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Abstract:

The purposeof this review article is to demonstratevia a few simple models the mechanismfor avery general,universal instability — the
Arnold diffusion — whichoccursin theoscillatingsystemshavingmorethantwo degreesof freedom.A peculiarfeatureof this instability resultsin
anirregular, or stochastic,motion of the systemas if the latter were influencedby arandomperturbationeventhough,in fact,the motion is
governedby purely dynamicalequations.Theinstability takesplacegenerallyfor very specialinitial conditions(inside the so-calledstochastic
layers)whichare, however,everywheredensein thephasespaceof thesystem.

Thebasicandsimplestoneof themodelsconsideredis thatof apendulumunderanexternalperiodicperturbation.This model representsthe
behaviorof nonlinearoscillations near a resonance,including the phenomenonof the stochasticinstability within the stochastic.layer of
resonance.All modelsaretreatedboth analyticallyandnumerically.Some generalregulationsconcerningthestochasticinstability arepresented,
includingageneral,semi-quantitativemethod— the overlapcriterion— to estimatetheconditionsfor this stochasticinstability aswell as its main
characteristics.

1. Introduction

Enormousprogresshasbeenmadeduring the last few decadesin thegeneraltheoryof dynamical
systems,including, asa particularcase,the theory of nonlinearoscillationsfor Hamiltoniansystems
of classicalmechanics(see,e.g., refs.[1—3,11—15, %, 110]). Unfortunatelyfor aphysicist,mostof the
theoriesdevelopedarepurely mathematical.This hamperstheirapplicationto particularproblemsfor,
at least, two reasons.First, mathematicalmodels are frequently not adequatefor real physical
systems,and it is quite unclearhow far the conclusionsof a mathematicaltheory can be extended
beyondthe rigid frameof its stringent premises.Secondly,often it is just hard to understandthe
languageof contemporarymathematicsunlessyou havepiercedits “jungles”.

Without any doubt, the mathematicaltheoriesdevelopedsuchas the KAM-theory of stability
(section4.6), the theoriesof C- andK-systemsand thewhole modernergodictheory,the differenti-
abledynamicsand others (section5.3) do servealready now and will do so in the future as firm
beaconsin a still densemist of extremelydiversephenomenaandprocessesin nonlinearmechanics,
amidstnumerousreefsof specific casesandsurprisecomplications.Yet, he who desiresto reacha
cherishedislet of stability in theviolent (andstochastic!)seaof nonlinearoscillationsshould not rely
uponthe beaconsonly. Onemust learnhow to find one’s way using a morevariedarsenalof means
and methodsbesidesa stringent and scrupulousmathematicalanalysiseven if the former would
provideonly a temporaryandpreliminary solutionof a problem.AcademicianA.N. Kolmogorovhas
mentionedon an occasionthat it is not so muchimportantto be rigorousasto be right. A way to be
convinced(and to convincetheothers!)of the rightnessof a solutionwithout a rigoroustheory is a
tried methodof the science— the experiment.In the field of non-linear oscillations the so-called
numericalexperiment,ornumericalsimulation,i.e. numericalintegrationof themotion equationsof a
dynamicalsystemby computer,hasbeenspreadingrecentlymoreandmore. In thepresentpaperwe
widely useresultsof various numericalexperiments.With a few exceptionsonly numericalexperi-
mentswill be mentioned,so we shallsayoften just “experiment”,“empirical”, etc.withoutthe risk of
confusingthe reader.

The main purposeof the presentreview article is a detailedand, as far as possible,graphic
consideration,via simplemodels,of abasicphenomenondiscoveredrecently— the so-calledstochas-
tic instability of nonlinearoscillations(see,e.g.,the reviewarticles[9,32, 76]) and,especially,its most
ingeniousmanifestation— theArnold diffusion [5,24, 43]. The lattermay becalled by right auniversal
instability of many-dimensionalnonlinear oscillations since it occurs in any system (except the
completelyintegrableones,seebelow andsection8) and for arbitrarilysmall perturbation.
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The selectionof the modelsis determinedby two reasons.First, we havedoneour bestto find as
simpleaspossible,yet non-trivial, models,that is suchwhosemotion is still not completelysolved.
Sections2 and 3 which are devoted,mainly, to questionsof methodicsare an exception.Those
questionsare thought to be necessaryto understandthe main contentof thepaper.Secondly,the
modelsshould bearan obviousrelationto realphysicalsystemsthestudy of which is of someinterest
today.This sort of relationis illustratedin section4.3 wheretheproblemof achargedparticlemotion
in a magneticbottle is considered.This problemis of importancein various applicationsbut still
remainsincompletely solved in spite of more than twenty years’ efforts. The many-dimensional
oscillator describedin sections7.5 and 7.6 may be also consideredasa model for the motion of a
chargedparticle in a storagering. The latterproblemis of interestfor the colliding beamtechnique.

The classof problemsunderconsiderationis, of course,a small part not only of generaltheory of
dynamicalsystemsbut evenof the classicalnonlinearoscillation theory. In particular,we confine
ourselvesto Hamiltonian systemsonly excluding, thus, all questionsrelated to the influence of
dissipation,hence,alsoany relaxationoscillationsand the like*. Nevertheless,the remainingset (of
oscillatoryprocesses)is not empty, asmathematiciansuseto say.The role of Hamiltonian,or nearly
Hamiltonian, systemslies beyondsomeof their particular,albeit important,applicationssuchas,for
example,the motion of charged(especiallyheavy)particlesin acceleratorsand storagerings, or the
motion of planetsin the Solar systemaswell asthat of man-madecelestialbodies: sputniks,space
ships, etc. What is still more important, perhaps,is that the fundamentallaws of motion for
“elementary”particlesmay beexpressedin termsof Hamiltonianequationswhereasphenomenalike
dissipationturnout to be specific consequencesof the former.

Anotheressentialrestrictionof the modelsin questionis a limitation of theoscillation nonlinearity
from below, that is we assumethe nonlinearityto be not too small.The caseof asmall nonlinearity
turnsout to bemorecomplicated,strangethoughit may seem,if, perhaps,a moreinterestingone,as
is demonstratedby a curiousexamplein ref. [40].As far asa theoreticalanalysisandestimatesare
concernedwe havealso to confine ourselvesto theusualcaseof a small perturbationacting upona
systemwhosemotion is known.

In this article we are not going to presentor to representany general theory of nonlinear
oscillations. On the contrary, important (and rather little-known) phenomenaand ideas will be
consideredvia simple examples,graphically,if you like, in accordancewith a wisedictum that one
examplemay turn out to be sometimesmoreuseful thana dozenof theories.The author,however,
allows himself on occasionsome natural generalizationsat the level of rigor common in physics
(seesections3.3; 4.5; 7.3).

Thebasicmodel we are going to consideris that of asimple pendulumunderanexternalperiodic
perturbation(section5). Freeoscillationsof thependulumsimulatethefairly well knownphenomenon
of a single (isolated) resonance(section 3). The latter may be consideredas an elementary
phenomenonof nonlineardynamics,a “cell”, a large numberof which forms all the diversity of
nonlinearoscillatory processes.A significant feature of the nonlinear resonanceis the oscillation
boundednessandsmallnessundera small perturbationasdistinctfrom the linear resonancefor which
thereis no suchboundedness.The oscillationsareboundeddue to thedependenceof theirfrequency
on theenergy. Sucha dependenceis, thus, an importantpropertyand the first sign of an oscillator
nonlinearity(section2). Boundednessof oscillations is a kind of stabilizationof a resonantpertur-
bation by thenonlinearity.Variousapplicationsof thenonlinearstabilizationto provide,for example,

*concerningtheinfluence of aweakdissipationseetheend of section5.5.
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the motion stability of chargedparticlesin accelerators,is a topical tasktoday.The phenomenonof
nonlinearstabilizationaswell asnonlinearresonanceare ratherwell known and haveattractedthe
attentionof manyresearchers.

Less known is that in the way of those applicationsthe stochasticinstability, which destroys
nonlinearstabilization,arises.* Stochasticinstability resultsfrom an interactionof severalnonlinear
resonances(section4). This interactionis consideredvia the model of a pendulumactedupon by a
special perturbation— a sequenceof short periodical “kicks” (section5). The motion of the latter
model may be describedby a simple—standardas we call it—mapping (5.1), i.e. by means of
differenceequations,that simplifiesconsiderablyboth the theoreticalanalysisof motion andnumeri-
cal experiments.

A simple criterion related to the overlap of neighbouringresonancesforms the core of our
theoreticalanalysis(section4.1).We shall repeatedlycomebackto thiscriterionto compareresultsof
numerical experimentswith analytical estimates(see section6.4). The overlap criterion is sub-
stantiatedbelow by plausible(at least,for a physicist!)considerationsandestimatesaswell asby the
results of various numerical experiments.This sort of approachallows us to resolve problems
unreachablefor a more stringent mathematicalanalysis(see section6.2). A retribution for sucha
progressis inability of thesimplecriterion to discerntheso-calledcompletelyintegrablesystems— the
specific and, in a sense,exceptionalcasesof absolutelystablenonlinearoscillations.An excellent
exampleof the latter is the so-calledToda lattice [108].The only excusethe overlapcriterion may
offer is that todayany othertheoryis alsouncapableto answerthequestionwhethera givensystemis
completelyintegrableeventhougha largeexperiencein “designing” suchsystemshasbeengainedby
now [68].

Numericalexperimentsreveal that under the overlapof resonancesthe oscillationsof a system
becomeirregular,or stochastic,asif the latterwere influencedby a randomperturbationeventhough,
in fact, themotion is governedby purely dynamicalequations.Thus,wehavecomeacrossanexample
of arising a “random” processin adynamicalsystem,andwhat’smore,in a very simpleonehaving
1.5 degreeof freedomaltogether(3-dimensionalphasespace).Along with otherexamples[11,38, 34]
the latter resultleadsto a newunderstandingof the natureof statistical laws in classicalmechanics.

In section6 theoscillationsof apendulum(the latterbeingjustaswell anonlinearresonance)near
theseparatrixareconsidered.Motion in this areaprovesto be describedalsoby astandardmapping
the analysisof which leadsto the conclusionthat in a sufficiently closevicinity of separatrixthe
so-calledstochasticlayeralwaysexists.Themotion insidethe layeris unstableand in thenatureof a
diffusion which is confinedwithin the layer. The stochasticlayerplays an importantrole in modern
oscillationtheory,beingan“embryo” of aninstability, this is just theplacefrom which the instability is
spreading,as the perturbationgrows, over all, or almost all, of the phasespaceof a system.The
standardmapping,to propertiesof which a considerablepart of thepresentpaperis devoted,plays,
thus,arole muchmore importantthanjust an exampleof theresonanceinteraction.

The significanceof thestochasticlayercomesto light completelyin the many-dimensionalsystem
somemodelsof which areconsideredin section7. In thecaseof many-dimensionaloscillationstheset
of stochasticlayersat nonlinearresonancesforms a united network,a “web”, motion trajectories
inside the latter penetratingnearly all the phase space.A universal instability does set in, the

~Thisinstability maybeuseful,however,in realizationofthe so-calledFermi stochasticacceleration[132](seealso(133])asdiscussedin ref.
[29]andaswasactuallydonefor plasmaheating[129].A similar methodfor theelectronheatingby anr.f. wavein amirror machine,alsorelied
uponthestochasticinstability, wasinvestigatedin anumberof works(see,e.g., refs. [134,136, 33]).
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instability which hasbeendiscoveredby Arnold [5, 67] andwhich hasbeencalled later the Arnold
diffusion [43].

In the presentpaperwe do not go beyondthe frameworkof classicalmechanics.The study of
nonlinearoscillationsin quantummechanicsis still in its very outset.For someinterestingpeculiari-
tiesof a quantumnonlinearoscillatoralreadyconsideredsee,e.g.,refs. [20,144].

