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We study the hyperbola billiard, a strongly chaotic system whose classical dynamics is the free motion of a particle within 
the region D = {(x, y)lx > 0 Ay > 0 Ay < l /x}  with elastic reflections on the boundary OD. The corresponding quantum 
mechanical problem is to determine the bound state energies as eigenvalues of the Dirichlet Laplacian on D. It is shown 
that the classical periodic orbits of the hyperbola billiard can be effectively enumerated by a ternary code. Combining this 
code with an extremum principle, we are able to determine with high precision more than 500 000 primitive periodic orbits 
together with their lengths, multiplicities and Lyapunov exponents. The statistical properties of the length spectrum of the 
periodic orbits are found to be consistent with a random walk model, which in turn predicts asymptotically an exponential 
proliferation of long periodic orbits and leads to a novel formula for the topological entropy ~-, whose value turns out to be 
approximately 0.6. The periodic orbits are used for a quantitative test of Gutzwiller's periodic-orbit theory, which plays the 
role of a semiclassical quantization rule. We find that the predictions of the periodic-orbit theory for the Gaussian level 
density agree at low energies surprisingly well with the "true" results obtained from a numerical solution of the Schr6dinger 
equation. 

I. Introduction 

Despite the early recognition of chaotic motion in nature by Poincar6 and Hadamard at the end of the 
nineteenth century, detailed studies of "deterministic chaos" have only been carried out in the last few 
decades. Today, however, our knowledge of classically chaotic systems is very rich, and most natural 
scientists slowly appreciate the important role played by chaos in nonlinear dynamical systems. On the 
other hand, the question how classical chaos manifests itself in quantum mechanics, has attracted only 
recently the attention of more than a few pioneers. The only known, commonly accepted quantitative 
theory aiming at unravelling the mystery of "quantum chaos" is based just on the earliest approach, 
namely the semiclassical approximation of the Feynman path integral pioneered by Gutzwiller [1] (see 
also refs. [2, 3]). 

The standard semiclassical quantization rules of Bohr-Sommerfeld-Einstein-WKB type are based on 
the assumption that phase space is divided into invariant tori. In this case the path integral can be 
approximated by a sum over all classical trajectories which wind on the invariant tori. But for chaotic or 
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non-integrable systems it is well known that phase space has a much more complicated structure and 
thus the standard semiclassical quantization rules cannot be applied. What is required instead is a 
substitute for these quantization rules for chaotic systems. Gutzwiller's periodic-orbit theory provides this 
substitute. In this theory the path integral is replaced by an infinite sum over all periodic orbits, i.e. the 
quantum mechanical energy spectrum is determined by purely classical quantities like the periods or 
lengths of the unstable periodic orbits and their Lyapunov exponents. 

Although Gutzwiller's approximation amounts to a tremendous simplification of the path integral for 
chaotic systems by replacing a very complicated functional integral by an ordinary sum over classical 
trajectories, we are still facing another extremely complicated problem, now in classical mechanics, 
namely the enumeration of the periodic orbits and the calculation of their lengths and Lyapunov 
exponents. In contrast to integrable systems, where the number of periodic orbits increases only like a 
power law, for chaotic systems the number of periodic orbits whose lengths are smaller than a given 
length increases exponentially. The exponential proliferation of long periodic orbits implies that a 
successful application of the periodic-orbit theory can only be expected, if enough periodic orbits 
together with their lengths and Lyapunov exponents are explicitly known for a given non-integrable 
system. Thus it is mandatory to have an effective method at hand which allows us to determine in a 
systematic way the shortest periodic orbits. 

Until recently the only quantitative test of the periodic-orbit theory for strongly chaotic systems was 
carried out by GutzwiUer for the anisotropic Kepler problem [4]. Only within the last few years a few 
other systems have been investigated [5]. However, in most of the cases people were not able to give a 
systematic enumeration of a large number of periodic orbits. There is a very special system, namely the 
Hadamard-Gutzwiller model [6], for which millions of periodic orbits could be calculated [7, 8] by using 
very powerful results from the theory of compact Riemann surfaces and Fuchsian groups, and an 
effective algorithm implemented on a large computer. 

In view of this situation it seems worthwhile to look for other dynamical systems, which are classically 
chaotic but yet simple enough to allow an explicit enumeration of a large number of periodic orbits. It is 
the purpose of this paper to present the results of a detailed study of an example of the simplest kind of 
chaotic systems, namely a two-dimensional plane billiard system, which we call hyperbola billiard, whose 
domain is given by 

D.'= { ( x , Y ) l x > O  A y > O  A y < l / x } ,  (1) 

i.e. the area bounded by the x-axis, the y-axis and the hyperbola y = 1/x.  The quantum-mechanical 
problem is to find the eigenvalues and eigenfunctions of the Laplace operator on D with the condition 
that the wave functions vanish on the boundary of the billiard region (Dirichlet problem). The 
corresponding classical motion is the free motion of a particle with mass m within the billiard area with 
elastic reflections on the boundary. This motion is strongly chaotic in virtue of the fact that neighbouring 
trajectories separate exponentially. All periodic orbits are unstable and have an instability exponent 
greater than zero (see appendix B). 

