the quadrupole one. Physically, this reflects the tende
of the system to become more compressible. In Fig
we show the behavior of the monopole and quadrup
frequencies obtained using Eqs. (17) and (20) as a fu
tion of the adimensional parameterNayaHO. The ratio
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FIG. 1. QuadrupolesQd and monopolesMd frequencies as a
function of the adimensional parameterNaya0, calculated using
Eqs. (17) and (20).

EkinyEho has been estimated using a variational calcu
tion of the ground state based on Gaussian trial wave fu
tions for the order parameter [9,10]. One can see t
while the energy of the quadrupole excitation is enhan
at negative scattering lengths, the monopole mode beco
softer. The upper bound (20) for the monopole ene
vanishes whenEkin ­ 5Eho. This coincides exactly with
the condition for the onset of instability predicted by t
use of Gaussian trial wave functions in the variational c
culation (NayaHO ­ 20.67 [10]). It is, however, worth
noting that the results shown in the figure provide o
a semiquantitative estimate of the excitation frequenc
In fact, the onset of instability obtained from the exa
solution [8] of the Gross-Pitaevskii equationsNayaHO ,
20.57d differs from the Gaussian estimate. Furthermo
one should keep in mind that the estimates (17) and (
being based on the ratio (12), provide only an upper bo
to the frequency of the lowest excitations.

In conclusion, we have derived a systematic inve
gation of the collective excitations of a Bose-conden
gas confined in an external trap. We have obtained
alytic results for the dispersion law of both surface a
compression modes employing the hydrodynamic appr
mation and the sum approach. Our work reveals the
role played the interatomic forces which introduce a r
structure in the dynamic behavior of these new many-b
systems.

After submitting this paper, we have received a prep
[19] reporting the first experimental measurements of
lowest collective modes of a gas of87Rb atoms trapped
in an anisotropic potentialsl ­

p
8 d. The experimenta

results are in good agreement with our predictionsv ­
1.4v' and 1.8v' for the lowestm ­ 2 [Eq. (22)] and
m ­ 0 [Eq. (24)] frequencies. The same results a
agree well with the predictions of the recent numeri
calculations of Refs. [20] and [21]. A similar experime
has been carried out on a gas of sodium atoms confi
in cigar-type trap [22]. The measured frequency is
-
c-
t,
d
es
y

l-

y
s.
t

,
),
d

i-
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very close agreement with the lowest solution of Eq. (2
(
p

5y2 vz for small values ofl).
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