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Abstract 

We present a general semiclassical theory of the orbital magnetic response of noninteracting electrons confined in two- 
dimensional potentials. We calculate the magnetic susceptibility of singly-connected and the persistent currents of multiply 
connected geometries. We concentrate on the geometric effects by studying confinement by perfect (disorder free) potentials 
stressing the importance of the underlying classical dynamics. We demonstrate that in a constrained geometry the standard 
Landau diamagnetic response is always present, but is dominated by finite-size corrections of a quasi-random sign which 

may be orders of magnitude larger. These corrections are very sensitive to the nature of the classical dynamics. Systems 
which are integrable at zero magnetic field exhibit larger magnetic response than those which are chaotic. This difference 
arises from the large oscillations of the density of states in integrable systems due to the existence of families of periodic 
orbits, The connection between quantum and classical behavior naturally arises from the use of semiclassical expansions, 
This key tool becomes particularly simple and insightful at finite temperature, where only short classical trajectories need 
to be kept in the expansion. In addition to the general theory for integrable systems, we analyze in detail a few typical 
examples of experimental relevance: circles, rings and square billiards. In the latter, extensive numerical calculations are 
used as a check for the success of the semiclassical analysis. We study the weak-field regime where classical trajectories 
remain essentially unaffected, the intermediate field regime where we identify new oscillations characteristic for ballistic 
mesoscopic structures. and the high-field regime where the typical de Haas-van Alphen oscillations exhibit finite-size 
corrections. We address the comparison with experimental data obtained in high-mobility semiconductor microstructures 
discussing the differences between individual and ensemble measurements, and the applicability of the present model. 

PACS: 03.65.Sq; 05.45.+b; 05.30.Fk; 73.20.D~ 
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1. Introduction 

1. I. Historical perspective 

The study of orbital magnetism in an electron gas goes back to the 1930s with the pioneering 
work of Landau [ 1,2] demonstrating the existence of a small diamagnetic response at weak fields H 
and low temperatures T (such that kB T exceeds the typical spacing hw, w = eH/mc). Three features 
of this original proposal contributed to the slowness of its general acceptance. First, it deals with 
a purely quantum result that can be expressed as a thermodynamic relationship without an explicit 
I? dependence. In contrast to that the Bohr-van Leeuwen theorem [3] establishes the absence of 
magnetism for a system of classical particles. For finite systems the boundary currents are shown 
to exactly cancel the diamagnetic contribution from cyclotron orbits of the interior. (This result re- 
mains valid even if we consider Fermi or Bose statistics [4].) Secondly, boundary effects (so crucial 
in obtaining the correct classical behavior) did not enter into Landau’s original derivation. Twenty 

years later Sondheimer and Wilson [.5] presented a more rigorous formulation for the magnetism 
of unconstrained electrons at weak and strong fields without using explicit knowledge of the en- 
ergy levels, thus avoiding complicated arguments involving boundary electrons. (Here we present a 
semiclassical derivation of Landau diamagnetism independent of the energy level structure and valid 
for constrained geometries at arbitrary magnetic fields.) Finally, Landau diamagnetism for standard 
metals yields a small effect (one-third of the Pauli spin paramagnetism) making its experimental 
observation rather difficult. Peierls [4, 61 showed shortly after Landau’s work that the diamagnetic 
susceptibility persists when electrons are placed in a periodic potential and its value is obtained by 
simply using the effective mass instead of the free electron mass. But even if the effective mass is 
smaller than the bare mass, and the diamagnetic orbital response dominates over the spin param- 
agnetic susceptibility (as typically happens in doped semiconductors), the detailed comparison with 
the experimental data on metals was still difficult [5]. This follows from the complicated electronic 
structure and the fact that taking into account electron-electron interactions in the same way as a 
periodic potential by renormalizing the effective mass, is a too crude approximation. 

While the restriction of the electron gas to a two-dimensional plane (still in the thermodynamic 
limit) does not pose any new conceptual or calculational difficulty [4, 71, the effect of confining 
the electron system to a finite volume introduces a new energy scale in the problem (the typical 
level spacing A) and leads to a modification of the Landau susceptibility. The latter point has 
therefore been the object of several conflicting studies. ’ The investigation of finite-size corrections 
was motivated by experiments on small metal clusters and dealt with various theoretical models: 
thin plates [9], thin cylinders [lo], confinement by quadratic potentials [ 11, 121, circular [13] and 
rectangular boxes [ 14, 151. Finite-size effects and corrections to bulk magnetism obviously depend 
on the relation between the typical size a of the system and other relevant length scales [ 161: 
The thermal length LT = Az+~/x (I+ is the Fermi velocity and fl = I/kBT), the elastic mean 
free path 1 (with respect to impurity scattering), and the phase-coherence length LO (taking into 
account inelastic processes like electron-phonon scattering). Most of the above mentioned studies 
neglect other scattering mechanisms than that by the boundaries of the device, and deal with the 
macroscopic (or high temperature) case of L7 -+a. The first assumption severely limits the possible 

’ For the historical account of this tortuous and often contradictory chain of findings see Ref. [S]. 
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comparison with the experimental data of real metal clusters, while in the regime where the second 
assumption is valid the magnetic response is dominated by its smooth component for which, as 
generally shown by Robnik [ 171 and Antoine [IS], only small corrections to the diamagnetic bulk 
susceptibility are found. 

Opposite to the macroscopic limit, there had been studies in the extreme quantum limit [ 191, 
where the temperature is low enough to enable the resolution of individual levels (kBT < A). In 
this regime the magnetic susceptibility is dominated by erratic fluctuations that, as we will see later, 
hinder its unequivocal determination. The purpose of the present work is the study of size corrections 
in the mesoscopic regime [20], intermediate between the two previous limits (that is, for temperatures 
satisfying L7/a > 1 > ad) and where inelastic processes do not inhibit quantum interference effects 
(La > a). Nowadays this is an experimentally accessible regime receiving considerable attention due 
to the richness of its physical properties. When Lo > a > 1 we have the mesoscopic d$tiisiz;e regime 
where the electron motion is dominated by impurity scattering, while for Lo > 1 > a we enter into 
the ballistic regime where electrons are mainly scattered off the walls of a confining potential. A 
central conclusion of our work is that finite-size corrections to the magnetic susceptibility in the 
ballistic regime can be orders oJ’ magnitude larger than the bulk values. 

One of the reasons for the sustained interest of the last few years in the mesoscopic ballistic regime 
is the possibility of studying the relation of the underlying classical dynamics and the quantum 
properties. This issue is precisely the subject of the field known as “quantum chaos” [21,22]. Since 
the number of electrons N in a mesoscopic system is always large, particles at the Fermi energy have 
a De Broglie wavelength I+ much smaller than the typical size a of the system (a/& ‘cx kFa x N”“, 
kF is the Fermi wave vector, d the number of degrees of freedom), and are therefore well in 
the semiclassical regime. High-mobility mesoscopic semiconductor samples provide an appropriate 
experimental testing ground in this context and have been recently examined with respect to the role 
of chaos in transport phenomena (for a review, see [23,24]). The present work extends the connection 
between mesoscopic systems and quantum chaos to thermodynamic properties, and analyzes recent 
experiments [25,26] measuring the magnetic response of ballistic microstructures. One main concern 
of our work is to show that mesoscopic finite-size effects depend crucially on the classical dynamics 
of the ballistic billiard, i.e. whether it is integrable or chaotic, and that the magnetic response provides 
an experimentally accessible criterion in order to distinguish between integrable and chaotic devices 
(much more neatly than through the subtle differences found in the transport problem [23,24]). 

The importance of geometrical effects for the finite-size corrections in the above-defined macro- 
scopic limit had already been noticed in terms of the sensitivity of the magnetic susceptibility on the 
structure of the confining potential [IO-121. The chosen potentials were obviously nongeneric but 
used due to their calculational simplicity, and therefore it was not possible to anticipate the order- 
of-magnitude effect that classical dynamics might have on the susceptibility outside the macroscopic 
limit. The problem of orbital magnetism from a quantum chaos point of view was first addressed 
by Nakamura and Thomas [27] in their numerical study of the differences in the magnetic response 
of circular and elliptic billiards at zero temperature. The circular billiard is integrable at arbitrary 
field, while the ellipse develops chaotic behavior at finite fields. They found a reduction compared to 
the bulk susceptibility and strong fluctuations (with varying magnetic field), and observed that both 
effects were stronger for the elliptic billiard. As already mentioned, the difficulty of these studies in 
the extreme quantum limit (at zero temperature) consists in the existence of strong fluctuations aris- 
ing from exact or quasi-crossings of energy levels (depending parametrically on the magnetic field) 



where the susceptibility diverges. Similar features were obtained for other integrable systems in the 
quantum limit like the rectangular box [ 191, the Corbino disk and the cylinder [28]. However, this 
unphysical behavior is regularized by finite temperature that approximately adjusts the populations 
of both levels to each other at a crossing (or anti-crossing). 

Parallel to the studies of the orbital response in finite size singly connected systems, there have 
been important developments in the understanding of persistent currents (i.e. the orbital magnetism in 
multiply connected geometries). 2 These latter studies started usually from very general considerations 
without making the connection with the Landau diamagnetism. The pioneering work of Biittiker et 
al. 1291 demonstrating that in the presence of magnetic flux the ground state of a one-dimensional 
ring has a current flow generated a large theoretical activity, mainly directed towards generalizations 
of quasi-one-dimensional and diffusive rings [30, 321. The first experimental evidence of persistent 
currents in an ensemble of mesoscopic copper rings was given by the 1990 measurement of Levy 
et al. [33]. The use of an ensemble was motivated by experimental reasons and brought up important 
issues about the differences between the canonical and grand canonical ensembles in the mesoscopic 
regime [34-361 that we will review in the present work. Later experiments achieved the measurement 
of persistent currents in single disordered [37] and ballistic [26] rings. In Section 4 we analyze in 
detail the last experiment making the connection with the orbital magnetism of the other sections. 
The connection between classical mechanics and persistent currents has already been explored in 
Refs. [3840]. 

Small metallic samples at sufficiently low temperatures operate in the diffusive mesoscopic regime, 
where the classical electron motion is a random walk through the impurity potential. This was the 
regime of the original experiment on persistent currents [33] and therefore received considerable 
theoretical attention. The effect of disorder on persistent currents has been evaluated by diagrammatic 
perturbation theory [36]. A weak disorder potential does not alter the bulk Landau diamagnetism 
[41] and gives within perturbation theory enhancement factors proportional to &I for finite samples 
[42]. Highly pure semiconductor heterojunctions combined with lithographic techniques allow the 
realization of samples small enough to be in the mesoscopic ballistic regime where 1 > a. This 
is the case of the orbital magnetism and persistent current measurements of Refs. [25, 261. In the 
ballistic regime electrons move almost straight between collisions with the walls of the confining 
potential. The small drift between collisions is due to the unavoidable disorder potential existing in 
real structures. Neglecting completely the effect of disorder, and therefore the associated drift, leads 
to an ideal or clean system which describes simply an electron billiard. A central result of our work 
is that the application of semiclassical expansions at finite temperature allows one only to consider 
short classical periodic trajectories. Therefore, the clean model provides a reasonable approach to 
the weak and smooth disorder of the ballistic regime. We will get back to this point in this work, 
and in a separate paper [43] we examine in detail the role of disorder in ballistic samples. 

The previously cited developments, as well as most of the present work, deal with finite-size 
effects in the orbital response at weak fields. At high fields the magnetic response is dominated 
by the occurrence of Landau levels (whose spacing fro is much larger than d or ksT) yielding 
the well known de Haas-van Alphen effect. In 1938 Landau derived (see Refs. [S, 71) a complete 
analytical expression for the susceptibility of a degenerate free electron gas including the weak- 
field diamagnetic response and the de Haas-van Alphen oscillations. Since the latter turned out 

* For historical accounts on persistent currents see Refs. [30, 311. 
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to be a powerful technique to examine the electron structure of metals [44] its study has been at 
the heart of Condensed Matter Physics for various decades. Its measurement in two-dimensional 
electron gases has allowed the determination of the density of states at high field [45]. With the 
advent of Mesoscopic Physics the question of finite-size effects on the de Haas-van Alphen effect 
was naturally raised, and free electron gases on a disk [46,47] and confined by a parabolic potential 
[48] were considered at high fields. The semiclassical theory used in the present work provides the 
finite-temperature susceptibility at arbitrary fields and allows the identification of an intermediate 
regime characteristic for ballistic samples that we discuss in Section 7. 

Our work aims at the convergence of various seemingly disconnected fields: Landau diamagnetism, 
persistent currents, de Haas-van Alphen effect, finite-size corrections of thermodynamic functions, 
quantum chaos, and electronic properties of weakly disordered systems. We will show that the semi- 
classical analysis naturally enters in the problem of the magnetic response of ballistic structures, 
provided a model of noninteracting electrons is adequate. The expression of the magnetic suscepti- 
bility and persistent currents in terms of classical trajectories provides a unifying approach applicable 

to various geometrical shapes, different temperatures and magnetic field strengths. 

1.2. Susceptibility of unconstrained and constrained electron systems 

We now present the basic formulas defining the magnetic susceptibility and then compare the 
unconstrained magnetic response with the susceptibility obtained by confining the electron gas to a 
finite region to illustrate the subject of our studies in this paper. Let us consider a noninteracting 
electron gas confined in a volume (area in two dimensions) A at temperature T under a magnetic 
field H. The magnetic moment of the system in statistical equilibrium is given by the thermodynamic 

relation 

J& = -(aa/aH),, (1.1) 

where a( T, p, H) is the thermodynamic potential, and p the chemical potential of the electron gas. 

The differential magnetic susceptibility is defined by 

XGC = (l/A)(aJ&!/aH),,, = -( 1/A)(a2Q/aH2)T$ . (1.2) 

The notation with the superscript GC is used in order to emphasize the fact that we are working 
in the grand canonical ensemble. The choice of the ensemble in the macroscopic limit of N and 
A + oc is a matter of convenience. As it is well known by now [34-361 the equivalence between 
the ensembles may break down in the mesoscopic regime that interests us, and this point will be 
thoroughly discussed in the remaining part of the paper. However, for the purpose of this didactical 
introduction we will work in the grand canonical ensemble studying the magnetic response of electron 
systems with fixed chemical potentials. The calculation advantages of the GC ensemble arise from 
the simple form of the thermodynamic potential 

Q(T,c~,H) = -$ / dEd(E) ln(1 + ev[P(~-W, 

in terms of the single-particle density of states 

(1.3) 

d(E)=g,xci(E-E,). 
d 

(1.4) 



8 K. Richtrr et ul. IPhysics Reports 276 (1996) I-83 

The factor g, = 2 takes into account spin degeneracy, E; are the eigenenergies 
magnetic susceptibility is directly extracted from the knowledge of the density 
of a free electron gas is particularly simple since the electron eigenstates are 
energies 

of the system. The 
of states. The case 
Landau states with 

Ek=hw (k++), k=0,1,2 ,... (1.5) 

and degeneracies g,@/&,. The cyclotron frequency is w = eH/mc, @ = HA is the flux through an 
area A, and Q0 = he/e is the elemental flux quantum. Throughout this work we will neglect the 
Zeeman splitting term due to the electron spin. It can however be incorporated easily when spin-orbit 
coupling is negligible [49]. 

Landau’s derivation of the magnetic susceptibility of a free electron system arising from the 
quantization condition (1 S) can be found for the three-dimensional case in standard textbooks [2,4]. 
The two-dimensional case [7,8] follows upon the same lines. In the following we present a sketch 
of the latter which will be useful towards a semiclassical understanding of the problem. (H is now 
the component of the field perpendicular to the plane of the electrons.) 

By the use of the Poisson summation formula the density of states related to the quantization 
condition (1 S) can be written as 

d(E) = gsf$ +&$F(-l)“cos(F). 
n=l 

(1.6) 

This decomposition is usually interpreted as coming from the Weyl term (given by the volume of 
the energy manifold in phase space) and the contribution of cyclotron orbits (second term, strongly 
energy dependent). We stress though that in the bottom of the spectra, from which the Landau 
diamagnetic component originates, this distinction is essentially meaningless. 

In the case of a degenerate electron gas with a weak field such that hw $ k,T < ,u the energy 
integral (1.3) is easily performed resulting in 

(1.7) 

where fi is the smooth part (in energy) of the thermodynamic potential. (Note that the second term 
of Eq. (1.7) comes nevertheless from the integral of the rapidly oscillating term of the density of 
states.) Thus, we obtain the two-dimensional diamagnetic Landau susceptibility 

-xi_ = -g,e2/24xmc2 . (1.8) 

For high magnetic fields, kB T < fiw, the energy integrals are slightly more complicated than before 
since the rapidly oscillating component of Sz is not negligible any longer. This latter can be computed 
(see Appendix A for the treatment of similar cases) as 

Q”“” = cl, ($) ~(-1)~~ (&);cos (~)Rr(ri), (1.9) 

where Rr(n) is a temperature dependent damping factor 

R,(n) = 2rc2nkBT/fiw/sinh (2r2nkBT/fiw) . (1.10) 
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With Q = fi + Qosc, we have the Landau and de Haas-van Alphen contributions to the magnetic 
susceptibility 

Y 
GC 

1 = -1 -24 
%L 

2~(--l).cos (z)&(n). 
n= I 

(1.11) 

The second term exhibits the characteristic oscillations with period l/H and is exponentially damped 
with temperature (and the summation index n). 3 

While going from the bulk two-dimensional case (macroscopic regime) to the constrained case 
(ballistic mesoscopic) two important changes take place: (i) the confining energy appears as a 
relevant scale and Eq. (1.5) no longer provides the quantization condition; (ii) since we are not 
in the thermodynamic limit of N and A -+ x, the constraint of a constant number of electrons in 

(isolated) microstructures is no longer equivalent to having a fixed chemical potential. These two 
effects will be thoroughly discussed in the paper. For didactical purposes we restrict ourselves in 
this introductory section to only the changes (i) due to the confinement, and we anticipate some of 
the results that will be later discussed in detail. 

We imagine a mesoscopic square of size a connected to an electron reservoir with chemical 
potential ,LL. Direct numerical diagonalization in the presence of a magnetic field (Fig. l(a)) allows 
us to obtain 11”’ (solid 1’ me in Fig. l(b)). In the high-field region (2r, < a, we note r, = Q/CO the 

cyclotron radius) the characteristic de Haas-van Alphen oscillations are obtained, although not with 
the amplitude expected from calculations in the bulk (Eq. (1.11)). For lower fields the discrepancy 
between our numerical results and the bulk Landau diamagnetism is quite striking. Thus, confining 
deeply alters the orbital response of an electron gas. Without entering into details at this point we 
remark the fact that the whole curve is quite well reproduced by a finite-temperature semiclassical 
theory (dashed line) that takes into account only one type of trajectory (see insets) in each of the 
three regimes: (a) the interference-like regime, dominated by the shortest trajectories with the largest 
enclosed area for squares at zero magnetic field; (b) the transition regime dominated by the bending 
of bouncing-ball trajectories between parallel sides of the square; (c) the de Haas-van Alphen regime 
dominated by cyclotron orbits. It is remarkable how an exceedingly complicated spectrum as that of 
Fig. I(a) can bk understood within such a simple semiclassical picture once finite temperature acts 

as a filter selecting only few types of trajectories. 

1.3. Overview of this work 

The purpose of this paper is to provide an (essentially comprehensive) theory of the orbital mag- 
netic properties of noninteracting spinless electrons in the mesoscopic ballistic regime. We restrict 
ourselves to the clean limit, where the different behavior of the magnetic response arises as a geo- 
metrical effect (shape of the microstructure). We will make extensive use of semiclassical techniques 
since they appear to be perfectly suited for these problems. For the smooth components (such as in 
Eq. (1.7)) we will use the general techniques developed by Wigner to obtain higher fi corrections 
to the Weyl term which are field dependent. For the oscillating components, we will rely on the so 

3 For high fields we cannot in principle separate the orbital and spin effects. The de Haas-van Alphen oscillations are 
given only by the orbital component, that is the only one that interests us for our model of spinless electrons. 
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600 

0 
0 10 20 30 40 50 60 

(a) cp 

Fig. 1. (a) Evolution of the first 200 energy levels (of one symmetry class (see Section 5.4)) of a square billiard in a 
uniform perpendicular magnetic field H as a function of the normalized flux cp = Ha2/& (@o = he/e). The energies are 
scaled such that the zero field limit gives E = IZ< +nf,. At high fields the levels converge successively to the Landau levels 
while the nonintegrable intermediate field regime exhibits a complex spectra1 structure. (b) Full line: Numerically calculated 
susceptibility of the square at finite temperature at an energy corresponding to N 1100 occupied independent particle states. 
The susceptibility, being strongly enhanced with respect to the bulk value XL, exhibits pronounced oscillations which are 
accurately reproduced by analytical semiclassical expressions (dashed line) based on families of quantized flux enclosing 
electron orbits (shown in the upper insets for the different magnetic field regimes). 
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i 
-300 I I I I , I , , 

0 10 20 30 40 50 

(b) cp 

Fig. 1. continued 

called semiclassical trace formulas, which provide simple and intuitive expressions for the density 
of states as a sum over Fourier-like components associated to closed classical orbits. 

In this respect it will be seen that the nature of the classical dynamics, i.e. integrable versus 
chaotic (and more precisely existence versus absence of continuous families of periodic orbits), plays 
a major role. Although we will present a complete formalism for both cases, our main emphasis, and 
in particular all the examples treated explicitly, will concern integrable geometries. The reason for 
this choice is twofold. First, as we will make clear in the sequel, one expects a much larger magnetic 
response for integrable systems than for chaotic ones, yielding a more striking effect easier to observe. 
The second point is that, contrary to what might seem natural a priori, integrable geometries present 
a few conceptual difficulties in their treatment which are not present for chaotic systems. Indeed 
integrable systems lack of structural stability, which means that under any small perturbation (such 
as the one provided by the presence of a magnetic field) they generically do not remain integrable. 
Chaotic systems on the contrary remain chaotic under a small perturbation. Therefore, as shown 
in Ref. [50], the Gutzwiller trace formula [21, 511, valid for chaotic systems, can be used at finite 
fields without further complications. For integrable geometries however, the Berry-Tabor [52,53] or 
Balian-Bloch [54] trace formulae valid for integrable systems usually do not apply in the presence 
of a perturbing magnetic field. It will therefore be necessary, following Ozorio de Almeida [55,56], 
to consider the more complicated case of nearly integrable systems, which we will do in detail here. 

To perform this program, the present work is organized as follows. In the next section we present 
the thermodynamic formalism appropriate for working in the canonical and grand canonical ensem- 
bles, stressing its semiclassical interpretation and incorporating the changes due to the constancy of 
the number of electrons in the experimentally relevant microstructures. In Section 3 we consider 
the smooth magnetic response and show that the Landau diamagnetism is present in any confined 
geometry at arbitrary fields. In Section 4 we address the magnetic response (susceptibility and persis- 
tent currents) in the simplest possible geometries: circles and rings billiards that are integrable with 
and without magnetic field. In Section 5 we present the calculation of the magnetic susceptibility 
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for the experimentally relevant case of the square billiard [25] whose integrability at zero field is 
broken by the effect of an applied magnetic field. An initial study along these lines was presented in 
Refs. [57,58] and independently proposed by von Oppen [59]. This geometry and the corresponding 
experiment have also been analyzed from a completely different point of view by Gefen et al. [60] 
stressing the importance of the residual disorder (see also Ref. [82]). We consider in Section 6 the 
generic magnetic response of both integrable and chaotic geometries, stressing the similarities and 
differences in their behavior and calculating the line-shape of the average magnetization in generic 
chaotic systems. In Section 7 we demonstrate how the semiclassical formalism we have developed 
applies not only to the weak-field limit, but also to higher field and in particular to the high field 
regime of the de Haas-van Alphen oscillations. We treat explicitly the example of the square geome- 
try, including an intermediate field regime dominated by bouncing-ball orbits as depicted in Fig. l(b). 
We discuss our conclusions and their experimental relevance in Section 8. The modifications of our 
results due to the effect of a weak disordered potential are discussed in a separate publication [43]. 