There are two crucial points which enable us to give an effective enumeration of the periodic orbits of 
the hyperbola billiard: 

(i) In section 2.1 we show that there exists an efficient classification of the periodic orbits in terms of a 
ternary code, i.e. the set of all periodic orbits is represented by the set of words formed by three letters 
obeying a certain grammar. 
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(ii) It is a characteristic feature of chaotic systems, that their evolution in time depends sensitively on 
the initial conditions, since neighbouring trajectories diverge exponentially in time. It thus seems 
impossible to determine the precise reflection points on the billiard boundary for a particle travelling on 
a long periodic orbit in our hyperbola billiard. We show, however, in appendix A that there exists an 
"extremum principle for periodic orbits" which allows us to get around this problem. The point is that all 
periodic orbits have the property that their length is minimal within a certain class of neighbouring 
"trial" trajectories that do not satisfy the elastic reflection condition on the hyperbolic boundary. Using 
this extremum principle we were able to find more than 500 000 primitive periodic orbits. 

Our paper is organized as follows. In section 2.1 the coding of the periodic orbits and their symmetry 
properties are discussed. In section 2.2 we study several properties of the length spectrum of the periodic 
orbits. It is shown that the length spectrum proliferates exponentially, as expected, from which we infer 
for the topological entropy ~- = 0.60. It turns out that the distribution of lengths of all periodic orbits 
which are reflected N times on the hyperbola obeys for large enough N a universal law which is well 
described by a Gaussian. In section 3 we describe our numerical solution of the Schr6dinger equation 
using the Rayleigh-Ritz method. The spectral staircase calculated from the approximate eigenvalues is 
at low energies well described by a modified Weyrs law. In section 4.1 the periodic orbits are used as an 
input in the periodic-orbit theory. Using a Gaussian smearing of the energy-level density, we are able to 
determine the lowest bound state energies. In order to increase the energy resolution of the periodic-orbit 
theory, we have desymmetrized the hyperbola billiard. In section 4.2 we discuss the application of the 
periodic-orbit theory to the two desymmetrized systems satisfying Dirichlet and Neumann boundary 
conditions on the line y--x ,  respectively. As expected, the energy resolution is significantly improved. 
Section 5 gives a discussion of our results. In appendix A the extremum principle for the periodic orbits 
is derived, and in appendix B the general form of the monodromy matrix is given. 

2. Periodic orbits 

2.1. Coding of the periodic orbits 

It is possible to introduce an efficient classification for the periodic orbits of the hyperbola billiard. 
This will be explained in the following. A primitive periodic orbit is traversed once, and the number of 
reflections on the hyperbola is counted. Let this number be N. The N points on the hyperbola divide the 
orbit into N segments. Each segment is denoted by one of the three letters "x", "y" or "b" according to 
whether the particle is reflected in the segment on the x-axis only, on the y-axis only or on both axes, 
respectively (see appendix A). In this way to each periodic orbit is associated a ternary sequence of the 
form 

a---(a 1 . . . . .  aN), w h e r e a i = x ,  y o r b .  (2) 

If for a given periodic orbit a different starting point on the hyperbola is chosen, we arrive at a ternary 
sequence which is a cyclic permutation of the original one. Therefore, if a sequence "a"  is associated to a 
periodic orbit, every cyclic permutation of this sequence belongs to the same orbit. Examples are given in 
figs. la to le. The sequences are given for those starting points on the hyperbola which have the highest 
v value. 
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o] b , x )  

, x . b , b ]  = [ y , b , y , x ,  
x . b , x . y }  

e] ~.~ o = [ y , b , b , x , x ,  f i  o = [ y . y , y . y , b . x . x .  

Fig. 1. (a) to (e) Examples of periodic orbits. (f) Forbidden periodic orbit. 
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The main point now is that extensive numerical investigations for N = 1 to 7 showed that there exists 
exactly one periodic orbit for every sequence. The only exceptions are sequences which consist of letters 
"x" only or of letters "y"  only for which no periodic orbits exist. This fact and the extremum principle 
discussed in appendix A make it possible to search systematically for every single periodic orbit. If one 
wants to find the periodic orbit which is coded by a given sequence "a" ,  one just has to form the length 
function L ( x  1 . . . . .  x N) which corresponds to this sequence (see appendix A) and to look for its 
minimum. Since there exist very efficient generalized Newton methods for finding the minimum of a 
given function, this is a very fast and accurate way to determine the periodic orbits. Using this method we 
were able to find more than 100 000 different primitive periodic orbits within two hours of computer time 
on an IBM 3084 with an accuracy of 16 significant digits. 

