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Abstract. We study the electronic level density in spheri- 
cal clusters. Due to the granularity of the ionic back- 
ground the surface is irregular at the microscopical level. 
We show that this affects the shell structure and that the 
level statistics display from the bottom to the top of the 
spectrum a transition from a poissonian behaviour to 
one consistent with the predictions of random matrices 
theory. 

PACS: 36.40. +d ;  31.20.Pv; 05.40. +j  

1. Introduction 

The interest in the study of quantum finite size effects 
in small metallic aggregates and clusters has been stimu- 
lated in the last few years through the availability of 
molecular beams and the discovery of electronic shell 
structure in simple metal clusters [1]. The quantization 
of electronic orbits was initially studied for very small 
clusters, and was also recently observed for large 
numbers of electrons [2, 3]. One now reaches from below 
a regime that could be called the "intermediate size re- 
gime" and which is reached from above in the physics 
of minute metallic particles. In this regime electronic 
quantum effects still play an important role, but the exact 
solution of the full quantum mechanical problem is not 
necessary for the description of the measurable proper- 
ties of the cluster. This leads to a type of "statistical 
approach" which we will present below. It is justified 
by the complexity of the problem and by the large 
number of configurations available in a molecular beam 
for a cluster of a given size. 

This type of study was initiated by Kubo [4] who 
calculated in particular the specific heat and spin suscep- 
tibility of metallic aggregates at low temperature assum- 
ing a random uncorrelated sequence of electronic levels 
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(a "poissonian" spectrum). This approach was then ex- 
tended by Gor'kov and Eliashberg [5] who emphasized 
the importance of correlations in the - still random - 
spectrum, linked to basic symmetries of the Hamiltonian 
through the theory of random matrices (RMT, for a 
review see [6]). The importance of the level statistics 
on specific heat, dielectric and magnetic susceptibility 
and odd-even effects for these observables was pointed 
out (see for instance [7]). More recently it was also found 
to be determining for the odd-even abundance rate in 
molecular beams of alkali clusters [8]. 

In [9] the level spacings distribution of small metallic 
particles with random impurities was shown to follow 
the prediction of RMT. In the present paper we will 
study the effects of surface roughness on clusters with 
a fixed spherical shape (throughout this paper we use 
the concept of roughness in a loose sense which implies 
only that the clusters have small size surface irregulari- 
ties). This is so to say the minimal - and unavoidable 
- type of disorder that a cluster can have; it is only 
caused by the discrete nature of the ionic background 
seen by the valence electrons. In this case the problem 
of determining the type of level statistics has not received 
a definite theoretical answer. The purpose of this paper 
is to try to clarify the domain of applicability of RMT 
and to study a possible transition from a poissonian 
spectrum to one of those predicted by RMT. We will 
be here interested in alkali clusters where the spin-orbit 
coupling is negligeable and the relevant ensemble of ran- 
dom Hamiltonians would be the gaussian orthogonal 
ensemble, GOE (cf. [6]). 

The paper is organized as follows. In Sect. 2 we devel- 
op for a single cluster a simple model containing the 
essential physical picture. In Sect. 3 we simulate an en- 
semble of rough clusters and analyse the fluctuations 
of the spectrum and the wave functions. Finally we com- 
pare our results with previous works and present our 
conclusions in Sect. 4. 
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2. The model 

Surface roughness will be most easily described within 
the tight-binding method as was done in [10, 11]. Since 
the valence electrons of the alkali metals we are inter- 
ested in form an almost free electron gas, we must con- 
struct a tight-binding model where the effects of the un- 
derlying lattice are as weak as possible. The route we 
have chosen is to consider a model with only one valence 
s-electron per atom and to allow for hopping and over- 
lapping of the atomic orbitals up to the third neighbour. 
More precisely, if we label the ionic sites by the set of 
points {R} and an atomic orbital located around point 
R by ]R), we will have the following matrix elements 
for the Hamiltonian: 

/ ~ if R ' = R ,  

(RIHIR') fll if R '=R+A1,  (1) 
~-  f l2  if R '=R+Az ,  

f13 if R '=R+A3,  
and ( R I H J R ' } = 0  otherwise. 

In (1) A1 (resp. A2 and A3) is a generic name for the 
vector separating two nearest (resp. second and third) 
neighbours. We will in the following choose the zero 
of energies such that ~ = 0 and the units such that fll = 
- 1. For the overlapping of the wave functions we take: 

1 if R ' = R ,  

(RIR')=  6:1 if R'=R+A1,  
5°2 if R'=R+A2,  
5:3 if R'=R+A3,  

and ( R I R ' ) = 0  otherwise. 