My last remarkconcernsthe referenceswhich arenotclaimedto be completebut pursue,mainly,
theaim to help the readerto makefamiliar himself with original paperson theproblemsin question.
The authoroffersin advancehis apologiesfor possibleomissionsandaccidentalmistakesaswell as
for somewhat“stochastic”numberingof the reference.

2. Whatarenonlinearoscillations?A few simple examples

In thissectionwe startwith afewsimple examplesof onedegree-of-freedomnonlinearoscillations.
We will exposethe most importantproperty of the nonlinearoscillator, the so-called non-isoch-
ronicity, i.e. thedependenceof the free oscillation periodon theamplitude,or theenergy.In section
2.2 themainideasandapracticalapplicationof amodernperturbationtheory,basedon thecanonical
changeof dynamicalvariables,will be presented.This techniquewill be usedbelow. In section2.4 we
shall considera specialtrajectoryof a nonlinearoscillator,theso-calledseparatrixwhich will play an
importantrole in what follows.

2.1. Pendulum

Oscillationsof apendulumgive us one of the oldestexamplesof oscillations,in general,and, in
particular,nonlinearoscillations.The centuries-oldhistory of studyingthis apparentlysimple system
hasshown a surprisingdiversity of its motions.For instance,a newphenomenonof the dynamical
stabilitywas discoverednot so long ago [16].In thepresentpaperwe shall see,in particular,that the
study of pendulumpropertiesis still quite far from being completed(see section5). The simple
pendulummodel will play a specialrole for us. We shall seethat one of the basicphenomenonof
nonlinearoscillations— the nonlinearresonance— canbe describedby this model underfairly general
conditions(section3).

Let us first considerfree oscillationsof a pendulum.Let theHamiltonian of the systemhavethe
form:

H(p,ço)=~—Uocosç (2.1)

where ~ is the angle of pendulum displacementfrom the lower (stable) position of equilibrium;
p = Mçô stands for the pendulum angular momentum; M = m12 is the moment of inertia. The
frequencyof small oscillations (w

0) is related to the amplitude of the potential energy U0 by
= UOJM. Note that for a free rotationp is theaction variable.In what follows let M = 1.
It is well known that the pendulum equationsof motion can be integratedin termsof elliptic

functions(see,e.g.,ref. [4]).Therearetwo kinds of motion: the oscillationsand the rotation.
Solving equationH(p,q,) = constfor p = ~ we find:

= ±V2(H+ (J~cosq~). (2.2)
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Straightforwardintegrationof this equationfor H < U0 (oscillations)gives (see,e.g.,ref. [58]):

= 2wo sin(çJ2)cn(wot) (2.3)

wherecn(u) is theJacobianelliptic cosine;co standsfor theamplitudeof pendulumdisplacement,and
the time t = 0 correspondsto crossingthe point ç = 0 with a positive velocity. Term by term
integratingthe Fourierseriesfor cn(u) gives:

Q(t) =40 ~ w~c~~.~Jwo) (2.4)

Here K’ = K(k’) is the completeelliptic integral of the first kind; k’ = V’l — k
2 k = sin(~J2).The

period of oscillationsis T = 2irlw where

w(H) = irwo/2K (2.5)

and the oscillation spectrumis: w~= (2n— 1)w.
In thecaseof rotation (H> U

0), the solutionhasthe form:

sin(w~t)
±~(t) =2am(wrt)= 2wt +4w w~cosh(K’wJw~) (2.6)

Heream(u)is theJacobianelliptic amplitude;

k = V2U0/(H+ U0) = w~/w~ w~= \/(H + U0),

and we have introduced half the frequencyof the meanrotation: w(H) = ITWrI2K to make the
expressions(2.4) and (2.6) as similar to eachother aspossible;we shall usethis in section2.4. The
rotationfrequencyspectrumis: w~= 2nw.

Relation(2.5) showsthat thependulumfrequencydoesdependon theoscillation amplitude,or the
energy so that the pendulum is generally a non-isochronousoscillator. The latter property is of
paramountimportancefor theproblemof motion stability aswe shall seebelow.

Letus considerthecaseof small pendulumoscillationsandrelatetheargumentk = sin(~o/2)4 1 of
the elliptic integralto the pendulumenergyE reckonedfrom the minimum of the potential energy:
—U0 (2.1). We have: E = 2U0k

2. Expandingthe expression[K(k)]~ asa powerseriesin k2 we find:
I 5 2 II 3

w 1-gE- - (2.7)
wherewe haveput U

0 = 1 (Wo = 1). We shall needsuchahighaccuracyin thenextsectionto compare
eq. (2.7) with the resultof theperturbationtheory.

Letus introducethedimensionlessparameterof thenonlinearity:

I do
a—~-y. (2.8)

We definea via theaction I sincewe shall usebelow,asa rule, theaction-anglevariables(1,0). To
theaccuracyw 1 — E18 theaction I E/wo asfor aharmonicoscillator.Hence:a —118. For E4 1
thenonlinearityof small oscillations(E,14 1) is small (a 4 1).

Another characteristicpropertyof nonlinearoscillationsis the anharmonicity,i.e. thepresenceof
higher harmonicsof the basic frequencyw (2.5). For small oscillations the amplitudesof higher
harmonicsare small asone can seefrom eq. (2.4) with K’ ln(41k) = ~ln(32/E).Hencethe small
oscillationsare nearlyharmonic.
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In the oppositecaseof afast rotation (H E0 ~‘ U0), the pendulummotion hasa quite different
character.Theamplitudesof higherharmonicsarealso small (seeeq. (2.6); k = WJWr4 1), so that the
motion is anearlyuniform rotation. However,the frequencyof rotation doesdependon theenergy.
Sincein this casep I (the action)thenonlinearityparametera 1, i.e. the nonlinearityis not small
eventhoughtheanharmonicitymay be arbitrarily smallas 00/Or ~ 0.

2.2. Canonicaltransformationsandthesuperconvergence

In spiteof greatsuccessin thesearchof completelyintegrablenonlinearsystems[68]the latterare
neverthelessexceptional,in my opinion.Anyway theproblemswe aregoing to considerdo notbelong
to integrableones.Hence for their analytical treatmentone needssome approximatemethod, for
instance,a versionof perturbationtheory.The latter is applicable,of course,only if thereis asmall
parameter.According to this we assumethat theHamiltonianof our systemmaybe divided into two
parts:

H(I, 0) = H0(I) + e V(I, 0) (2.9)

the first of whichdescribesan “unperturbed”systemandhasan integralof motion I (the action).The
main “property” of theunperturbedsystemis our completeknowledgeof its motion.Our problemis,
however,to study themotion of a “perturbed” systemwith theHamiltonianH(I, 0), and we assume
the “perturbation” eV(I, 0) to be small (e4 1). A characteristicfeatureof the perturbationis the
dependenceof the latteron thephase0 of theunperturbedmotion. This very dependenceleadsto a
changein theunperturbedactionL Notethat thedivision of the Hamiltonianinto an unperturbedpart
andperturbationis somewhatarbitraryanddepends,particularly,on our mathematicalskill.

Assume we don’t know any elliptic functions. Let us try to find the pendulum motion ap-
proximately, taking asan unperturbedsystemjust the harmonicoscillator (the latter is known to
everybody!):

12 122

H0 = ~p +~woq’= w~I. (2.10)
The aim of theseexercisesis to demonstratevia asimple examplethemodernperturbationtheoryfor
Hamiltoniansystems.

It hasbeenknown for a long time (see,e.g., ref. [17])that successivecanonicalchangesin the
dynamicalvariables(or canonicaltransformations)in a Hamiltonian without making any useof the
equationsof motion is an efficient method for analytically treatingHamiltonian systems.The basic
idea is to find such new variables (I, 0) in which the perturbation,that is a part of Hamiltonian
dependingon 0, would.become zero, would disappear.In other words, the task is to “kill” the
perturbationby a changeof variables.Thenthenew I is an integralof motion.

To find such an I is the sameasto solve the problem completely, therefore, it is in general
impossible to do in an explicit form. In classicalperturbation theory [17] successivecanonical
transformations:(1, 0)—’ (Ii, 0~) . . . (~,On) ~ - (I, 0) arechosenin suchawayto lower theorderof
perturbationby one power of the small parameterin every step: �V~�

2V
1..+.. ~ Vn 0.

However,suchsequencies(the so-calledasymptoticseries,see,e.g.,ref. [4])are diverging,asarule,
and this restrictsapplicationsof perturbationtheoryto afairly short time intervalof motion.

A decisivesuccessin thisapproachwas achievedby anewperturbationtheorydueto Kolmogorov
[1].He observedthat successivecanonicaltransformationsmay be chosenin suchaway that every
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next perturbationbecomesof the order of the squareof the precedingone: EV-4e2V
1-+

�~
2”~Vn40.

Let us see how doesthis technique work for the simple exampleof a pendulum.* We write
Hamiltonian(2.1) in the form (M = 00 = 1):

(2.11)

takethetwo first termsastheunperturbedHamiltonian (2.10)andchangethevariablesin H
0 to (1, 0).

Then:H0 = I; ç = ~4/2I cos0. Substitutingthe latterexpressionsinto eq. (2.11)we obtain:

j
2 3 4H(I, 0) I —-~-j-cos40 +-~-cos60 ——~—cos80. (2.12)

Thesmall parameterhereis theaction itself: e = I; H
0 = e; V -~ H0.

We restrict ourselvesto the problem of evaluatingthe pendulumfrequencyas a function of its
energy:w(H). Thefirst correctionto theunperturbedfrequency00= 1 canbe obtaineddirectly from
eq. (2.12).To do this we divide theperturbationinto themeanandoscillatingpartswith respectto the
phase0:

2 3 4 2 3 4

eV(I, 0) = — 16~9x 32 9 x 2’° -~-(cos
40—~)+ ~(cos60— — 28 ~~(cos80— ag). (2.13)

We use,further, the so-calledaveragingmethod(see,e.g., ref. [4]), that is we simply neglectthe
oscillating partof perturbation.ThentheaveragedHamiltoniantakesthe form:

(2.14)

A reasonfor suchan averagingis an intrinsically true idea that the oscillating part of perturbation
causesonly “small” vibrations.The lattercanbe neglected,however,only to a certainaccuracy.As
we shall seebelow thelast two termsin eq. (2.14)exceedtheaccuracyof averagingandaretherefore
false.

To treat the problem more accuratelywe make a canonicaltransformationto new variables
(I, 0-+ I~,O~)not to neglecttheoscillating partof perturbationat will but to “kill” it legally.

Let thegeneratingfunctionof thecanonicaltransformationbe of the form

F(1
1, 0) = 110 +4(I~, 0). (2.15)

This form providesa small differencebetweenold andnew variableswhile the function4 is small.

Indeed:
1= 8F78O=I1+1,; 01=8F7oI1= 0+~. (2.16)

We substitutenow the first expression(2.16) into eq. (2.12)andchoose~ 0) in sucha way asto
“kill” theterm ~ -~�V,which is linear in perturbationparameterE, so that theperturbationwould
be ~2 v I~.To achievethis it is sufficient to take

= ~I~(cos
40—~) (2.17)

5For anotherexampleof usingthesuperconvergencetechniqueseesection5.1.
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asone canseefrom eq. (2.13). It is essentialthat the latterexpressionhaszeromeanin 0 aswe have
takenthe separationof this meanbeforehand(the term _j2/ 16). Otherwiseintegrationof eq. (2.17)
would givea so-calledseculartermwhich growsindefinitely in time,and thedifference(0~— 0) would
not besmall (seeeq. (2.16)).Preciselydue to this samereasononecannot“kill” the terms—Ii by the
sametransformation(2.16) sincethesubstitutionof eq. (2.17) into the term — ~I2(cos40— ~)gives the
mean ~ Now we see the accuracyof the averagingmethod naively applied to the original
Hamiltonian (2.12). This accuracyis of the order of the meanperturbationafter carrying-outthe
canonicaltransformation.Sincefor theHamiltonian(2.12)themeanis —Is (seeeq. (2.18)below),only
the two first terms in eq. (2.14)may be used.To achievea higheraccuracyonehasto performa new
canonicaltransformation,havingsplittedoff themeanperturbationbeforehand.