The code can also be used to determine possible symmetries of a periodic orbit. For this purpose the 
ternary sequences are divided into classes, which we call cyclic classes. Two sequences " a "  and "~"  
belong to the same cyclic class if one is a cyclic permutation of the other: 

a = - d c ~ , a i = a i + n  V i = I , . . . , N  f o r n ~ { 1  . . . . .  N}. (3) 

Here we defined aj÷ N := aj. A given cyclic class therefore consists of all sequences which describe the 
same orbit. If a periodic orbit is geometrically reflected on the straight line y = x one gets another 
periodic orbit since the system is invariant under the reflection R on this line. The sequence belonging to 
the reflected orbit, "Ra",  is obtained from the sequence of the original orbit " a "  by replacing all "x" by 
"y"  and all "y"  by "x": 

Ra :=~ where ffi = x  if a i = y ,  

ai =Y if a i = x ,  

~ i = b  if a i = b  , 

i = l , . . . , N .  (4) 

An orbit is invariant under this reflection if Ra = a holds. 
Another possible symmetry of an orbit is time-reversal. If an orbit is traversed in reverse direction, the 

sequence of the reversed orbit, "Ta",  is the reverse sequence of the original orbit: 

Ta:='~ w h e r e K i = a u + l _ i ,  i = l , . . . , N .  (5) 

An orbit is invariant under time-reversal, if T a -  a holds. In figs. la  to le examples for all possible 
symmetries of a periodic orbit are given: (a) a -- Ta ~ Ra - R T a ,  (b) a ~ Ta ~ Ra ~ a ~ RTa,  (c) a - 
Ta =- Ra = RTa,  (d) a = Ra ~ Ta = RTa,  (e) a -- RTa ~ Ra =- Ta. 

Different orbits which are related by reflection o r / a n d  time-reversal give an identical contribution to 
the periodic-orbit theory. It is therefore useful to combine different cyclic classes to a bigger class, which 
we call symmetry class, if their sequences can be transformed into each other under reflection o r / a n d  
time-reversal. To each symmetry class a multiplicity is associated which counts the number of different 
cyclic classes which are contained in it. This number can be 1, 2 or 4. It then suffices to determine one 
periodic orbit for each symmetry class. 
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If a sequence consists of identical partial sequences, for example 

a : (x ,x ,y ,b ,  x ,x ,y ,b ,  x ,x ,y ,b ) ,  (6) 

it does not belong to a primitive orbit, but to an orbit which is traversed repeatedly. A class which 
belongs to a primitive orbit is called a primitive class. The number Z ( N )  of primitive classes of sequences 
which consist of N letters satisfies the recursion relation 

) Z ( N ) = ~  3 N -  M .  Z (  M )  - 2 , . 

M<N 

(7) 

where we have taken into account that there are no periodic orbits for the sequences (x) and (y). The 
sum runs over all integers M that are divisors of N excluding M = N. The primitive periodic orbits for 
N--  1 to 14 were determined numerically. A number of E~= 1 Z ( N ) - - 5 3 3  828 primitive periodic orbits 
was expected corresponding to 136719 different primitive symmetry classes. But only for 136699 
symmetry classes periodic orbits could be found. Although for the remaining 20 forbidden symmetry 
classes a minimum of the length function L ( x  1 . . . . .  x N) could be found, the corresponding orbits cross 
the hyperbola like in fig. If. It is expected that the number of forbidden periodic orbits increases with 
increasing N. 

2.2. Properties of  the length spectrum of  the periodic orbits 

In figs. 2a and 2b the number d//(l) of the determined orbits with lengths smaller or equal than l is 
shown, 

d//(1) := #{ primitive periodic orbits T with length l~ _< l}. (8) 

The expected asymptotic exponential proliferation of periodic orbits for chaotic systems, d//(l) ~ e~t/'H, 
1 ~ o% is well confirmed in the region where the orbits were determined. A value of z---0.60 was 
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Fig. 2. The staircase function ,/F(I) in comparison with the asymptotic law e~t/~'l for ~" = 0.6 (dashed line); (a) linear scale, (b) 
logarithmic scale 
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obtained for the topological entropy r from a fit in the region 10 < l < 15, where the number of the 
periodic orbits is expected to be almost complete. Above 1 = 15 the calculated staircase function is below 
the curve corresponding to the asymptotic law Ct/~'l, see fig. 2. This is due to the fact that the 
contribution of periodic orbits which are reflected 15 times or more on the hyperbola is missing. 