(2) 

The matrix elements of the Hamiltonian decrease with 
the distance between R and R' roughly with the same 
rate as the overlapping of the wave functions. We thus 
take for simplicity: 

~ _ ~2_ ~3_ ~ (3) 
fil fl2 f13-- 

Since we are only interested in surface irregularities we 
will consider that the bulk structure of the cluster is 
ordered and we will put the background ions on a lattice. 
We will present here the results for a bcc lattice. We 
have checked that the fcc structure leads to the same 
qualitative effects. 

As an asymptotic limit of the model we now study 
the band structure obtained with the Hamiltonian (1) 
and the atomic orbitals (2), keeping in mind that we 
want to imitate the main features of almost free electrons 
in a crystalline solid. The most important effect of the 
free electrons model is the spherical and isotropic Fermi 
surface. For the tight-binding model on the contrary, 
the breaking of the continuous translational symmetry 
by the lattice is quite noticeable due to the importance 
of the scattering centers. This leads for the band structure 
to a dispersion relation which is not quadratic but which 
has the following form (see e.g. [12]): 

3 

Z f i ,  exp(ik.A.) 
E(k) = n = l  An (4/ 

3 

1+ Z ZS: ,exp( ik 'A, )  
n = l  An 

where k is the wave vector. The low-k expansion of (4) 
will always start with a quadratic behaviour. This is to 
be linked to the result of [13] where a simple tight- 
binding model was shown to be equivalent to a free 
electron model in the long wave length limit. We shall 
seek the low-k expansion to be as quadratic and isotropic 
as possible. With our 3 free parameters (flz, fi3 and re) 
we can impose an expansion of the form: 

E(k) = E o + E2 (a k) z + E 6 (a k) 6 + C(a 8 k8), (5) 

where a is the lattice constant. We impose in (5) that 
the term in (ak) 4 is zero to remain as close to the free 
electron model as possible. Besides we have at order 
k 6 a term which is sill isotropic i.e. proportional to k 6 
= Ikl 6. The requirements of (5) are fulfilled by the choice 

f lz=-~- ,  f i 3 = - ~ 6 ,  and 6 e = ~  - (6) 

leading then to values Eo=--25/3 ,  E 2 = 5 / 6  and E 6 =  
--1/1080. The resulting band structure of (4) is shown 
in Fig. i. One sees that the dispersion relation is not 
very different from the one of a free electron, and more 
interesting, the anisotropy in the £ ~  F P  and F H  direc- 
tions in reciprocal space is small. This can be more clear- 
ly seen on Fig. 2 where we represent two cuts of the 
first Brillouin zone and of the Fermi surface. The im- 
provement compared with the simpler "Hfickel model" 
(50=0, f12 =f13 =0) is very significant. If we denote by 
ko the Fermi momentum of free electrons in the bcc 

1o.o f r ee  e l e c t r o n  

5 . 0  
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k 

Fig. 1. Dispersion relations (4) along the axes FN, FP and FH 
of reciprocal space. The upper curve is the free electron result. The 
horizontal dashed line indicates the Fermi energy of our model 
which we determined numerically to be EF-~I.18. The location 
of points F, N, P and H in the first Brillouin zone is shown on 
Fig. 2. The unit of momentum is 1/a 
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Fig. 2. Cross sections of the Fermi surface (solid line) and of the 
first Brillouin zone (straight solid lines). The Fermi energy was nu- 
merically estimated to be Ev-~ 1.18. The dashed line is the free elec- 
tron result ko =(6~2)113/a. The dotted line is the result of the simplest 
tight-binding model: the Hiicket model (defined by ~=0,  fl==fla 
=0). The unit of momentum is 1/a 

lattice (k0 = (6~2)1/3/a) the fluctuations A k/ko on the Fer- 
mi surface of our model are of about 5%. This is compa- 
rable with the fluctuations for Cs(~-3.3%) but much 
larger than for Na(~-0.1%) (see [12-1). Nevertheless, up 
to an energy E - - -  1 the anisotropy in our model is 
negligeable (see Fig. 1) and we will devote the main part 
of our study to this region of the clusters' spectra. The 
breaking of the large shell effects that an electron would 
experience in a perfectly spherical cluster will then be 
only caused by the surface irregularities since we have 
minimized the effects of the symmetry of the underlying 
lattice. 