To keep the focus on the physical concepts developed in the text, a few technical derivations 
have been relegated to some appendices. Appendix A presents the generic case of the convolution 
of a rapidly oscillating function with the derivative of the Fermi function. Appendix B gives the 
calculation of the first field-dependent term of the heat Kernel in an h expansion. In Appendix C 
we compute the action integrals associated with the dynamics of circular and ring billiards needed 
to define the energy manifold in action space. Appendix D presents the calculation of the prefactor 
of the Green function for an integrable system, while in Appendix E we show how to compute the 
semiclassical Green function at a focal point, and apply the obtained result to the particular case of 
cyclotron motion. 

2. Thermodynamic formalism 

One main subject of the present work is the introduction of semiclassical concepts into the ther- 
modynamics of mesoscopic systems. In this section we provide the basic formalism allowing one to 
obtain the thermodynamic properties (grand potential, free energy) from the quasi-classically calcu- 
lated single-particle density of states and hence the susceptibility. We begin with general definitions 
and relations between grand canonical and canonical quantities. 

For a system of electrons in a volume (area in two dimensions) A connected to a reservoir of 
particles with chemical potential p (grand canonical ensemble) the magnetic susceptibility is obtained, 
as given by Eq. (1.2), as 

Q( T, p,H) is the thermodynamic potential, which can be expressed for noninteracting electrons in 
terms of the single-particle density of states through Eq. (1.3). 

For actual microstructures, the number N of particles inside the device might be large but is fixed 
in contrast to the chemical potential ,u. As discussed in the introduction, it will be necessary in some 
cases, namely when considering the average susceptibility of an ensemble of microstructures, to take 
explicitly into account the conservation of N, and to work within the canonical ensemble. For such 
systems with a fixed number N of particles, the relevant thermodynamic function is not the grand 
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potential 52, but its Legendre transform, the free energy4 

13 

F(T,H,N) = FN + sz(T,H,p) . 

In particular, the magnetic susceptibility of a system of N electrons is 

(2.1) 

x = -l/A (a2~/8H2)T,,v . (2.2) 

Except for the calculation of the Landau contribution performed in the following section all 
the computations of the magnetic response of the microstructures to be considered will involve two 
clearly separated parts. In the first one the (oscillating part of the) density of states will be calculated 
semiclassically. Depending on the underlying classical dynamics (integrable versus chaotic, with or 
without breaking of the invariant tori, with or without focal points, etc.), the results as well as 
their derivation will vary noticeably. In the second stage the integrals over energy yielding the 
desired thermodynamic properties have to be performed in a leading order in /i approximation. To 
avoid tedious repetitions, we shall consider here in some detail this part of the calculation of the 
thermodynamic properties, and refer without many additional comments to the results obtained in this 
section whenever needed. We begin with the grand canonical quantities which exhibit the simplest 
expressions in terms of the density of states. In a second subsection we shall consider the canonical 

ensemble following closely the approaches presented in Refs. [36]. 

2. I. Grand canonical properties 

We begin with the standard definition, Eq. (1.4) of the density of states 

4-9 

(gS = 2 is 
the energy 

n(E) 

= gs c &E - EL) , 
i 

the spin degeneracy, E;. the eigenenergies) and its successive energy integrals. They are 
staircase 

=.i 

E 

dE’d(E’) , 
0 

and the grand potential at zero temperature 

J 

E 

o(E) = - dE’n(E’) . 
0 

These are purely quantum mechanical quantities, depending only on the eigenstates E;~ 
At finite temperature the corresponding quantities are obtained by convolution with 
f’(E - ,u) of the Fermi distribution function 

(2.4) 

of the system. 
the derivative 

f (E - P) = l/(1 + expiY(E - ~11). (2.5) 

(2.3) 

4 In standard thermodynamics, Eq. (2.1) just represents the definition of the grand potential. It should be borne in mind 
however that from a statistical physics point of view this is not an exact relation, but the result of a stationary-phase 
evaluation of the average over the occupation number, valid only when kBT is larger than the typical level spacing. 
Therefore, we are entitled to use this relation in the mesoscopic regime that interests us, but not in the microscopic 
regime, where features on the scale of a mean spacing become relevant. 
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We then have 

1 

‘X 

D(Y) = - dEd(E) ,f’(E-P) 3 (2.6a) 
0 

N(P) = - 
.i 

=dE n(E) f'(E-P), (2.6b) 
0 

Q(p)= -/1 dEw(E) f'(E-p). (2.6~) 

Integration by parts leads to the standard definition (1.3) of the grand potential and the mean 
number of particles in the GCE with a chemical potential ,LL, i.e. 

.i’ 
x 

N(P) = dE4-V f(E - P). 
0 

(2.7) 

That means that the thermodynamic properties (2.6b)-(2.6c) are obtained by performing the energy 
integrations (2.3)-(2.4) with the Fermi function as a weighting factor. 

In the following the separation of the above quantum mechanical and thermodynamic expressions 
into smooth (noted with a “ - “) and oscillating (noted with the superscript “ OS’ “) parts is going 
to play a major role. It has its origin in the well-known decomposition of the density of states as 

d(E)= d(E)+d"""(E) . (2.8) 

This decomposition has a rigorous meaning only in the semiclassical (E ---f x) regime for which 
the scales of variation of L? and d”“” decouple. To leading order in h, the mean component d(E) 
is the Weyl term reflecting the volume of accessible classical phase space at energy E (zero-length 
trajectories), while d”$“(E) is given as a sum over periodic orbits (Gutzwiller and Berry-Tabor trace 
formulas) [21]. Generically, it will be expressed as a sum 

d”““(E) = cd,(E) ; d,(E) = A,(E) sin (S,(E)/h + vr> . (2.9) 

running over periodic orbits labeled by t where S, is the action integral along the orbit t, A,(E) is 
a slowly varying prefactor and v, a constant phase. 5 

Using the expression (2.9) for d”“’ in Eqs. (2.3) and (2.4), PC and woSc are obtained to leading 
order in fi as 

.E 

n"""(_q = 

I .I 

E 

dE’ d""'(E') ; UyE) Ix - dE’ nosc(E') . (2.10) 

The lower bounds are not specified because the constants of integration are determined by the con- 
straint that nose and oPSc must have zero mean values. (It should be borne in mind that semiclassical 
expressions like (2.8), and those that will follow, are not applicable at the bottom of the spectrum.) 

In a leading h calculation the integration over energy in Eq. (2.10) has to be applied only to the 
rapidly oscillating part of each periodic orbit contribution d,. Noting moreover that if S,(E) is the 

5 When considering systems whose integrability is broken by a perturbing magnetic field, we shall stress the necessity to 
consider families of recurrent, but not periodic, orbits of the perturbed system. This will, however, not affect the discussion 
which follows. 
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action along a periodic orbit, then r,(E) G dS,/dE is the period of the orbit, one has in a leading fi 
approximation 

.I’ 

E 

A,(E’) sin (S,(E’)/h + vt) dE’ = ___ -’ A,(E) cos (St(E>/fi + v,) 
r&E) 

(2.11) 

as can be checked by differentiating both sides of Eq. (2.11). In order to emphasis that the integration 
over energy merely yields a multiplication by (-n/z), we use the notation (i@ . d,) to assign the 
contribution d, of a periodic orbit after shift of the phase by n/2, i.e. (i@ . [B sin(S/h)]) = B cos(S/fi). 

We get 

n”““(E) = c n,(E) ; n,(E) = 
f 

-$) (4x . d,(E)) > 
f 

dSC(E) = c coo,(E) ; w(E) = 
f 

(2.12) 

(2.13) 

The thermodynamic functions PC(~), No”“(~) and Qosc(~) are then obtained by application of 
Eqs. (2.6a) in which the full functions are replaced by their oscillating component. The resulting 
integrals involve the convolution of functions (d”““(E), n”“‘(E) or o”““(E)) oscillating (locally around 

p) with a frequency @)/(27&), with the derivative of the Fermi factor f’(E - p) being smooth 

on the scale of p-’ = k,T. One can therefore already anticipate that this convolution yields an 
exponential damping of the periodic orbit contribution whenever r(p) 4 !$I. As shown in Appendix A 
the temperature smoothing gives rise to an additional factor for each periodic orbit contribution, 

(2.14) 

in a leading fi and p-’ approximation (without any assumption concerning the order the limits are 
taken). In this way we obtain relations between the following useful thermodynamic functions and 

the semiclassical density of states: 

D”““(P) = CL%(P) ; (2.15a) 

At very low temperature, R T cv 1 - [(rtn)/(fifl)]*/6 which, for billiard-like systems where zI = 
Lt/vF (with L, being the length of the orbit and vr the Fermi velocity), simply gives the standard 
Sommerfeld expansion R T N 1 - [(L,n)/(h~vr)]*/6. For long trajectories or high temperature it 
yields an exponential suppression and therefore the only trajectories contributing significantly to the 
thermodynamic functions are those with rt < z,. Thus, temperature smoothing has a noticeable effect 
on the oscillating quantities since it effectively suppresses the higher harmonics, which are associated 
with long classical orbits in a semiclassical treatment. On the contrary, for a degenerate electron 
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gas (/II/l $ 1 ), finite temperature has no effect on the mean quantities. Temperature is then the tuning 
parameter for passing from d(E) at T = 0 to B(E) = d(E) at large temperatures (by the progressive 
reduction of do”). Similar considerations hold for the energy staircase and the grand potential. 

The oscillatory part of the semiclassical susceptibility in the grand-canonical ensemble is finally 
obtained from Eq. (1.2) by replacing Q by Qosc. 

2.2. Canonical ensemble 

Let us now consider the susceptibility in the canonical ensemble, appropriate for systems with 
a fixed number of particles. We follow Imt-y’s derivation for persistent currents in ensembles of 
disordered rings [35]. The only important difference is that we will take averages over the size 
and the Fermi energy of ballistic structures instead of averages over impurity realizations. We will 
stress the semiclassical interpretation that will be at the heart of our work, and highlight some of 
its subtleties. 

As mentioned in the introduction the definition Eq. (2.2) of the susceptibility x is equivalent to 

ilGC up to l/N (i.e. fi corrections). Therefore, in the macroscopic limit of N ---f ec the choice of the 
ensemble in which the calculations are done is unimportant. On the other hand, in the mesoscopic 
regime of small structures (with large but finite N) we have to consider such corrections if we 
want to take advantage of the computational simplicity of the Grand Canonical Ensemble (GCE). 
The difference between the two definitions is particularly important when the GCE result is zero 
as it is the case for the ensemble average of x GC The evaluation of the corrective terms can be . 

obtained from the relationship Eq. (2.1) between the thermodynamic functions’ F(N) and Q(U) 
and the relation N(M) = N. In the case of finite systems the previous implicit relation is difficult to 
invert. However, when N is large we can use the decomposition of N(U) in a smooth part N(u) 
and a small component No”“(~) that fluctuates around the secular part, and we can perturbatively 
treat the previous implicit relation. The contribution of a given orbit to d”“’ is always of lower order 
in fi than d as can be checked for the various examples we are going to consider and by inspection 
of semiclassical trace formulae. However, since there are infinitely many of such contributions, we 
obtain d”“” and d to be of the same order when adding them up. (This must be the case since the 
quantum mechanical d(E) is a sum of 6 peaks.) Thus, we cannot use dosc/~ as a small expansion 
parameter. On the other hand, finite temperature provides an exponential cutoff in the length of the 
trajectories contributing to Do”” so that only a finite number of them must be taken into account. 

Therefore, II”“” is of lower order in fi than 0, and in the semiclassical regime it is possible to 
expand the free energy F with respect to the small parameter PC/~. The use of a temperature 
smoothed density of states Eq. (2.6a) closely follows the Balian and Bloch approach [54], where, 
due to the exponential proliferation of orbits and the impossibility of exchanging the infinite time and 
semiclassical limits, the semiclassical techniques based on trace formulae are considered meaningful 
only when applied to smoothed quantities. The decomposition of D(E) is depicted in Fig. 2, where 
we have taken fi(~ 2) to be energy independent, corresponding to the two-dimensional (potential 
free) case. 

6 In the following we will only write the N dependence of F and the p dependence of R, assuming always the T and 
H dependence of both functions. 
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Fig. 2. Schematic illustration of the separation of the density of states D(u) (solid line) into a smooth part D (dashed 
line) and an oscillating component. The total number of electrons N is indicated by the shaded area, and equal to the 
product of D and fi. 

For a perturbative treatment of the mentioned implicit relation we define a mean chemical potential 
fi by the condition of accommodating N electrons to the mean number of states 

N = N(p) = N(j). (2.16) 

Expanding this relation to first order in D““‘/fi, and employing that dN/dp = D, one has 

d/A f ,U - /I rv -( l/~(~))N”““(fi) . (2.17) 

The physical interpretation of dy is very clear from Fig. 2: The shaded area represents the number 
of electrons in the system and it is equal to the product fi x I(. 

Expanding the relationship (2.1) to second order in A,u, 

F(N) = (P + d,u)N + Q(j) - N(,ii)dp - D(,Wp2/2 , (2.18) 

using the decomposition of sZ(,ii) and N(i) into mean and oscillating parts and eliminating A,u 
(Eq. (2.17)) in the second-order term, one obtains the expansion of the free energy to second order 
in D”““/fi [35,36] 

F(N) N F” + AF”’ + AF”’ , (2.19) 

with 

F” = PN + @ji) , (2.20a) 

&“I’ = Q”““(jj) , (2.20b) 

AF”’ = (1/20(/i)) (W’“c(~))2 . (2.2Oc) 

Then AF(” and AF(” can be expressed in terms of the oscillating part of the density of states by 
means of Eqs. (2.15b) and (2.15~). The first two terms F” + AF(‘) yield the magnetic response 
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calculated in the GCE with an effective chemical potential j. The first “canonical correction” dF(” 
has a grand canonical form since it is expressed in terms of a temperature smoothed integral of the 
density of states (Eq. (2.7)) for a fixed chemical potential iii. 

It is convenient to use the expansion (2.19) in the calculation of the magnetic susceptibility 
of a system with a fixed number of particles because the leading fi contribution to N(p) has no 
magnetic field dependence, independent of the precise system under consideration. Therefore, at this 
level of approximation, keeping N constant in Eq. (2.2) when taking the derivative with respect to 
the magnetic field amounts to keep p constant. Since F (‘1 is field independent in a leading order 
semiclassical expansion the weak-field susceptibility of a given mesoscopic sample will be dominated 

by AF (‘) However, when considering ensembles of mesoscopic devices, with slightly different sizes . 
or electron fillings, AF(” (and its associated contribution to the susceptibility) averages to zero due 
to its oscillatory behavior independently of the order in fi up to which it is calculated. ’ Then we 
must consider the next order term AF”‘. 

As mentioned above, we will essentially work in the semiclassical regime (to leading order in fi) 
where F” is field independent. However, in the following section we will examine the next order 
fi correction to fi(ii) (and to F’), demonstrating that its field dependence gives rise to the standard 
Landau diamagnetism, independent of any confinement. 

3. Landau susceptibility 

In the previous section we showed that the various quantum mechanical (i.e. d(E), n(E), co(E)) 
and thermodynamic (i.e. D(U), N(p), Q(y)) properties of a mesoscopic system can be decomposed 
into smooth and fluctuating parts. In the semiclassical limit, where the Fermi wavelength is much 
smaller than the system size, each of these quantities allows an asymptotic expansion in powers of 
fi. For most of the purposes it is sufficient to consider only leading order terms while higher-order 
corrections must only be added if the former vanish for some reason. This is the case for the smooth 
part a(p) of the grand potential, which is the dominant term at any temperature, but is magnetic field 
independent to leading order in fi. The present section will be the only part of our work where higher 
rZ. corrections are considered. We will show that they give rise to the standard Landau susceptibility. 
Our derivation relies neither, on the quantum side, on the existence of Landau levels, nor, on the 
classical side, on boundary trajectories or the presence of circular cyclotronic orbits fitting into the 
confinement potential. This shows that the Landau susceptibility is a property of mesoscopic devices 
as well as infinite systems, being the dominant contribution at sufficiently high temperature. * 

We consider a d-dimensional (d = 2,3) system of electrons governed by the quantum Hamiltonian 

(3.1) 

where A is the vector potential generating the magnetic field H and V(q) is the potential which 
confines the electrons in some region of the space. This region can a priori have any dimension, 

‘In the following, we shall always calculate dF(‘) m a leading order fi approximation. Higher-order corrections to 
dF”’ may be of the same order as AF (*) but will average to zero under ensemble averaging. 

* Analog results have been independently obtained by Prado et al. [61]. The Wigner distribution function was previously 
used by Kubo [83] in the study of Landau diamagnetism. 
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and it can be smaller than the cyclotron radius. We will only assume in the following that V(q) is 
smooth on the scale of a Fermi wavelength, so that semiclassical asymptotic results can be used. 
In billiards the effect of hard boundaries on the susceptibility is negligible compared to the Landau 
bulk term [ 17, 181, and therefore the results obtained below apply there, too. 

There exist general techniques to compute the semiclassical expansion of the mean part of the 
density of states (or of its integrated versions Eqs. (2.3) and (2.4)) up to arbitrary order in h. The 
most complete approach, which allows one to take into account the effect of sharp boundaries, can 
be found in the work of Seeley [62]. However, assuming the smoothness of V(q) allows us to 
follow the standard approach introduced by Wigner in 1932 
the Wigner transform of an operator. As a starting point we 
level density (or heat Kernel), 

2(/I) = 
J’ 

X dE eeiEd(E) = g, Tr(e-“$ ) , 
0 

[63] which is based on the notion of 
consider the Laplace transform of the 

(3.2) 

where g, = 2 takes into account the spin degeneracy. In Appendix B we apply after a brief de- 
scription the technique to calculate the first two terms of the expansion of Z(;l) with respect to A. 
They yield under the inverse transformation the first two terms of the expansion of d(E) in powers 
of h. The oscillating part d”““(E) of d(E) is not included in this procedure since it is associated 
with exponentially small terms in Z(n), that is, Z(n) rv Z(1,) for 3, 21 0. This well known property 
can be easily seen from the integral treated in Appendix A by identifying /?I with R and using the 
exponential form of the distribution function in the classical limit of high temperatures (BP < 1). 

Noting X(q,p) the classical Hamiltonian corresponding to Eq. (3.1) the leading-order (Weyl) 
contribution to Z(n) is given by Eq. (B6), 

Z,(i) = (2i& . 
I 

dq dp exp W~GzA) , (3.3) 

and the inverse Laplace transform yields the familiar result 

dw(E) = d,(E) = & .I’dqdpd(E - x(q,p)) . (3.4) 

In the above integrals, the substitution 

P _P’ = p - (e/c)A (3.5) 

eliminates any field dependence. Therefore 

E 

J’ s 

E' 

ow(E) = c&(E) = - dE’ d,!?’ &(E”) , (3.6) 
0 0 

as well as the leading term n,(p) of the grand potential (obtained in the high-temperature limit 
of Eq. (2.6c)), are field independent. This is the reason for the absence of orbital magnetism in 
classical mechanics. To observe a field dependence, one must consider the first correcting term of 
Z(/.) which, as shown in Appendix B (Eq. (Bl l)), is given by 

2H2 
Z,(i,H) = -I?+ Z, +Z; . (3.7) 



20 K. Richter et al. /Physics Reports 276 (1996) l-83 

Here, pB = (efi>lG mc is the Bohr magneton, and ZF = Z,(H = 0) > is a field-independent term that 
we will drop from now on since it does not contribute to the susceptibility. 

The integrated functions n(E) and w(E) can be obtained from their Laplace transforms 

n(;“) = Z(3,)/j, ) w(k) = -Z(l)/2 . 

Then the first correction to the zero-temperature grand potential is 

(3.8) 

co,(E) = c&(E) = i&H2 dw(E) . (3.9) 

After convolution with the derivative of the Fermi function (Eq. (2.6~)) we obtain the first corrective 
term of the grand potential 

Q,(P) = G(P) = i&H2 &v(P) . (3.10) 

In the grand canonical ensemble, the above equation readily gives the leading contribution to the 
susceptibility 

(3.11) 

coming from the mean part of the grand potential. In Eq. (3.11) A is the confining volume (area for 
d = 2) of the electrons. Noting that D - w = dNw/dp, one recognizes the familiar result of Landau 
[ 11. For systems without potential (bulk, or billiard systems), it gives in the degenerate case (fi,~ $1) 
in two, respectively, three dimensions 

-GC -GC = gse2b 
X2d = 

-~ 
2471mc2 ’ X3d -24n2mc2 

In the nondegenerate limit the susceptibility is 

Pi iv ,GC = -3A kT 

B 

(3.12) 

(3.13) 

The temperature independence in the degenerate regime and the power-law decay in the non- 
degenerate limit cause the dominance of the Landau contribution at high temperatures since, as 
mentioned in the previous section (and demonstrated in Appendix A), the contributions from MC’) 
and dF(*) (Eqs. (2.20b) and (2.20~)) are exponentially damped by temperature. 

The Landau diamagnetism is usually derived for free electrons or for a quadratic confining potential 
[2,4]. We have provided here its generalization to any confining potential (including systems smaller 
than the cyclotron radius). 

For a system with fixed number N of electrons, defining a Weyl chemical potential pw by 

N = fiw(~w) (3.14) 

and following the same procedure as in Section 2.2 one can write 

F”‘(N) rv Fw + f&(pw) 9 (3.15) 

where both ,uw and 

Fw = PWN + fiw(~w) (3.16) 
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are field independent. Therefore, the smooth part of the free energy gives the same contribution than 
Eq. (3.11): We recover the Landau diamagnetic response in the canonical ensemble, too. 

At the end of this section we would like to comment on the case of free electrons in two dimen- 
sions. Since Eq. (1.6) represents an exact formula for the density of states, d(E) = (g,mA)/(27&*) 
can be interpreted as the exact mean density of states, and Psc(I?) = (g,mA)/(xfi*) Cz, (- 1 >,, x 
cos((2nnE)/(~w)) as the exact oscillating part. However, o(E) being obtained by integrating d(E) 
twice, has a mean value which, in addition to -d E2/2, contains the term (&H2/6)d yielding the 
Landau susceptibility. In the usual derivation, this term comes from the integration of d”““(E), more 
precisely from the boundary contribution at E = 0 (i.e. from levels too close to the ground state in 
order to properly separate the mean value from oscillating parts). One should be aware that G(E) 

cannot be defined by Eq. (3.6) as soon as nonleading terms are considered. For this reason some care 
was required for the definitions of the last section (see the discussion around Eqs. (2.10)-(2.15)). 

4. Systems integrable at arbitrary fields 

In the remainder of this work we will provide semiclassical approximations for the corrective 
free-energy terms dF(‘) and dFC2’ (see Eq. (2.19)) and their associated magnetic responses for 
systems that react differently under the influence of an applied field. We will be mainly working 
in the weak-field regime (except in Section 7), where the magnetic field acts as a perturbation 
almost without altering the classical dynamics, In this regime the nature of the zero-field dynamics 

(i.e. integrable versus chaotic, or more precisely, the organization of periodic orbits in phase space) 
becomes the dominant factor determining the behavior and magnitude of the magnetic susceptibility. 
For systems which are integrable at zero field the generic situation is that the magnetic field breaks 
the integrability (as any perturbation will do). It is necessary in that case to develop semiclassical 
methods allowing to deal with nearly, but not exactly, integrable systems. This question will be 
addressed in Sections 5 and 6. There exist however “non generic” systems where the classical 
dynamics remains integrable in the presence of the magnetic field. Due to their rotational symmetry, 
circles and rings (which are the geometries used in many experiments) fall into this category. In 
these cases (and similarly for the Bohm-Aharonov flux [39]) the Berry-Tabor semiclassical trace 
formula [52,53] provides the appropriate path to calculate semiclassically the oscillating part of the 
density of states do”“, including its field dependence. Thus, dF(” and dF’*‘, and their respective 
contributions to the susceptibility, can be deduced. This is the program we perform in this section, 
treating specifically the example of circular and ring billiards. 