We also examined the distribution of lengths pN(l) of all periodic orbits which are reflected N times 
on the hyperbola along one traversal of the periodic orbit for N = 1 to 14. pN(l)dl is the probability that 
a randomly chosen orbit with N reflections on the hyperbola will have a length between l and l + dl. The 
result for N = 14 is shown in fig. 3a. It was found that the length distributions can be approximated very 
well by Gaussian curves if N is large enough (N  > 8) 

PN(I) = 2 ~ N e x p  2cr2 N , (9) 

where the mean value l N and the standard deviation ~r N satisfy the relations 

]N.'~IN, / = 2.027, 

a N = t rV~,  tr = 0.682. (10) 

In order to demonstrate this behaviour, we plotted pN(l + Ni)/pN(N]) as a function of l / t r v~  for 
N = 10 to N = 14 in fig. 3b. As can be seen there is good agreement between the length distributions that 
correspond to different values of N. 

These results seem to indicate that the statistical properties of the length distributions can be 
described by a model in which the lengths of the orbits are the result of a random walk process with N 
independent steps where the displacements of each step have a mean value i and a standard deviation cr. 
This is also confirmed by an examination of the distribution of spacings P(S) between adjacent lengths. 
P(S)dS is the probability that the spacings of a randomly chosen pair of neighbouring lengths will be 
between S and S + dS, where S is measured as a fraction of the mean length difference ~ at the length 
considered: S = Al/A---l. In fig. 4 the result for P(S) is plotted and compared to the Poisson distribution 
P(S) = e -s. The agreement is excellent, which means that the lengths are uncorrelated. 
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Fig. 3. (a) The length distribution p14(l) in comparison with a Gaussian. (b) Scaled length distributions pN(l + iN)/PN(iN) as a 
function of l/trx/-N for N = 10 to N = 14. 
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The explicit dependence on N of the approximated length distributions p~r(l), eq. (9), makes it 
possible to examine the asymptotic behaviour of the staircase function ./Y(I) analytically: 

I (((-.IN) 2) 3 N 
d../F(1) ~ PN(1) Z(N ) ~ ~o. 

dl = N = I  = N - 1  - - e x p  2o.2N J N "  (11) 

A stationary phase approximation of this sum for large values of l yields the following result: 

d-/-'- = 7- exp j _ ~/j2 _ 2o.2 log3 , l >> 1. (12) 

A comparison with the expected asymptotic behaviour d J / / d l  ~ e~t/l, l--, 0% leads to an explicit 
expression for the topological entropy of the form 

1 (i V/j 2 2o.21og3).  
O.2 

(13) 

The numerical value r = 0.58 which is obtained from this equation is in good agreement with the 
previously obtained value ~- -- 0.6. 

The Lyapunov exponents of the periodic orbits were determined using the method of appendix B. In 
fig. 5 the Lyapunov exponents A v are plotted as a function of the orbit lengths I v (for fixed energy 
E = m/2 ) .  
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Fig. 5. Lyapunov exponents )tv in dependence on orbit lengths Iv. 

3. The energy spectrum 

The quantal energies E n are determined by the Schrb'dinger equation (h = 2m = 1) 

- ~x 2 + ~ , ( x , y )  = E , ~ , ( x , y ) ,  ( x , y )  ~ D ,  (14) 

with Dirichlet boundary conditions 

~ , ( x , y )  = 0 i f x = O o r y = O o r y = l / x .  (15) 

Introducing hyperbolic coordinates 

71 =xy,  0 < r / <  1, 

~:=½(x 2_y2 ) ,  - o o < ¢ <  + ~ ,  (16) 

eq. (14) transforms into 

+ ~bn(r/, ~) = E~bn(r/, ~) (17) 
0~ 2 

with boundary conditions 

~b,(~l,~) = 0 i f ~  = 0 o r  ~1 = 1. (18) 

The first energy eigenvalues were numerically determined using the R a y l e i ~ - R i t z  method. This method 
is based on a variational principle which yields upper bounds for the energy eigenvalues. An approximate 
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solution of eq. (17) of the form 

M 

Vt,(rl,l~) = • a~Om(rl,tj) (19) 
r n = l  

is sought for with suitable functions ~0rn(~, ~) that are linearly independent and satisfy the boundary 
conditions eq. (18). The minimum principle of Rayleigh then leads to the eigenvalue problem 

M 

E ( A i j -  I~nBij)a; = O, 
j=l  

i ,n = 1 . . . . .  M, (20) 

where 

Aij=f_+°°d~foldrl(O O .b.~ (pi ( .q, ~ ) .b.~ (pj ( .q, ~o , ( , ,  ~) ~ j ( n ,  e) + ~:)) (21) 

and 

Bij=f+®d!~fo a d ~ 7 ~ i ( r l ' ¢ ) ¢ i ( ~ ' ¢ ) _  21/r~z + ~2 (22) 

The eigenvalues /z, of eq. (20) are upper bounds for the first M energies E n. The functions q~m(~7, ~) 
were chosen to be products of sine-functions in the ,/-direction and eigenfunctions of the one-dimen- 
sional harmonic oscillator in the ~-direction. Altogether 200 different functions ~0m(r/, ~) were used. The 
result for the first ten energy eigenvalues is listed in table 1. 