3. Rough spherical clusters 

We now turn to the simulation of an ensemble of rough 
spherical clusters. Starting from a point C in real space 
we construct a spherical cluster by eliminating all the 
lattice points which are at a distance from C greater 
or equal than a fixed value r0. In our example we chose 

3a l/~, i.e. 3 times the distance to the third neigh- 
bour on the bcc structure. In order to avoid degeneracies 
related to the Oh symmetry of the underlying lattice we 
take care that the center C is not a lattice point or a 
point of symmetry. Varying the position of C we then 
generate a set of 50 different clusters. These clusters are 
spherical on the coarse grained level but they have each 
a different rough microscopic structure. They do not con- 
tain exactly the same number of atoms: in our simula- 
tions it varies from 626 to 648 atoms; however this small 
variation (+2%)  does not affect the statistical features 
of the spectrum and of the wave functions. Moreover, 
studying spectra coming from clusters with different sizes 
(and shapes) makes sure that we do not analyse redun- 
dant information and that our 50 sets of data are indeed 
independent. 

In Fig. 3 we present the spectrum of one of the clusters 
and compare it with the spectrum of the system com- 
posed by one particle in a spherical cavity with infinite 
walls (the mass of this particle and the energy inside 
the cavity are chosen to match (5) up to k 2, we refer 
to this system as the "equivalent sphere"). In order to 
compare the spectra easily we have plotted the integrated 
level densities: 

(7) 
i 

The factor 2 accounts for spin degeneracy, 0 is the Heav- 
iside function and the Ei's are the eigenvatues. All the 
essential degeneracies of the sphere are broken in the 
cluster case (although it is sometimes not noticeable on 
the figure), but the large scale features of the spectra 
are very similar. Therefore in order to analyse our data 
and determine the level statistics we must study the spec- 
trum shell by shell, otherwise we might mix two effects: 
one linked to the large scale poissonian statistics of the 
sphere and the other being the perturbation of the levels 
resulting from the surface roughness [14]. If one goes 
up in energy, the electronic wave length becomes compa- 
rable with the typical size of the surface bumps (i.e. the 
lattice constant a): the breaking of the degeneracies be- 
comes more and more important and shells begin to 
overlap. Around the Fermi energy, the wave length is 

a and the spherical shell structure is washed out (see 
the insert in Fig. 3). So our model - or any type of Hiickel 
approximation - would not predict reliable magic 
numbers, because it misses the shell structure near EF, 
where it is the most important for determining the total 
energy. 

We analyzed the level statistics for the following ener- 
gy intervals: 40<N(E)=<58, 6 8 < N ( E ) < 9 2  (resulting 
from the overlap of the shells 1 h and 3 s, see Fig. 3), 
138 < N (E) < 186 (shells 1 j and 2 g) and 1.0 _ E _< 1.4, i.e. 
around the Fermi energy EF ~ -- 1.18 (the distinction be- 
tween different shells is here no longer necessary). 

Let us make a technical remark: In order to compare 
the spectra coming from different clusters we "unfold" 
each spectrum in the interval of interest (see e.g. ['15]); 
i.e. we fit locally the level density N(E)  by a smooth 
function N,~(E) and define new dimensionless levels ei 
=-N]v(E~). Thus in all the intervals the new spectra have 
the same average density equal to unity and it is then 
legitimate to add the fluctuations coming from different 
spectra. The function Na~ was chosen to be a straight 
line for the 3 first intervals and a parabola around the 
Fermi energy. 

A usual observable in the analysis of spectra is the 
level spacings distribution P(A) giving the probability 
that 2 successive levels e~ and ei+ 1 are separated by an 
energy A. It is plotted on Fig. 4 where we see clearly 
when going up in energy a transition from a poissonian 
distribution to the Wigner surmise [6, 15] characteristic 
of GOE. The same transition is seen on the spectral 
rigidity [6, 15] Aa(L) (cf. Fig. 5). A3(L ) is the last-square 
deviation of the integrated level density N(ei) from a 
straight line fitting it on an interval of length L. It mea- 
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Fig. 3. Cumulated level density of the lower 
part of the spectrum of a typical cluster and of 
the equivalent sphere (see the text). The thick 
lines on the vertical axis are located on the in- 
tervals (a), (b) and (c) analyzed in the following. 
The arrows indicate some of the spherical shells 
important for the analysis. The insert displays 
the complete figure. For  the cluster considered 
the Fermi energy is 1.17 and appears as a 
dashed vertical line in the insert 

<3 
v 

1.0 

0.5 

0.0 
0.0 1.0 2.0 3.0 4,0 

A 

v 

1.0 

0.5 

0.0 

(b) 

0.0 1.0 2.0 3.0 4.0 
A 

<3 

1.0 

0.5 

0.0 

1.0 

",,, (o) 
" 'j*" , 

0.0 
0.0 1.0 2.0 8.0 4.0 

A 

',, (d) 