Now let us write down carefully the new Hamiltonianafter the transformationof variables.We
shall denotethis Hamiltonian by H~(I~,0k). Since the original Hamiltonian (2.12) was takento the
accuracy—I~it is sufficient to calculatethenewone to the sameaccuracy:

r2 i~ ~ ~2. / .~ g2 t3 ~

H(I O)=I ~ — a’ _I311~~_1_~~+li1+I41“ — _____ — -‘‘ _~+L~L~-b I ‘ 16 9x32 9x2’° 1\4g 90 18/ ‘\9x64 28x90 9x64 ~ 180

Herewe haveintroducedthegeneralnotation: (2.18)

f~(O)= co?0— (cos~0); (cos2k0) = (2.19)

where ~ = (2k)!/(k !)2 standsfor the combinationof 2k things k at a time. For odd n the mean
(cos” 0) = 0. The perturbation,i.e. the termsdependingon 0, havebecomesmaller but, unfortunately,
more complicated.And there’s more to come,one should change0 for 01 using eq. (2.16). Since
01 — 0 = ~ I~(2.17) it is sufficient to change0—~0, only in the terms ~ Then additionalterms
appearin theHamiltonian(2.18):

H
1(11, 0)—pH1(11, 0~)+{~[~— + (2.20)

wheref~dfjd0 anddFjdO = f~((F,,) = 0).
Splitting off the meanperturbationin eq. (2.20)we may perform a new canonicaltransformation

(Ii, 01)—’(12, 02). In the classicalperturbationtheory we would choosethe transformationin sucha
way as to “kill” theoscillating terms —It. It turns out, however,that one can “kill” by this same
transformationthe terms —It as well. Indeed, the new ci~’~— I~.Substitutionof the latter into eq.
(2.18) leads to the meanperturbation -I~1~-~I~.Hence in the new Hamiltonian 112(12,02) the
perturbationis V2 — I~.Repeatingthis reasoningwe find that theperturbationin H3(13, 03) is V3 — I~.
In general, let the nth step of the successiveapproximationsbe V,, It’, then the next step is
V,,+1 I4~ —. ~ hence:k,,÷1= 2k,, — 1, whence:k~= 2” + 1. Thatis just thesuperconvergence
of successiveapproximationsaccordingto Kolmogorov. The superconvergenceallows us to construct
theconvergingseries.This enablesus, in turn, to solvea numberof importantproblemsin the theory
of dynamicalsystems(section4.6).Forpracticalapplicationswhich useafew first approximationsthe
convergenceis notessentialaswasnotedcorrectlyin ref. [4].NeverthelessI think thatKolmogorov’s
methodturns out to be more efficient in the latter caseaswell, since it demandsless canonical
transformationsfor a given accuracyof solution.In any event,this methodis not well known so far,
and its possibilitieshaven’tbeenstudiedenough.Note that Bogolyubov hasgeneralizedthis method
to non-Hamiltoniansystems[18,63].
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We come back now to the pendulum and find out both terms of the meanperturbation— the
“classical” one—I~,and the “extra” one—It. Theyaredeterminedby themeanvalues:

2 17 3 3~

(f4)=i~~, (f4)1T25, (f4f6)=~w

When averaging with F4 in eq. (2.20) one can integrateby parts: (f,Fm) = (fnfm). Finally, the
averagedHamiltoniantakesthe form:

2 3 4

- (2.21)

Whencewe get theoscillationfrequency:

I~ 3I~ 5I~

(2.22)
Solvingeq. (2.21)for I~to theaccuracyof E

3 (E = (H
1)) we obtain:

2 3

1= ~

Substitutingthis relationinto eq. (2.22)wearrive at theexactexpansionof w in E (seeeq. (2.7)).

2.3. The cubicforce

Let us considera specialnonlinearoscillatorwith the Hamiltonian:

H(P,X) = ~P
2+ ~X4. (2.24)

We shall usethis model in section7. Like a pendulumthe lattersystemhasan exactsolutionin terms

of elliptic functions(see,e.g.,ref. [58]):

= cn(at)= 17V2 ~ cos[(2n — 1)wt]
a K(1/\/~)~ cosh[ir(n —

0.9550cos(wt)+ cos(3wt)+ cos(Swt)~ (2.25)

Here a is theamplitudeof oscillations;K(1/V2) 1.8541. An interestingfeatureof thesystemunder
considerationis thevery small contributionof higherharmonicsin spite of a largenonlinearity.The
frequencyof oscillations

= 2K;%/~) = f3a = \/2g9H”4 $ 0.8472 (2.26)

is proportional to the amplitude. The action variable can be found from the relation w = aH/aI,

whence:
H

I = dH = ~ = ~-; H = AI~3 A = (~~=)43. (2.27)
w(H) 3~ 3~ 2\/2

The nonlinearityparameter(2.8) is equalto:
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Idwldw/dai dw16
2 2 8

a_wdj_wdI/da -~, ~-~-~- (.2)

2.4. The separatrix

We come back now to the pendulum and considerthe border trajectorybetweenrotation and
oscillations.This trajectoryis called theseparatrix,or separatingtrajectory.It separatesqualitatively
different kinds of motion. Onecanreadily imaginehowunstablemustbe themotion in a closevicinity
of the separatrixsincea small perturbationcanfling over the pendulumfrom oscillation to rotation
and vice versa. That is preciselywhy we are especiallyinterestedin studying the motion nearthe
separatrix.We shall seethat just herean instability of nonlinearoscillationsappearsand is spreading
around.

The separatrix correspondsto the pendulum energyH = U
0 (see eq. (2.1)) whence its phase

trajectoryis (M = 1; —ir ~ ~

p,, = ±2w~cos(~0/2). (2.29)

Different signscorrespondwith two branchesof the separatrix.The separatrixforms in the phase
planea distinctive “cross” (fig. 2.1): p = ±w0(ir — q~).The “intersection”point of separatrixbranches
determinesthe position of unstableequilibrium. The latter should be consideredas a separate
trajectorysincewithout any perturbationthependulumremainsin this positionfor an indefinitely long
time. Whenceit is clear that the motion along the separatrixis an asymptoticone arriving at, or
departingfrom, thepoint of unstableequilibrium. The equation(2.29)canbeintegrated[5] to give:

p,,(t) = 4 arctan(e”°
t)— iT (2.30)

where time is countedfrom the instantof passingthe positionof stableequilibrium (q~= 0). The last
expressionclearly shows the asymptoticnatureof the motion along the separatrix: q’,,—~‘±irfor
t-~±oo.

Accordingto Arnold’s graphicterminology[5]separatrixbranchesarecalled “whiskers” which are
“fastened”to a “whiskered torus”. In the caseof the one degree-of-freedomconservativesystem
underconsideration,the whiskeredtorus haszerodimensionality anddegeneratesinto apoint— the
positionof unstableequilibrium(ç = ±ir).Onedistinguishesthearriving and departingwhiskers(see
fig. 2.1) on eitherof the two separatrixbranches.Theyexchangepositionsundertime reversal.Forthe
systemunder considerationboth whiskers on the samebranchof separatrixcoincide, yet undera
perturbationthey usuallysplit (section6.1).Accordingto Poincaré’sterminology[6] thewhiskersare
calleddoubly-asymptotictrajectoriessincethey areapproachingsometrajectoriesfor both directions
of time (t -+ ±~).For our systemthis limiting trajectory— the unstablefixed point ~ = ±ir— is the
samein both limits t —‘ ± x In this casethe whiskersarecalled homoclinic trajectories.

Fig. 2.1. Pendulumseparatrix:0—a whiskeredtorus(point); I —departingwhiskers;2—arrivingwhiskers.
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Let us considerthe pendulummotion nearthe separatrix.We will describethe distancefrom the
separatrixby the relativeenergy:

(2.31)

Using the expressionsin section 2.1 we find for both oscillation (w <0) and rotation (0>0):
k VIwJ/2; K(k) ~ln(32/IwI); K’ 1712, and Or 00. Hencefor both kinds of motion, i.e. at both
sidesof theseparatrix,the solutionhasthe form (seeeqs.(2.4), (2.6)):

ç(t)=4~ sin(nwt) (2.32)
,, n cosh(irnw/2w0)

for rotationonly evenandfor oscillation only odd harmonicsbeingpresent.The frequency:

ITO0

0(w)Thn(32/IwI) (2.33)
is decreasingindefinitely on approachingseparatrix (I wI -+0). From the spectrum(2.32) one can
conludethat themotion neartheseparatrixis approximatelythesameas on theseparatrixexceptthat
the motion is of a finite period. It is clear also that the nonlinearity is growing indefinitely when
approachingtheseparatrix(2.33).

3. Nonlinearresonance

Free oscillations in a conservativesystemwith one degreeof freedomare always stable(if the
motion is finite, of course)andthereforeare of lessinterestfor us.Whathappensif oneswitcheson
an externalperturbation?The Hamiltonianmay be written in this caseas:

H(I, 0, t) = H0(I) + �V(I, 0, t). (3.1)

The externalperturbationis describedherevia an explicit dependenceof theHamiltonianon time. We
will assumebelow that theperturbationis periodic in time with a period T, andthebasic frequency

= 2ir/T. The frequenciesof the perturbationspectrumare nfl in this case.An almost periodic
perturbationwith an arbitrarydiscretespectrum(fl,,) doesnot leadto any qualitatively neweffects.A
perturbationwith a continuousspectrumbut restrictedin time (aperturbationpulse)is of lessinterest
sinceit causesonly a small (e4 1) changein theoscillation energy.Finally, astationaryperturbation
with a continuousspectrum,for example,an irregular sequenceof pulses,causesa diffusion-like
processin the system.The theory of suchprocesses,which are very important for applications,
comprisesnow a vast sectionof the theory of both linear and nonlinear oscillations. The latter
problemis, however,beyondthe frameworkof thepresentpaper.So,we assumethe perturbationto
beperiodicallydependenton thephase

rflt+ro (3.2)

where r0 is the initial phase.We expandtheperturbationin adoubleFourier series:

H(I, 0, r) = H0(I) + � ~ Vm,,(I) e~~~*O+nT). (3.3)
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The effect of a perturbationFourier-componentis the strongerthe slower the time variationof its
phase

lI/mn m0+flT. (3.4)

In the limiting caseof constantphasewe cometo aresonance:

mw(I)+nfl=0. (3.5)

This relation determinesa setof resonantvaluesof the frequencyw and,respectively,thoseof the
energy(or I). Resonantvalues 0mn form, generally,an everywheredenseset. Nevertheless,we will
begin with the oppositelimiting casewhen the sum in eq. (3.3) consistsof a single term (or two
complex conjugate terms, to be precise).In other words, we shall consider in this sectionthe
propertiesof a single (isolated)resonance.Interactionof manyresonanceswill be discussedin the
next section4. We will start with a simple example of a parametricresonance(section3.1), the
examplewhich hasbeenstudied manytimes in various applications,for instance,in the theory of
accelerators[21].Onemay find a similar approachto the theory of nonlinearresonancein papersby
Fordand his co-workers[34,40].