In fig. 6 the spectral staircase function 

N ( E )  = #{E,,IE,, <_ E} (23) 

is shown for 0 < E < 100. It should asymptotically obey a modified Weyl's law [9] 

! e  a_q__ E 
h 

N(E) 4-~ . . . .  "' 4'rr l o g E +  4'rr + v@-+ 

a = 2(3, - log2w) = -2.5213, 

b = 4w3/Z/FZ(1/4) = 1.6944. 

E ~ o o  

(24) 

This curve is also shown in fig. 6. As can be seen, the asymptotic law is a good approximation to the 
mean mode number (N(E)> even down to the lowest eigenvalues. For E >_. 75 the staircase function lies 
under the curve corresponding to the asymptotic law eq. (24). The reason is that by using a limited 

Table 1 
Upper  bounds  for the first ten energies 

n 1 2 3 4 5 6 7 8 9 10 

E n 11.74 21.46 27.4 3(..3 36.5 45.8 49.8 58.1 60.2 66.2 
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Fig. 6. Staircase function N(E) in comparison with the asymptotic law eq. (24). 

number of functions q~,,(~7, £) "too high" upper bounds for the higher eigenvalues are obtained from the 
variational principle. 

4. Periodic-orbit theory 

4.1. Hyperbola billiard 

The periodic-orbit theory usually is presented in form of a semiclassical approximation (h --> 0) for the 
trace of the energy-dependent Green's function (resolvent), 

g(E)  :=Tr  --- ]~ E - E . '  
n 

where H is the Hamiltonian and E,  are its eigenvalues. In case of the hyperbola billiard this 
approximation is given by 

kn.y i ~ ml~ ( - 1) exp(lkplv/h) 
g(E)  = g o ( E )  - ~ ~ E 

k=l p exp(kur /2) -  ( -1)k"~exp(-kuv/2)  ' 
(26) 

where p = 2v~mE denotes the momentum. The sum over Y runs over all primitive periodic orbits 3', and 
k is the number of their multiple traversals, lr is the length of the orbit 7 and ur is its instability 
exponent, ur and the Lyapunov exponent h~ are related by u~ =h~l~rn/p. nv is the number of 
reflections on the boundary for one traversal of the periodic orbit. If an orbit 3' is described by a ternary 
sequence that consists of N letters, then n~ = 2N + N b, where N b is the number of letters "b"  in the 
sequence, go(E) is the contribution of the so-called "zero-length orbits" and corresponds to the 
Thomas-Fermi approximation. 
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In ref. [10] we presented for the first time generalized versions of the periodic-orbit sum rule, eq. (26), 
which involve absolutely convergent series only. These sum rules represent a semiclassical approximation 
to a generalized sum over the energy eigenvalues, Enh(pn), pn = 2~-E--~,, involving a "smearing 
function" h(p)  which has to satisfy certain conditions in order to ensure convergence. Depending on the 
kind of application there are many possibilities for a useful choice of the function h(p). Various 
examples are given in ref. [8]. In order to determine the energy eigenvalues we found most useful the 
choice of a Gaussian smearing function in case of which the periodic-orbit sum rule takes the form 

= e2 + exp e2 

, ,-. ,-.= k..  [  2k21  1 lr( - 1) cos(kpl~/h) 
. . . . .  e x p -  

= exp(ku;,/2) - ( - 1) exp( - k u v l 2  ) I' 
(27) 

where 

~ E  p2 ~r(p) ..= P ( N ( E ) ) ,  E = 2 m .  

According to our results in section 3, ( N ( E ) )  can be identified with the asymptotic law (24). Here e > 0 
is a smearing parameter that can be chosen arbitrarily. The exponential term at the end of eq. (27) leads 
to a very strong damping of the contribution of orbits with large lengths. The smaller e is chosen the 
smaller is the width of the Gaussian peaks at the momenta p, ,  but the larger is the number of orbits that 
give a significant contribution to the periodic-orbit sum. 

In figs. 7a and 7b we show the Gaussian level density eq. (27) for e = 0.2 as a function of the energy E 
(in our numerical evaluations we use the following units: h = 2rn = 1). The full line represents the 
right-hand side of eq. (27) taking into account all periodic orbits with N < 3 and N < 5, respectively. The 
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calculated from periodic orbits, (dashed line) calculated from our numerical solution of the Schrrdinger equation. 
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dashed line corresponds to the left-hand side of eq. (27) calculated from the first 10 approximate energy 
eigenvalues. In fig. 7b the agreement between both lines is surprisingly good in view of the small number 
of summed orbits. Even for the ground state energy the periodic-orbit theory gives an excellent 
approximation despite its semiclassical nature. 