The magnetic susceptibility of the circular billiard can be calculated from its exact quantum 
mechanical solution in terms of Bessel functions [ 10,13,30]. The magnetic response of long cylinders 
[32,64] and narrow rings [32] (the two nontrivial generalizations of one-dimensional rings) can be 
calculated by neglecting the curvature of the circle and solving the Schrodinger equation for a 
rectangle with periodic boundary conditions. Our semiclassical derivation provides an intuitive and 
unifying approach to the magnetic response of circular billiards and rings of any thickness (for 
individual systems as well as ensembles) and establishes the range of validity of previous studies. 
Moreover, we present it for completeness since it provides a pedagogical introduction to the more 
complicated (“generic”) cases of the following sections. 
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4.1. Oscillating density of states jbu weak field 

By definition, a classical Hamiltonian X(p,g) is integrable if there exist as many constants of 
motion in involution as degrees of freedom. For bounded systems, this implies (see e.g. [65]) that 
all trajectories are trapped on torus-like manifolds (invariant tori), each of which can be labeled by 
the action integrals 

I, = & .i pdq (i = 1321, 
% , 

(4.1) 

taken along two independent paths ‘6, and gz on the torus. (We are dealing with two degrees of 
freedom.) It is moreover possible to perform a canonical transformation from the original @,q) 

variables to the action-angle variables (I, 4) where Z = (I,,I,) and 4 = (cp,, q2) with cpl, q2 in 
[0,2rc]. Because both, I, and Zz, are constants of motion, the Hamiltonian .~?(1,, I,) expressed in 
action-angle variables depends only on the actions. 

For a given torus we note vi = 8%/S, (i = 1,2) the angular frequencies, and a - v,/v~ the 
rotation number. A torus is said to be “resonant” when its rotation number is rational (a = u,,& 
where uI and u2 are coprime integers). In that case all the orbits on the torus are periodic, and 
the torus itself constitutes a one-parameter family of periodic orbits, each member of the family 
having the same period and action. The families of periodic orbits can be labeled by the two 
integers (M,,M2) = (vu,, ~24) where (ur, u?) specifies the primitive orbits and Y is the number of 
repetitions. M, (i = 1,2) is thus the winding number of CJI; before the orbits close themselves. The 
pair M = (MI ,M2) has been coined the “topology” of the orbits by Berry and Tabor. 

For two-dimensional systems, the Berry-Tabor formula can be cast in the form [52,53] 

d”“(E) = c d,w.i:(E) > 
Mf(O.O).i. 

with 

dM,cW = 
9s TM SM I: 

&/2~3’2 2 ,g,,cl;“,,“2 ‘OS y - liM; +?f 

(4.2) 

(4.3) 

The sum in Eq. (4.2) runs over all families of closed orbits at energy E, labeled by their topology 
M (in the first quadrant, that is MI and M2 are positive integers), and, except for self-retracing 
orbits, by an additional index E specifying tori related to each other through time-reversal symmetry 
and therefore having the same topology. g, represents the spin degeneracy factor, while SM,,: and 
rM are, respectively, the action integral and the period along the periodic trajectories of the family 
M. fi,,,, is the Maslov index which counts the number of caustics of the invariant torus encountered 
by the trajectories. For billiard systems with Dirichlet boundary conditions, we will also take into 
account in fM the phase rc acquired at each bounce of the trajectory on the hard walls (and still 
refer to GM as the Maslov index, although slightly improperly). The energy surface E in action space 
whose implicit form is S(Z,, I,) = E, is explicitly defined by the function I2 = gE(ZI). We note 
ZM = (Z;“,Z,“) the action variables of the torus where the periodic orbits of topology M live. They 
are determined by the resonant-torus condition 

x = - dg,(ll )ldl, I,,+ = Ml/442 > (4.4) 
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where the first equality arises from the differentiation of X(1,, gE(/i )) = E with respect to I,. Finally, 
the last contribution to the phase is given by ^J = sgn(gg(Z,“)). 

The (first) derivation of the Berry-Tabor trace formula [52] follows very similar lines as the treat- 
ment of the density of states performed in the introduction for the macroscopic Landau susceptibility. 
The EBK (Einstein, Brillouin, Keller) quantization condition is used instead of the exact form (1.5) 
of the Landau levels, followed by the application of the Poisson summation rule. While in the latter 
case this procedure leads to the exact sum of Eq. ( 1.6), the Berry-Tabor formula is obtained (sim- 
ilar to the treatment of de Haas-van Alphen oscillations for a nonspherical Fermi surface) after a 
stationary-phase approximation valid in the semiclassical limit where S 9 fi (with a stationary-phase 
condition according to Eq. (4.4)). 

Given a two-dimensional electron system whose classical Hamiltonian 

(4.5) 

remains integrable for finite values of the transverse field Hz^ = V x A, the magnetic response can 
be obtained, in principle, from the calculation of the various quantities involved in the Berry-Tabor 
formula at finite fields. However, for weak fields, one can use the fact that the field dependence 
of each contribution dM to the oscillating part of the density of states is essentially due to the 
modification of the classical action, since this latter is multiplied by the large factor l/h, while 
the field dependence of the periods and the curvatures of the energy manifold can be neglected. 
Therefore, in this regime we will use for r,,., and gE the values $,, and gi at zero field and consider 

the first order correction 6.S to the unperturbed action SIG. A general result in classical mechanics 

[56,67] states that the change (at constant energy) in the action integral along a closed orbit under 
the effect of a parameter i, of the Hamiltonian is given by 

(4.6) 

where the integral is taken along the unperturbed trajectory. Therefore, if the Hamiltonian has the 
form of Eq. (4.5), classical perturbation theory yields for small magnetic fields H, 

where 4; is the directed area enclosed by the unperturbed orbit. This expansion is valid for magnetic 
fields low enough, or energies high enough, such that the cyclotron radius of the electrons is much 
larger than the typical size of the structure (rC = mcv/eH +>a, which is e.g. the case for electrons at 
the Fermi energy in the experiments of Refs. [25, 261). In this case we neglect the change in the 
classical dynamics and consider the effect of the applied field only through the change of the action 
integral. 

For a generic integrable system there is no reason, a priori, that all the orbits of a given family M 
should enclose the same area. However, as pointed out above, a characteristic feature of integrable 
systems is that the action is a constant for all the periodic orbits of a given resonant torus. Therefore, 
the fact that a system remains integrable under the effect of a constant magnetic field implies (because 
of Eq. (4.7)) that all the orbits of a family enclose the same absolute area s$“,~. Moreover, since 
the system is time-reversal invariant at zero field, each closed orbit (M, E) enclosing an area dM,[: is 
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associated with a time-reversed partner having exactly the same characteristics except for an opposite 
enclosed area (if the orbit is its own time reversal, -4~ = 0). Grouping time-reversal trajectories in 
Eq. (4.2) at H = 0 we have 

for self-retracing orbits, 

di,(E) = c Q%,,,(E) = ‘%t,,,(E) f or non-self-retracing orbits. 
I.=* I 

(4.8) 

For weak fields the contribution of self-retracing orbits is unaltered and therefore they do not con- 
tribute to the magnetic response. For the non self-retracing ones we have 

~M(E,H) = c dM.i.(E,ff) = &,(-Wos c&M = I.Q&,,I . 
r:=* I 

(4.9) 

This is the basic relation to be used in the examples that follow. 

4.2. Circular billiards 

We now apply the preceding considerations to a two-dimensional gas of electrons moving in a cir- 
cular billiard of radius a (where the potential V(q) is zero in the region 1 q 1 < a and infinite outside 
it). Thus we deal with vanishing wavefunctions at the boundary (Dirichlet boundary condition). 

In billiards without magnetic field the magnitude p of the momentum is conserved, and it is 
convenient to introduce the wave number, 

k = p/h = ~/2mEl/i (4.10) 

since at H = 0 the time of flight and the action integral of a given trajectory can be simply expressed 
in terms of its length L as 

to = (mlp)L , So/h = kL . (4.11) 

Following Keller and Rubinow [66], we calculate the action integrals I = (Z1,Z2) by using the 
independent paths %I and gZ displayed in Fig. 17(a). The function gE is given by (see [66] and 
Appendix C) 

g&, ) = ; 
{ 

[(pLq2 - r;] ‘:* - II arccos J!- 
( 11 pa ’ 

(4.12) 

where 1, is interpreted as the angular momentum and bounded by 0 5 I, < pa. 

The periodic orbits of the circular billiard are labeled by the topology M = (M, , A&), where M, is 
the number of turns around the circle until coming to the initial point after n/r, bounces. (Obviously 
M2 2 2M, .) Elementary geometry yields for the length of the topology-M trajectories 

LM = 2M2a sin 6 , (4.13) 

where 6 = rc~V,/A4~. The resonant-torus condition, Eq. (4.4), allows us to obtain I” as 

I;” = pacosb, (4.14a) 

Z2M = (pa/n){sin6 - 6 cosb} . (4.14b) 
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The Maslov index of the topology-M trajectories is e,,,, = 3M2 (MI bounces, each of them giving a 
dephasing of 71, and M> encounters with the caustic per period). We therefore have all the ingredients 
necessary to calculate the oscillating part of the density of states at zero field: For the non-self- 
retracing trajectories we obtain 

&f(E) = 
1 2 %mLF 

71 n* k1.2M2 
cos kL,,, 

2 

(4.15) 

The contribution of a self-retracing orbit is just one half of the contribution (4.15). Its field dependent 
counterpart is obtained from Eq. (4.9) with the area enclosed by the periodic orbits given by 

J&J~ = iM2a2 sin 26 . (4.16) 

The bouncing-ball trajectories M2 = 2M, (with zero angular momentum) are self-retracing and have 
no enclosed area; thus they do not contribute to the low field susceptibility. 

Using Eqs. (2.20b) and (2.15c), and noting kF = k(j) = (2/a) (N(,ii)/gs)‘!’ the Fermi wave 
vector, we obtain the contribution to the magnetic susceptibility associated with dF(“: 

Since we are working with billiards, the temperature factor RT is given in terms of the trajectory 
length Lhf by Eq. (A5) and the characteristic cutoff length L, = &/i’/rc. For Mz $M, we have 
LM r” 27cM,a and ~2,~ = nM,a*, independent of M2. Performing the summation over the index M2 
(for fixed value of Ml ) by taking the length and area dependent terms outside the sum we are left 
with a rapidly convergent series (whose general term is (- 1 )“‘/Mi). We can therefore truncate the 
series after the first few terms. In Fig. 3 the sum (4.17) is evaluated numerically at zero field (solid 
line) for a cutoff length L, = 6a which selects only the first (M, = 1) harmonic, and the beating 
between the first few periodic orbits is obtained as a function of wave vector kF. With only the 
first two primitive orbits (M2 = 3 and 4, dashed line) we give a good account of xc’) for most of 
the k-interval. Taking the first four primitive orbits suffices to reproduce the whole sum. The short 
period in kF corresponds approximately to the circle perimeter L = 2na. Going to lower temperatures 
gives an overall increase of the susceptibility but does not modify the structure of the first harmonic 
contribution since the length of the whispering-gallery trajectories is bounded by L. However, for 
larger values of L, higher harmonics, namely up to MI of the order of L,/27m, will be observed. 
The predominance of the first few trajectories also appears in the beating as a function of magnetic 
field (not shown) that results from the evaluation of (4.17) at finite fields. 

From Fig. 3 we see that the susceptibility of a circular billiard oscillates as a function of the 
number of electrons (or kF) taking paramagnetic and diamagnetic values. Its overall magnitude is 
much larger than the two-dimensional Landau susceptibility and grows as (kFa)3,2. We will later show 
(Section 6) that this finite-size increase with respect to the bulk value is distinctive of systems that 
are integrable at zero field. In order to characterize the typical value of the magnetic susceptibility 
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Fig. 3. Magnetic susceptibility at zero field for a circular billiard of radius a as a function of &a (solid line) from 

Eq. (4.17) and as obtained by keeping only the first two terms of the sum (dashed line). The typical susceptibility from 
Eq. (4.18) is represented by the dotted horizontal line. 

we define 

(4.18) 

where, as in Section 2, the average is over a kra interval classically negligible (d(kra) 4kra) but 
quantum mechanically large (A(&) B 27-c), so that off-diagonal terms cos(krLM) cos(RrLM, ) with 
M # M’ vanish under averaging. A remark is in order here because at fixed MI, LM goes to 27cM,a 
as M2 goes to co, and (L CM, ,MZj - LCM,,,M; ,) can be made arbitrarily small by increasing M2 and Mi. 
Therefore, for any interval of /+a over which the average is taken, some nondiagonal terms should 
remain unaffected. Nevertheless, because of the rapid decay of the contribution with I&, these non- 
diagonal terms can be neglected in practice for the experimentally relevant temperatures. The typical 
zero-field susceptibility of the circular billiard is then given by 

;c’~‘(H = 0) 

XL 

(4.19) 

Numerical evaluation of the first harmonic (M, = 1) from (4.18) on the kra interval of Fig. 3 with 
L, = 6a gives 2.20(kr~)~i~~, (dotted horizontal line), while Eq. (4.19) restricted to M2 5 6 yields 
2.16(kr~)~‘~~~ illustrating the smallness of the off-diagonal and large-M2 terms. 

For an ensemble made of circular billiards with a dispersion in size or in the number of electrons 
such that d(kru) > 27c, the term x(I) yields a vanishing contribution to the average susceptibility. 
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In such a case it is necessary to go to the next-order free-energy term dF(*,, whose associated 
contribution xc2, yields the average susceptibility by means of Eqs. (2.2) and (2.20~). For the same 
reason as above one can show that only diagonal terms of (Nosc)2 survive the kFa average, in spite 
of the degeneracy of the length of the closed orbits as M2 goes to cx). One therefore has 

1 /c (A.t.tla*)*(L,+tla) 
-XI 

%L 
tk,a c 

,M, ..21: > 2M M,4 

cos (scd,,,) R;(LM) . (4.20) 

Again, the terms generally decay rapidly with M2 (as l/M;), and for a cutoff length L, selecting 
only the terms with M, = 1 the total amplitude at zero field (5.2kFa) can be obtained from the first 
few lowest terms. The low field susceptibility of an ensemble of circular billiards is paramagnetic 
and increases linearly with kFa. As for the II”’ contribution, we will show in the sequel that this 
behavior does not necessitate the integrability at finite fields, but rests only upon the integrability at 

zero field. 
Up to now there have not been measurements of the magnetic response of electrons in circular 

billiards (individual or ensembles). Our typical (Eq. (4.19)) or average (Eq. (4.20)) susceptibilities 
exhibit a large enhancement with respect to the bulk values (by powers of kFa). Thus it should be 
possible to detect experimentally these finite-size effects. 

4.3. Rings 

The magnetic response of small rings can be calculated along the same lines as in the case of 
the circles. The ring geometry deserves special interest since it is the preferred configuration for 
persistent current measurements. In a ring geometry at H =0 we have two types of periodic orbits: 
those which do not touch the inner disk (type-I), and those which do hit it (type-II). (See Fig. 17 of 
Appendix C; we note by a and b respectively the outer and inner radius of the ring.) The function 
~~(1, ) has two branches corresponding to the interval to which the angular momentum I, belongs. 
For pb < I, < pa, (type-I trajectories) gE has the same form (4.12) as for the circle, while for 
0 < I, < pb, (type-II trajectories) we show in Appendix C that 

gEtI,) = i { [(pa)2 - I:] “2 - [(pb)* - I:] “* - 1 , [arccos ($) - arccos ($)I} . (4.21) 

The type-l trajectories are labeled in the same way as for the circle by the topology M = (M,, A&) 
representing the number of turns M, around the inner circle until returning to the initial point after 
M2 bounces on the outer circle. We therefore obtain the resonant-tori condition Eqs. (4.2) and the 
same contribution (4.15) to the oscillating part of the density of states as in the case of the circle. 
The only difference is that in the Berry-Tabor trace formula (Eq. (4.2)) the sum corresponding 
to type-1 trajectories is now restricted to M2 2 &?,(A4,) = Int[M,n/arccosr]. We note by Int the 
integer-part function and r = b/a. We stress the fact that the minimum value of M2 is itself a 
function of M, The previous restriction can also be expressed as cos 6 > r, with 6 = xM,/&. 
Type-II trajectories can be labeled by the topology M = (M,, M2), where M, is the number of turns 
around the inner circle in coming to the initial point after M2 bounces on the outer circle. We have 
the same restriction M2 > A2(A4, ) as for type-1 trajectories, and we can use eM = 0 since there are 
2M2 bounces with the hard walls and no encounters with the caustic. From (4.21) we obtain the 
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resonant-torus condition 

I;” = pb 
sin 6 

Jl +r2-2rcos6’ 

I”=?f{J 1 +v2-22rcos6- 
r6 sin 6 

2 
n Jl +r2 - 2rcos6 . 

(4.22a) 

(4.22b) 

The H = 0 contribution to the oscillating part of the density of states from non-self-retracing 
type-II trajectories with topology M is given by 

Jo (E) = 4 g,a2m [(l - rcos6)(rcos6 - r2)] “2 
M v ( > ki,M “2 

(4.23) 

while its length is 

LM = 2M2a Jl +v2 - 2rcos6. (4.24) 

The small field dependence follows from Eq. (4.9) using the enclosed area 

dM = M2ab sin 6 . (4.25) 

In the case of annular geometries it is customary to characterize the magnetic moment J&’ of the 
ring by the persistent current 

c i3F 
I = -j Ahi = -c G T.N . ( > (4.26) 

In order to pass from the applied magnetic field H to the flux @ we use the area A of the outer circle 
(@ = AH, A = na2) as defining area. (For thin rings, all periodic orbits with the same repetition 
number M, enclose approximately the same flux MI@.) Applying Eqs. (2.15c)-(2.20), and calling 
Z. = evF/2na the typical current of one-dimensional electrons at the Fermi energy, the persistent 
current of a ring billiard can be expressed as the sum of two contributions corresponding to both 
types of trajectories: 

I”’ 

- = g,(kFa)li2 
10 

+4i: II sin ( $?tiM) &GM)} , (4.27) 

(4.28a) 
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Fig. 4. First harmonic of the persistent current in a ring with r = b/u = 0.9 as a function of kFa (solid line) for a cutoff 
length L, = 6a according to Eqs. (4.27)-(4.28) together with the contribution coming from type-1 trajectories (dashed 
line). The typical persistent current from Eq. (4.29) is represented by the dotted horizontal line. 

2 <Jkfla2) .a$‘,, = 8 - 
’ J n (_IM/a)5!2 

(4.28b) 

(‘) In Fig. 4 we present the first harmonic I, of the persistent current for a thin ring and a cutoff 
length L, = 6a (solid line). (I.e., we are considering the winding number M, = 1.) The contribution 
of type-l trajectories (dashed line) is similar as in the case of the circle: a rapidly convergent 
sum showing as a function of kF the beating between the first two trajectories (6, and A?2 + 1). 
On the other hand, Eq. (4.28b) shows that the trajectories with low values of M2 (i.e. M2 N 
12;/,) contributing to XL:,, have neglig’b 1 le weight due to the small stability prefactor caused by the 
defocusing effect exerted by the inner disk (cos 6 N r). The sum is dominated by trajectories with 
M2 >h;l, and therefore we loose the previous beating structure in the total I,(‘). The short period in 
kF still corresponds to the circle perimeter L. 

As in the previous subsection, we characterize the typical value of the magnetic response by 
averaging (P’))’ over a kra-interval containing many oscillations, but yet negligible on the classical 
scale. 

J(t) = [m ]‘/2 . (4.29) 

In the same way as for the circular billiard, one can in practice consider that, despite the degeneracy 
in the length of type-1 trajectories for large M2, only diagonal terms (in both index M and trajectory- 
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Fig. 5. First harmonic of the typical persistent current in rings of different thickness (r = b,/a) for various cutoff lengths 
L, = 30~ (circles), 6a (diamonds) and 3a (triangles) according to Eq. (4.29). Filled symbols correspond to the total 
persistent current and lay approximately on a horizontal line for each L,, consistent with the asymptotic behavior of 
Eq. (4.39) indicated by arrows on the extreme right of the plot. Unfilled symbols represent the contributions from both 
types of trajectories and are joined by dotted lines (type-I) and dashed lines (type-II). This guide to the eye exhibits the 
approximate behavior of Eqs. (4.38) and shows how the r characteristic of the switching from one type of trajectories to 
the other increases with temperature. 

type) survive the averaging for large enough d(kra). Therefore 

(4.30) 

where (4G,,j2 and (.fz,,,)’ are obtained from Eqs. (4.28) simply by replacing the average of 

cos2(kFLM + n/4 - 3h&n/2) and sin2(krL,u + 7~14) by i. 
In Fig. 5 we present the typical persistent current and its two contributions for various ratios 

Y = b/a and cutoff lengths L, for the first harmonic (MI = 1). The contribution .Yj$,, of type-1 
trajectories dominates for small r (where the inner circle is not important and we recover the 
magnetic response of the circular billiard) while type-II trajectories take over for narrow rings. The 
cross-over r depends on temperature through L, due to the different dependence of the trajectory 
length on 194 (Eqs. (4.13) and (4.24)) for both types of trajectories. 

As in the case of x (‘) for the circular billiard, I(‘) gives a vanishing contribution to the persistent 
current of an ensemble of rings with different sizes or electron fillings as soon as the dispersion in 
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/+a is of the order of 2~. We therefore need to go to the term dF 1’) in the free-energy expansion, 

which is obtained (see Eq. (2.20~)) from 

where N,w, i(b) and N,v. ii(,L) are given in terms of the respective contributions to the field-dependent 
density of states through Eq. (2.15b). For an ensemble with a large dispersion of sizes only diagonal 
terms survive the average and we have (with B = g,nzA(l - r2)/(2nh2)) 

J(2) 
-= 

IO 
CL c 

M,.M:>ti2 

{c sin (z&i) R:(L,) +x sin ( $$dM) Rl(iw)} , (4.32) 

(4.33a) 

(2) _ 32 (-h/+ (1 - r cos S)(r cos 6 - v2) 
4 M,II - ; _ 

( > 

3 

LMb 
1 - r”2 

(4.33b) 

The kr dependence of the average persistent current is linear (through I,,), similarly to the case 
of the average susceptibility of an ensemble of circular billiards. 

4.3.1. Thin rings 
In the case of thin rings (a _N b, Y N 1) further approximations can be performed on Eqs. (4.28) 

and (4.33) using (1 - r) as a small parameter, giving more compact and meaningful expressions 
for the typical and average persistent currents. Since in addition this is the configuration used in 

;he experiment of Ref. [26], we shall consider more closely this limiting case. First, we note that 

6 = arccos r N d-4 1. Thus 

h;r, = Int [nM,/rT] N (7t/Jz) (Mi/G)@M, , 

and for M2 > d2, the area and length of contributing orbits can be approximated by 

(4.34) 

d&,%&,?M,A=M,na2; LM = M,L = M,2rca. (4.35) 

For the length of type-II trajectories we have i: M N M,L for M2 %k2, and EM N 2M2(a - b) when 

M2 916~. All trajectories with winding number Ml enclose approximately the same flux M, @, and 
the field-dependent terms in Eq. (4.27) may be replaced by sin (2r~M,@/@~). There is therefore no 
difference between the case that we study (where a uniform magnetic field H is applied) and the 
ideal case of a flux line Q, through the inner circle of the ring. The length-dependent factors RG 
can also be taken outside the sum over M2 since the main contribution of type-II trajectories comes 
from M2 N r~Mi/[5’~‘( 1 - Y)~.‘~]. Even if these Ml’s are much larger than &, their associated 2, 
are still of the order of M,L to leading order in 1 - r. 