3.1. Parametricresonance

We have chosenthis particular kind of nonlinearresonancebecauseit is the simplest one for
analyticaltreatment.Considersmall oscillationsof apendulumwith theHamiltonian (seeeq. (2.11)):

H ~(p2+ ~~2) — p4/24. (3.6)

Let aparametricperturbationbeof the form:

w~(r)= 1 + � cosr. (3.7)

Changingthevariablesfor I, 0 we find:

2 4

H(I, 0, r) = I + �1cos 0 cosr — -~- C05 0-+1 + -~- cos(20— r) — j-~ (3.8)
Onearrivesat the lastexpressionafterthe averaging,that is neglectingrapidly oscillating termsand
retainingonly the resonantonewith thephase:.I/ = 20— r. Letus try first to “kill” theperturbationby
acanonicaltransformationof variables(section2.2).We choosethegeneratingfunctionof the form:
F(I

1, 0) = I~0+ ~4sin(20— ‘r). Unlike section2 thegeneratingfunctiondependsnow on time, hence,
the Hamiltonian will changeunder canonical transformationby the quantity 9F1ot. Substituting
I = I~+ 2e4 cos(20— r) and taking into accountaFlat we demandthat all termsof the order of �

cancelout. This gives:

I~/4 . 39
fl—2(1—11/8) ( . )

We seethat theperturbationcanbe “killed” only far off the resonance11 = 2(1 — 1,/8). This justifies,
by theway, neglectingnon-resonant(rapidly oscillating) terms in theHamiltonian. We are interested
now, however,just in a resonancefi 2 when sucha “killing” of theperturbationis impossibledue
to a small resonantdenominator.

Havingleft thehopeto “kill” theperturbationlet ustry to getrid of theexplicit time dependencein



B.V. Chirikov, A universalinstabilityof many-dimensionaloscillator systems 277

the Hamiltonian(3.8) which is just thecauseof theenergyvariation. To do this we introducea new
(resonance)phase i/i = 20 — r and choose the generatingfunction F(I, ~/‘,r) = —I(i,b + r)/2 so that
—aFiai= 0. The new momentumbecomes:1 = —eF7a~I/= 1/2. Note that the factor (1/2) provides
preservationof thephasevolume (area)underthecanonicaltransformation:dl do = dJdifr.

In thenewvariablesthe Hamiltonian(3.8) takesthe form:

Hr(J, i/i) = J A —~J2+~dcos i/i = const; A = 2—fl. (3.10)

This new Hamiltonian doesnot dependon the time explicitly and thereforeremainsconstant.This
meansthat in thenewvariablesthesystembecomesconservativeand,hence,integrable.We shall call
Hr the resonanceHamiltonian. Let us mention that the quantity Hr might be called also the
quasi-energysinceit is theclassicalcounterpartof thequantumquasi-energy.introducedby Zeldovich
andRitus[19](seealso ref. [20]).

First, let initially I = 0, thenHr = 0 as well. Sincewe are not interestedin the trivial solutionI 0
we may divide theequationHr =0 by I. Then:

J=4(A+~�cosiI/). (3.11)

At theexactresonancefor a very small (“zero”) amplitudeA = 0, andtheactionreachesthemaximal
value‘m,,~= 4�.Hencethepositionof equilibrium I = 0 is unstableundertheparametricperturbation.

The full frequencybandof this instability startingfrom 1=0may befoundusingtheconditionthat
for acertain i/i valueI = 0. This givesthe unstableband:IA~�/2.

It is essential,however,that for a nonlinearoscillatorthe energy(or the action)of oscillationsis
always restrictedand small for small �. The largestrise of the action correspondsto A = �12 and is
equalto Im = 8�.For a linear oscillatorthe term_~j2 in the Hamiltonian(3.10)would be absent,and
wewould arriveat theequation:I(A + ~� cos~i) = const.The latterdeterminesthestop-band:IAI ~ �/2
wheretheoscillation energyis growingindefinitely. This is avery importantdifferencein behaviourof
linear and nonlinear oscillators at a resonance.One may say that the nonlinearity stabilizesthe
resonantperturbation.Themechanismof this nonlinearstabilizationis relatedjust to thedependence
of oscillation frequencyon the energybecausea variation of energy underperturbationleads to a
variationof the frequency,andthesystemgetsout of resonance.

Ontheotherhand,theeffect of a small resonantperturbation(Al = ‘ma, — �)is muchstrongerthan
that of a non-resonantone (Al — �14� sinceI-+0, see eq. (3.8)). This shows the importanceof
resonantphenomenafor nonlinearaswell asfor linear oscillations.

Let us considernow the caseof a large detuning:A ~ �/2.The resonancecorrespondsthen to a
certainfinite amplitudeof the oscillations(./‘ A — Jr12 = 0) whencethe resonantvalueof momentum
IS Jr = 2A. We perform a newcanonicaltransformationto introducethe momentump = I — Jr andto
retain the samephase i/i. The necessarygeneratingfunction can be easily constructed:F(J, i/i) =

—(1—Jr)lI’. Substitutionof I = 2A + p into eq. (3.10)gives the resonanceHamiltonian:

Hr(P, i/c) = A2—~p2+~�(2A+p) cos i/s. (3.12)

If jpj 4 IAI we can neglect p in the last term. Ignoring the constantterm A2 we arrive at the
Hamiltonian of a pendulum with a “mass” M = —2 and U

0 = � - A. A negativevalue of the mass
meanssimply that the position of stableequilibrium correspondsnot to the minimum of potential
energy (i/i = n) but to its maximum (i/i = 0). The region of a nonlinearresonancein phasespace
correspondsto the region of pendulum oscillations,i.e. a restrictedvariation of the phaseits. This
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regionis situatedinsidetheseparatrix(section2.4).The maximal p valueandthe frequencyof small
pendulumoscillationsareequalto:

p,,,~,=2V2�A; fl,=V�A/2. (3.13)

Using theterminologyborrowedof thetheory of chargedparticleacceleratorswe shall call fi, the
frequencyof phaseoscillations (the oscillationsof the resonancephasei/i). The pendulummodel is
valid for pm,,4Jr. Besidesonemust demandthe frequencyof phaseoscillationsto be sufficiently
small: ft. 4w 1. Otherwisethe termsneglectedin theHamiltonian(like cos(20+ r)) are no longer
rapidly oscillating (as comparedto the resonantterm cos(20— r)) and thereforecannotbe ignored
evenin the first approximation.Sincethe nonlinearityparameter(2.8)for smallpendulumoscillations
is equalto a = 1/8 = 1/4 the two conditionsfor thevalidity of thependulummodel canbe written asa
doubleinequality:

�4a41/�. (3.14)

We shall call this inequality theconditionof moderatenon-linearity.

3.2. A universaldescriptionofa nonlinearresonance

We considernow awiderclassofresonances.We single outan arbitrarytermof theFourier series
(3.3) andwrite theHamiltonian in the form:

H(l, 0,r) = H0(I) + �Vmn(l)cos(m0— nT). (3.15)

We havepassedhere to real functionsand havechangedthe sign of n to emphasizethe resonant
natureof the retainedterm. We introducea new(resonance)phase i/c = mO — nr (3.4) andchoosea
generatingfunctionof the form:

F(I, i/i, r) = — (I — Ir) (h1 ~‘t~) (3.16)

whereI is acertainconstant(seebelow). Thenewmomentumis equalto:

j) (11r)/m. (3.17)

Expandingthe unperturbedHamiltonian H~,(I)up to terms —p
2 and taking into account that

aFlat = —npfl we get:
Hr(p, i/c) p2/2M+ �Vmn(lr)COS i/c. (3.18)

We haveignoredheretheconstanttermI1~(l)aswell asthenexttermsof theexpansionof Vmn(l) in
p. The quantity I, is chosen so that the terms linear in p cancel: mwo(Ir) — nfl = 0, that is Ir

correspondsto the exact resonance.Thus we havearrived again, in a more generalcase,at the
pendulummodel. The pendulummassis determinedby the nonlinearity of the unperturbedosdil-
lations:

M~= m2dw~,JdI ~m2w
0. (3.i9~

1.—IT
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The frequencyof small phaseoscillationsis equalto:

fl~= \/�VmnJM V�amw0. (3.20)

Thelastestimateassumesthat the small parameter� is adjustedfor a given resonancein suchaway
that Vmn Ir Wo(Ir).

Let us write theseparatrixequationin theoriginal variablesI, 0, r. Note that r may beconsidered
asan additionalcoordinateof the systemphasespace,the coordinatewith a given variationin time:
r = fit + i~. If so, thephasespacebecomes3-dimensional.One saysthereforethat the systemhas1.5
degreesof freedom.From eqs.(2.29),(3.17)and (3.18)we get for theseparatrix:

I,, = I~±(AI)r sin(~o~nr) (AI)r = mpr = 2mV�MVmn ~J~1r. (3.21)

The amplitudeof phaseoscillations(Al) may be calledthe resonancehalf-width (in I). The quantity
Pr IS theoscillation amplitudeof p (seeeq. (3.17)).The resonancehalf-width in frequencyis equalto:

2 �Vmn 2fl, ~

(AW)r = w0(AI)~= — = — v �aw0. (3.22)
Note that again the effect of a resonantperturbation (3.22) (—‘/�) is stronger than that of a
non-resonantone (—�) (3.15).

The unstableposition of pendulumequilibrium (i/c = 0; W~Vm,,>0) turns in the original variables
into a closed spiral: 0 = nrlm which is topologically equivalentto a ring. This curve is just a
whiskeredtorus of dimensionality 1 (section2.4) to which thewhiskers(3.21)arefastened.

The universaldescriptionof a resonancein the pendulumapproximation(3.18) is restricted,first,
by the conditionof smallnessfor the terms ignoredin the expansion:mpr44, or accordingto eq.
(3.21): � 4 a. Secondly,one mustdemandthe frequencyof phaseoscillationsto be small enoughfor
one to be ableto neglectnon-resonantterms in theHamiltonian asrapidly oscillating. In section3.1
we assumedthe condition: fi, ~ 00. Now, in a moregeneralcase(3.3), the correspondingcondition
mustbe considerablystrengthenedsincethe frequenciesof non-resonantterms (w,,,,, = mw+ nfl) are
essentiallylower than 00. The former are so-called small denominators(seesection4.6). We may
write theconditionfor thependulumapproximationas:

(3.23)
� \mw0/

This is anotherform of themoderatenonlinearitycondition(3.14).
The resonanceequationmw0= nil for the harmonic(m,n) holds for harmonics(Im, In) as well

(l� 0 is any integer). Hence, the pendulum approximationis restrictedalso by the condition of
smallnessfor higherharmonics:Vim.1,,4 Vmn (I> 1).

Let us draw our attentionto thecurious point that thecaseof small nonlinearity turnsout to be
morecomplicatedand morevaried (section3.1) as contrastedwith a universaldescriptionunderthe
moderatenonlinearity.A difficulty of theproblemfor small nonlinearitywasexcellentlydisplayedby
an example of an interesting system, studied in ref. [40], whose motion is unstable for any
perturbationno matterhow small it may be (seealsotheendof section4.1).

The pendulumHamiltonian(3.18)hasbeenapplied to manyparticularproblems,for example,in the
theoryof synchrotronoscillationsin accelerators[21].Thepossibility of auniversaldescriptionof a



280 B.V. Chirikov, A universalinstability of many-dimensionaloscillator systems

nonlinearresonancewithin the frameworkof sucha model was mentionedin ref. [8] anddiscussed

thoroughlyin ref. [9].

3.3. A resonanceofmany-dimensionaloscillations

Let us considera resonanceof many-dimensionalnon-linearoscillations.We assumethe Hamil-

tonianof the form:

H(I, 0, r) = H~(I)+ � ~ Vmn(I) ei(m~+~~~). (3.24)

HereI, 0, m areN-dimensionalvectors,for instance:I = (I,,. . - , IN); N is thenumberof degreesof
freedom;n is an integer;m,0 = m,01 is thescalarproduct*; ~- = lit + r~.