In figs. 8a and 8b the Gaussian level density is shown for e = 0.1 in a larger range of the energy E. 
Again the full line represents the sum over the periodic orbits whereas the dashed line is calculated from 
the approximate quantum-mechanical energies. The periodic-orbit sums were evaluated using all orbits 
with N < 9 (fig. 8a) and N < 14 (fig. 8b). This corresponds to a contribution of 1061 and 136 699 different 
lengths respectively. As can be seen the agreement between the dashed and the full line improves only 
slowly. 

The number of orbits that have to be taken into account in the periodic-orbit sum in order to resolve a 
momentum difference Ap can be estimated from the fact that each orbit 3' contributes an oscillation to 
the smeared spectral density which has a "wavelength" Ap ~ 2wh/lv. This implies that in order to 
resolve Ap one has to sum over all orbits with length lv <_ 2wh/Ap. From the exponential increase of 
the number J / / ( l )  of orbits with length lr < 1 then follows that a resolution of Ap/2 requires the 
summation over the square of the number of orbits that are needed in order to resolve Ap. 

4.2. Desymmetrized hyperbola billiards 

Symmetries of a system can be used in order to essentially increase the energy resolution of the 
periodic-orbit theory. The hyperbola billiard system is invariant under a geometrical reflection on the 
straight line y = x. For this reason it is possible to find a basis of eigenfunctions of the Hamiltonian 
that are either odd or even functions with respect to this reflection. The even eigenfunctions satisfy 
Neumann boundary conditions on the line y =x ,  whereas the odd eigenfunctions satisfy Dirichlet 
boundary conditions on this line. The periodic-orbit theory can be applied to both classes of eigenfunc- 
tions separately. 

Dirichlet boundary conditions: In order to determine the eigenvalues of the odd eigenfunctions one has 
to apply the periodic-orbit theory to one half of the billiard system, e.g. to that system which is bounded 
by the x-axis, the hyperbola y = 1/x and the straight line y =x .  The periodic orbits for this system can 
be determined from the periodic orbits of the whole system according to the following rules. To each 
periodic orbit of the original system can be associated a periodic orbit of the new desymmetrized system. 
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Fig. 8. Gaussian smoothed energy-level density d,(E) for e = 0.1 including all orbits with (a) N <  9 and (b) N <  14. 
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The only exception is that periodic orbit which runs along the line y = x for which no corresponding orbit 
in the desymmetrized billiard exists. If an orbit which is described by a sequence " a "  is not invariant 
under reflection on the symmetry line y = x  (Ra ~ a )  then it is mapped onto an orbit in the desym- 
metrized system which has the same length, the same instability exponent and the same sign-factor 
( -  1)n~. The reflected orbit which is described by the sequence Ra is mapped onto the same orbit in half 
of the area. For this reason the multiplicity of the corresponding symmetry class is halved. On the other 
hand, orbits which have the symmetry property a =- Ra are mapped onto orbits in half of the area that 
have half of the length and half of the instability exponent. The sign factor of the orbit in the 
desymmetrized billiard is ( - 1 )  1 +Nb/2, where N b is the number of letters "b"  in the sequence "a" .  

Neumann boundary conditions: The periodic-orbit theory can also be applied to the eigenvalues of the 
even eigenfunctions that satisfy Neumann boundary conditions on the line y = x. For that purpose again 
the periodic orbits for half of the area are needed, this time including the periodic orbit along the line 
y =x .  The difference is the number nr in the numerator  of eq. (27), which now does not count all 
reflections on the boundary along one traversal of the periodic orbit but only those reflections that do 
not take place on the line y = x. There is a simple rule relating the sign factor ( -  1) n, for the Neumann 
case to that for the Dirichlet case. For orbits to which correspond orbits with Ra ~ a in the whole area 
both factors are equal. In the other case (Ra = a) the sign factors have opposite sign. The number n~ in 
the denominator of eq. (27) is the same as in the Dirichlet case. 

In figs. 9a to 9c the smeared spectral density is shown for e = 0.2 for odd and even eigenfunctions 
together and for both classes of eigenfunctions separately. In the periodic orbit sums all orbits were 
taken into account which are reflected at most seven times on the hyperbola. As can be seen, the energy 
resolution in figs. 9b and 9c is significantly improved in comparison with fig. 9a. The first ten energy 
eigenvalues of the whole hyperbola billiard that can be read off from these figures are listed in table 2. 
E2, E4, E 7 and E 9 are eigenvalues of odd wave functions, the other energies are eigenvalues of even 
wave functions. The values in table 2 are in good agreement with the values in table 1 except for E 8 and 
E~0, which are probably more accurate than the values obtained from the variational principle. 