Turning now to the typical and ensemble average currents, it should be stressed that for narrow 
rings it is necessary to go to fairly large energies before an average on a scale being quantum 
mechanically large but classically small is possible. Indeed, one has for both types of trajectories 
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k&ti_+, - 427 1 = k&+, - i/c,.) 2 (4\/2/3)~1 ‘2/1-r, where .I = kF(a - b)/n is the number of 
transverse ockpied channels. Therefore, ., I“ should be much larger than (1 - r)-’ ” if one wants to 
assume d(k,a) sufficiently large to average out all nondiagonal terms without violating the condition 
d(kFa)<kFa. Supposing the previous condition is met, and introducing the typical amplitudes ~$1.~ 

and f’&’ ,, of each harmonic, we write 

T = CJs [g { (Bl:1/.1)~ + (AC~,ll)2} sin2 (2nM,t) R$(M,L)] ‘v2 . 

Since n;/, $1 we can convert the previous sums into integrals and obtain 

( > y,!&, 2 _N 3(n; )’ A’ (1 - A(1 - 7)‘:‘) . 
I 

(4.36) 

(4.37a) 

(4.37b) 

(4.38a) 

(4.38b) 

In leading order in 1 - r the persistent current is dominated by type-II trajectories (independent 

of the temperature) and given by 

10) 
-= 

IO 
-&pm@ [ ,~, MF sin2 (2nM,z) nlj,L)] “I , (4.39) 

consistent with the result of Ref. [32]. For the next-order term the contribution from type-1 trajectories 
is cancelled by that of type-II resulting in the relatively flat character of the curves for Z(I) in Fig. 5. 

For the current of an ensemble of thin rings, the calculations are similar to those of Eqs. (4.38), 
and in leading order in 1 - r we obtain: 

(4.40) 

(4.41a) 

(4.41b) 

Type-II trajectories once again dominate the average magnetic response of thin rings and the am- 

plitude for the first harmonic is I,“/&, Y (2g&r2) sin (47c@/@+,)R~(L), independently of the number 
of transverse channels J’. The average persistent current shows the halving of the flux period with 
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respect to I (‘I characteristic for ensemble results (as found in the disordered case and consistently 
with the results for averages in the following sections). 

4.3.2. Comparison w$h experiment 

Persistent currents have been measured by Mailly et al. [26] in a thin semiconductor ring (with 
effective outer and inner radii a = 1.43 urn and b = 1.27 urn) in the ballistic and phase-coherent 
regime (I = 11 ym and LQ = 25 pm). The Fermi velocity is L’ F = 2.6 x lo7 cm/s and therefore 
the number of occupied channels is ._ 1’ Y 4. The quoted temperature of T = 15 mK makes the 
temperature factor irrelevant for the first harmonic (L, r” 30a, RT(L) Y 1). The magnetic response 
exhibits an he/e flux periodicity and changes from diamagnetic to paramagnetic by changing the 
microscopic configuration, consistently with Eqs. (4.27)-(4.28). Unfortunately, the sensitivity is not 
high enough in order to test the signal averaging with these microscopic changes. The typical 
persistent current was found to be 4nA, while Eq. (4.39) and Ref. [32] would yield 7 nA. The 
difference between the theoretical and measured values is not significant given the experimental 
uncertainties as discussed in Refs. [26,30]. Moreover, as we stressed above, a very large kFa interval 
is needed for the average of (J(‘))2 in order to recover I”‘; otherwise we expect large statistical 
fluctuations. As in the case of the susceptibility of squares that we analyze in the next section, residual 
disorder (reducing the magnetic response without altering the physical picture) and interactions may 
be necessary in order to attempt a detailed comparison with the experiment. Clearly, new experiments 
on individual rings of various thickness and on ensembles of ballistic rings would be helpful in order 
to test the ideas of the present section. 

5. Simple regular geometries: the square 

The circular and annular billiards studied in Section 4 have the remarkable property that, due to 
their rotational symmetry, they remain integrable under the application of a magnetic field. However, 
for a generic integrable system (a regular geometry) any perturbation breaks the integrability of the 
dynamics. Moreover, the periodic orbits which are playing the central role in the semiclassical trace 
formulas are most strongly affected by the perturbation. Indeed, the Poincare-Birkhoff theorem [65] 
states that as soon as the magnetic field is turned on, all resonant tori (i.e. all families of periodic 
orbits) are instantaneously broken, leaving only two isolated periodic orbits (one stable and one 
unstable). It is therefore no longer possible to use the Berry-Tabor semiclassical trace formula to 
calculate the oscillating part of the density of states for finite field since it is based on a sum over 
resonant tori, which do not exist any further. One has therefore to devise a semiclassical technique 
allowing to calculate d”“‘(E) for nearly, but not completely, integrable systems. 

To achieve this, it is necessary to go back to the basic equations from which the standard semi- 
classical trace formulae of Gutzwiller [51], Balian-Bloch [54] and Berry-Tabor [53] are derived. The 
density of states d(E), Eq. (1.4), is related to the trace of the energy-dependent Green function 

G(q, 4’; E) by 

d(E) = -g Im 9(E) , W3 = / dq G(q, q; El 3 
IL J 

(5.1) 

where again the factor g, = 2 comes from the spin degeneracy. G(q, q’; E) has a singu_larity (log- 
arithmic in two dimensions) when Y -+ r’ which just gives the smooth (Weyl) part d(E) of the 
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density of states in a leading order semiclassical expansion. However, in order to consider only the 

oscillating part of d(E) one can use the semiclassical approximation of the Green function [21] 

(5.2) 

where the sum runs over all classical trajectories t joining q and q’ at energy E. S, is the action along 
the trajectory t, D, a determinant involving second derivatives of the action (the general expression 
of which is given in Appendix D) and vt is the Maslov index of the trajectory, i.e. the number 
of focal points encountered when traveling from q to q’. As in Section 4, we shall also take into 
account in qt the phase x acquired at each reflection at the wall of a billiard with Dirichlet boundary 
conditions. 

By taking the trace (5.1) the sum in Eq. (5.2) becomes a sum over all orbits closed in configuration 
(i.e. q) space, to which we will refer in the following as recurrent orbits. The standard route to 
obtain d”“’ is to evaluate this integral by stationary-phase approximation, This selects the trajectories 
which are not only closed in configuration space (Y’=v), but also closed in phase space (p’=p), i.e. 
periodic orbits. When these latter are (well) isolated the Gutzwiller Trace Formula [51] is obtained. 
For integrable systems, all recurrent orbits are in fact periodic since the action variables are constants 
of motion. 

Periodic orbits appear in continuous families associated with resonant tori. All orbits of a family 
have the same action and period, and one can calculate the density of states using the Berry-Tabor 
formula as described in the previous section. For systems such as the square billiard, the physical 
effect which generates the susceptibility comes along with the breaking of the rational tori, so that 
just ignoring this, i.e. using the Berry-Tabor Formula, is certainly inadequate. On the other hand, 
for H + 0 the remaining orbits are not sufficiently well isolated to apply the Gutzwiller Trace 
Formula. Therefore, as stated before, we need a uniform treatment of the perturbing field, in which 
not only the orbits being closed in phase space are taken in account, but also the orbits closed in 
configuration space which can be traced back to a periodic orbit when H + 0. 

In this section we show how this can be performed in the particular case of a square billiard. 
Because of the simplicity of its geometry, the integrals involved in the trace Eq. (5.1) can be 
performed exactly for weak magnetic fields. Moreover, the square geometry deserves special interest 
since it was the first microstructure experimentally realized to measure the magnetic response in the 
ballistic regime. We present here a semiclassical approach addressing the physical explanation of the 
experimental findings of Ref. [25], which have pointed the way for the ongoing research. In order to 
obtain semiclassical expressions for the susceptibility of individual and ensembles of squares we will 
proceed as outlined in Section 2: We will calculate the density of states and use the decomposition 
of the susceptibility according to Eq. (2.19) into contributions corresponding to dF(‘) and dFC2). 
In Section 6 we present the theory for a generic integrable system perturbed by a magnetic field, 
generalizing the results of this section. 

5.1. Oscillating density of’ states for weak field 

To start with, we consider a square billiard (of side a) in the absence of a field. Each family of 
periodic orbits can be labeled by the topology M = (M,,M) where M, and MY are the number of 
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bounces occurring on the bottom and left side of the billiard (see Fig. 6). The length of the periodic 
orbits for all members of a family is 

(5.3) 

The unperturbed action along the trajectory is, as for any billiard system, Sh/fi = kL,,,, where k is 
the wave number. The Maslov indices are VM = 4(A4, + M,), and we will omit them from now on 
since they only yield a dephasing of a multiple of 2n. Finally the unperturbed determinant reduces 
to 

D,M = m/JhkL, . (5.4) 

One way to obtain this result is to use the method of images (see Fig. 7) and express the exact 
Green function G(q,q’; E) in terms of the free Green function G’(q,q’;E) as [54, 511 

W&Z) = G’(q,q’;W + x@“(q,,q’), 
Yl 

(5.5) 

where the qi represent all the mirror images of q by any combination of symmetry across a side 
of the square, and ci = +l or -1 depending on whether one needs an even or odd number of 
symmetries to map q on qi. G’(q, q’; E) gives the above-mentioned logarithmic singularity of G 
when q’ + q, but the long-range asymptotic behavior of the two-dimensional free Green function 

G’(q,,q’) E 1” 
exp(ik 14’ - qi I ) 

&his d_ 
(5.6) 

can be used for all other terms (images). 
For sufficiently weak magnetic fields, one may follow the same approach as in the previous section, 

keeping in Eq. (5.2) the zeroth-order approximation for the prefactor DM, and using the first-order 
correction 6s to the action which, as expressed by Eq. (4.7), is proportional to the area enclosed by 
the unperturbed trajectory. Here however, as is the generic case (and contrary to circular or annular 
geometries) the area enclosed by an orbit varies within a family. 

Let us consider the contribution to the density of states of the family of recurrent trajectories which 
for H + 0 tends to the family of shortest periodic orbits with nonzero enclosed area, that plays a 
crucial role in determining the magnetic response, as already recognized in Ref. [25]. For H = 0, 
this family consists in the set of orbits which, say, start with an angle of 45” with respect to the 
boundary on the bottom side of the billiard at a distance x0 (0 5 x0 I a) from its left comer, bounce 
once on each side of the square before returning to their initial position (family M = ( 1, 1 ), see 
Fig. 6(a)). It is convenient to use as configuration space coordinates x0 which labels the trajectory, 
the distance s along the trajectory, and the index E = %l which specifies the direction in which the 
trajectory is traversed. In this way, each point q is counted four times corresponding to the four 
sheets of the invariant torus. The enclosed area .dJ,,(xo,s) obviously does not depend on s and is 
given by 

&,:(x0)=& 2x0 (a-x0). (5.7) 

Periodic orbits are those paths for which the action is extremal (VS = p’ - p = 0). Therefore 
Eqs. (4.7) and (5.7) illustrate the contents of the Poincare-Birkhoff theorem, that for any nonzero 
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Fig. 6. (a) Trajectory from the family (I,]) of the square billiard. The abscissa x0 of the intersection of the trajectory 
with the lower side of the square, together with the label s = iI precising the sense of the motion, label the trajectories 
inside the family. (b) Trajectory from the family (2,l) of the square billiard, illustrating the flux cancelation occurring 

for other periodic trajectories than those in the (],I) family (or their repetitions). 

a 

a 

Fig. 7. The method of images: The Green function G(q,q’) is constructed from the free Green function G” by placing a 
source point at each mirror image q, of the actual source q. To each of the resulting contribution G’(q,,q’) is associated 
a classical trajectory (solid line). This latter is obtained from the straight line joining ql to q’ (dash line) by mapping all 
its intersected images back onto the original billiard. 
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field only the two trajectories corresponding to x0 = a/2 remain periodic (one stable, one unstable 
according to the two possible directions of traversal). The contribution of the family (I,1 ) to d”“‘(E) 
is d,,(E) = -(gJrt) Im g,,(E). Inserting Eqs. (5.7) and (4.7) into the integral of Eq. (5.1) we have 

(5.8) 

The contribution to the density of states of the family (1,l) factorizes into an unperturbed (Berr- 
Tabor-like) term and a field-dependent factor 

d,,(E,W = d?,(E) W(H) (5.9) 

with 

4g, ma2 
dy, E d,,(H=O) = ~ 

71 @(27&L,, )‘3 
(5.10) 

and 

%(H)= !Jdxo cos($Hxo(a-x0)) = & [cos(~W(&) + sin(w)S($G3] (5.11) 

C and S respectively denote the cosine and sine Fresnel integrals [68], and 

cp = Ha2/Qo (5.12) 

is the total flux through the square measured in units of the flux quantum (Q. = he/e). For the 
circular and annular geometries, the field dependence of the density of states, and therefore the 
susceptibility, was related to the dephasing between time-reversal families of orbits. Here, Eq. (5.11) 
expresses that the dependence of d”“” on the field is also determined by the field induced decoherence 
of different orbits within a given family. 

As soon as cp reaches a value close to one, the Fresnel integrals can be replaced by their asymptotic 
value $, which amounts to evaluate W(cp) by stationary phase, i.e. 

‘P(cp) = cos(7cTI(p-~/4)/~ . (5.13) 

This means that for q > 1 the dominant contribution to V(q) comes from the neighborhood of 
the two surviving periodic orbits (x0 = a/2, c = 3 1 ), and the oscillations of G??(q) are related 
to the successive dephasing and rephasing of these orbits. In fact, one would have obtained just 
ds, = d;,@(q) by evaluating the contribution to the density of states of the two surviving periodic 
orbits using the Gutzwiller trace formula with a first-order classical perturbative evaluation of the 
actions and stability matrices. W’(cp) however diverges when H + 0, while the full expression 
Eq. (5.11) simply gives g(O) = 1. 

To compute the contribution dM of longer trajectories, it is worthwhile to write (My,MJ) as 
(ru,,vu,), where U, and u,. are coprime integers labeling the primitive orbits and Y is the number 
of repetitions. As illustrated in Fig. 6(b), for any orbit of the family the square can be decomposed 
into U, x ul. cells, such that the algebraic area enclosed by the trajectory inside two adjacent cells 
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exactly compensate. Therefore, keeping x0 as a label of the orbit (with x0 E [O,a/u,] to avoid double 
counting), the total area enclosed by the trajectory (TU.,.,YU,.) is 

I 

0 U, or zd,. even , 

2zzM = ‘QfL( %X0 1 
r u,~ and u,, odd , 

(5.14) 

X1 u I’ 

where xZ~:(X~) is given by Eq. (5.7). From the above equation, and proceeding in the same way as 
for the orbit (1,l) Eq. (5.9) can be generalized to 

(5.15) 

where %(cp) is given by Eq. (5.11) and dL = dM(H =0) is the zero-field contribution of the family 

M 

(5.16) 

5.2. The susceptibility: individual samples vemus ensemble averages 

For clarity of the presentation we will calculate in a first stage the susceptibility contribution of the 
family (I,1 ) of the shortest flux enclosing orbits only. This corresponds to the temperature regime 
of the experiment Ref. [25] where the characteristic length L, given by Eq. (A5) is of the order 

of &I, the length of the shortest orbits, and contributions of all longer orbits are eliminated due to 
temperature damping. In the next subsection we will state the results valid at arbitrary temperature 
by taking into account the contribution of longer orbits. 

From the expressions (5.9) and (5.10) of the contributions of the family (1,l) to doSc(E, H) one 
obtains the corresponding contribution to dF(‘) (Eqs. (2.15~) and (2.20b)) as 

(k@) 3’2 sin (k,L,,+:) %(H)R,(L,,). (5.17) 

RT(L,, ) is the temperature-dependent reduction factor Eq. (A5), valid for billiard systems. The field- 
dependent factor +?(cp) is given by Eq. (5.11). Taking the derivatives with respect to the magnetic 
field, we have [for L, = L,,] 

p 3 --=_ 
XL 

(2/245..2 (kFa) 
3,2 sin (k,L,, + ;)$ RT(L,,) . (5.18) 

The susceptibility of a given square oscillates as a function of the Fermi energy and can be para- 
magnetic or diamagnetic (see Fig. 8(a)). Since we are considering only one kind of trajectory the 
typical susceptibility x(t) (with the definition (4.18)) is simply proportional to the prefactor of I(‘). 
Therefore, it is of the order of (kFa)3!2, which is much larger than the Landau susceptibility xL. As 
shown in Fig. 8(b) (solid line) 2”’ exhibits also (by means of a2V/a(p2) oscillations as a function 
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Fig. 8. (a) Magnetic susceptibility of a square as a function of kra from numerical calculations (dotted line) at zero field 
and at a temperature equal to 10 level-spacings. The number of electrons is N = gs(kra)2/(4n). The full line shows our 
semiclassical approximation (Eq. (5.18)) taking into account only the family (11) of shortest orbits with the temperature 
correction factor RT(LI I ). The period r-r/& of the quantum result indicates the dominance of the shortest periodic orbits 
enclosing nonzero area with length L 11 = 2&a. (b) Susceptibility x as a function of the normalized flux through the 
sample (at a Fermi energy corresponding to N 400 enclosed electrons) from Eq. (5.18) (solid) and numerics (dotted). The 
susceptibility arising from the stationary-phase integration Vs (Eq. (5.13)) shown as the dashed line diverges at cp + 0. 

of the flux at a given number of electrons in the square. The divergent susceptibility obtained from 

%’ (dashed line) provides a good description of x(‘) for cp z 1. 
For a measurement made on an ensemble of squares of different sizes a, x(‘) vanishes under 

averaging if the dispersion of kFLll across the ensemble is larger than 27~ In that case the average 
susceptibility is given by the contribution to dFC2’ arising from the (I,1 ) family (Eq. (2.20~)). 
Proceeding in a similar way as for the first-order term, the contribution of the family (I,1 ) to the 
integrated density N OS’ is given by Eq. (2.15b) as 

I;2 

(ba) If2 cos (k&l,+;) ??(H)R,(L,,). (5.19) 

To calculate I(*) we have to consider dFc2’ = (NoSc)2/20 (with D = (gsma2)/(2nh2)), and in 

particular the term 

wl,Gw))2 G2 
20 = (JZ)Wmn~ 

ha cos’ (kd,, + a) V2(cp) R~(Lll). (5.20) 



This contribution is of lower order in kra than that of dFi I), but its sign does not change as a 
function of the phase kFLII Therefore the squared cosine survives the ensemble average’ and we 

obtain, performing the derivatives with respect to cp (still in the regime L, Y L,,), 

p 3 := ____ k-a d2s2 2 

jlL 
(J2,)3 b &T WLIl). 

(5.21) 

The total averaged susceptibility is therefore 

x = -x, + $2) , 

since, as seen in Section 3, one has also to include the diamagnetic (bulk) “Landau term” -2, 
arising from tL corrections to F ‘. In the regime L Y L, we are considering here, xI is negligible 
with respect to x(2’ as h + 0, and one can use z ‘v xc?). Note however that when L, <L, Eqs. (5.18) 
and (5.21) remain valid but $‘) as well as xC2’ IS exponentially suppressed. In this “trivial” regime 
x (and thus x) reduces to the Landau susceptibility, and becomes independent of the underlying 
classical dynamics. The linear dependence of the average susceptibility on kr is shown in Fig. 9(a). 

Since @’ has its absolute maximum at 9 =O, the average zero-field susceptibility is paramagnetic 
and attains a maximum value of [57, 591 

(5.22) 

For small fields the average susceptibility (thin solid line, Fig. 9(b)) has an overall decay as l/cp 
and oscillates in sign on the scale of one flux quantum through the sample. As in the disordered case 
[34] the period of the field oscillations of the average is half of that of the individual systems (see 
Fig. S(b)). In our case the difference can be traced to the g2 dependence that appears in Eq. (5.2 I ) 
in contrast to the simple @ dependence of Eq. (5.18). 

For an ensemble with a wide distribution of lengths (as in Ref. [25]) an average (. . .) on a 
classical scale (i.e. da/a $1) rather than on a quantum scale (A(k,a) 2 27~) needs to be performed, 
and the dependence of ?Z on a (through cp) has to be considered. Since the scale of variation of 
g with a is much slower than that of sin2 (kFLII ) we can effectively separate the two averages and 
obtain the total mean by averaging the local mean: 

(1) = i’ daC p(a) , 

where the quantum average C is given by Eq. (5.2 1) 
a. Taking for P(a) a Gaussian distribution with a 
of Fig. 9(b). The low-field oscillations with respect 
while the zero-field behavior remains unchanged. 

and P(a) is the probability distribution of sizes 

30% dispersion we obtain the thick solid line 
to 40 are suppressed under the second average, 

(5.23) 

‘Beside the orbits (I ,I) the orbits (1,0) and (0,l) which are even shorter contribute to AF”’ in the limit L, N Lr I. 
Since they do not enclose any flux the second derivative of @A’ with respect to H, i.e. ;c::’ can be neglected for small 
fields. However, they enter into %@I by means of the cross-products (NIO + NOI )NI~ in (NUFC)2. Nevertheless, they play - 
no role for the averaged z(*) because Nra and Nrr do not oscillate with the same frequency and therefore their product 
averages out. 
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ha 

Fig. 9. (a) Average magnetic susceptibility of an ensemble of squares differing in size as a function of kra for various 
temperatures (8, 6 and 4 level spacings for the three triplets of curves from below) and a flux 4” = 0.15. Solid line: 
average of the semiclassical approximation to x(‘) according to the analytical result of Eq. (5.21). Dotted line: average 
of x’*) obtained by using Eq. ( 2 20~) and exact diagonalization. Dashed curve: average of the canonical susceptibility 
calculated directly from Eq. (5.33) after the exact diagonalization. The considerable agreement between the solid and 
dotted curves illustrates the precision of the semiclassical apprroximation, while the agreement between the dotted and 

dashed lines shows the applicability of the thermodynamical expansion Eq. (2.20). (b) Flux dependence of the averaged 
susceptibility normalized to x,v = ~&aRf(L~~ ) at kra = 70 from the semiclassical expression Eq. (5.21) (solid) and 
numerical calculations (dashed). The thick solid (dashed) curve denotes an average of the semiclassical (numerical) result 
over an ensemble with a large dispersion of sizes which is denoted by ()L) ( see text). The shift of the numerical with respect 
to the semiclassical results reflects the Landau susceptibility (due to F” in Eq. (2.19)) and effects from bouncing-ball 
orbits (see Section 7.1) not included in the semiclassical trace. 

The expected value for the susceptibility measured in an ensemble of IZ squares is n(x) cx nkra, 
with a Iuvye statistical dispersion of ,,&$” (x fi(kFa) 3’2 However, for experiments like the one . 

of Ref. [25] where n E IO5 $/+a E 1 02, it is not possible to obtain a diamagnetic response by a 
statistical fluctuation. 

5.3. Contribution of lonyer orbits 

In the zero-temperature limit ‘O or more generally if one is interested in results valid at any 
temperature, it is necessary to take also into account the contribution of longer trajectories. This 
can be done following exactly the same lines as for the contribution of the family (1,l). From 

“I It should bc kept in mind however that the expansion in Eq. (2.19) is a priori not valid when T - 0. 
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Eqs. (5.15) and (5.16) one obtains the contribution of the family M = (M,, M,.) = (YU.~, ru,.), (where 
U, and u!, are coprime) to dF(” 

(‘ha) 3,2 

where 

z4, or u?, even, 

u, and u., odd . 