The unperturbedsystemH~(I)is completelyintegrablewhich meansit possessesa full setof N
integralsof motion: I = const. The motion of sucha systemis quasi-periodicwith N basicfrequen-
cies: w~= DHO/3Ik, or morebriefly: w = ~H~/~LNonlinearityof thesystemis describedby thematrix:
8w/öI 80

18Ik = 82H
0/a11‘9Ik. The systemphasespaceis thedirectproductof N-dimensionalspaceof

the actions by N-dimensional spaceof the phases.An unperturbedphase trajectory covers an
N-dimensionaltorus: I = const;0 = t w(I) + 00 where 00 is the initial phasevector. It iS convenientto
use also the action space(I-space)and the frequencyspace(0-space)related to it. In both those
spacesatorus is representedby apoint.

The resonanceconditionhasthe form:

m,w(I)+ nfl = 0 (3.25)

which determinesa resonancesurface both in I- and w-spaces.The resonancesn =0 are called
coupling resonances.Theybring aboutan exchangeof energyamongdifferent degreesof freedomof
the unperturbedsystem. Resonancestructure is most graphically seen in w-space where every
resonancesurfaceis simply aplaneperpendicularto thevector m. Indeed,for any shift 8w along a
resonanceplaneonegetsfrom eq. (3.25): m, So= 0.

Let us consideragaina single resonance.The perturbationdependsthen only on a single phase
combination:

i/c1=m,0—n~r (3.26)

of N linearly independentones.Hencethereare N — I integralsof motion. One may gaina graphic
ideaaboutthoseresonanceintegrals from theequationsof motion:

i=_�aV/a0=_i�mVm,,&*I. (3.27)

Thelastexpressionshowsthat thedirection(or,betterto say,the line) of vectorI is fixed andparallel
with that of the vector m. Note that for a coupling resonance(n =0) both vectors (I; m) are
perpendicularto thevector w andhencearetangentialto theenergysurfaceH0 = const. This means,
in turn, that a resonantperturbationpreservesthe unperturbedenergy H0. One may argue also
anotherway: sinceat a single resonancethe perturbationV(0) = const(‘/c~= const)theunperturbed
energymustbe constantalsoowing to H = const(for coupling resonancesonly, of course).

*Summationoverrepeatedsubscriptsis understoodthroughoutthepaper.
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PossessingN — 1 integralsof motion amany-dimensionalsystemdegeneratesin thecaseof asingle
resonanceinto asystemwith only onedegreeof freedom.

We apply now a canonicaltransformationof variableschoosingN linearly independentphase
combinationsasnewcoordinates:

11/k = 4(LkJOI + j’kT (3.28)

where ILk: is somematrix, andthe ~k form a vector(k, 1 = 1,... , N). Let i/c, be the resonancephase

(3.26), andtheothersarearbitraryso far. We takeageneratingfunctionof the form:
F(p, 0, t) = (I~+ pkILk:)O: + PkVkT (3.29)

where p is a new momentumvector (unknown at the moment), and the point jr belongs to the
resonancesurface(3.25).The function (3.29)providesnewphasesof the form (3.28). New momenta
canbe obtainedfrom the relation I = t9F780, whence:

= Ii + pk,.Lki; Pk = (J~— I~L~’. (3.30)

Here IL ~‘ is the inverse of the matrix ~ ~‘ = 8~).The lastexpression(3.30) shows that new
momentap describethe deviationof the action vector I from a certainpoint It on the resonance
surface(comp.with eq. (3.17) in section3.2).

For a single resonanceN — 1 new momentaare integrals of motion: Pk = const (k ~ 2). The
integralsmay be written also in the form (seeeq. (3.30)):

11p,~’=const; k=2,...,N. (3.31)

Suchresonanceintegralsarewell known, for example,in the theoryof accelerators[21](seealsoref.
[34]).

Substitutingthe first relation(3.30)and also(3.26) into theHamiltonian(3.24),andexpandingH0(I)
in p up to quadratictermswe arriveat the resonanceHamiltonian:

H~(p,i/c) Pk(ILk�’~~i+ Vkfl) + .Pi~&+ �Vmn(P)cos*~ (3.32)

where we havedroppedtheconstantH0(fl. The “mass” tensoris determinedby

1 Do1
~i7~=IL~r~TILai. (3.33)

UIJ

In eq. (3.32)we have left only one (real)perturbationterm,sincewe considera singleresonanceso
far, haveneglectedall termsbut the first in the expansionof Vmn(I), and have introducedtheterm
DFlt9t = PkVkfl. Note that all quantitiesin eq. (3.32)dependingon I aretakenat thepoint j = p

We may simplify theHamiltonian(3.32)choosingall Vk = 0 exceptv, = n, andall thevectorsILk: but
one, say, IL2: orthogonalto the vectorw’ = w(f). Let the vector ~L2: be parallelto w, anddenoteits
modulusby IL2- The sum of eq. (3.32) linear in Pk can be reducedthen using, in particular,the
resonancecondition(3.25)to a singletermp2,L21w1 where Iwl is themodulusof w. We shall usethis
“orthogonal” metric below.*

*Ualesstheresonanceis apurecouplingone(ii = 0) this methodcanbetakenatall pointsof aresonancesurfacebutonewherethevectorsw’
andin areparallel.Nearthatpoint anothermetricproposedby Ford[139]needsto beintroduced,namely,all thevectors ~ but ~s~1= m, areset
to be orthogonalto the vectora,’. This metric is more preferablefor n ~ 0 since it eliminatesall the termsof Hamiltonian (3.32) linear in pi,
includingP2. Weretain, however,thepreviousoptionbecausewe shall needit for couplingresonancesin section7.
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If we setall resonanceintegralsPk = 0 (k> 1) what meansthepoint F belongsto the trajectoryof
motion (seeeq. (3.30))we arriveat thependulummodel:

2 1
P1 1 U(s),

Hr = + �Vmn(fl cos‘f’s; -j~= mI-~--mk (3.34)
L1~1 lvi UI,~

where the pendulum mass M M11. Hencethe analysisof section3.2 is applicable, in particular,
expressions(3.20)for thephasefrequencyand (3.21) for the separatrixconfigurationcanbe used,the
quantitiesI andm beingunderstood,however,asN-dimensionalvectorsnow, andalso Wo-+ Ion.

For what follows the structureof a resonancein both I- and w-spacesis of importance.The
directionandamplitudeof phaseoscillationsarefoundfrom equation(3.21)to be determinedby the
vectorofphaseoscillations:

(AI)~= mpr; (Aw)r = (Do!DI, m)pr
(3.35)

Pr = 2V�MVmn = 2Mfl,

where the vectors (AI)r; (Aw)r correspondto I- and w-spacesrespectively.The vector (Aw)r ~
generally,notparallelto thenormalrn/fm I to the resonanceplane.Projectionof (Aw)

ton that normal
determinesthe resonancehalf-widthin frequency: -

m,(Aw)r 2 J�Vmn2fl~
(Aw)~— —r——~l—-r. (3.36)mI ml v M mi

- Althoughthe N — 1 newmomentaaretime-independentthis is not thecasefor thenewfrequencies
Il/k (andneitherfor theold ones(Ok), of course).Onereadily deducesfrom eq. (3.32)

-p, p
1M -.

i

11k~, -~1, _ij. ifr~,
lVfl,J l~lk1 11~k1 (3.37)

= 1L
21Wi + f-+ IL2IWi+~1/c1

in the orthogonalmetric (see above),the lastexpressionscorrespondingto the casePk = 0 (k> 1).
Whence:

(k�2); l1/2,L2IwIt+M~-çb1+l/12 (3.38)

where ./i°~arethe initial values.We seethat the phaseoscillationsin P’~fr’ influencethemotion of all
otherphasesaswell (butnot the otherPk). Let us find alsothe motion in old phases0~.Solvingeq.
(3.28)for 0, andusing eqs.(3.38),(3.33)we get:

0, = IL~’(’/ck — - r) = tw~+~j~Lm,MiLci+ 0?. (3.39)

The simplestway to deducethe term tw~in the last relation is to observethat the former represents

the unperturbedmotion (�=0, and, hence, i/ce = const) at a resonancesurfacew(P)= 0~~*Relation

SA more formal way is to verify the vectorequality: — nftis,j’ + ls2Iw’Pt~,2’= w~(I = 1,2 N) that may be done immediatelyif one
multiplies theboth sidesby vectors i,, (i = 1,2 N).
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(3.39) is obvious also from eq. (3.35) owing to Aw = ó — ~ = (Do!DI, m)p, and Pi = Mi/i1 (see eq.
(3.37)).

The nonlinearstabilizationof a resonantperturbationmentionedin section3.1 dependson themass
M in the pendulum model of resonance(3.35). Unlike a system with 1.5 degreesof freedom
consideredin section3.2 it may happenfor a many-dimensionaloscillatorthat themassM = ~, or the
effective nonlinearityM’ =0. If so, thereis no longer a nonlinearstabilization.To understandthis
specialcaseanotherway note that the directionof phaseoscillationsin w-spaceis alongthevector
(Dw/DI, m) (seeeq. (3.35)),whereasthenormalto aresonanceplaneis parallelto thevectorm. Under
theconditionM’ = m, (Dw/DI, m) = 0 a trajectorygoesalongthe resonanceplane.Hencethe system
doesnotgetoutof resonance,sothereis no nonlinearstabilization,nonlinearitydoesnot “work”, the
nonlinearsystembehaveslike an isochronousone.We shallcall this specialcaseof many-dimensional
nonlinearoscillations quasi-isochronous.Note that the last conceptionrelatesto the unperturbed
Hamiltonian H0. To be precise, the condition M’ = 0 is necessarybut not sufficient for the
quasi-isochronicitysince nonlinear stabilization may happen due to some higher terms of the
expansionof H0 in Pi.

The phenomenonof quasi-isochronicitywasapparentlyfirst mentionedin ref. [25].A generalstudy
of the structureof nonlinearresonanceswas madeby Nekhoroshev[24].In particular,he introduced
an important notion of the steep Hamiltonian. The exact definition of this notion is somewhat
complicated(seeref. [24])butessentiallyit meansthat theenergysurfacesof asteepHamiltonianare
everywhereconvex.Hence the planetangential to an energy surfacehas the single common point
with the latter (the point of tangency)whereasfor a non-steepHamiltonianthatplaneandtheenergy
surfacemay intersecton a certain subsurface.If the convexity of the energy surfaceis provided
alreadyby thequadratictermsof the H0 expansionnearthepoint of tangencythe HamiltonianH0 is
with Nekhoroshevcalled quasi-convex.The latter property is a bit stronger than the condition
M’ � 0 for the pendulummodel to be applicable.The differenceis that for thependulummodel the
convexity by quadratictermsalong aresonancevector m, or, generally,along all integervectors,is
sufficient whereasthequasi-convexitymeansthe “full” convexity,i.e. that along any directionin the
tangentplane.* This slight difference is very important in the caseof so-calledmultiple resonances.

A k-multiple resonancetakes place when k resonanceconditionsof the type (3.25)with linearly
independentvectorsm (i = 1,. . . , k) are fulfilled simultaneously,i.e. for the samevectorI~,or ~r
This happenson the intersectionsof k resonancesurfaces(3.25).