5. Conclusions 

We have shown in this paper how the periodic orbits of the hyperbola billiard can be effectively 
represented by a ternary code, how the multiplicities of the periodic orbits can be understood in terms of 
their symmetry properties, and how the lengths of the periodic orbits together with their instability 
exponents can be calculated with high precision using an extremum principle. Based on these results, we 
were able to determine more than 500 000 primitive periodic orbits. This large sample of orbits made it 
possible to study detailed properties of the length spectrum of the periodic orbits. The main conclusion 
to be drawn from these studies is that the length spectrum behaves as if it would result from a 
random-walk process. The statistical distribution of lengths of periodic orbits which are reflected N 
times on the hyperbola y = l / x ,  can be imagined for large enough N as result of a one-dimensional 
process consisting of N steps where each step is carried out in average with a constant mean-free path of 
length i and standard deviation tr. To show that this interpretation makes sense, we have calculated the 
length spacings distribution. Our numerical results are in nice agreement with a Poisson distribution, 
which is expected if the lengths are uncorrelated. From the random-walk model for the periodic orbits 
we were able to derive asymptotically for large lengths the famous exponential law for the periodic orbit 
number ~//(l) expected for strongly chaotic systems and thereby obtained a novel formula for the 
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topological entropy which expresses its value in terms of the random-walk parameters i and ~ and the 
number log 3, the latter being a trace of the fact that the orbits are governed by a ternary code. 

It is tempting to make the hypothesis that the properties of the periodic orbits, which we discovered in 
the special system of the hyperbola billiard, are found to hold also in other chaotic systems. It would be 
interesting to look for such properties in other non-integrable systems and to compare them with the 
results obtained for integrable systems. 

It is notoriously difficult to determine the quantal energies from a numerical solution of the 
SchrSdinger equation for classically chaotic systems, even on a large computer. To gain first information 
on the lowest energy levels of the hyperbola billiard, we have employed a variational method. A 
comparison with the modified Weyl's law indicates that the first ten eigenvalues should be not too bad an 

Table 2 
Approximate values for the first ten energies obtained from the periodic-orbit theory 

n 1 2 3 4 5 6 7 8 9 10 

En 12.0 21.7 27.0 36.0 37.0 45.9 49.2 55.9 60.7 63.0 
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approximation to the true quantal energies. To obtain more than ten eigenvalues with reasonable 
accuracy requires a more sophisticated method like, for example, Heller's method [11]. Computations 
using the latter method are presently carried out and results will be published elsewhere. It is hoped that 
the more elaborate methods will give us more eigenvalues with better accuracy and thus will allow us to 
study the energy level statistics. 

In section 4 we have carried out a quantitative analysis of Gutzwiller's periodic-orbit theory. Since the 
original version of the periodic-orbit theory, i.e. the representation (26) for the trace of the Green's 
function, is at best conditionally convergent, we have based our analysis on the Gaussian smeared 
periodic-orbit sum rule (27), which is absolutely convergent for any smearing parameter e > 0. Working 
with a convergent form of the periodic-orbit theory is of crucial importance in view of the limited number 
of classical orbits. Using a relatively large smearing parameter, i.e. e = 0.2, it turned out that the 
periodic-orbit theory evaluated with only 36 terms agrees at low energies surprisingly well with the 
" t rue"  Gaussian level density obtained from a numerical solution of the Schr6dinger equation (see fig. 
7b). If, however, the energy resolution is improved by taking e = 0.1, one requires all available 136699 
terms in order to be able to distinguish between the energy levels E 6 and E 7 (see fig. 8b). 

In section 4.2 we have shown that the energy resolution is significantly improved if the periodic-orbit 
theory is applied to the desymmetrized billiard systems instead to the full hyperbola billiard. Summariz- 
ing the results of section 4, we can say that the periodic-orbit theory provides indeed a substitute for the 
semiclassical quantization rules for our strongly chaotic system. In contrast to what one might have 
expected, the theory works quite well at low energies, while in the genuine semiclassical region, i.e. at 
large energies, much more periodic orbits would be needed than have been calculated in this paper. 
There remains the challenge to invent a powerful summation method to handle a huge number of 
periodic orbits in the periodic-orbit sum. 
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Appendix A. Extremum principle for periodic orbits 

Suppose Pi- l(Xi - l l l / x i -  1), Pi(xill/xi) and Pi+ l(xi+ lll/xi+ 1) are three successive points of a periodic 
orbit on the hyperbola. The lengths of the segments of the periodic orbit from P~_ x to Pi and from Pi to 
Pi+l are denoted by l i _ l ,  i and li, i+ 1 respectively. P /1  and Pi'+l are two points that are obtained by 
extending the two line segments of the orbit that have Pi as common point until they hit one of the 
hyperbolas y = 1/x  or y = - 1/x  (see fig. 10). Now consider an ellipse through Pi with foci PiLl and P/+I- 
Because of the focal property of the ellipse that the lines P/_ iPi and P/+ ~Pi form equal angles with the 
tangent to the ellipse at point P; it follows that the ellipse and the hyperbola have a common tangent at 
point Pi. It further holds that l i _ l ,  i + li, i+ 1 =A, where A is the major axis of the ellipse. If now the 
position of the point Pi on the hyperbola is changed one sees immediately that the major axis of the 
ellipse through Pi with loci PiLl and P/+l is increased and therefore also the sum of the distances Pi'-1Pi 
and P~P/+ ~. Since this argument holds for every point of the periodic orbit on the hyperbola, the following 
extremum principle for periodic orbits is obtained: 