0.0 1.0 2.0 3.0 4.0 
A 

Fig. 4. Level spacings distribution, case (a): 
40<N(E)<58  (with 400 spacings included), 
case (b): 68<N(E)<92  (541 spacings included), 
case (c): 138 < N(E)< 186 (1149 spacings), case 
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Fig. 5. Spectral rigidity. The label a, b, c, d 
refer to the same cases as in Fig. 4. The upper 
dashed line represents the poissonian result 
(A3(L)=L/15) and the lower dashed line is the 
GOE prediction 

sures the fluctuations of the spectrum on a scale L: the 
smaller is A 3, the stronger is the rigidity i.e. the correla- 
tions in the spectrum. One sees on Fig. 5 as one goes 
up in energy that the rigidity increases*, i.e. the correla- 
tions of eigenvatues due to the surface roughness in- 
crease. 

In view of these results we are lead to assume that 
the problem can be put in the form of the perturbation 
of a Hamiltonian having a spherical symmetry. The ef- 
fects of this perturbation increase with the energy: in 
the bot tom of the spectrum the de Broglie wave-length 
is large in comparison with the surface irregularities and 
tile perturbation is accordingly small. In this region of 
the spectrum we got a poissonian distribution of the 
eigen-energies. When going up in the spectrum, the per- 
turbation becomes more and more important  and our 
results indicate a transition towards statistical feactures 
consistent with the predictions of RMT. 

In order to give further support  to this qualitative 
picture we will now define a basis of '"unperturbed 
states" and study the coordinates of the eigen-functions 
in this basis. The simplest way to define these unper- 
turbed states is to take the solution of Schr6dinger equa- 
tion in a sphere with infinite hard walls. In our model 
the wave functions are essentially of discrete nature, or 
more precisely they are characterized only by their com- 
ponents on the set of atomic orbitals. In accordance with 
this feature we define a discrete version of the "unper-  
turbed basis": 

* T h e r e  is h o w e v e r  a d e p a r t u r e  f r o m  the  p o i s s o n i a n  p r e d i c t i o n  
in  case  (a) o f  F ig .  5. W e  be l i eve  i t  is  d u e  t o  t he  l a c k  of  s t a t i s t i c s .  
N e v e r t h e l e s s  the  g e n e r a l  t r e n d  is v e r y  c l ea r  

[nlm) = A.l,~ ~.jl(z.l R/ro) Ylm(l~) [R ), (8) 
R 

where A,tm is a normalization coefficient, r0 is the radius 
of the sphere, Y~,, is a spherical harmonic, and z,~ is 
the n m zero of the spherical Bessel function of the first 
kind j~. For  the first twenty unperturbed shells we have 
checked numerically that the ]n lm)'s where orthogonal 
to  a very good accuracy ( < 5-10 - 3). 

Since we have now an appropriate orthonormalized 
basis we can study the influence of surface roughness 
on these "unper turbed"  wave functions. For  a given clus- 
ter and a given electronic eigenstate [~)  (solution of 
HIVI/=Ed~))  we study the components ](ntml~)l  2. 
They can vary for different choices of the unperturbed 
basis because the m index is not here an essential quan- 
tum number but serves merely for labelling the wave- 
functions. Nevertheless the quantity 

S.l(V~)= ~" [(nlm[ ~)[2 (9) 
m 

represents the square of the norm of the projection of 
the state [~)  on the (n l) subspace and does not depend 
on the choice of the unperturbed basis. If the roughness 
does not affect the system to much, then a state [~)  
will belong to a given (nl) shell and S,~(~) will be 1 
on this particular shell and 0 elsewhere. This is indeed 
what is observed in Fig. 6 for states at the bot tom of 
the spectrum. When energy increases the roughness 
mixes the shells and the "s t rength" S,~(7~) gets more 
spread. For  instance, one sees deaf ly  on the histograms 
of Fig. 6 that the shells l j  and 2 g are mixed, as was 
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anticipated from Fig. 3. For each state ]~), this spread- 
ing of the strength on several shells can be characterized 
by a participation ratio t¢~ [16] defined by: 

1/~:i--~lS.~(~l 2. (10) 
nl 

~ci is 1 if the state remains inside a single shell, and is 
equal to N if the strength of I~)  is equally shared by 
N unperturbed shells. Thus tq can be viewed as an effec- 
tive number of shells on which the strength of state [~) 
would be concentrated. For  the cluster from which we 
have plotted the strength in Fig. 6 we found in the inter- 
val (a) a mean value of the participation ratio ~ =  1.17, 
for the interval (b) ~ = 1.53 and for case (c) t? = 2.49. 