The resonanceHamiltonianmay be deducednow in a way similar to that for thesimpleresonance
(3.25) (k = 1). We mayevenwrite downtheexactresonanceHamiltonian,that is without expansionin
Pk

H~(p,i/i)=T(p)+ U(p,ifr)

T = H0(I~+p,~~)H0(fl+flp,v,; U = � ~ V,n,, cos i/i,. (3.40)

Here T, U arethe “kinetic” and“potential” energyof the system,respectively.Let thematrix ILiJ of
the canonicaltransformationbe of a specialform to provide that every p, (i = 1,. . . , k) describes
motion along a particular vector m’ of the resonancebasis, i.e. 1¼= m~.Since the resonance

1To avoid misunderstandingnote that in ageneralcasen � 0 in eq. (3.25) we mean the planetangentialto anenergysurfaceof thenew

unperturbedHamiltonian(after thecanonicaltransformation(3.29)): H
0(J) + fln,.p1(!). Thelast termslinear in I (seeeq.(3.30))do notinfluence

theconvexityof theenergysurfacein I-space.It is moreconvenient,perhaps,to considerall thosegeometricalpropertiesin thep-spaceof the
newmomenta(seebelow).
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Hamiltonian dependson k <N new phases i/c, only there are N — k resonanceintegrals, say,
= const(I = k + 1,... , N) whichmay besetzero.HencetheHamiltonian (3.40)describesasystem

with k degreesof freedom.Unlike a simple resonancethe latter systemis no longer integrableand
may exhibit a very complicated,in particular,a stochastic,motion as we shall seelater on (section
4.5). Nevertheless,and this is of a great importance,the motion under considerationis always
boundedfor a steepunperturbedHamiltonian H0 and a small enoughperturbation.Indeed,if the
surfacesHo(I) = constareconvex,so do thesurfacesT(p)= constsincethe relation1(p) is linear as
is the additionalterm flp,i’, in eq. (3.40). Thereforetheonly solutionof theequationT(p)= 0 is the
trivial one: p = 0 (the point of the tangencydiscussedabove). Hencefor U -~ 0 the energycon-
servationHr = constboundsoscillationsin p and, therefore,also in I. In theoppositecaseof a
quasi-isochronousHamiltonian the equationT(p)=0 determinesa certainsubspaceof the motion
spacep, (I ~ k) andnothingpreventsa trajectoryfrom following this subspaceindefinitely far away.

If we retainin the expansionof T(p) (3.40)only quadratictermsas hasbeendonefor a simple
resonancethe oscillationsat a multiple resonanceare boundedif the kinetic energy T(p) p,p,IM,,

(comp.with eq. (3.32)) is sign-definite.This is just thequasi-convexityof Nekhoroshev.To guarantee
boundednessof an arbitrary motion neara multiple resonanceby the quadratictermsonly if it is
necessary,however,for thekinetic energyto becompletelysign-definite,i.e. for all p valuesandnot
only for someof themasunderthecondition M’ � 0 at asimple resonance.A mathematicaltheory
of motion neara multiple resonancewasdevelopedby Melnikov [114]andby Moser[115].

As an example of many-dimensionaloscillations let us considerthe system of two coupled
oscillatorswith acubicnonlinearity(section2.3) [41]:

H ~ (3.41)

whereIL is a small coupling parameter.We introducetheaction-anglevariablesandtakeinto account

that theunperturbedsystem(IL = 0) is nearlyharmonic(section2.3): X, a, cos0, (i = 1,2).Then:
H(I, 0) A(I~

3+ I~f’)— ~ILa1a2 cos(0
1— 02) (3.42)

whereA = (3p/2V2)
413 (seeeq. (2.27)),andwe haveleft only theperturbationtermresponsiblefor the

coupling resonancew~= w~which we arejust goingto study.
The unperturbedHamiltonian is quasi-convexsinceboth secondderivativesD2H

0IDI~= $
2Ia~>0

(section2.3). Since the resonancephaseis i/c, = 01 — 02 it is natural to choosethe secondphaseas
1//2 = 01+ 02. This option leadsto an orthogonalmetric:

/1 —1\ —i
ILuc(

1 1’~ ILac ! !
/ 2 2 (3.43)

p,=~(I,—I2)=p; P2~(I1+I2)I0O.

We set I~= (Is, I~) anddetermineI~from the conditionP2=O. The resonanceHamiltonian hasthe

form (3.34)with parameters:
M’ = 2~

2/a2 I�VmnI= ~ (3.44)

wherewe setapproximately:a
1 a2 = a(I0). The vectorof phaseoscillations(Aw)

t is perpendicularto

the resonanceline w~= 02 andequalto (seeeq. (3.35)):

(Aw)T = mflM; I(Aw)tl = V2fi, = (Aw)r; fl,~= pV~. (3.45)
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Here fl~is the frequencyof smallphaseoscillations(3.20)and (~W)r is the resonancehalf-width in
frequency.

The position of stableequilibrium for the pendulum describingthe coupling resonanceunder
considerationis determinedby thecondition0, = 92 (Il’i = 0, seeeq. (3.42)).This is a periodic trajectory
correspondingto in-phaseoscillations for both degreesof freedom.The position of the unstable
equilibrium of the pendulum (01 — 02 = ir) determinesthe Arnold whiskeredtorus which is also a
periodic trajectorybut correspondingto theout-of-phaseoscillations.

4. Interactionof resonancesand thestochasticinstability

The interactionof resonancesis understoodas the simultaneousinfluenceof severalresonances,
i.e. severalperturbationharmonicsof theHamiltonian (3.3) (or (3.24) in the many-dimensionalcase),
upona system.Eachperturbationharmonicdeterminesits “own” resonancein aparticulardomainof
thephasespace.What is themotion underthesimultaneousinfluenceof manyresonanceslike? Until
recently,this fundamentalquestionwas left unanswered.It seems,at the first glance,that while a
systemis nearone particularresonancethe other perturbationtermsare nonresonant,and can be
“killed”, therefore,by a changeof variables(seesections2.2 and3.1). Indeed,it hasbeenknownfor
ages (see,e.g., ref. [17])that one can constructa sequenceof variable transformations,generally
speaking,aninfinite one,which does“kill” thenon-resonantterms.In the limit onearrives,hence,at
an integrablesystemwhosemotion is stable.However,this is but a formal mathematicaltrick. Real
stability dependson whetherthat infinite sequenceof variablesis convergent,or, in other words,
whetherthereexiststhat limit in which themotion is formally stable.Until recently,it was considered
that sucha limit, generally,doesnot exist, i.e. a generic(typical) nonlinearoscillatoris unstable[6,
27]. Thesesort of ideaswasbased,particularly,on the famousPoincarétheorem[6] that ageneric
Hamiltoniansystemhasno analyticalintegralof motionexcepttheenergy.*Todayweknow that such
an understandingof thePoincarétheoremis in error(section4.6).Not a long time ago anewtheoryof
thedynamicalsystemstability hasbeendevelopedby Kolmogorov [1],Arnold [2] andMoser [3] (the
KAM theory) who managedto constructconvergentperturbationseriesandto show that, generally,
thereexists a certaincritical value of a small perturbationwhich determinesthe borderof motion
stability. The basic ideasof the KAM theory will be outlined in section4.6. The main resultof this
theory— the existenceof a stability borderfor non-linearoscillations— is of fundamentalimportance
for thegeneraltheory of dynamicalsystems.

One may attack the problem along a quite different line. Namely, one may try to investigate
qualitatively, I would sayevengraphically,particularmechanismsresponsiblefor the destructionof
integrals of motion undera sufficiently strong perturbationand for the resulting instability. The
presentsectionis devotedto thedescriptionof just suchan approachto theproblem.It turnsout that
a fairly generalmechanismfor arisinginstability of the motion is the so-calledoverlapof nonlinear
resonances[8,9]. Study of this mechanismallows to formulatea very efficient, though not rigorous,
criterionof stability. Using suchacriteriononewasableto obtain estimatesof thestability borderfor
a numberof problems[29—37,59, 92—94, 131].

The instability of nonlinear oscillations arising under the overlap of resonanceshas a rather
peculiarnatureresulting in an irregular,or stochastic,motion of the system.This kind of mechanical

1And, of course,generallyall theotheradditiveintegrals:momentum,angularmomentumandcenter-of-massintegral.
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motion hasbeen the object of a long searchin numerousattemptsof foundationof the statistical
mechanics.This is just wheretheergodictheoryof dynamicalsystems[28,2] hascomeout. A rather
surpriseresult of the study of nonlinearoscillationshas proved to be the possibility of statistical
behaviourin extremelysimple dynamicalsystems[10,38, 39, 34]. The latter aspectof resonance
interactionwill be discussedin section5.

4.1. Two resonances;theoverlap criterion

The simplestcaseof resonanceinteractionis the interactionof only two resonances.Apparently
the first exampleof sucha systemwas studiedin detail both analytically andnumerically by Walker
and Ford [34].We shall considerbelow anotherexample,a simpler onefor theoreticalanalysis.We
shall needthe latterexamplein section7.5.

Let an oscillatorwith a cubic nonlinearity(section2.3) be actedupon by a driving force of two
frequenciesflu, fl~.The Hamiltonianhasthe form:

H(P,X, t) = + — X(J1cosr1 + f2 cos72) 1)

r,fi,t+r,0 72=fl2t+T,o

where ~, r~arethe initial phasesand11, f~standfor small perturbationamplitudes.We changethe

variablesto I, 0; assumethat X a cos0 (section2.3) andretain two resonanttermsonly:
H(I, 0, r~,72) Al

413— ~a[f
1cos(0— r~)+ f2 cos(O— 72)1- (4.2)

Eachof two perturbationterms is responsiblefor its own resonancein a different domain of phase
space:012(I) = fl,.2. If thereis a singleresonance,i.e. eitherf’ = 0 or f2 = 0, the systemis integrable,
as we know, and the motion is stableand lockedwithin aresonancedomain. We may find out the
latter domain using the techniqueof section3.2. In our caseM’ = $

2/a2 and �V,,,,,= af
0!2, the

amplitude fo beinga small perturbationparameter.The resonancehalf-width in frequencyis equalto
(seeeq. (3.22)):

= ~9’s/2fo/a. (4.3)

Let the domainsof two resonancesbe situatedsufficiently far from eachother, i.e. the difference
I — fl21 is largeenough.Then,taking into accountthesmallnessof theperturbationit is reasonableto
expectthemotion of thesystemto be still lockedwithin thedomain of one resonanceor the other
dependingon initial conditions. As to the second(non-resonant)perturbationtermfor given initial
conditionsit distortsonly slightly the trajectoryascomparedto theeventof a singleresonance.This
expectationis well confirmedby numericalexperiments(see,e.g.,ref. [34]and section5.1). On the
otherhand,it is clear that if resonancedomainsareapproachingeachotherdue to adecreasein the
frequencydifferenceIf’ — f2I, for example,onecannotneglectthe influenceof thesecondresonance
after all. It is obvious that if resonancesarecloseenoughatrajectoryis no longerlockedwithin one
of the resonances,and the systempasses,generally,from one resonanceto another.This kind of
motion could hardly beclassifiedas unstable(at leastfor two resonances;see,however,section4.2) if
it werenotof aqualitativelydifferent nature.Numericalexperimentsshowthat themotion in question
becomesirregularasif the systemwere influencedby somerandomforceseventhough, in fact, no
such a force is present (see eq. (4.1)). That is why this kind of motion was called stochastic
oscillations,or stochasticinstability. Its main featureswill be consideredin section5. Let us mention
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incidentlythat anotherpeculiarity of suchamotion is astronglocal instability. The lattermeansthat
the trajectoriesstartedinitially closetogetherare separatingexponentiallywith time at the average
(section5.2).

A plausibleconditionfor the occurrenceof the stochasticinstability seemsto be theapproachof
resonancesdown to the distanceof the order of a resonancesize. Such an approachwas naturally
called the resonanceoverlap.To be precise,the overlapof resonancesbeginswhentheir separatrices
touch eachother. The possibility for a systemto move from one resonanceto anotherunder the
above condition is quite obvious. The problem is anotherone: how to calculatethe condition of
separatrixtouchingtaking into accountadeformationof theseparatrixby a neighbouringresonance?
The simplestmethod, a quite rough one, is to use the unperturbedresonanceparameters,i.e. to
considereachof the resonancesasif anotheronewereabsent.It is clearthat onemay expectto get in
this way only an order-of-magnitudeestimate.This simple procedureis just what one meanswhen
talking about the overlapcriterion. This criterion, thus, turns out to be a quite roughone, yet it is
fairly efficient sincethe above proceduremay be easily performedeven in the caseof a rather
complicatedsystem(section4.5).