(5.24) 

(5.25) 

LM and the function Q?(q) are given respectively by Eqs. (5.3) and (5.11). In order to get $‘) we 
have to take the second derivative of gM with respect to the magnetic field. This yields zero if 
either U, or uY is even and a factor r’/(u,up)‘, if both are odd. We therefore obtain 

RT@M) > (5.26) 

valid at any temperature. 
The low temperature result for x c2) follows in essentially the same way, but taking the average 

is made rather intricate in the case of a square (as compared for instance to a rectangle) because 
of the degeneracies in the lengths of the particular orbits of this system. Indeed, there are infinitely 
many integers which can be decomposed in at least two different ways into sums of two squares. For 
instance, 112 + 7* = 132 + l2 = 170. As a consequence, L,,,, = L13,,, and N11,7N13.1 # 0. An explicit 
formula for ~(~1 therefore requires to handle correctly all the non-diagonal terms containing orbits 
of degenerated lengths which do not average to zero. This leads to a number theoretical problem 
(i.e. characterizing all numbers which decomposition as the sum of two squares is not unique), with 
which we do not deal and which moreover will be seen to be of no practical relevance. Therefore, 
instead of considering a square, we will give the expression for x c2) for a rectangle of area a2 and 
of horizontal and vertical lengths a f e and a. e- ’ . In that case, all the formulae given in Section 5.1 
remain valid. As the only difference one has now 

instead of Eq. (5.3), which does not give rise to length degeneracies if, as we will suppose, C’ is 
irrational. Noting that the prefactor of A$, depends as LG3 on the length of the orbit (instead of 
LGsj2 for dFj$‘) > one obtains for the canonical correction to the susceptibility 

(5.27) 

odd 
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Fig. 10. Solid: low temperature limit of the average susceptibility ;! 12) of an ensemble of squares, as given by Eq. (5.27) 
and normalized by z”; as defined in the previous figure caption. Dashed: contribution of the family ( I,1 ) to this result. 

Even in the very low temperature regime the magnetic response is dominated by the (1,l) family except for the singularity 
which develops at zero magnetic field. 

Eqs. (5.26) and (5.27) show that even at zero temperature the strong flux cancelation typical for 
the square (or rectangular) geometry generates a very small prefactor I/(Y”~(u,: + u~.)‘~“(u,.u,,)~) for 

z(‘) (square geometry) and l/(v ((ur/e)” + (uJ,e)2)3 * (u+,.)~) for xC2’ (rectangular geometry). For the 
second shortest contributing primitive orbit, M = (1,3), this yields for instance for x(” a damping 
of l/(9 x 105’“) N 0.0062. For x c2) the multiplicative factor is even smaller. In practice only the 
repetitions (r, r) of the family (1,1) will contribute significantly to the susceptibility, and one can 
use Eqs. (5.26) and (5.27) keeping only the term U, = ~1)~ = 1 of the second summation. As a 
consequence, all the complications due to the degeneracies in the length of the orbits for the square 
are of no practical importance (Eq. (5.27) restricted to U, = 21~ = 1 can be used for the square with 

e = 1 ), showing why their detailed treatment was not necessary. As illustrated in Fig. 10 for $*), the 
repetitions of the orbit (1,l) are yielding a diverging susceptibility at zero field when the temperature 
goes to zero, but barely affect the result even as T + 0 for finite H, where the contributions of the 
repetitions do no longer add coherently. 

5.4. Numerid calculations 

As a check of our semiclassical results we calculated quantum mechanically the orbital suscepti- 
bility of spinless particles in a square potential well [-a/2,a/2] in an homogeneous magnetic field. 
Within the symmetric gauge A = H(-y/2,x/2,0) the corresponding Hamiltonian in scaled units 
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.? = x/a and I? = (ma2/fi2)E reads 

“*=_-1 E+Zi _inq j?_,i +54o*(i:+j*j, 
2 (i-3.2 a_+-*) ( a2 ii) (5.28) 

with the normalized flux cp defined as in Eq. (5.12). Taking into account the invariance of the 
Hamiltonian (5.28) with respect to rotations by n, ~42 we use linear combinations of plane-waves 
which are eigenfunctions of the parity operators P,, Pn.2, respectively. Omitting the tilde in order 
to simplify the notation, they read 

\lz]&(x)G(~) h CdxM_v)l ; (p, = - 1) , (5.29) 

(5.30) 

with S,,(U) = sin(nrcu), IZ even, and C,n(z~) = cos(mnu), m odd, obeying Dirichlet boundary condi- 
tions. In this representation the resulting matrix equation is real symmetric and decomposes into four 
blocks representing the different symmetry classes. By diagonalization we calculated the first 3000 
eigenenergies taking into account up to 2500 basis functions for each symmetry class. A typical 
energy level diagram of the symmetry class (P,, Pn.2) = (1,l j as a function of the magnetic field is 
shown in Fig. l(a). In between the two separable limiting cases cp = 0 and cp -+ x the spectrum 
exhibits a complex structure typical for a nonintegrable system which classical dynamics is at least 

partly chaotic. 
We calculate numerically the grand-cunonical susceptibility (Eq. (1.2), Fig. l(b)) from 

gs a2 X 
XY4 = -2m & 

Ei 

,=, 1 + exp[&:i - P>I 
(5.31) 

where g, accounts for the spin degeneracy and E, denotes the single particle energies. 
However, in order to address the experiment of Ref. [25] and to compare with the semiclassical 

approach of the preceeding subsection we have to work in the canonical ensemble. At T = 0 the 
free energy F reduces to the total energy and the canonical susceptibility (Eq. (2.2)) is given as the 

sum 

N a* Ci 

XV =O> = -2 g w (5.32) 

over the curvatures of the N single-particle energies I,. The susceptibility is therefore dominated 
by large paramagnetic singularities each time the highest occupied state undergoes a level crossing 
with a state of a different symmetry class or a narrow avoided crossing with a state of the same 
symmetry. This makes T = 0 susceptibility spectra of quasi-integrable billiards (with nearly exact 
level crossings) or systems with spectra composed of energy levels from different symmetry classes 
(as it is the case for the square) looking much more erratic than those of chaotic systems with 
stronger level repulsion [27]. 

The T = 0 peaks are compensated once the next higher state at a (quasi) crossing is considered, 
and therefore disappear at finite temperature when the occupation of nearly degenerated states be- 
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comes ahnost the same. Thus finite temperature regularizes the singular behavior of 31 at T = 0 and 
of course describes the physical situation. We obtain the canonical susceptibility at finite T from 

(5.33) 

The canonical partition function Z,(fi) is given by 

Z,V(B) = C exp[-P~zW)l 
1x1 

(5.34) 

with 

E,(N) = F E, n: , N = 2 n’ . (5.35) 
/=I I=1 

The n,! E (0, l} describe the occupation of the single-particle energy levels. A direct numerical com- 
putation of the canonical partition function becomes extremely time consuming at finite temperature. 
We approximate the sum in Eq. (5.34) which runs over all (infinitely many) occupation distributions 
{a} for N electrons by a finite sum Z,(M; /I) over all possibilities to distribute N particles over 
the first A4 levels with M > N sufficiently large. Following Brack et al. [69] we calculate Z,(M; /II) 
recursively using 

(5.36) 

with initial conditions 

Zo(hf; 8) = 1 3 Z,v(N- l;p)-0 (5.37) 

and increase A4 until convergence of Z,(M, /II), i.e. the difference between Z,,(M; /I) and Z,,,,(M- 1; p) 
is negligible. This recursive algorithm reduces the number of algebraic operations to calculate Z, 
drastically and is fast and accurate even if kBT is of the order of 10 or 20 times the mean level 
spacing, i.e. in a regime where a direct calculation of Z, is not feasible. 

5.5. Comparison between numerical and semiclassical results 

Our numerical results for the susceptibility of individual and ensembles of squares are displayed as 
the dashed lines in Figs. 8 and 9 and are in excellent agreement with the semiclassical predictions of 
Section 5.2. Fig. 8(a) shows the numerical result for the canonical susceptibility and the semiclassical 
leading order contribution xi :’ at zero field as a function of kFa (dw in terms of the number of 
electrons). The temperature kBT is equal to five times the mean level spacing d of the single-particle 
spectrum. The quantum result oscillates with a period n/v’? as semiclassically expected (Eq. (5.18)) 
indicating the dominant effect of the fundamental orbits of length L,, = 2&a. The semiclassical 
amplitudes (solid line) are slightly smaller than the numerics because only the shortest orbits are 
included. 

Fig. 8(b) shows the flux dependence of x for a fixed number of electrons N M llOOg,. The 
semiclassical prediction (Eq. (5.18) solid curve) is again in considerable agreement with the quantum 
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result while the analytical result (Eq. (5.13), dashed line) from stationary phase integration yields 
an (unphysical) divergence for cp ---f 0 as discussed in Section 5.2. 

For the numerical calculations we can perform the ensemble average directly and we obtain the 
averages on the quantum scale (thin dashed line, Fig. 9(b)) or classical scale (thick dashed line) by 
taking a Gaussian distribution of sizes with respectively a small or large Au/a dispersion. Fig. 9(a) 
depicts the kFa dependence of X assuming a Gaussian distribution of lengths a with a standard 
deviation da/a z 0.1 for each of the three temperatures kBT/A = 2,3,5. The dashed curves are 
the ensemble averages of the quantum mechanically calculated entire canonical susceptibility 2. 

The dotted lines are the cxuct (numerical) results for the averaged term I:,/ = (N@;)?,/24. They 
are nearly indistinguishable (on the scale of the figure) from the semiclassid approximation of 
Eq. (5.21) (solid line). Although a small flux (p M 0.15 has been chosen (here the contribution from 
the next longer orbits (2,2) nearly vanishes) the precision of the semiclassical approximation based 
on the fundamental orbits ( 1,l) is striking. The difference between the results for 2 and xc*) gives an 
estimate for the precision of the thermodynamic expansion Eq. (2.19). The convoluted semiclassical 
result has been shifted additionally by -xL to account for the diamagnetic Landau contribution and 
is again in close agreement with the numerical result of the averaged susceptibility SC. 

5.6. Comparison bdh the experimn t 

In a recent experiment, Levy et al. [25] measured the magnetic response of an erzsemhle of 10” 
microscopic billiards of square geometry lithographically defined on a high mobility GaAs hetero- 
junction. The size of the squares is on average a = 4.5 pm, but has a large variation (estimated 
between 10% and 30%) between the center and the border of the array. Each square can be con- 
sidered as phase-coherent and ballistic since the phase-coherence length and elastic mean free path 
are estimated, respectively, to be between 15 and 40 urn and between 5 and 10 pm. 

Therefore, it is worthwhile to compare the observed magnetic response with the prediction of 
our clean model of noninteracting electrons, to see whether this simple picture contains the main 
physical input to understand the experimental observations, although one should control in addition 
that the residual impurities do not alter fundamentally the magnetic response of the system. This 
is the subject of a forthcoming article [43]. Ongoing calculations including (weak) disorder indeed 
indicate that the underlying physical picture remains correct. 

At a qualitative level, a large paramagnetic peak at zero field has been observed in Ref. [25], two 
orders of magnitude larger than the Landau susceptibility, decreasing on a scale of approximately 
one flux quantum through each square. Since there is a large dispersion of sizes we do not observe 
the field oscillations of the quantum average (5.21), but the comparison has to be established with 
the classical average results Eq. (5.23). The corresponding results from our semiclassical calculations 
(Eqs. (5.21) and (5.23)) and the full quantum calculations are shown in Fig. 9(b) as the thick full, 
respectively dashed, lines (denoted by (x) in the figure). The offset in the semiclassical curve with 
respect to the quantum mechanical curve is due to the Landau susceptibility xL and additional effects 
from bouncing-ball orbits (see Section 7.1) not included in the semiclassical trace. Our theoretical 
results for the flux dependence of the average (x) with respect to a wide distribution in the size 
of the squares agree on the whole with the experiment. However, the diamagnetic response for (x) 
that we obtain for cp z 0.5 is not observed experimentally, indicating that there may be a more 
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important size dispersion than estimated. As will be discussed in more detail in Section 6, a very 
large distribution of lengths enhances the effect of the breaking of time reversal invariance due to the 
magnetic field, yielding a vanishing average response at ,finite -field and a paramagnetic susceptibility 
at zeru $eZd decaying on a field scale Q0 by the dephasing of the contribution of time-reversal 
symmetric orbits to the density of states. 

More quantitatively, the experiment of Ref. [25] yielded a paramagnetic susceptibility at H = 0 
with a value of approximately 100 (with an uncertainty of a factor of 4) in units of xl. The two 
electron densities considered in the experiment are 10” and 3 x 10” corresponding to approximately 
IO4 occupied levels per square. Therefore our semiclassical approximation is well justified. For a 
temperature of 40mK the factor 4fi/(57c))kraR2,(L,,) from Eq. (5.22) gives zero-field susceptibility 
values of 60 and 170, respectively, in reasonable agreement with the measurements. In order to 
attempt a more detailed comparison with the measurements we need to incorporate the suppression 
of the clean susceptibility by the residual disorder, which depends on the strength and correlation 
length of the impurity potential [43]. The field scale for the decrease of (x(q)) is of the order of 
one flux quantum through each square, in agreement with our theoretical findings. The temperature 
dependence experimentally observed seems however less drastic than the theoretical prediction. 

6. Generic integrable and chaotic systems 

In Sections 4 and 5 we have studied in detail specific geometries of conceptual as well as exper- 
imental relevance. In particular, we have demonstrated the degree of accuracy of our semiclassical 
approach by a careful comparison with exact quantum results. The aim of the present section is to 
take a broader point of view and to give more general semiclassical implications concerning the 
magnetic properties of ballistic quantum dots. We shall first consider the weak-field behavior of 
generic integrable systems, generalizing the results of the previous section. We focus on weak fields 
because only this regime is affected by the integrability of the dynamics at zero field. The case 
of systems which remain integrable at arbitrary field strength was discussed in Section 4. In the 
second stage we shall turn to chaotic systems (at weak as well as finite fields) and finally finish the 
section by discussing the similarity and differences of the magnetic response for the various cases 
of classical stability. 

6.1. Generic integrable systems 

We consider the generic magnetic response of two-dimensional integrable systems perturbed by 
a weak magnetic field breaking the integrability. Eqs. (2.15) and (2.20), which relate the ther- 
modynamic functions dF(” and dFC2) to the oscillating part d”““(E) of the density of states, are 
general relations which apply in particular here. The main difficulty is therefore to obtain semiclas- 
sical uniform approximations for d”““(E) interpolating between the zero-field regime, for which the 
Berry-Tabor Formula [52,53] (suitable for integrable systems) applies, and higher fields (still classi- 
cally perturbative however), for which the periodic orbits which have survived under the perturbation 
are sufficiently well isolated in order to use the Gutzwiller trace formula [51]. This problem of com- 
puting for a generic system the oscillating part of the density of states in the nearly but not exactly 
integrable regime has been addressed by Ozorio de Almeida [55,56]. We are going to follow this 
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approach for the case of a perturbation by a magnetic field. However, for the sake of completeness 
and in order to define their regime of validity, we will give a brief derivation of the basic results 
needed. This is the subject of Section 6.1 .I. In Section 6.1.2 we then deduce the grand-canonical 
and canonical contributions to the susceptibility. 

6. I. 1. Perturbation theory jk magnetic jields 
Let *$($,Q) be a quantum Hamiltonian which classical analog can be expressed as 

x(p,q) = X0 (p+q) . (6.1) 

XO(p,q) is the Hamiltonian describing the motion in the absence of a magnetic field and A is the 
vector potential generating a uniform magnetic field H. .X0 is supposed to be integrable which per- 
mits to define action-angle coordinates (I, cp), ql, q2 E [0,27-c] such that at zero field the Hamiltonian 
-Y?~(Z,,Z?) depends only on the actions. 

To compute d*“(E) we start from the same basic equations as for the square geometry. In the 
weak-field regime which we are considering, the only recurrent trajectories of the sum Eq. (5.2) 
which contribute noticeably to the trace Eq. (5.1) are those which merge into periodic orbits of the 
unperturbed Hamiltonian as H 4 0. Considering only these contributions, which we can label by 
the topology M of the unperturbed periodic orbits, and dropping the Weyl part of the trace Y(E) 
of the Green function we can write 

(6.2) 

Let us now focus on the contribution gM of the family of closed orbits M. For sufficiently low 
fields we will employ (as in Sections 4 and 5) that the change in the semiclassical Green function 
by changing H is essentially given by the modification of the phase, &,Vi being large in the 
semiclassical limit. The variation in the determinant DM can usually be neglected. Therefore, in the 
evaluation of the integral in Eq. (6.2) one should keep the (unperturbed) zeroth order approximation 
for DM and evaluate the action up to the first-order correction. For the action this yields 

&(q,q) = $4 + J&4(!Z>Y) (6.3) 

with 

S;= {,.dq= {I-drp=Z&.M, (6.4) 
orbit orbit 

noting Z, the action coordinates of the periodic orbit family M at H = 0. The contribution SS,V 
is expressed in terms of the area enclosed by the unperturbed orbit by means of Eq. (4.7). Sb is 
constant for all members of the family, but SS generically depends on the trajectory on which the 
point q lies. However, the area enclosed by the orbit and thus SS, does not change when varying 
q along the orbits. It is therefore convenient to use a coordinate system such that one coordinate 
is constant along the unperturbed trajectory. Writing M = (mI,m2) where U, and u2 are coprime 
integers, this is provided explicitly by the standard canonical transformation (I, cp) + (J, 13) generated 
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by F,(J,cp) = (UZCPI - u,(~z)J, + q2J2 : 

0, = u2~l - uI(p2 , J, = 1,/u> , 

02 = ‘P2 9 J2 = I2 + (u,,‘u2)/, ’ 
(6.5) 

for which fl, is constant along a trajectory on the torus Zl ,,. Then Hi specifies the trajectory and 0, 

the position on the trajectory. For a square geometry, 0, and O2 are up to a dilatation, respectively, 
the variables x0 and s introduced in Section 5. U2 should be taken in the range [0,2nt/J (rather than 
[0,271]) to ensure that the transformation Eq. (6.5) constitutes a one to one correspondence. 

After substituting q by 8 in the integral of Eq. (6.2), SS depends only on O,, but no longer on 02. 
One can moreover show (see Appendix D) the following relation for the zero field approximation 
of the determinant DM: 

(6.6) 

where I2 = gE(II ) is the function introduced in Section 4 to describe the energy surface E. From 
Eq. (6.2) and (6.6) one gets 

The integral over d2 is the period Z,M/Y of the primitive periodic orbit. 
integral over 8, is simply 27~ which gives 

d0, exp [iLsS(0,)1 . (6.7) 

In the absence of a field the 

(6.8) 

&,,(E), the zero-field contribution of the orbits of topology M to the oscillating part of the density 
of states, is obtained from Eq. (6.8) as &,(E) = -(g,/rc)Im$,(E). Therefore, except for the 
evaluation of the Maslov indices that we have disregarded here, one recovers in this way for the 
integrable limit the Berry-Tabor formula Eq. (4.3) of a two-dimensional system (as we have used 
in Section 4). 

Inspection of Eq. (6.7) for weak magnetic fields shows that, upon perturbation, 9~ is just given 
by the product of the unperturbed result 90, and a factor 

(6.9) 

This accounts for the small dephasing between different closed (in configuration space) orbits of 
topology M due to the fact that the resonant torus on which they are living is slightly broken by the 
perturbation. (An orbit of topology M closed in configuration space is then generally not periodic, 
i.e. closed in phase space.) Supposing the unperturbed motion to be time reversal invariant, it can 
be seen moreover that only the real part of GIW(H) has to be considered: The function G!,,,(O,) is 
defined for the unperturbed system. Therefore, the time reversed of a trajectory labeled by 0, is a 
periodic orbit of the unperturbed system which encloses an area -.&‘M(G,). Its contribution cancels 
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the imaginary part of exp[2inH.~M(e,)/~o], and one can use 

.2rr I dU, cos [27cH&‘~(Q,)/@,,] 
0 

(6.10) 

instead of GM(H). Since gM(H) is real, one obtains from Eq. (5.1) 

d”““(E) = c %&Z)&(E) ) (6.11) 
MfO 

where d;(E) is the zero-field contribution given by the BerryTabor expression of Eq. (4.3). At zero 
field we obviously have V,+,(O) = 1. At sufficiently large field, the integral (6.9) can be evaluated 
using stationary phase approximation. ” %,,, can be expressed as a sum over all extrema of Cd,,,(OI ) 
(i.e. of SS). These are all the periodic orbits which survive under the perturbation. It can be seen 
[70] that, in this approximation, Eq. (6.11) yields exactly the Gutzwiller trace formula for which 
the actions, periods and stabilities of the periodic orbits are evaluated using classical perturbation 
theory. Eq. (6.11) thus provides an interpolation between the Bet-r-Tabor and Gutzwiller formulae. 

The functions JP’,~(~,), and therefore gM(H), are system and trajectory dependent. One can, 
however, gain some further understanding of the perturbative regime by following again Ozorio de 
Almeida and writing &!~(a, ) in term of its Fourier series 

(6.12) 
n=o 

If &‘,,,, is a smooth function of t3,, the coefficients _c$;’ are usually rapidly decaying functions of n. 
For systems where one can neglect all harmonics higher than the first one, the integral Eq. (6.10) 
can be performed, and it is possible to distinguish two types of functions gM(H), depending on the 
symmetry properties of the unperturbed family of orbits under time reversal. 

Indeed, one may encounter two different situations depending on whether the torus ZM is time- 
reversal invariant (e.g. square geometry) or has a distinct partner ZM* in phase space which is its 
counterpart under time reversal (e.g. circular geometry). In the former case, the origin of the angles 
0, can be chosen such that &!M(ei) is an antisymmetric function, while in the latter case it can be 
in principle any real function of 0,. I2 

If ZzW is time-reversal invariant, &,~(-0i ) = -d~(0, ) implies that dg’ = 0 (as well as all the 
phases y’“‘). In this case 

%(H) N Jl)(2nH.&/@,) . (6.13) 

It is interesting to compare the approximation of %(H) given by the above Bessel function with the 
exact integral Eq. (5.11) obtained in Section 5 for the shortest family (M = (1,1)) of the square 

” To be precise the ratio HA/& rather than the field must be large. Formally, one has to consider not the H - 00 
limit, which is incompatible with the classical perturbation scheme, but an h(i.e. @a) + 0 limiting process, which does 
not change the classical mechanics. In practice this means that the fluxes considered are large on a quantum scale, but 
still small on the classical scale. This is achieved at high enough energies. 

I2 Note in the former case @,w = V,W, while in the latter 3, # WM but 9~ + 9~” = C&V/M(H) + &,WM*(H). 
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Fig. 1 1. Solid: exact (Fresnel) function ‘6((p) as given by Eq. (5.11). Dashed: approximation of %(cp) by the Bessel 
function J~,(32~/rr’) (see text). 

geometry. Noting that 0, = ~;zxo/a and using Eq. (5.7), the Fourier coefficients SS!‘,,;’ of &‘, I (0, ) are 
given by 

n even . 

(6.14) 

Keeping only the first harmonic of SLY,, (0, ) amounts to approximate the function V(cp) of Eq. (5.11) 

by Jo(32(p/n2) which, as seen in Fig. 11, is an excellent approximation. 
If the torus I,, is not its own time reversal, dM(& ) is not constrained to be an antisymmetric 

function, and in particular -s’$,’ is usually nonzero. Neglecting, as above, all harmonics of JzZ~(~,) 

except the first gives 

(6.15) 

If moreover Cd; $ ,L&$‘, then the field oscillation frequency is essentially given by the mean area 
.&‘$ enclosed by the orbits of the family while the overall decrease is determined by the first 
harmonic coefficient .&‘,,, . 
nonzero while .sz$,’ 

(‘I The circular billiard can be regarded as a particular case where JzZ$’ is 

as well as all other coefficients vanish. 

6.1.2. Magnetic susceptibility jbr a generic integrable system 
From the expression (6.11) of the oscillating part of the density of states the contributions II(‘) and 

x (2) to the susceptibility are obtained by the application of Eqs. (2.15a) and (2.20a), which express 
MC” and dF’*’ in terms of d”“‘(E,H). Taking twice the field derivative according to Eq. (2.2) and 
introducing the dimensionless quantities 

(A is the total area of the system) one obtains for the grand canonical contribution to the susceptibility 

(6.16) 
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If one assumes moreover that there are no degeneracies in the length of the orbits, one has for the 
averaged canonical correction 

(6.17) 

The field-dependent component of $2) for weak fields is given by 

(V2);(,(H=0) = -&./:‘dH,Af&O,), 
0 

which is always negative. Therefore, for an ensemble of integrable structures the magnetic response 
is always paramagnetic at zero field. We shall come back to this point in the 

6.2. Generic chaotic systems 

last part of this section. 