0 
o - ~ L ( x , , . . . , x N ) = O  V i = I  . . . . .  N, (A.1) 
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Fig. 10. Illustration of the extremum principle. 

and  

02 
ox~L(x'7 . . . . .  XN)>O V i = l  . . . . .  N,  (A.2) 

where L is the length of a given periodic orbit as a function of its N points on the hyperbola, i.e. 

N 

L(x  1 . . . . .  XN) = ~_, Li(xi, xi+,), XN+ 1 :-----X 1. (A.3) 
i=1 

There  are three different possibilities for the functional dependence of the length Li(xi, xi+ 1) of the 

segment of the orbit from Pi(xill/xi) to Pi+l(xi+dl/Xi+l): 

.21 1/2 
Li(xi,xi+l) =f~(xi,xi+l) := [(x i -X i+ l )  2 + (1/xi + 1/xi+ 0 ] , 

21 1/2 
=fy(xi,xi+l) := [(xi+x,+l) 2+ ( 1 / x i -  1/x i+t )  I ' 

= f b ( X i  ' X i + l )  :=  [ ( X i  .[_Xi+l) 2 -{- ( 1 / X i  + 1/xi+1)2 ] , /2  (A.4) 

These three cases correspond to segments in which there is a reflection on the x-axis only or on the 
y-axis only or on both axes respectively. Thus if the given periodic orbit is represented by the ternary 
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sequence a -- (a 1 . . . . .  a N) (see section 2.1), its length function reads 

N 
L ( x ,  . . . . .  xN) = E I,,(xi, 

i=l  

265 

(A.5) 

Appendix B. Calculation of the monodromy matrix 

Consider a certain periodic orbit. In its vicinity a coordinate system can be introduced whose 
x-coordinate is parallel to the orbit and whose y-coordinate is perpendicular to it. A particle that starts at 
r = (x0, dy)  with momentum p = (Px, dpy) infinitesimally close to the periodic trajectory will have after 
one traversal the coordinates r' = (x0, dy ')  and momentum p'  = (px, dp~). The monodromy matrix M of 
the periodic orbit is then defined by 

(dY'/--M( 
dp~ ] dpy )" (a .1)  

It has the property det M- -  1. Introducing an angle a between momentum direction and x-direction one 
obtains 

da (1/p)M21 M22 ' p = I p I "  (B.2) 

The matrix M can be decomposed into partial matrices J14 i 

f f ' l m ~ l i m a x ' ' ' "  "/~2 "/~1" (B.3) 

This is done by traversing the periodic orbit once and inserting into the product one matrix _t1¢ i for every 
straight line segment and for every reflection on the boundary. It follows from geometrical considerations 
that for a straight line segment the matrix )t4 i is of the form 

1 li) ' (B.4) 
M i = ( o  1 

where l~ is the length of the line segment. For a reflection on the boundary the corresponding matrix 3¢ i 
has the form 

1 0) 
2/ (  Ricos fli ) - 1  " (B.5) 

Here /3  i is the angle between the incoming trajectory and the normal to the boundary. Ri is the radius of 
curvature of the boundary at the collision point. R i is greater than zero if the boundary is convex and it is 
less than zero if the boundary is concave. If the reflection takes place on a straight line, R i -- oo. 

In case [TrM I > 2, the periodic orbit is unstable and M has eigenvalues A1, 2 = e ±u o r  A1, 2 --  - e  +u,  

where u > 0 is the instability exponent. The Lyapunov exponent A of an unstable periodic orbit is in our 
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case defined as A = u/T, where T is the period of the periodic orbit. If ITrMI < 2, the periodic orbit is 
stable and M has eigenvalues A1, 2 = e -+i~, where v is the angle of stability. 

For billiards whose boundaries consist of concave and straight pieces only and which have the property 
that every classical trajectory is reflected from a concave part of the boundary at least once it is easy to 
show that the product of matrices M = Mim~x " . . . "  A/~ satisfies the relation ITr A~tl > 2. For that reason 
all periodic orbits of the hyperbola billiard are unstable and have positive instability exponents. 

Note added in proof 

After submission of this paper we have used an improved method to calculate the eigenvalues of the 
Schr6dinger equation, which allows us to consider also higher excited states and to study the level 
statistics. The nearest-neighbour spacing distributions for the two symmetry classes are in agreement 
with the GDE predictions of random-matrix theory. Details will be given in a forthcoming DESY 
preprint. 
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