Theoverlapcriterion hasalso a more seriousdefect.The point is that the numberof resonances,
say,for the system(4.2) is equalto 2 only in the first approximation.This is due to thefact that the
phase0 dependslinearly on time only in zerothapproximation.Affectedby aperturbationthephase
dependenceon time becomesvery complicatedresulting in newresonances.Generally,resonances
mw+ n1fl1 + n2fl2= 0 happenwith any integersm, n,, n2 that is the setof resonancesturnsout to be
everywheredense(section4.6). It is clear, therefore, that absenceof the overlap of first order
resonancesis only anecessarybut not sufficient conditionof motion stability. Onemay sayalso that
the overlapcriterion gives only an upper limit (in the perturbationstrength)for stability. What is
more,a fundamentalquestionariseswhetherthereexistsany regionof stability? And canit happen
that suchan everywheredenseset of resonancesleadsto an instability of any motion unlessthe
systemis completelyintegrable(asin theeventof a singleresonance,for example)?It is obviousthat
those questionscannotbe answeredonly by visual considerationsof the type we usedabove.To
answerthemone needseitherexperiments,including numericalones,or a rigoroustheory.The first
wayhasthecommon restrictionsfor experiment,for example,finite time intervalover which onecan
beconvinced(andconvincethe others!)of motion stability (section5.1).Theotherway is limited by
simplificationsof theoreticalmodels(section4.6). Let us just mentionnow that only for systemswith
two degreesof freedomone managesto provetheabsolute,or eternal,stability of motion. For N >2
themotion is alwaysunstablein somesense(sections4.6 and7.7).

Coming back to the Hamiltonian (4.2) let us apply the overlap criterion. We assume~fl =

If, — fi2I 4 fl1 andf’ = f2 = f~.The conditionfor theunperturbedresonanceseparatricesto touchhasa
simple form:

(~W)r ~Afl. (4.4)

Fromeqs.(4.4) and (4.3) we find the (theoretical)critical value of to as:

fT w(Afl)
2!8~3 (4.5)

wherew Cl, fl2.

Let us comparethisestimatewith the resultsof numericalexperiments[41].In thosethe rateand
characterof the variationin the Hamiltonian wereusedasan experimentalindicationof instability.
Sinceoneexpectedastochasticbehaviorunderresonanceoverlapthe “diffusion rate”wascomputed:
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D~= (i~H)
2/z~t. (4.6)

HereH is thevalueof Hamiltonianaveragedover a periodof z~t~= l0~time unitsof thesystem(4.1).
The averagingwas intendedto lower the influenceof boundedenergyoscillationsand to pick out the
accumulatingchanges.The secondaveraging(upperbar in eq. (4.6)) was donein thefollowing way.
The total motion time t (= 10~typically) was subdividedinto a numberof equalintervals ~ The
averagingwasmadethenover all pair combinationsof thoseintervals,~H meaningthedifferencein
H betweenthe intervalsof agiven pairand i~tbeingthe time differencebetweenthecentersof these
intervals.This averagingprocedureaimedto increasethe time scalefor which diffusion wasdescribed
by the rate(4.6). This facilitatedtheseparationof diffusion processesfrom side effects.For theabove
procedurethemeanvalueof z~tin eq. (4.6) is abouthalf the total motion time and is independentof
the lengthof interval i~st~.Typically two interval lengthswereused~t

4 = iO~andAt5 = iO~to seehow
strongarenon-diffusionprocesses.For boundedoscillationsof theenergy,for example,themeasured
“diffusion rate” (4.6) dropsproportionalto (At~)

2due to theaveragingover the interval Atm.
In fig. 4.1 a dependenceof the diffusion rate on the perturbationstrength is presentedfor

Cl, = 0.217;Cl
2 = 0.251. The initial conditionsof motion correspondto thevalueof frequencyo = 0.234

(a = 0.276) which lies justhalf-way betweenCl, and Cl2. We seethatwithin a fairly narrowintervalof
Jo = (2.8—2.6)X iO~the diffusion rate D5 drops by about 6 ordersof magnitudes.Is that not the
genuineborderof stability! We may assumethepositionof theborderto be

2.55 x iOn; IT 5.76x iO~’. (4.7)

Here fE is the experimentalvalue (from the dataof fig. 4.1) and fT standsfor that according to
expression(4.5). The agreementbetweenfE and fT may be consideredassatisfactorytaking account
of theoverlapcriterionroughnessdiscussedabove.Note that theexperimentalvalueis well belowas
comparedto the theoreticalone (fT/fE 2.26). This is also in accordancewith the above-mentioned
considerations.We shall comebackto this questionin section5.1 (seealso the nextsection).

Above the stability border(4.7), say, for fo> 2.7 x l0~both ratesD4, D5 areapproximatelyequal,
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Fig. 4.1. Stochasticinstability underthe overlapof two resonances;diffusion rate D~versusperturbationstrengthfo (seethe text): 0— D4
x — D~thescaleof fo-axisis differenton bothsidesof thearrow.



B.V. Chirikov, A universalinstability of many-dimensionaloscillator systems 289

the latterbeingan indicationof thediffusion natureof motion.In thepaper[34]an irregularcharacter
of motion underthe resonanceoverlapis seenquite clearlyon phasespacepicturesof themotion and
differs sharply from a regular behaviorof trajectoriesin the absenceof the overlap. Below the
stability border(J0 < 2.6x 10~)the ratesD4, D5 differ by 2 ordersof magnitude,so that the energy
variationin this regionis of anon-diffusivenatureobviously, beingrelated,mainly, to quasi-periodic
oscillationsunderthe influenceof theperturbationaswell asto computationerrors.

It is interestingto notethat underresonanceoverlapthediffusion ratedoesnot increasewith fo and
even falls slightly, both ratesgoing apart again. The latter indicatesa reduction of the diffusion
contributionas Jo grows. This, at the first glance,ratherstrangebehaviorcan be understoodif one
considersthe limiting case (AW)r ~ IACI. The systembehavior in that caseis especiallyclear for
Afi —*0. Then both resonancesbecomeone with thedoubleamplitude,and the systemis integrable
again.Onecanconcludethatasystemis mostunstable(in thecaseof two resonances)just aroundthe
overlapborder:* (Aw). ~‘ (ACl)/2.

The diffusion due to the overlap of the resonancescannotgive rise to a large changeof the
unperturbedintegralsof motion sincetheareaof stochasticityis restrictedto the “fused” domainsof
two resonances.That boundedareais clearlyseenin phasespacepicturesof ref. [34].

Let us consider another quite simple example of resonanceoverlap for a system with the
Hamiltonian:

H = ~(P~ + P~)+ ~(X~ + X~) — ILXIX2 — X,f0(cosr, + cos72)- (4.8)

We shall use the results in section7.6. The systemunder considerationconsistsof two coupled
oscillatorswith a cubicnonlinearity(section2.3) oneof which is actedupon by adriving forceof two
frequencies(4.1). The configurationof resonancebandsfor this systemis outlined in fig. 4.2. The
couplingresonance = w~intersectsboth driving resonances:w~= Cl1 o~= Cl2. Hencetherealways
exists two stochasticdomainsat those intersections,the domains formed by multiple (double)
resonances:1) w~= = Cli; 2) w~= = Cl2 (section3.3).Underacertaincondition,however,a new
possibility arises— the transitionof the systemfrom one driving resonanceinto anotherthrough the
coupling resonance.This transitionhappensunderthe “closure” of the chainof vectors(Aw)r along
which thephaseoscillationsproceed.In fig. 4.2 the critical situation is shownwhenthe closurejust
beginsaccordingto thecondition:

(Aw)~’~+ (Aw)~
2~+ 2(Aw)~’2~= If

1 — Cl2I- (4.9)

Here the two first termsrepresentcomponentsof the phaseoscillation vectorsfor the two driving

resonancesalong the o,-axisand(Aw)~’
2~is the samecomponentfor thecoupling resonance.Using

Fig. 4.2. Overlapof threeresonances:arrowsindicatephaseoscillationvectors(t~w~for eachresonance.

5lnteresfingnumericaldatarelatedto this questionseein ref. [135].
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expressions(4.3) and (3.45)we arriveat theconditionfor theoverlap(touching)of threeresonances:

(4.10)

wherewe regardfor simplicity theparametersof both driving resonancesas equal.For a givenJo <fit

(seeeq. (4.7)) the relation (4.9) determinesthe critical value of IL abovewhich all threeresonance
domainsarelinked togetherby aunited (stochastic)motion of thesystem.

A distinct featureof all theexamplesconsideredis the existenceof a critical perturbationbelow
which nonlinearoscillationsarestable.This is relatedto theseparationof resonancedomainsundera
sufficiently small perturbation.As was mentionedalreadyabovethe separationdoesnot happenat
intersectionsof resonancesurfacessothat in a vicinity of theintersection,i.e.at amultiple resonance,
a stochasticdomainpersistsfor arbitrarilysmall perturbation.In the caseof a nonlinearunperturbed
system(a� 0, seeeq. (2.8)) thedimensionsof that stochasticdomain aredecreasingin proportionto
the width of the nonlinearresonance,that is as \Je/a (seeeq. (3.21)). However, if a — �, i.e. the
nonlinearityof oscillationsis determinedalsoby theperturbation,andlinear frequenciesof a system
satisfy,at least,two resonanceconditions thenonly the rateof instability is decreasingunder �—*0
but not thedimensionsof thestochasticdomain.This interestingphenomenonhasbeendiscoveredby
Ford and Lunsford[40].

4.2. Many resonances;mappings

The overlapof two, ora few, resonancesresultsonly in aconfinedinstability aswe shall say.The
latter termrefers to the factthat a stochasticitydomainformedby a few overlappingresonancesis
finite but boundedin phase space.* Hence the energy variation or the energy exchangeamong
different degreesof freedomin a conservativesystemis limited and small underasmall perturbation.
But that’squite anotherthingif therearemanyresonances.Thenatrajectoryof motion maygo within
a setof overlappingresonancesfar awayfrom the initial position.An instability at large,or thegross
instability occurs. In this sectionwe shall considerthe limiting caseof an infinite number of
resonances.A convenientmodelis asystemwhosemotion is describedby differenceequations,orby a
mapping.Let us consider,asan exampleso far, a simple 2-dimensionalmappingI, 0 -* I, 0 where

i=I+Kf(0); ö~=o+r (4.11)

Here K standsfor a constantparameterandJ(0) is somefunction.The mapping(4.11) is a canonical
onegeneratedby the function:

F(L0)= fo+~P+KV(0); f=—dV/do. (4.12)

For K 4 1 thedifferenceequations(4.11)canbe replacedapproximatelyby differential ones

I—(K/T)f(O); é=I/T (4.13)

andwe arriveat aconservativesystem,T beingthe time periodcorrespondingto one iterationof the
mapping.To write down thedifferenceequationsin the form of exactdifferential oneswe may usea
ö-function:

!=KClf(O)82,(r); 6= lIT. (4.14)

~‘fl~ confined instability should not be confusedwith the local instability, the latter term referring to thebehaviorof infinitely close
trajectoriesthat is to theinstability in an infinitely smalldomainof thephasespace(seesection5.2).
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Here 7 = ft + To; Cl = 2ir/T andthe 8-functionof period2ir is given by the Fourierexpansion:

82,,.(r) r~r~_(l+2~cOs(nT)). (4.15)

It is convenientto introducea newmomentumJ = I/T, thentheequationsof motion become:

I = (Kfl2/2ir)f(0) 82,~(T), 6 = J (4.16)

and theHamiltonian:

H(J, 0, 7) = ~ + (KCl2/2~r)V(0) 82,,~(T). (4.17)

Note that eventhoughthe variablesJ, 9 are canonicalthe transformationI, 9 —* J, 0 is not sincethe
Jacobian8(J, 0)18(1, 0) = 1/T� 1.