Let us now consider generic chaotic systems, more generally, systems where all the periodic 
orbits are sufficiently isolated that the trace of the semiclassical Green function Eq. (5.1) can be 
evaluated within stationary phase approximation. In this case the Gutzwiller trace formula provides 
the appropriate path to calculate the oscillating part of the density of states (with or without magnetic 
field). The Gutzwiller trace formula expresses the oscillating part of the density of states as a sum 
over all (here isolated) periodic orbits t as [2 l] 

d”““(E,H) = cd, ; d,(E,H) = L Tr 

f n/i rr Idet(A4, - 1)l I;2 
cos(+;) . (6.18) 

S, is the action along the orbit t, rl the period of the orbit, Ml the stability matrix, CJ, its Maslov 
index, and Y, the number of repetitions of the full trajectory along the primitive orbit. All these 
classical quantities generally depend on energy and magnetic field. If, as considered above for the 
integrable case, one is interested in the magnetic response to weak field, one can express d,(E, H) 
in terms of the characteristics of the orbits at zero field by taking into account the field dependence 
only in the actions. Proceeding in exactly the same way as in Section 4.1, i.e. grouping together the 
contributions of time-reverse symmetrical orbits, one obtains the same relation as Eq. (4.9) [50,61]: 

d,(E, H) = d; cos [27c(H.&;/Qo)] (6.19) 

dp is the zero-field contribution of the orbit, obtained from Eq. (6.18) at H = 0, and -_;‘p is 
the enclosed area of the unperturbed orbit. In the case of a generic integrable system, the zero- 
field regime played a peculiar role: except for the circular and annular geometries which remain 
integrable at all fields, a generic integrable system looses its integrability under the effect of a 
perturbing magnetic field. For chaotic geometries on the contrary, the zero field behavior is not 
substantially different from that at finite fields (as far as the stability of the dynamics is concerned). 
Since we are discussing the general semiclassical formalism of chaotic systems without referring to 
specific examples we do not need to restrict ourselves to weak fields. Within this generic framework 
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the chaotic geometries have the same conceptual simplicity as the systems which remain integrable 
at arbitrary field studied in Section 6. Namely Eq. (6.18) applies independently of the field, and for 
derivatives with respect to the field one can use 

(6.20) 

where x/,(H) is the area enclosed by the trajectory t at the considered field. Therefore the computa- 
tion of the contribution x(‘) and 2 (2) to the susceptibility follows essentially along the same lines as 

described in Section 4: AF”’ and dFC2’ are given by Eqs. (2.15a) and (2.20a), and to leading order 
in h the derivatives with respect to the field should be applied only to the rapidly varying term. As 
a consequence, taking twice the derivative of the contribution of the orbit t to AF(” merely amounts 
to a multiplication by a factor (e.&t)2/(cfi)2, yielding 

(6.21) 

where d, is given by Eq. (6.18). Note that Eq. (6.2 1) applies also to systems which remain integrable 
at all fields provided the Berry-Tabor formula Eq. (4.3) is used instead of the Gutzwiller one. 
For chaotic as well as for integrable systems, x(I) can be paramagnetic or diamagnetic with equal 

probability. The response of an ensemble of structures is given by AFc2’, which can be calculated 
as a double sum over all pairs of orbits 

ff, r,r;Idet(M - I)det(A4(, - Z)l”z 

(6.22) 

Here some remarks are in order. Due to the exponential proliferation of closed orbits in chaotic 
systems off-diagonal terms should be considered at low temperatures since near-degeneracies in the 
actions of long orbits may appear, so that their contributions do not average out. However, at 
sufficiently high temperatures where only short periodic orbits are relevant, off-diagonal terms (of 
orbits not related by time-reversal symmetry) are eliminated upon averaging. At finite field where 
time-reversal symmetry is broken (more precisely, when no anti-unitary symmetry is preserved) only 
the terms with t’ = t survive the averaging process, and (at the order of fi considered) xc2) vanishes 
since then XI, = .ti,,. The origin of the weak-field response for an ensemble is a consequence 
of time-reversal symmetry since nondiagonal terms involving an orbit and its time reversal have an 
action sufficiently close to survive the average process but an area of opposite sign. Indeed, assuming 
(in the weak-field regime) an ensemble average such that only diagonal and time reversal related 
terms are not affected, Eq. (6.22) reduces to 

(6.23) 

At zero field the cosine of the surviving terms in Eq. (6.23) is one and their prefactors positive. 
This merely reflects that the dephasing of time-reversal orbits due to the perturbing magnetic field 



necessarily induces on average a decrease of the amplitude of No”“, and therefore by means of 
Eq. (2.20~) a pavanzagnetic susceptibility. For extremely large distributions in systems size, such 
as those discussed in Section 5.6, even the oscillating patterns of Eq. (6.23) due to the subsequent 
rephasing and dephasing of the time-reversal orbits contributions vanish upon smoothing. In this 
case, only the paramagnetic response related to the original dephasing is observed, and the average 
susceptibility reaches zero as soon as 47~.AyH/@~ is of the order of 27~ for all trajectories. 

6.2.1. Magnetization line-shape ,for chaotic systems 

The expressions we have obtained up to now in this subsection do not require the system to be 
actually chaotic, but only that periodic orbits are isolated. They should therefore be valid also for 
the contribution of isolated orbits in mixed systems, where the phase space contains both regular and 
chaotic regions. This includes for instance the contributions of elliptic, i.e. stable orbits, provided 
they are not close to any bifurcation and the surrounding island of stability is large enough. 

For geometries being actually chaotic it is however possible to proceed further and to derive a 
general expression for the line-shape of the field-dependent susceptibility, if the temperature is low 
enough. For temperatures such that the cutoff time z, of the damping factor Rr(z,) is of the order 
of the period of the fundamental periodic orbits, the average susceptibility will be dominated by the 
shortest orbits, whose characteristics are largely system dependent. However, for higher 75, a large 

number of trajectories will contribute to xi;‘, and a statistical treatment of the sum on the r.h.s. of 
Eq. (6.23) is possible, yielding an uniwrsal line-shape for the average susceptibility. For sake of 
clarity, we discuss here only the case of billiard-like structures, but the following developments can 
be generalized in a straightforward way to any kind of potentials. 

Two basic ingredients are required here in addition to Eq. (6.23) to obtain the magnetization peak 
line-shape. The first one is the semiclassical sum rule derived by Hannay and Ozorio de Almeida 
[71], which states that in sums like Eq. (6.23) the two effects of an exponential decrease in the 
prefactors on the one hand and the exponential proliferation of orbits on the other hand cancel each 

other yielding 

c fx? - 7) 
f Idet(M, - 1)1 = i . 

(Note, that in the above sum the contributions of orbits with 
neglected.) To be valid, this equation requires that the periodic 
phase space which will only be achieved for sufficiently large r. 

(6.24) 

number of repetitions vi > 1 are 
orbits are uniformly distributed in 
For billiards the periods are given, 

up to a multiplication by the Fermi speed, by the length of the orbits and the periods z in Eq. (6.24) 
can be replaced by the lengths L. We call LT the characteristic length for which periodic orbits can 
be taken as uniformly distributed in phase space. Typically, L; is not much larger than the shortest 
period of the system. 

The second ingredient is the distribution of area enclosed by the trajectories. For chaotic systems, 
this distribution has a generic form [24,72]. Namely the probability PN(0) for a trajectory to enclose 
an algebraic area 0 after N bounces on the boundaries of the billiard is given by 

(6.25) 
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This result actually follows from a general argument [72] which in our case can be stated as 
follows: With a proper choice of the origin, the area swept by the ray vector for a given bounce 
is characterized by a distribution, with zero mean value and a width gN which define the parameter 
of the distribution Eq. (6.25). For a strongly chaotic system, successive bounces can be taken as 
independent events, which by means of the central limit theorem yield the distribution Eq. (6.25). 
Denoting i the average distance between two successive reflections and gL = o,,,/L, this is equivalent 

to 

M@) = d& exp 
o2 ( ) 2LOL 

(6.26) 

Now PL(0) is the distribution of enclosed areas for trajectories of length L, and the above equation 
is valid for L larger than a characteristic value L;, which again is of the order of the shortest closed 

orbit’s length. 
For temperature sufficiently low so that L, > L;, Lz, Eqs. (6.24) and (6.26) can be used to replace 

the sum over periodic orbits Eq. (6.23) by the integral 

Performing the Gaussian integral over 0, and introducing the dimensionless factor r 
one obtains the average susceptibility as 

;(:” = 96 gLLc F(i’) 

%L (-) A2 

where the function F(l) is defined as 

Vi’) = li;r (&)’ (1 - 4t2x) exp( -25*x) dx ; x = L/L, , 

(6.27) 

271Hal@o, 

(6.28) 

(6.29) 

The quadrature cannot be performed analytically (in a closed expression) for arbitrary t I3 , but it 
can easily be calculated numerically. As seen in Fig. 12, F(t) has a maximum at t = 0 with a 
half-width d[ 2 0.3 17. Expansion of F( <) for small 5 yields F( 5) M x2/6 - 9c(3)12 (where i(x) is 
the Zeta function). Denoting n = rsLLc/A2, the susceptibility at zero field is thus given by 

$(H=O) = 167~~11, 

and the value half-width A@ by 

(6.30) 

(6.31) 

I3 Using for RT(L) the asymptotic expression RT(L) = 2(L/L,)exp(-L/L C ) , valid for L > L, = fi/la~/n, yields F(t) = 
(1 ~ 5<*)/( 1 + 5’)‘, but the contribution of the range L < L, is of the same order. 
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Fig. 12. Solid: function F(,‘) (see Eq. (6.29)) describing the magnetic field dependence of the average susceptibility for 
an ensemble of chaotic microstructures. Dashed: quadratic approximation 7~216 ~ 9;(3)<’ of F(2). 

The experimental observation of Eq. (6.28) would be a very stringent confirmation for the appli- 
cability of the whole semiclassical picture developed here. However, two remarks are in order: 

(i) it is experimentally usually rather difficult to make a clear cut distinction between the function 
F(t) we obtained and, say, a Lorentzian shape. Therefore, the temperature dependence (through L,) 
of both the height and, more surprisingly, the width of the magnetization peak should be observable 
rather than the precise functional form of Eq. (6.28). 

The physical picture underlying these results is that at a given temperature, the cutoff length t, 
determines the length of the orbits providing the main contribution to the susceptibility. The smaller 
the temperature, the larger L, and the longer the contributing orbits. The typical areas enclosed 
by these orbits thus increase, making them more sensitive to the magnetic field and yielding a 
larger susceptibility at zero field and a smaller width since time reversal invariance is more rapidly 
destroyed. The precise temperature dependence of the height and the width (and their relationship, 
which might be useful when cL is unknown) is given by Eqs. (6.30) and (6.31). 

(ii)It should b e b orne in mind that Eq. (6.28) gives only the contribution of the diagonal part 
of y(I) but does not take into account the contribution of pairs of orbits which are not related b 3 
by time-reversal symmetry. Moreover, the statistical approach used implies that fairly long orbits 
are contributing to the susceptibility, which because of the exponential proliferation of such orbits 
should yield an increasing number of quasidegeneracies in their length. Therefore, to smooth out 
these nondiagonal term, one should a priori require that the smoothing is taken on a very large 
range of (&a). In practice however, and as will be discussed in more detail in [43], the smooth 
disorder characteristic of the GaAs/AlGaAs heterostructmes for which this kind of experiments are 
done will actually be responsible for the cancelation of the nondiagonal terms n’itlzotlt qfectirzg (for 
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small enough disorder) the contribution we have calculated. I4 The effects of nondiagonal terms 
should therefore be noticeably less important in actual systems that it might appear in a clean 
model. 

6.3. Integrable versus chaotic geometries 

The magnetic responses of chaotic and integrable systems have similarities and differences with 
respect to their treatment as well as to the resulting susceptibility. The most remarkable similarity is 
the paramagnetic character of the average susceptibility, while the magnitude of this response greatly 
differs for both types of geometries. Concerning their treatment the differences arise form the lack 
of structural stability of integrable systems under a perturbing magnetic field. Indeed, for nongeneric 
integrable systems such as the ring or circular billiards which remain integrable at all fields, the 
structure of the obtained equations are, except for the use of the Berry-Tabor trace formula instead 
of the Gutzwiller trace formula, the same as those for the chaotic systems. For generic integrable 
systems however, the breaking of invariant tori requires a more careful treatment yielding slightly 
less transparent, though essentially similar expressions. 

6.3.1. Paramagnetic character of the average susceptibility 
Because of this formal similarity, the qualitative behavior of the magnetic response is also quite 

the same for generic chaotic and integrable systems. The susceptibility of a single structure can be 
paramagnetic or diamagnetic and changes sign with a periodicity in k,a of the order of 27~. On 
the other hand, the average susceptibility for an ensemble of microstructure is, as expressed by 
Eqs. (6.17) and (6.23), paramagnetic at zero field independent of the kind of dynamics considered. 
Indeed Eq. (2.20~) states that dP2) is, up to a multiplicative factor, the variance of the (temperature 
smoothed) number of states for a given chemical potential p. In integrable and chaotic systems the 
basic mechanism involved is that the magnetic field reduces the degree of symmetry of the system, 
which as a general result lowers this variance. Therefore the dFc2) necessarily decreases when the 
magnetic field is applied and the average susceptibility is paramagnetic at zero field. 

There are some differences worth being considered. First, for chaotic systems the only symmetry 
existing at zero field is the time-reversal invariance, while for integrable systems the breaking of 
time-reversal invariance and the breaking of invariant tori together reduces the amplitude of No”(,). 
For chaotic systems the paramagnetic character of the ensemble susceptibility arises as naturally 
as the negative sign of the magnetoresistance in coherent microstructures. The situation is similar 
to a random matrix point of view, where the ensembles modeling the fluctuations of time-reversal 
invariant systems are known to be less rigid (in the sense that the fluctuation of the number of 
states in any given stretch of energy is larger) compared to the case where time-reversal invariance 
is broken. The transition from one symmetry class to the other can be understood by the intro- 
duction of generalized ensembles whose validity can be justified semiclassically [67]. It is however 

I4 Without entering into any details, the reason for this is the following. For smooth disorder, one should distinguish 
between an “elastic mean free path” 1, and a transport mean free path Ir which is much larger than 1. For small disorder, 
lr can be assumed infinite, but long orbits will usually be longer than 1. As a consequence, the action of each orbit is 
going to acquire a random phase from sample to sample, which is decorrelated for different orbits, but is the same for 
time-reversal symmetric orbits. Thus the diagonal contribution we have calculated will not be affected, but nondiagonal 
terms will be strongly suppressed. 
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important to recognize that even for the chaotic case we do not have the standard GOE-GUE tran- 
sition [22] since (2.20~) involves the integration over a large energy interval. We are therefore not 
in the universal, but in the “saturation” regime where (N”sc(E))2 is given by the shortest periodic 
orbits. 

Secondly, for chaotic systems and for temperatures sufficiently low that a large number of orbits 
contribute to the susceptibility, it is possible - similar as in the weak localization effect in electric 
transport [24] - to derive a universal shape of the magnetization peak. This is not possible for 
integrable systems, which do not naturally lend themselves to a statistical treatment. 

63.2. Typical magnitude of the magnetic susceptibility 
Even if there are some analogies between the magnetic response of chaotic and integrable systems 

(especially when the latter remain integrable at finite fields), the magnitude of the susceptibility 
exhibits significant differences. The contribution of an orbit to the Gutzwiller formula for two- 
dimensional systems is half an order in !i smaller than a term in the Berry-Tabor formula for 
the integrable case. More generally, in the case of f degrees of freedom, the Fz dependence of 
the Berry-Tabor formula is fi- (‘+f)/2 being the same as in the semiclassical Green function, The 
Gutzwiller formula is obtained by performing the trace integral of the Green function by stationary 
phase in f - 1 directions, each of which yielding a factor R ‘/2 This results in an entire fi-’ behavior . 

independent of f for a chaotic system. Important consequences therefore arise for the case of 
two-dimensional billiards of typical size a at temperatures such that only the first few shortest 
orbits are significantly contributing to the free energy, and gives rise to a different parametrical 
k,a characteristic of integrable and chaotic systems. The kFa behavior of the density of states and 
susceptibility for individual systems as well as ensemble averages is displayed in Table 1. While 
the magnetic response of chaotic systems results from isolated periodic orbits, it is the existence of 
families of flux enclosing orbits in quasi-integrable or partly integrable systems which is reflected 
in a parametrically different dependence of their magnetization and susceptibility on k,a (or v’?? in 
terms of the number of electrons). The difference is especially drastic for ensemble averages where 
we expect a k,a independent response jj for a chaotic system while the averaged susceptibility 
for integrable systems, e.g. the ensemble of square potential wells in the experiment discussed in 
Section 5, increases linearly in kFa. Under the conditions of that measurement [25] the enhancement 
should be of the order of 100 compared to an ensemble of chaotic quantum dots. We therefore 
suggested [57] to use the different parametrical behavior of the magnetic response as a tool in order 
to unambiguously distinguish (experimentally) chaotic and integrable dynamics in quantum dots. We 
stress that this criterion is not based on the long-time behavior of the chaotic dynamics but on short 
time properties, namely the existence of families of orbits contributing in phase to the trace of the 
Green function of integrable systems. 

7. Non-perturbative fields: bouncing-ball- and de Haas-van Alphen-oscillations 

Up to now we have essentially focused on mesoscopic effects in the weak magnetic field regime 
where the classical cyclotron radius r, is large compared to the typical size a of the system, i.e. 

rJa = cfik/eHa% 1 . (7.1) 
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Table 1 
(k~a) dependence of the oscillating part of the density of states and of the magnetic response depending on the absence 
(chaotic case) or the presence (regular case) of continuous families of periodic orbits for two-dimensional billiard-like 
microstructures. (b = (g,mA)/(2&) IS independent of the nature of the dynamics) 

DoSC(E)/D i?lXl 

Chaotic 

Regular 
&a)_ 

(ha)- 
1.2 

(kra) 

(ha) 
3.2 

(kra )’ 

&a) 

Then, electron trajectories can be considered as straight lines between bounces and the dominant 
effect of the magnetic field enters as a semiclassical phase in terms of the enclosed flux. Nevertheless, 
as shown in Fig. 1 in the introduction (for the case of a square) the low-field oscillations of x are 
accurately described by classical perturbation theory in terms of the family (11) of unperturbed orbits 
(left inset in Fig. l(b)). They persist up to field strengths 40 z 10 which is by orders of magnitude 
larger than the typical flux scale which describes the breakdown of first-order quantum perturbation 
theory, i.e. magnetic fluxes where the first avoided level crossings appear. Due to condition (7.1) the 
relevant classical “small” parameter is H/k,. The semiclassical “weak-field” regime increases with 
increasing Fermi energy. 

In this section we will go beyond this (classically) perturbative regime and discuss microstructures 
under larger fields, where the magnetic response reflects the interplay between the scale of the 
confining energy and the scale of the magnetic field energy fico, on the quantum level. Classically, 
nonperturbative fields affect the motion not only through a change of the actions (by means of 
the enclosed flux), but additionally due to the bending of the trajectories. A priori, the semiclassical 
approach we used for weak magnetic fields applies also to this case without any difference: Oscillating 
components of the single-particle density of states can be related to periodic (or nearly periodic) 
orbits by taking the trace of the semiclassical Green function. The magnetic response is then obtained 
from integration over the energy and taking the derivatives with respect to the magnetic field. These 
operations correspond to the multiplication by the inverse of the period of the orbit, by the damping 
factor RT and by the area enclosed by the orbit. Three field regimes (weak (a <rc), intermediate 
(a E r,), and high (a > 27,) fields) can be clearly distinguished as is illustrated in Fig. l(b) 
for the square geometry. The distinction of the three regimes appears not because they deserve a 
fundamentally different semiclassical treatment, but simply because of some salient features of the 
classical dynamics associated to each of these regimes. 

In the high-field regime, most of the orbits simply follow a cyclotron motion. In that case, the 
system behaves essentially as an infinite system, and one recovers the well known de Haas-van 
Alphen oscillations for x (l) We shall moreover see below that within our semiclassical approach, . 

the destruction of some of the cyclotronic orbits due to reflections at the boundaries can be taken 
into account, allowing to handle correctly the cross-over regime where a 2 2r, but r, is not yet 
negligible with respect to a. 

While the high-field (a BY,) classical dynamics is generally (quasi-) integrable the dynamics in the 
intermediate-field regime is always mixed (in the sense that chaotic and regular motion coexists in 
phase space) except for particular cases of systems with rotational symmetry which remain integrable 
independent of the magnetic field. In contrast to that, systems in the small field regime can exhibit 
any degree of chaoticity in the zero field limit. Indeed, there is a large variety of geometries for 
which the motion of the electrons in the absence of a magnetic field is either integrable, or completely 
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chaotic. Therefore, increasing the field starting from an integrable (respectively chaotic) configuration 
at H = 0, the intermediate-field regime will be characterized by an increase (respectively a decrease) 
of the degree of chaos of the classical dynamics, which will noticeably affect the magnetic response 
of the system. However, if the zero-field configuration already shows a mixed dynamics (which is 
generically the case), the only noticeable difference between the weak and intermediate field regime 
will consist in the complete lost of time-reversal symmetry and naturally its consequences on x(2’ 
as discussed in Section 6. 

In addition, for some particular geometries, namely those for which the boundary contains some 
pieces of parallel straight lines, the intermediate field susceptibility will be characterized by the 
dominating influence of bouncing-ball orbits, periodic electron motion due to reflection between 
opposite boundaries. Fig. l(b) depicts a whole scan of the magnetic susceptibility of a square from 
zero flux up to flux cp = 55 (3v, M a). We can see there, and we will discuss in detail below, that 
there are - besides the small-field oscillations due to orbits (11) - two well separated regimes of 
susceptibility oscillations: The intermediate field regime (2r, > a) reflects quantized bouncing-ball 

periodic orbits (second inset) and the oscillations in the strong field regime (2r, < a) which, as 
mentioned above, are related to cyclotron orbits (right inset). Although the results to be reported are 
of quite general nature we will discuss them quantitatively for the case of square microstructures. 
We study individual squares and perform our analysis within the grand canonical formalism. 

7.1. Intermediate jields: Bouncing-ball magnetism 

The full line in Fig. 13(a) shows the quantum mechanically calculated (see Section 5.4) grand 
canonical susceptibility for small and intermediate fluxes at a Fermi energy corresponding to -2100 
enclosed electrons in a square at a temperature such that k,T/A = 8. The semiclassical result jr!; I, 
from the family ( 11) (Eq. (5.18)) shown as the dashed-dotted line (with negative offset) in Fig. 13(a) 
exhibits the onset of deviations from the quantum result with respect to phase and amplitude starting 

at 40 = 8 (rC z 2a) indicating the breakdown of the family (11) of straight line orbits. With 
increasing flux we enter into a regime where the nonintegrability of the system manifests itself in 
a complex structured energy level diagram (see Fig. l(a)) on the quantum level and in a mixed 
classical phase space [73] of co-existing regular and chaotic motion. However, besides the variety of 
isolated stable and unstable periodic orbits there remains a family of orbits with specular reflections 
only on opposite sides of the square. We will denote these periodic orbits shown in Fig. 14 which are 
known as “bouncing-ball” orbits in billiards without magnetic field by (M,, 0) and (O,M,.) according 
to the labeling introduced in Section 5.1. (MX and MY are the number of bounces at the bottom and 
left side of the square.) These orbits form families which can be parameterized, e.g. for the case 
(M,, 0) in terms of the point of reflection x0 at the bottom of the square. We thus expect - as in the 
case of the families (M,,M,) in Section 5 - in the semiclassical limit a parametrical dependence on 
kFa of the related susceptibilities which should strongly dominate the contributions of the co-existing 
isolated periodic orbits. 