This enhances our previous picture: both the results 
for the eigen-energies and the eigen-functions of our 
tight-binding model appear as perturbations of a Hamil- 
tonian with spherical symmetry. As stated above the ef- 
fects of the perturbation increase with the energy, leading 
to shell-mixing and to level statistics reaching the results 
of RMT. 

4.  C o n c l u s i o n  

The three tools we have used for our analysis (short 
range correlations in the spectrum with P(A), longer 
range modulations through A3(L) and a study of the 
wave functions) lead to the following qualitative picture: 
in the lower part of the spectrum the de Broglie wave- 
length being large, surface irregularities do not perturb 
the eigenstates much and there is a strong bunching of 

levels. This shell effect disappears gradually for increas- 
ing energies. Moreover, the perturbation causes a mixing 
of levels inside a shell which is poissonian at the bottom 
of the spectrum and becomes gradually gaussian (GOE). 
However, for the perturbation we have considered here, 
even at the Fermi energy the statistical features of the 
spectrum are not in complete agreement with the results 
of RMT. This indicates that for weak disorder and equi- 
valently for low band filling - i.e. when the Fermi energy 
is in a region of the spectrum where the perturbation 
is small - the approach of RMT ceases to be valid. 

These features of the spectrum including the Poisson 
to GOE transition were in substance present in earlier 
studies. In [1I], Bucher et al. used a Hiickel model to 
describe clusters more rough than ours. In the bottom 
of their spectra they observed a shell effect that disap- 
pears for increasing surface roughness (cf. Fig. 6 of [11]). 
They obtain a level spacing distribution near the Fermi 
energy which is GOE-like and at the bottom of the spec- 
trum it would certainly be poissonian if corrected for 
the shell effect (see their Fig. 5a). In [17] Ratcliff maps 
a model of free electrons in an irregular sharp surface 
onto a system enclosed in a sharp sphere with a potential 
treated perturbatively. The system has the same symme- 
try as ours, and indeed the level spacing distribution 
is in agreement with the Wigner surmise for the particu- 
lar shell considered in [17]. The surface irregularities 
are expanded as a linear combination of spherical har- 
monics Yz,. Our study would correspond to high 2 defor- 
mations (small bumps at the surface), the matrix elements 
of this deformation inside a given shell l decrease and 
become zero for /<2/2.  We thus expect that the same 
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t ransi t ion would  be seen in the mode l  of  [17], and  simi- 
larly in a je l l ium model .  However ,  in this type of models  
the shell s t ructure  at  the Fe rmi  energy is larger  than  
in a t ight-binding app rox ima t ion ,  and  the effects of  sur- 
face roughness  near  EF are then  expected to be weakened  
c o m p a r e d  to our  case. 

The  level spacing of  d isordered metal l ic  particles was 
shown  by Efetov [-9] to  follow the R M T  predict ions.  
This  result is der ived in the case of  r a n d o m  impur i ty  
potent ia ls  d is t r ibuted with a gaussian corre la t ion  func- 
t ion and  in the limit where  the pe r tu rba t ion  induces a 
shift of  the levels large c o m p a r e d  with the m e a n  level 
spacing. This  last condi t ion is certainly not  fldfilled at 
the b o t t o m  of  our  spectra ;  bu t  when the shells begin 
to over lap  we reach the range  of  validi ty of  Efetov 's  
a p p r o a c h  and  we get similar results (a l though the physi-  
cal origin of  the d isorder  is not  the same). In  addi t ion  
our  numer ica l  s tudy indicates that  the R M T  a p p r o a c h  
fails in the b o t t o m  of the spec t rum and tha t  the Poisson 
statistics is then appropr ia te .  

F inal ly  let us note  that  in our  mode l  we have put  
the ionic cores on a lattice and implicit ly a s sumed  tha t  
the clusters are solid-like. W e  k n o w  tha t  this is t rue for 
large enough  sizes be low a certain t empera tu re  but  in 
o ther  cases we expect  the clusters to have  an a m o r p h o u s  
s t ructure  or  a n o n  crystall ine order  (see e.g. [18]).  I t  
would  then be of interest  to s tudy the electronic p roper -  
ties of  these s t ructures  in connec t ion  with the exper imen-  
tal result of  [2] where  the pack ing  of the ionic cores 
in closed icosahedra l  s t ructures  was seen to correlate  
with an i m p o r t a n t  increase of  the ionizat ion potent ia l  
of  the cluster. 
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