We present our semiclassical calculation of the susceptibility contribution related to bouncing-ball 
orbits for the primitive periodic orbits, i.e. (M,, 0) = (1,0) and generalize our results at the end to the 
case of arbitrary repetitions. We proceed as in Section 5 for the derivation of xi:‘. However, while 
those calculations were performed in the limit of a small magnetic field (assuming H-independent 
classical amplitudes and shapes of the trajectories (11)) we now have to consider explicitly the field 
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Fig. 13. Grand-canonical susceptibility of a square potential well as a function of magnetic flux cp = Ha2/&. The full lines 
always denote the quantum mechanical results. Panel (a): X/XL calculated at a Fermi energy of 2140 enclosed electrons 
at a temperature kT/A = 8. Dashed (dotted) line: Semiclassical result due to bouncing-ball orbits from Eq. (7.11) with 
action Sro according to the exact expression of Eq. (7.3), (quadratic approximation Eq. (7.12)). Dashed-dotted line: 
Susceptibility contribution from family ( 11) from Eq. (5.18) with offset of -80 for reasons of representation. (b) Dashed 
line: Semiclassical contribution (Eq. (7.13)) f rom bouncing-ball orbits for 1440 electrons and kT/A = 7. The lower value 
of kF makes it necessary to describe the actions by Eq. (7.3). ( c same as in (b) but for a low temperature kT,lA = 2 for ) 
which repetitions are important and the use of Eq. (7.13) is necessary to approach the quantum results. 

dependence of the classical motion. The contribution to the diagonal part of the Green function of 
a recurring path starting at a point q on a bouncing-ball orbit reads 

(7.2) 

Simple geometry yields for its length, enclosed area, and action 

24 
I+)(H) = -. 

sin [’ 
A,,(H) = -(2[ - sin 2[)r,2; (7.3) 

where c, the angle between the tangent to a bouncing-ball trajectory at the point of reflection and 
the normal to the side, is given by (see Fig. 14) 

sin < = a/2rc . (7.4) 
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Fig. 14. Schematic representation of a typical flux-enclosing bouncing-ball orbit with cyclotron radius vC. The dashed lines 
denote the limits of the H-dependent range of bouncing-ball orbits. 

The Maslov index ~~0 is four and will be therefore omitted from now on. 
As in Section 5, we will use as configuration space coordinates the couple 4 = (,Q,s), where x0 

labels the abscissa of the last intersection of the trajectory with the lower side of the square (see 
Fig. 14) and s is the distance along the trajectory. This choice has the advantage that DlO(xO,s) is 
constant, and therefore taking the trace of the Green function merely amounts to a multiplication 
by the size of the integration domain. As discussed in more detail in Appendix D, the semiclassical 
amplitude III0 is given by [21] 

where (~0, P.~,, > --f (x6, p,;,) is the Poincare map between two successive reflections on the 

of the billiard. Noting u,,, = ( pI, - eA,y/c)/(hk) (u,, is the projection of the unit vector 
the initial velocity on the x axis) one obtains from simple geometrical considerations 

Pi,, = P-r,, 

x;==xg+23., 

For the periodic orbits, xb = x0 implies that u,, = uJ2v, = sin [, and therefore 

(7.5) 

lower side 
parallel to 

(7.6) 

(7.7) 

which reduces to Eq. (5.4) in the limit H = 0 ([ = 0). For the contribution of the whole family 
(1,O) we must perform the trace integral Eq. (5.1). The integral over s gives as usual a multiplication 
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by the period 

of the orbit. Moreover, since neither the actions SlO, nor the amplitude D10 depend on x0, the x0- 
component of the trace integral simply yields a length factor 

i(H)=a(l-tan:) (7.8) 

(see Fig. 14) which describes the magnetic field dependent effective range for the lower reflection 
points of bouncing-ball trajectories (1,O). I(H) vanishes for magnetic fields corresponding to 2r, = a. 
We therefore obtain for the bouncing-ball contribution d 1o = -(g,/n)Im~,o to the density of states 

2% 
d,o(KH) = -(2nfi)3/2 W)Loh sin (7.9) 

In order to compute the contribution xl:’ to the (grand canonical) susceptibility we first have to 

calculate dF,‘A’ by performing the energy integral Eq. (2.15c), and then to take twice the derivative 
with respect to the magnetic field. In a leading h calculation, integrals and derivative should again 
be applied only on the rapidly oscillating part of d 1o. Noting moreover that Eq. (4.7) is not restricted 
to perturbation around H = 0, i.e. that at any field 

we therefore obtain in the same way as we did for Eq. (6.2 1) 

(7.10) 

Inserting the expressions Eqs. (7.3), (7.8) and (7.7) into Eqs. (7.9) and (7.10), we finally have xii’ 
explicitly in terms of c as 

(1) 
Xl0 -(sin [ + cos c - 1) (21 - sin(25))2 
-= 

XL sin4 5 
(7.11) 

The entire bouncing-ball susceptibility (xi:’ + xh:‘)/xL = 2xib’/~r according to Eq. (7.11) is shown 
in Fig. 13(a) as the dashed line. At fluxes up to 40 M 15 it just explains the low frequency shift 
in the oscillations of the quantum result indicating that the overall small field susceptibility is well 
approximated by ~1 I + xl0 + xol. For fluxes between cp z 15 (rC = 1.2a) up to cp z 37 (the limit 
where r, = a/2, i.e. the last bouncing-ball orbits vanish) the magnetic response is entirely governed 
by bouncing-ball periodic motion and the agreement between the semiclassical prediction and the 
full quantum result is excellent. 
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The flux dependence of the actions Slo (see Eq. (7.3)) is rather complicated. However, an expan- 
sion for a/rc = 2nq/(k,a) Q 1 yields a quadratic dependence on cp 

(7.12) 

The susceptibility from Eq. (7.1 I ) with S,,, according to Eq. (7.12) is shown as dotted curve in 

Fig. 13(a). It agrees well at moderate fields and runs out of phase at a flux corresponding to 

alrC > 1. While the period of the j! , , small field oscillations is nearly constant with respect to cp 
we find a quadratic 40 characteristic for the oscillations in the intermediate regime which turns nto 
a l/q behavior in the strong field regime (see next subsection). 

To show that the agreement between the semiclassical (dashed) curve and the quantum result is 
not an artefact of the particular number of electrons chosen, Fig. 13(b) depicts semiclassical and 
quantum bouncing-ball oscillations for kBT,A = 7 and at a different Fermi energy corresponding to 
-1400 electrons. With decreasing Fermi energy the upper limit rc = a/2 (or kFa/(2nq) = i) of the 
bouncing-ball oscillations is shifted towards smaller fluxes (q z 30 in Fig. 13(b)) and the number of 
oscillations shrinks. The oscillations for ~0 > 30 belong already to the strong field regime discussed 
in the next subsection. 

Up to now we discussed the magnetic response of the family of primitive orbits ( 1 ,O) and (0,l) 
which completely describes the intermediate-field regime at rather high temperatures corresponding 
to a temperature cutoff length in the order of the system size. At low temperatures we have to include 
contributions from higher repetitions (r, 0), (0, r) along bouncing-ball paths. LrO and ArO have a linear 
r-dependence, and from the Poincare map Eq. (7.6), one obtains that II,.,, = r-‘,‘*Dlo. Therefore 

= &(kpa)3’2 
m(sin [ + cos [ - 1) (2[ - sin(2[))2 

i sin4 c 
(7.13) 

Fig. 13(c) shows the susceptibility at the same Fermi energy as in Fig. 13(b) but at a significantly 
lower temperature kgT/A = 2. The bouncing-ball peaks are much higher and new peaks related to 
long periodic orbits differing from the bouncing-ball ones appear. However, the bouncing-ball peak 
heights and even their shape (which is no longer sinusoidal and symmetrical with respect to ): = 0) 
is well reproduced by the analytical sum Eq. (7.13) showing the correct temperature characteristic 
of the semiclassical theory. 

The kFa behavior of the bouncing-ball susceptibility at a fixed flux is not as simple as in the case 
of the weak-field oscillations (where xir,’ - (kFa)3/2) since the angle 5 occurring in the prefactor in 
Eq. (7.11) depends on kFa and the action is nonlinear in k,a. Nevertheless, the overall oscillatory 
behavior is similar as for example in Fig. 8(a). However, at a given nonzero magnetic field the 
classically relevant parameter Eq. (7.1) changes with energy. Therefore, by increasing the Fermi 
energy beginning at the ground state one generally passes from the strong field regime (at small 
energies or high field strengths, see next section) to the bouncing-ball regime and will finally reach 
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Fig. 15. De Haas-van Alphen like oscillations of the susceptibility of a square at magnetic fluxes corresponding to r, < a/2 

for 2140 electrons at kT,/A = 8. Full line: quantum calculations; dashed line: analytical semiclassical result from cyclotron 
orbits according to Eq. (7.19). 

the regime of oscillations related to the family (11). A unique behavior of periodic orbit oscillations 
is only expected by changing magnetic field and Fermi energy simultaneously in order to keep 
the classical parameter Eq. (7.1) which determines the classical phase space of the microstructure 
constant. Such a technique is known as scaled energy spectroscopy in the context of atomic spectra 

[741. 
Bouncing-ball oscillations are expected to exist in general in microstructures with parts of their 

opposite boundaries being parallel and in spherical symmetrical microstructures as the disk discussed 
in Section 4. (In the latter case the oscillations should be even stronger than in the square since the 
effective length Z(H) (Eq. (7.8)) is not reduced with increasing magnetic field.) An investigation of 
rectangular billiards for instance shows a splitting of the frequencies of oscillations related to orbits 
(MX, 0) and (O,M,.) due to the different lengths of the orbits in x and y direction. 

7.2. Strong field regime 

At large magnetic field strengths or small energy the spectrum of a square potential well exhibits 
the Landau fan corresponding to bulk-like Landau states being almost unaffected by the system 
boundaries, while surface affected states fill the gaps between the Landau levels and condensate 
successively into the Landau channels with increasing magnetic field (see, e.g., Fig. l(a)). This 
spectral characteristic corresponds to susceptibility oscillations which emerge with increasing am- 
plitude for fluxes corresponding to r, < a/2, for instance for q > 40 in Fig. l(b). They are 
shown in more detail in Fig. 15 where the full line depicts the numerical quantum result. These 
susceptibility oscillations exhibit the same period N l/H as de Haas-van Alphen bulk oscillations 
but differ in amplitude, because here the cyclotron radius is not negligible compared to the system 
size. 

For the bulk or in the extreme high field regime r, 4a, where quantum mechanically the influence 
of the boundaries of the microstructure on the position of the quantum levels can be neglected, 
an expression for the susceptibility is most easily obtained by Poisson summation of the quantum 
density of states as was briefly sketched in the introduction following standard textbooks [2]. One 
then obtains the bulk magnetism as given by Eq. (1.11). It may be interesting to note however that 
a semiclassical interpretation of this equation follows naturally from an analysis similar to the one 
we followed throughout this paper. In this case only one type of primitive periodic orbits exists, the 
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cyclotron orbits with length, enclosed area, and action given by 

L,(H) = 27cr,; (7.14) 

Moreover, the trajectory passes through a focal point after each half traversal along the cyclotron 
orbit. Therefore, using qn = 2n for the Maslov indices and omitting the Weyl part of G, one obtains 
from Eq. (5.2) a semiclassical expression for the diagonal part of the Green function 

(7.15) 

in which the main structure of Eq. (1.11) is already apparent. A direct evaluation of the amplitude 
D, in configuration space is however complicated here by the fact that all trajectories starting at 
some point Y refocus precisely at Y (focal point). Therefore, an expression like Eq. (7.5) for D,, 
is divergent and cannot be used. A method to overcome this problem by working with a Green 
function 6(x, y; pi, y’) in momentum representation for the x’ direction instead of G(x, y; x’, y’) is 
described in Appendix E. It yields (see Eq. (E12)) 

D,/ihvb% = m/if? . (7.16) 

Inserting this expression in Eq. (7.15) we obtain the oscillating part of density of states 

d”““(E; H) = c d,(E,H) = g X(-l)” cos(nnkr,) ) 
n n 

from which the de Haas-van Alphen susceptibility Eq. (1.11) is obtained by using 

x (‘1 - l ?!f 2p,,(i”,H)R,(nL,). - 2 cz() ,I ( > 

(7.17) 

(7.18) 

(with z. = Lo/t+) which applies for the same reasons as Eq. (7.10). 
For an infinite system, this direct semiclassical approach to the susceptibility therefore yields the 

same result as the Poisson summation. For billiard systems, it allows moreover to take correctly into 
account the fact that the trajectories too close to the boundary do not follow a cyclotron motion. 
Indeed, as seen in Appendix E, the contribution of cyclotron orbits to the susceptibility Eq. (1 .l 1) 
has to be modified when r, is not negligible compared to a by the introduction of a multiplicative 
factor s(H). It accounts for the effect that the family of periodic cyclotron orbits (not affected by 
the boundaries) which can be parameterized by the positions of the orbit centers is diminished with 
decreasing field since the minimal distance between orbit center and boundary must be at least v,.. 
One therefore obtains for a billiard-like quantum dot 

X 
GC 

cyc- 
- -6$(H) (kFrc)2 F (-1)” RT(27cnrC) cos (mckg,) , (7.19) 

XL n=l 

where s(H) is given by Eq. (El 5). In the case of the square we find for the area reduction factor 

s(H)= (l-2;): @(I -23 ) (7.20) 
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0 being the Heavyside step function. The last cyclotron orbit disappears at a field where r, = a/2, 
i.e. s(q) = 0 which happens near q z 38 in Fig. 15. There the dashed line showing the semiclassical 
expression (7.19) is in good agreement with our numerical results and reproduces the decrease in the 
amplitudes of the de Haas-van Alphen oscillations when approaching cp(vc = a/2) from the strong 
field limit. This behavior is specific for quantum dots and does not occur in the two-dimensional 
bulk. Corresponding bulk de Haas-van Alphen oscillations under the same conditions as for the 
curves in Fig. 15 have (nearly constant) amplitudes in the order of x/xi_ = 3000. 

The semiclassical curve which only reflects the contribution from unperturbed cyclotron orbits 
agrees with the numerical curve (representing the complete system) even in spectral regions which 
show a complex variety of levels between the Landau manifolds (see Fig. 1). Due to temperature 
cutoff and since angular momentum is not conserved in the square the corresponding edge or whis- 
pering gallery orbits are mostly chaotic and do not show up in the magnetic response. The strong 
de Haas-van Alphen-like oscillations manifest the dominant influence of the family of cyclotron 
orbits. In related work on the magnetization of a (angular momentum conserving) circular disk in 
the quantum Hall effect regime Sivan and Imry [46] observed additional high frequency oscillations 
related to whispering gallery orbits superimposed on the de Haas-van Alphen oscillations. 

8. Conclusion 

In this work we have studied orbital magnetism and persistent currents of small mesoscopic 
samples in the ballistic regime. Within a model of noninteracting electrons we have provided a com- 
prehensive semiclassical description of these phenomena based on the semiclassical trace formalism 
initiated by Gutzwiller, Balian, and Bloch. We have moreover treated in detail a few examples of 
experimental relevance such as the square, circle and ring geometries. 

The global picture that emerges from our study can be summarized as follows. The magnetic 
response is obtained from the variation of the thermodynamic potential (or the free energy) under 
an applied magnetic field and therefore, in a noninteracting model, from the knowledge of the 
single-particle density of states. The semiclassical formalism naturally leads to a separate treatment 
of the smooth (in energy) component of the density of states (or its integrated versions) and of its 
rapidly oscillating part. The former is related to the local properties of the energy manifold, while 
the latter is associated with the dynamical properties of the system, more precisely to its periodic 
(or nearly periodic) orbits. For the smooth component we have shown that, despite the leading 
(Weyl) term in an h expansion is independent of the field, higher-order terms can be computed 
and give rise to the standard Landau diamagnetism for any confined electron system at arbitrary 
magnetic fields. In the high-temperature regime, where the rapidly oscillating component of the 
density of states is suppressed by the rounding of the Fermi surface, the magnetic response reduces 
to the Landau diamagnetism. On the other hand, for the temperatures of experimental relevance 
the contribution coming from the oscillating part of the density of states is much larger than the 
Landau term and dominates the magnetic response. Similarly to the case of diffusive systems, the 
susceptibility of a ballistic sample in contact with a particle reservoir with chemical potential p 
can be paramagnetic or diamagnetic (depending on p) with equal probability. The fact that the 
samples are isolated (with respect to electron transfer) forces us to work in the canonical ensemble. 
Because of the breaking of time-reversal invariance occurring when the field is turned on, this results, 
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for essentially the same reason as in the diffusive regime, in a small paramagnetic asymmetry for 
the probability distribution of the susceptibility of a given sample. For generic integrable systems, 
this effect is reinforced by the breaking of invariant tori, which acts concurrently with the lost 
of time-reversal invariance. The asymmetry disappears for a flux A@ inside the system which is 
of the order of the quantum flux GO at a temperature selecting only the first few shortest orbits 
contributions, but may be smaller for lower temperature. Measuring the magnetic response of an 
ensemble of structures with a large dispersion in the size or the number of electrons magnifies this 
asymmetry and yields a total response (per structure) which is paramagnetic and much smaller than 
the typical susceptibility for a flux smaller than A@, and zero for larger flux. For ensembles with 
only microscopic differences between the individual structures (i.e. d(k,a) > 2n, but still Au/a << 1 
and AN/N 4 1) further oscillating patterns in the average susceptibility should be observed for larger 
fields. 

Since the oscillating part of the density of states is semiclassically related to the classical periodic 
orbits, the nature of the classical dynamics quite naturally plays a major role in the determination of 
the amplitude of the magnetic response. Indeed, for a system in which continuous families of peri- 
odic orbits are present, these orbits contribute in phase to the density of states, yielding much larger 
fluctuations of the density of states than for systems possessing only isolated orbits, and therefore 
much larger magnetic response. Families of periodic orbits are characteristic for integrable systems, 
while for chaotic systems the periodic orbits are usually isolated. This different behavior can there- 
fore be referred to as the hallmark for the distinction between integrable and chaotic systems. It 
should be borne in mind however that this difference is due to short-time properties, namely the 
existence or absence of families of orbits, rather than to long-time properties such as exponential 
divergence of orbits. In this respect, some atypical chaotic systems, such as the Sinai billiard for 
instance, may show a magnetic response typical for an integrable system because of the existence 
of marginally stable families of orbits. 

The importance of classical mechanics can be illustrated in the (experimentally relevant) case 
of two-dimensional billiard-like quantum dots in the weak-field regime. If the system is chaotic, 
more precisely if the periodic trajectories are isolated, the typical susceptibility scales as (kFa)xL, 

where kF is the Fermi wave number and a the typical size of the dot. By comparison, the typ- 
ical susceptibility of an integrable system scales with (kFa)3/2xL. This characteristic behavior of 
integrable systems is found in the generic case (like the square) where the magnetic field breaks 
the integrability as well as in the nongeneric case (like the disk) where the system remains inte- 
grable at finite fields. The difference due to the nature of the classical mechanics is even stronger 
for measurements on ensembles of structures since one obtains a (kFa)XL dependence for inte- 
grable systems and no dependence on (k,a) for the chaotic ones. The same parametric dependences 
are obtained for the persistent currents in integrable and chaotic multiply connected geometries. 
Therefore, the nature of the dynamics yields an order of magnitude difference in the magnetic 
response of integrable and chaotic systems, which should be easy to observe experimentally (es- 
pecially for ensemble measurements). Finally, for systems with mixed dynamics, for which the 
phase space is characterized by the coexistence of regular and chaotic motion, the magnetic re- 
sponse should be dominated by the nearly integrable regions of phase space. This gives rise to 
a (kFa)3/2xL dependence for the typical susceptibility as long as some families of periodic or- 
bits remain sufficiently unperturbed. The precise calculation of the prefactor may however present 
some complications that we have not considered here (the general semiclassical treatment of mixed 
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systems remains an open problem) and should depend on the fraction of phase space being 

integrable. 
The semiclassical approach we are using not only allows a global understanding of the magnetic 

response of ballistic devices, but also provides precise predictions when specific systems are consid- 
ered. The detailed comparison between exact quantum calculations and semiclassical results for the 
square geometry demonstrates indeed that the semiclassical predictions are extremely accurate. This 
has been shown in Section 5 for weak fields, such that the trajectories are essentially unaffected by 
the magnetic field, and also in Section 7 for fields large enough to yield a cyclotron radius of the 
order of the typical size of the structure (where the bending of the classical trajectories has to be 
taken into account). For intermediate fields we have identified a new regime where the magnetic 
susceptibility is dominated by bouncing-ball trajectories that alternate between opposite sides of the 
structure (enclosing flux due to their bending). For high fields the electrons move on cyclotron 
orbits and we have recovered the de Haas-van Alphen oscillations (with finite-size corrections that 
we calculated semiclassically). 

In order to understand the success of the semiclassical approach, it should be kept in mind that 
the lack of translational invariance characteristic for the ballistic regime, where the shape of the 
device plays an important role, complicates the application of other approximation schemes as e.g. 
diagrammatic expansions. Therefore, except for very specific cases where exact quantum calcula- 
tions are possible, and unless one is satisfied by direct numerical calculations, some semiclassical 
ideas have to be implemented to deal with such problems. Moreover, from a more practical point 
of view, the semiclassical trace formalism we have used appears perfectly adapted to deal with 
thermodynamic quantities such as the grand potential G?(p) or its first and second derivatives N(p) 
and D(p). Indeed, the beauty of this approach is that the oscillating part of the density of states is 
directly expressed in terms of Fourier-like components, each of which is associated with a periodic 
(or nearly periodic) orbit. The thermodynamic properties are obtained from their purely quanta1 (or 
zero temperature) analogs o, n and d by temperature smoothing, which merely amounts to mul- 
tiply each oscillating component by a temperature-dependent damping factor. For all fields (high, 
intermediate, or weak), this factor depends only on the ratio of the period z of the corresponding 
orbit and the temperature-dependent cutoff time z, = flfi/n and suppresses exponentially the contri- 
bution of orbits with period longer than 7,. As a consequence, not only the effect of temperature 
is taken into account in an intuitive transparent way, but in addition only the shortest periodic 
orbits have to be considered in the semiclassical expansion. All the problems concerning the con- 
vergence of trace formulae and the validity of semiclassical propagation of the wave function for 
very long times are of no importance here. One therefore avoids most of the problems which plague 
the field of quantum chaos when semiclassical trace formulae are used to resolve the spectrum on 
a mean-spacing scale. Mesoscopic physics is usually concerned with the properties of the spec- 
trum on an energy scale large compared to the mean spacing. In the spirit of the work of Balian 
and Bloch [54], this is the situation for which the semiclassical trace formalism is especially 
appropriate. 

Having stressed the success of the semiclassical approach in dealing with our model of nonin- 
teracting electrons evolving in a clean medium, it is worthwhile to consider in more detail how 
the above picture should be modified when going closer to the real world, and incorporating the 
effects of residual disorder, electron-electron or electron-phonon interactions. As stressed in the in- 
troduction, the first of these points is relatively harmless because of finite temperature smoothing. 
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The restriction to short periodic orbits actually justifies an approach to the ballistic regime using a 
model for clean systems since long diffusive trajectories do not contribute to the finite-temperature 
susceptibility. Indeed, careful numerical and semiclassical studies of the effect of small residual 
disorder [43] show that, except for a possible reduction of the magnetic response, the above de- 
scription of the orbital magnetism of ballistic systems remains essentially unaltered. In particular, 
the mechanism proposed by Gefen et al. [60] is not borne out by the numerical simulations at the 
temperatures of experimental relevance. For smooth disorder, such as presumably prevails in the 
systems of Refs. [25, 261, the magnetic response is decreased by the dephasing of nearby trajec- 
tories in a way that depends on its strength and the ratio between the correlation length and the 
size of the structure [43], but diffusive trajectories can be seen to be absolutely irrelevant if the 
elastic mean free path is larger than the size of the structure. The precise knowledge of this re- 
duction is however needed in order to make a decisive comparison with the experimental results of 
Ref. [25]. 

At the low temperatures of the experiments the inelastic mean free path of the electrons is much 
larger than the system size since electron-phonon interactions are suppressed. On the other hand, 
the effect of electron-electron interactions on the magnetic response is a much more controversial 
point. In particular, it has been invoked to be the necessary mechanism to obtain the measured 
values [75] for the problem of persistent currents in disorder metals. In a first approximation to 
the experimental conditions that we investigated in this work we would infer that electron-electron 
interactions are not crucial since the screening length is much smaller than the size of the samples 
and since the 2-d renormalization of the effective mass at these electron densities is only about 11% 
[76]. Clearly the two previous criteria will not be satisfied in smaller structures, and the possibility 
that electron-electron interactions express themselves through a mechanism for which these estimates 
are not relevant remains open even in the experimental realizations we consider. 

Contrarily to the effect of disorder, which can be implemented within a semiclassical framework 
without essential difficulties, a semiclassical treatment of the electron-electron interaction still remains 
an open problem. However, the genuine effects that we have found within our semiclassical approach 
for the clean model of noninteracting electrons should prevail in more sophisticated theories. We 
think that the rich variety of possible experimental configurations for ballistic devices (the shape and 
the size can nowadays be chosen at will) provides an ideal testing ground for these more complete 
approaches. We hope that the work presented here will stimulate experimental and theoretical activity 
addressing the magnetic response of ballistic microstructures. 
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Appendix A. Convolution of a rapidly oscillating function with the derivative 
of the Fermi function 

When considering thermodynamic quantities related to the oscillating part of the density of states 
at finite temperature T, one has to evaluate integrals of the form 

I(T)= m J 0 
(Al > 

where f’(E - p) is the derivative of the 

f(E - p) = Ml + exp PC - ~11 , 

and fi = I/kBT. The rapidly oscillating 

Fermi function 

function A(E) exp [(i/h)S(E)] usually originates from the 

contribution of a classical orbit (or a family of orbits) to the oscillating part of the density of states. 
In this case S(E) is the action integral along the orbit, and its derivative dS/dE G T(E) is the period 
of the orbit. 

At zero temperature ,f’ = -6(E - p) giving for lo E I(T==O) 

(A21 

In this appendix we show that, to leading order in h and in fi-’ (but without making any assumption 
concerning their relative value), the integral of Eq. (Al) is given by 

with 

l(T) = IORT(T> 

the temperature dependence 

(A31 

Rr(r) = 
a )/G 

smh(r(p)/z,) 
zJ!! 
’ rc ’ 

(A4) 

For systems without potential, i.e. free particles confined in a box (billiards), the period of the 
trajectory is related to its length L by Z(U) = L/Q, where ur = iikF/m is the Fermi velocity. RT can 
then be written as 

RT(L> = 
L/L 

sinh(L/L,)’ 
L _ nvFb 

’ TC . 
(A51 

In the case of unconfined free particles, the formulae (A4) and (A5) are equivalent to the usual 
form of the temperature dependence of the de Haas-van Alphen effect Eq. (1.10) given in the 
introduction. Below we present a slight variation of a standard calculation (see e.g. [2]) of the 
temperature dependence of the de Haas-van Alphen effect, which generalizes it to any type of 
dynamics, once we caste it in the form of Eq. (A4). 

Performing the integral (Al) along the contour shown in Fig. 16 and noting that the singularities 
of the derivative of the Fermi function are double poles located at Ek = ,u + i(2k + 1 )rc/p (k = 0, 
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fl, 4~2,. . .) with a coefficient l//I, one finds the following relation 

J’X dEA(E) exp [(i/h)S(E)] f’(E - p) - /I”“‘” dEA(E) exp [(i/h)S(E)] f’(E - ,u) 
0 O+i?n;/i 

. . 

=- ‘;; FA(E, ) exp [( i/h)S(E, )] . (A61 

At low temperatures, the function f’(E - p) is essentially zero everywhere in the complex plane, 
except for a narrow band of width fi-’ near the line Re(E) = ,u, therefore the vertical portions of the 
contour (E = 0 and E 9 p) give negligible contributions. Noticing that f’(E - ,u) has a periodicity 
of 2i7c/b we can ignore the complex part of E in the factor f’ of the second integral. Finally, since 
Im(Ei) = n/P and Im(E) = 2rc//3 along the upper portion, we can evaluate the prefactors at ,LL and 
expand the actions (which are multiplied by l/h) as S(E) = S(,u) + z(p)(E - ,u) in leading order in 
p-’ and h, obtaining 

1(7)(1-exp[-y]) =-yA(p)exp[iS(p)-y] 

That is, 

I(T) (1 -exp [--?I) =Syexp [-?I , 

from which one readily obtains the result of Eq. (A3). 

A. 1. Further comments 

We would like to use the above calculation to motivate some choices made in Section 2 which 
might have appeared rather arbitrary. Concerning for instance the grand potential Q(p) two equivalent 
expressions have been introduced: The usual Eq. (1.3) and Eq. (2.6~) which is obtained from 
integration by parts. On the other hand, we have used only 

Oc, pyp> = - s dE aYSC(E) f’(E - /_i) 
0 

(A7) 

as the “operational” definition of the oscillating part L?““’ of Q, and one might wonder whether an 

integral analogue to the one of Eq. (1.3) like 

- 
J 

P”‘(E)f’-“(E - p)dE : (A81 

(where f(-‘)(E - p) = In (1 + exp [fl(p-E)])/fl is the primitive of the Fermi function) could not 
be used as well. This is not the case for the two following reasons: 

(i) First, the oscillating functions d”“” or coosc are usually obtained in a semiclassical approach 
and are therefore valid only for large energies. If the chemical potential ,U is in the semiclassical 
regime and 8-l +p, which is always the case for the problems we consider, only the neighborhood 
of p in which oosc can be used safely, contributes significantly to the integrals of Eq. (A7). On the 
contrary, the integral (A8) involves energies close to zero. Therefore there is no reason that d”“’ is 
accurate, being quite often a diverging function. 
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Fig. 16. Contour of integration in the complex energy plane used to evaluate the integral Eq. (Al). The derivative /“‘(E-p) 
of the Fermi function has a periodicity of 2i7c//I and double poles located at En = p + i(2n + l)n/fi (n being a positive 
or negative integer). Moreover, at low temperature, f’(E - ,u) is essentially zero except for a narrow band of width BP’ 
near the line Re(E) = p. With this contour of integration, the integrand of Eq. (Al) has to be evaluated only in the small 
domain [,u - fl-‘,p + p-‘1 x [0,2i7rflP’] w h ere a linearized approximation of the action is accurate. 

(ii) In addition, even if one has at hand an equation as (1.6) which is a non-semiclassically exact 
expression, the integrals of Eqs. (A7) and (A8) are, strictly speaking, not equivalent. The latter form 
contains some boundary terms not present in the former, which obviously have to be removed from 
LP’ since they do not average to zero under a local smoothing. 

In a semiclassical treatment the derivative f’ of the Fermi function is superior to any of its 
integrated versions since it is significant only at energies where semiclassical approximations can be 
used safely. 

Appendix B. Semiclassical expansion of the mean density of states 

In this appendix we calculate the first two terms in an fi expansion of the smooth part of the 
density of states d(E). We follow the standard approach introduced by Wigner [63] using the notion 
of the Wigner transform of an operator. The Wigner transform of a quantum operator 8 is defined by 

(Bl) 
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Among different properties of the Wigner transform we will essentially make use of the following 
two: First, the trace of an operator is related to the integral over phase space of its transform by 
means of 

n 1 
Tr(Q) = (271n)d J’ dq dp W&.w) . 

(We stress that this is an exact, not semiclassical, relation.) Secondly, for any operator function of the 
position and momentum quantum operators 9(4,@) (with some specified ordering), the semiclassical 
leading-order approximation to its Wigner transform is just the related classical function, that is 

[~(~,ti>lw = ~(B,P) + O(fi>. (B3) 

When 9 depends only on 1 or 6, the relation between the Wigner transform and the classical 
function is exact (no corrective terms in h), as can be directly checked from Eq. (Bl ). 

We will follow closely the presentation of Ref. [77] to which the reader is referred to for further 
details. The first step in the calculation of d(E) is to consider the Laplace transform of the level 
density, Eq. (3.2), which due to the property (B2) can be written as 

z(n) = (2,g;), .I dq dp [e-'.'ldq,p) 

(gs = 2 is the spin degeneracy factor). Using Eq. (B3), the leading order (Weyl) term in fi, Zw, is 
obtained by replacing [e-“.‘lw(q,p) by e-i,.8(q,p), where 

i@=& p-:A *+V(q) 
( > 

(B5) 

is the classical Hamiltonian. At this level of approximation Z(i,) is given by 

u36) 

Since this term is field independent (see the change of variable (3.5) in the text) we need to go 
to the next order in 3, in order to obtain nonvanishing contributions to the magnetic susceptibility. 
Therefore we consider the asymptotic semiclassical expansion 

[e-“.“lw(q,P) = e-“[i],(q.p, CC 

xc ) 

_h.2 n G(q,p,A) . 

n=O 4 (2n)! 

We have already seen that Co = 1. The following coefficients C,, can be obtained recursively by 
grouping terms according to their power in fi. In particular, the first coefficient is given by [63,77] 

ac, ~ = -e ~[-+I\\ 
a/l ( [&lw ;i’ ,-&k], ) 1 

(B7) 

(B8) 

where i= Eye, 
e+ 

&i& - apiaqi is the Moyal bracket. 
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Inserting the classical Hamiltonian (B5) at the place of [z%‘] W we obtain C, as the sum of three 

terms 

Cl = cc;> + (c;) + (Cf) ) 

where 

(B9) 

is, up to the change of variable Eq. (3.5) in the integration over the phase space, the first-order 
correction without magnetic field C,(M) given in [63]. (Cy ) is given by terms being antisymmetric 
in p that vanish when taking the trace over phase space. Finally, 

x (Pk - (e/c)Ak)' + (Pi - (e/C)k)2 

2 

The first correction to the Laplace transform of the density of states is given by 

-GO*) = (2;&j J [ dqdp 
2H2 fi2 

??% + sCp 1 e-“.F 

(pB = (eh)/(2mc) is 
using the identity 

the Bohr magneton). Eqs. (B 11) and (3.7) are obtained from Eq. (B 10) by 

@lo) 

0311) 

0312) 

and a few transformations that leave the integral over p unchanged, namely: (i) the change of 
variables Eq. (3.5) (allowing the substitution of G? by X0 =p2/2m + V(q)) (ii) the elimination of 
all terms antisymmetric in p, (iii) the replacement of all terms of the form p?e-ip2!2m by (m/1)e-‘+“/2m. 
Note finally that the field appears only in the term -A2&H2/6, which is independent of the confining 
potential V(q). This is at the root of the very general applicability of the Landau result. 

Appendix C. Calculation of gE for a ring billiard 

In this appendix we derive the explicit form 12 = gE(I, ) of the energy surface E in action space 
for a ring geometry. The calculation reduces to the evaluation of the integral of Eq. (4.1) along two 
independent paths on the invariant torus. The only subtlety arises from the difficulty of visualizing 
the integration paths in our four-dimensional phase-space where the tori are discontinuous due to 
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the presence of hard walls. We closely follow the procedure used by Keller and Rubinow [66] for 
the circular billiard, and we refer to this work for further details. 

In a circular ring (with outer and inner radii a and b) we can distinguish two types of periodic 
trajectories: those which do not touch the inner disk (type-I, Fig. 17(a)) and those which do hit 
it (type-II, Fig. 17(b)). Type-I trajectories have their caustics outside the inner disk and therefore 
they are unaffected by their presence. They have an angular momentum pc, with b < c < a 
(p = &iii?). T a mg as the integration path Vi’, the concentric circle of radius R, we have pdq = k’ 
(pc/R)dq and then 

.i’ ;pdq=pc . 
% I 

(Cl) 

The action variable 1, is just the angular momentum. The straight part of the path qz of Fig. 17(a) 
is chosen along a classical trajectory, where p is constant and collinear with dq. For the part along 
the outer circle p dq = -( pc/a)dq. Combining both contributions we have 

1;” = LT 1 [a2 _ 4 lb2 _ c arccos ( 5 11 . 
71 a 

cc21 

Elimination c between (Cl ) and (C2) leads to Eq. (4.12) of the text, valid for the description in 
action space of the energy surface of the circular billiard [66] and the energy surface associated 
with type-1 trajectories in the ring billiard (pb < I, < pa). We have chosen the integration paths 
for type-1 trajectories different from those of Ref. [66] because slight modifications of them are 
applicable for type-II trajectories. 

Type-II trajectories have their caustics in the interior of the inner disk, that is, they have an angular 
momentum pc, with c < b. Integration along the path %?, of Fig. 17(b) leads to the identification 
of II with the angular momentum pc (similarly to Eq. (C 1)). By choosing the path g2 as shown on 
Fig. 17(b), the action integral along this path is simply the difference Z:“(a) - If’(b) (where both 
terms are given by Eq. (C2), except that for the second a should be replaced by b). This yields 

[a2 _ 4 “2 _ [b2 _ c2] “2 - c [arccos (z) - arccos(i)]} . (C3) 

Eliminating c between (Cl) and (C3) leads to Eq. (4.21) of the text. 

Appendix D. Calculation of the determinant D ,,, at zero field for a generic integrable system 

In the semiclassical approximation of the Green function (Eq. (5.2)) the amplitude D, associated 
with a classical trajectory t is given by [21] 

a2s, iYS( ___ ~ 
aqaq’ aqaE 

D, = 
a%, a2s, 
aEaq1 aEaE 

1.2 

=& 

a2s 
aq1a4: 

I:2 

(Dl) 
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Fig. 17. Integration paths on the invariant tori used to compute the action integrals II and I2 for the circular and the ring 
geometries. (a) Path %‘I (thick dashed) and %2 (thick solid) for the circle and type-1 trajectories of the ring. The straight 
part of %z is along a classical trajectory (thin solid), whose caustic (dotted) is outside the inner disk. (b) Path %s (thick 
solid) for type-II trajectories of the ring. Path V, is similar as in (a) and therefore not shown. The straight parts of $?2 are 
along classical trajectories. We indicated one of them (solid thin) and its caustic (dotted) laying inside the inner disk. The 

thick-dashed line joining the straight parts of V2 is a guide to the eye putting in evidence the simple form of Eq. (C3). 

Note the second equality holds not only when q2 is taken along the orbit and ql in the perpendicular 
direction, as supposed by Gutzwiller in its original derivation [51], but also, as shown by Littlejohn, 
in any coordinate system (see Section 1II.C in Ref. [78] and Section III in [79]). Although a priori 
ql and q2 play a similar role, their nonsymmetrical appearance on the right-hand side of Eq. (Dl ) (q, 

and q2 can be exchanged without affecting the value of 0~) is due to the fact that one coordinate 
(here qi ) is chosen as a Poincark surface of section, and the dependence of the other coordinate 
(here q2) just expresses the conservation of energy. 

Turning now to the particular problem we are concerned with, i.e. an integrable system at zero 
field and the diagonal part of the Green function, the above Eq. (Dl) applies to DM (except for a 
change t + M in the label of the orbits). Moreover, the measure DM dq, dq, in Eq. (6.2) is invariant 
under the transformation (q ,, q2 ) -+ (0,) 02) at zero magnetic field (see Ref. [70] for a more detailed 
discussion of this point). In other words, noting in Eq. (Dl ) DM(q) the determinant in the original 
q coordinate and DM(0) the determinant defined in the same way but in the system of coordinates 
given by Eq. (6.5), one has DM(q)dq, dq2 = D,&O)dO, dQ2. Therefore 

032) 

where the derivatives have to be taken at E, t12, and 0; = d2 + 271M2 constant. To compute the r.h.s. 
of Eq. (D2) one just needs the expression of the Poincark mapping (0, ,J, ) + (Q{ ,J,‘) between the 
two (0, = const.) PoincarC surfaces of section. Since the motion is integrable, J,’ = J,, and from 
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Eq. (6.5) we obtain 

where a(J, ) is the winding number of the torus labeled by J,. Thus 

ao; 

C-1 aJl 0, 
= 2zrr:$ . 

I 

We recall that the function gE introduced in Section 4 is defined by 
gE(I,)) = E, which yields after differentiation dg,/dZ, = -a. Therefore 

(D4) 

the implicit relation H(Z,, Z2 = 

da dr d2g, 
dJ1= u2dl, = -U2- J 

from which one finally obtains 

DM is inversely proportional to the 
and independent of 8. 

square root of the curvature of the line H(I1, Z2) = E 

(D5) 

const. 

Appendix E. Diagonal part of the Green function for a free electron in a constant magnetic field 

In this section, we calculate semiclassically the diagonal part of the Green function G(v,v) for a 
free electron moving in a plane in a perpendicular magnetic field. The resulting classical cyclotron 
motion is extremely simple, but yields slight complications in the semiclassical evaluation of the 
diagonal part of the Green function because all trajectories starting at some point Y are refocused 
precisely at Y. The calculation of the prefactors deserves special attention but can be done using 
a slight variation of the standard techniques and yields for unconstrained systems the usual result 
Eq. ( 1.11). In addition to provide an alternative (semiclassical) derivation of the de Haas-van Alphen 
effect, our procedure allows to compute correctly the contribution of the cyclotron orbits for billiard 
systems, i.e. it takes into account the corrections due to the boundaries which appear to be necessary 
if the cyclotron radius r, is not small compared to the typical dimension a of the system. 

E.1. Computation of the prefactor of a Green function near a focal point 

It is an old problem to obtain a correct semiclassical solution of wave equations valid also near 
turning points, focal points, caustics, etc., where the usual expressions are diverging. A general 
solution for this problem can for instance be found in the book of Maslov and Fedoriuk [SO]. In 
this subsection, we will give the explicit form of this general theory when applied to the calculation 
of a two-dimensional Green function and consider in the next subsection the particular problem of 
a free electron in a constant magnetic field. To avoid confusion we will slightly modify our usual 
notations, writing G(v~Y’) instead of G(v,r’). In addition, we will make more explicit what are the 
initial and final points by using ri = (a?, J+) for the initial (source) point and, and rf = (xf, yf ) for 
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the final (observation) point. As already stated, the semiclassical evaluation of the Green function 
G(vi]vf ) yields a sum over all classical trajectories t joining yi to yf at energy E 

G(v’Iv’) = c G,(r’lrf) . (El) 

For a trajectory t starting at Y’ such that yf is not a focal point, one can use (cf. Appendix D, and 
in particular the discussion concerning the nonsymmetric role of x and y) 

G,(r'Ir')= S&D, exp [is, - qt] , WI 

(E3) 

However, the above expression is not valid near focal points where [locally, and at fixed uf] xf 
becomes independent of pi. The use of the action integral S(V’, rf ) supposes that ri and yf can 
be taken as independent variables, and a’S/ax’ax’ is a priori not meaningful since xf is entirely 
determined by xi. Writing iY12S/axiaxf = -(axf/ap:)-’ = -CC one sees moreover that D, is, as 
mentioned above, in fact diverging. 

To overcome this difficulty Maslov proposed a procedure to compute G,(r’ ]rf) using a momentum 
(or mixed position/momentum) representation, by defining (omitting for a moment the source point 
V’ ) 

G@‘, yf > = p;i’__Tt [e’t(p:, yf >I , W) 

where F,:‘_,, is the inverse Fourier transform 

q&H = & Jdp:[-lexp (kx’pz) . (E5) 

performing quantum mechanically the change from the mixed representation (pX, y) to the position 
representation (x, u). 

Eq. (E4) is just the definition of 6, which remains to be evaluated semiclassically. The genera1 
theory presented in Ref. [ 801 (Section 5.1) can be however applied to our problem, giving 

where 

S=s- pZxf, 

- i 

vt if ap;jaxf > 0, 
‘t= qt + 1 if ap;jaxf < 0. 

(E6) 

(E7) 

(Eg) 

(E9) 
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Without entering into a derivation of this semiclassical formula for et, it can be checked that starting 
from Eq. (E6) the evaluation of the inverse Fourier transform Eq. (E4) using stationary phase 
approximation readily yields Eq. (E2). Far from any focal point both expressions are equivalent at 
the semiclassical level. Near a focal point however, Eq. (E6) still provides an accurate approximation 
for c?‘, because the Lagrangian manifold, on which the Green function is constructed semiclassically, 
has a nonsingular projection onto the plane (p,, y). Therefore, contrarily to Eq. (E2) which is 
diverging, Eq. (E4) is still a valid semiclassical approximation for Gt, provided the inverse Fourier 
transformation is evaluated exactly (or using uniform techniques going beyond stationary point 
approximation [ 8 11). 

From Eqs. (E3) and (E8) one has 

This explains why the Legendre transform 3, of S, has to be understood as a function of x’ and pi. 

In practice, this means that, to compute s”, from Eq. (E7), the action integral A’, has to be calculated 
for a trajectory starting at position xi and ending with a momentum pz, and that in the additional 
term x’pz, xf has to be interpreted as xf (xi, pi). Finally, note that for a Hamiltonian, which can be 
decomposed into a kinetic energy plus potential part (including the case where a magnetic field is 
present), 2p_z/8xf is always negative just in front of a focal point and always positive directly after 
the focal point. Therefore 

ii, = 
qt right after a focal point, 

11~ + 1 just before a focal point. 

Since precisely at focal points qt is incremented by one unit (for a kinetic energy plus potential 
Hamiltonian), this implies that, when crossing a focal point, y”, remains constant, keeping the value 
which qt acquires after the focal point. This latter has to be taken into account for the computation 
of Maslov indices of a trajectory at a focal point. 

E.2. Application to the cyclotron motion 

Turning now to the specific problem we are concerned with, i.e. cyclotron motion and diagonal 
elements of the Green function, we need to calculate 3(x’, y’, p’,, yf ), where we can however restrict 
ourselves to yf = y’ since the partial derivatives are taken only in the x direction. Eq. (E7) states 
that, omitting the y’s, s,(xi,p:) = Sn(xi, pf) - xf(.xi, p:)pf, where &(xi, pf;) is the action integral 
along a trajectory starting at the abscissa x’ and arriving with a momentum pi. But here the Poincare 
map (xi, pi) + (xf, p.:) is just the identity, and therefore 

S,(xi, p_;> = n&so - x’p_F : 
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where SC, is given by Eq. (7.14). Noting moreover that y1 = jf for all trajectories, and that 
they pass through two focal points at each turn, one has from Eq. (E4) (omitting the Weyl part 
of G) 

G@lyf xv’) = c A--!-- (-1)” exp ins g 
n lf+zi&/~ fi a yf. [ IS (El11 

At fixed position, dp.L = m dif (the vector potential eliminates). Therefore the remaining integral in 
Eq. (El 1) is just, up to a multiplication by the mass m of the electron, an integral over the angle 8 
specifying the direction of the trajectory at r. For unbounded motion, it simply gives a factor 2nm, 

yielding the expected result 

G(r’ Irf = vi) = c( - 1)” g exp(inSo/fi - k/2) . 
n 

(El21 

In billiard systems the contribution to G of the cyclotron orbits is the same as for the unbounded 
motion, except that for points Y close to the boundary, Eq. (E12) has to be reduced by a multiplicative 
factor &r/(27(), where B,tf is the angular measure of the trajectories not affected by the boundary. 
The contribution to the density of states of the cyclotron orbits is thus 

d”“‘(E, H) = s(H) s -y( - 1)” cos(n7&,) . 
II 

(EJ3) 

The multiplicative factor s(H) is given by 

J 
dr d0 [(v, 0) . (El4) 

The function [(r, 0) is defined such that c = 1 if the trajectory started at Y with initial velocity along 
0 does not hit the boundary, and c = 0 otherwise. Substituting in the integral above the variables 
(v, 0) by (v”, f?), where v” specifies the center of the cyclotron orbit and 6 the position on this orbit 
(the Jacobian of the transformation is equal to one) and performing the integral over 8 since then [ 
depends only on @, one obtains 

which yields Eq. (7.20) for the 
As a final comment, we note 

(E15) 

square geometry. 
that the approach described here for a two-dimensional electron gas 

can be generalized in a straightforward manner to three dimensional systems, including cases with 
non-spherical Fermi surfaces. 
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