Equations(4.16)areequivalentto theoriginal mapping(4.11),so we seethat themappingdescribes
anexternalperturbationof period T. This perturbationrepresentsa sequenceof short “kicks” (4.15)
and thus resultsin an infinite setof resonances(seeeq. (4.17) andbelow).

The describedschemefor analysisof nonlinearresonanceswasusedin refs. [9,46] (seealso ref.
[43]).

Let V(0)= cos0; fi = 1 (T = 2ir). We arrive then at a pendulum which is acted upon by a
periodicperturbation:

H(J, 0, r) = ~J2 + k ~ cos(0— nt) (4.18)

where k = K/(2ir)2 is a new parameter.Assuming the latter to be small we obtain the set of first
approximationresonances:Jr = n, or I. = 2irn. All theseresonancesare identicalexcepta shift in I.
This is obvious also from the original mapping (4.11)sincea shift in I by an integer multiple of 2ir
leavesthe mappingunchanged.It may be noted that the approximatereplacementof the difference
equations(4.11)by differential ones(4.13)is equivalentto takingaccountof theonly resonanceJr = 0.

The separatrixhalf-width of every resonancein J, or in the unperturbedfrequencyw = 0 = J, is
equalto:

(AW)r = (AJ)r= 2Vk. (4.19)

The spacingbetweenresonances:AOr = AJr= 1. From theconditionof touchingseparatrices(Aw).=

weget thecritical perturbationstrength:
~ I r., 1 2

Ki=~ ~T4~ .

Although this estimategives the correct order of magnitudeit materially overstatesthe critical
strengthof perturbationaswell as in thecaseof two resonances(section4.1).Numericalexperiments
give the value: K~ 1 (section5.1). A reasonfor sucha disagreementand improvementsof the
theoreticalestimatewill be discussedin sections5.1 and6.4. Note that the ratio KT/KE 2.47 is close
to theanalogousquantityfT/fit 2.26 for two resonances(section4.1).

Sincein themodel underconsiderationall the resonancesoverlapsimultaneouslya grossinstability
occursresulting in an arbitrarily largevariationof J. In absenceof overlapthechangein J is limited
by thewidth of theseparatrix:IAJI ~ 2Vk (seeeq. (4.19)).

In section3 wehaveseenthata main featureof a singleresonanceis thenonlinearstabilizationof
resonantperturbation.The mechanismof resonanceoverlapdestroysthat stabilization and lets a
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system“wander” overresonances.Arising thus,stochasticinstability is the main obstaclein theway
of applicationof nonlinearoscillationsfor the suppressionof resonantperturbation.Thathas been
found outalreadyin ref. [10].

A vastnumberof papershasbeendevotedto the study of nonlinearmappings.Onemaygain an
ideaof some moderntrendsin this field from the materialsof theToulouseconferenceon “Point
Mappings and its Applications” [44](seealso ref. [54]).Sometimes mappingshavebeenusedas a
simple approximatemethod for describingmotion of a continuoussystem,for example,in many
problemsconcerningaccelerationof chargedparticles[10,29, 35, 45—47]. Theseworks arecloseto the
presentpaperasto methodsandresults.In refs. [29,46] similar criteriaof stabilityhavebeendeduced
using different methods.

In anumberof papersthemappingsobtainedby the so-calledPoincarésurfaceof sectionmethod
were studied[17,38, 116, 54]. The descriptionof suchPoincarémappingsis given in thenextsection
via anexampleof aconservativesystemhavingtwo degreesof freedom.This applicationof mappings
is of a specialinterestsinceit showsthatmappingsarean adequatemethodof motion descriptionfor
systemsof a fairly broadclasseventhough,at the first glance,this methodseemsto be artificial and
formal. What is more,mappingsare very useful for computations(see sections5, 6) and also for
displaying resultsof numericalsimulationsfor acontinuousmotion [52,38, 40]. Mappingsaresimpler
also for a theoreticalanalysis.To obtain themapping describinga continuousdynamicalsystemit
sufficesto integratetheequationsof motion over a restricted(andusuallysmall) time intervalonly. In
manyeventsthis turnsout to be muchsimpler thanto analysetheoriginal equationsof motion.

Mappingsconsideredin this sectionseemto be too special,in particular,becauseof their linearity
in momentum.However, we shall see right now that suchmappingsmay describea real physical
system.An interestingexampleis theproblemof a chargedparticlemotion in a “magneticbottle”.

4.3. Motion of a chargedparticle in a magneticbottle

In a sufficiently strongmagneticfield a chargedparticlegyratesaroundandalong amagneticline
approximatelyand simultaneouslydrifts overa surfaceof constantmagneticflux.* We shall restrict
ourselvesto the caseof axially-symmetricand constantmagneticfield only. Then the drift motion
aroundthesymmetryaxis is inessentialand may be removed,so we arrive ata conservativesystem
havingtwo degreesof freedom.

A chargedparticlegyratingin amagneticfield possessesan orbital magneticmoment:

IL = v~/2B (4.21)

where v1 is particlevelocity componentperpendicularto themagneticvectorB, and theparticlemass
is assumedto be unity.** The directionof themagneticmomentvector~zis oppositeto that of vector
B. Thereforein a non-uniformmagneticfield a particleis pushedalongamagneticline into theareaof
weak field. If the field strengthB hasa minimum alongamagneticline thechargedparticle is confined
in somespacedomain.

The Russianterm for sucha configurationof magneticfield is the magnetictrap, or, in a more

5A detaileddescriptionof the chargedparticle dynamicsin a magneticfield may be found, for example,in rets. [48,56, 118]. We usean
abbreviatedterm “magneticline” insteadof thefull expression“magneticline of force”, themoie so thattheforce in themagneticfield is never
directedalongtheline of force.

55M1theexpressionsofthis section hold for arbitraryparticlevelocitiesif mIVl — v21c2= 1 is set.
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accuratetranslationfrom theRussian,the trapwith magneticstoppers.A SovietphysicistG.I. Budker
hasinventedthis termin theearly fifties togetherwith themethodfor plasmaconfinement.About the
sametime an AmericanphysicistR.F. Posthasindependentlyproposeda similarmethodforprecisely
the samepurposebut, naturally,undera different name— the magneticmirror machine,or, in a more
popular version, the magneticbottle (apparentlywith two throats).We observethat the Russian
stoppersnicely complementtheAmerican bottle to achievean efficientconfinement!

Let us considerparticlemotion in a magneticbottleignoring, first, thecurvatureof magneticlines.
The nonrelativisticHamiltonian in termsof cylindrical coordinatesz, r, ~ hasthe form:

H’ ~_~+~+(pc_(e/c)1A,)2 422~PZ,J~j~Z~T) — 2 2 2r2

where the momentaare p~= ±;Pr = ~, and A, is the only componentof the vectorpotential in an
axially-symmetricmagneticfield; thesymmetryaxis is parallelto thez-axis.As well as theenergy,the
angularmomentum

pç = r2çb + (e/c)rA,= const (4.23)

is anexactintegralof motion, so that thesystemis reducedto aconservativeonehavingtwo degrees
of freedom.We introducea newcoordinatex = r — rc whererc describestheposition of theguiding
(gyration)centerandexpandthe lastpartof theHamiltonian(4.22)up to terms —x2:

12 12 12 2

H(p~,p~,z, x) p
2+-~p~+-~w(z). x . (4.24)

Herep~.= ~ w = eB(z)/c is the Larmorfrequency.Owing to dependence0(z) acoupling betweenz-
and x-oscillationsoccurs which leads,generally,to coupling resonancesand an energy exchange
betweenboth degreesof freedom.

Considerthe transversepartof theHamiltonian(4.24):
12 12 2

~ (z)x —Jw(z). (4.25)

For a given longitudinalmotion z(t) we havea harmonicoscillatorwith a time varying frequency.
Underasufficiently slow variationof the frequencyw(t) theactionof theoscillator:

J = ~wR~= v
2j2w= (c/e)IL (4.26)

is known to be an adiabatic, i.e. approximate,integral of motion. Here R
1= vjw is the particle

Larmorgyrationradius,orgyroradius,which is also theamplitudeof transverseoscillations.Thenthe
lastexpressionfor theHamiltonian(4.25)holds approximately,and the full Hamiltonian(4.24)may be
written as:

H2(p~,z) ~p~+ILB(z) (4.27)

with IL constto describethe longitudinalmotion.
In a magneticbottle the “potential” energy of longitudinalmotion ILB(z) hasa minimum some-

where inside the bottle, so the particle motion is of the kind of “bouncing” (from the “magnetic
stoppers”at both “ends” of a magneticline), or of oscillations. In what follows we shall restrict
ourselvesto thesimplestcaseof harmonicoscillations:

B(z) = B0(1 + b
2z2); z= a sin(Clt); Cl = by

10 (4.28)

where the subscriptzerodenotesthevalueof a quantity in the midplane(the planeof symmetry)of
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the magneticfield: z = 0. The longitudinal bounceamplitude a is constantand, hence,the motion
alonga magneticline is boundedin so far as IL = const. Any variationof IL resultsin a change(and,
particularly, increase)of amplitudea which leads,in turn, to a leakageof particlesfrom themagnetic
bottle. So theproblemarisesto evaluateor, atleast,to estimatethe rateof changein IL~or, dueto eq.
(4.26), in the action J. This is, therefore,a particularcaseof the generalproblemof the adiabatic
invariantconservation.A vastnumberof papershasbeendevotedto the latterproblem.As far asthe
magneticconfinementof chargedparticlesis concernedtheproblemhasbeensolved,in principle,by
Arnold [2] who rigorouslyprovedthat for a sufficiently small adiabaticityparameter(4.36)theparticle
motion in anaxially-symmetricmagneticbottleis stablein thesensethat theparticleis confinedin the
bottle for ever. A problemstill not solved completelytoday is an efficient estimatefor the stability
conditions.A versionof apartial solutionfor the latterproblemis describedbelow.

Let us mention, first of all, a curious peculiarity of the Hamiltonian (4.24) with a “parabolic”
magneticfield (4.28): the oscillationsfor both degreesof freedomare harmonicbut not isochronic.
Indeed,thebouncefrequencyCl dependson IL accordingto eq. (4.27)and,hence,on theaction .1. The
averageLarmor frequencyalsodependson ~:

(w)= w~(1+ b2(z2))= ~w~(1+ v2/2ILB
0). (4.29)

Here v is the full speedof a particle,andwe haveusedrelation IL = v~0/2B0= v
2/2B(a). Resonances

betweenbouncingandgyrationof a particledependon the frequencyratio (w)/Cl whichchangeswith
IL according to above consideration.We have, thus, a typical problemof a nonlinear resonance
interaction.In that formulation theproblemwas consideredin ref. [8] using the Hamiltonian (4.24).
Lateron it wasfound(seeref. [51])that thechangein IL is mainlydeterminedby just thecurvatureof
themagneticlines.

Insteadof using theexactHamiltonian(takingaccountof magneticline curvature)we aregoing to
starthere from theexactexpressionfor the rateof changein IL asreportedin ref. [50]:

dIL....pv±(2 V
1\ - ~

ai~_~Y’-~-)sIn’s’—-~-~T3cos-

Here s denotesa coordinatealong a magneticline; v1 = ~ is a velocity component;p standsfor
magneticline curvatureand 1’ is theperturbationphasethe definition of which is clear from fig. 4.3.
All quantitiesare takenat the particle trajectory.We have slightly changedthe notation of some
quantitiesin eq. (4.30)ascomparedto ref. [50].

For aparabolicmagneticfield (4.28) in a closevicinity of thesymmetryaxis (b
2r2 4 1) themagnetic

line curvatureis given by the relation:

p = —rb2(1 — 2b2z2)/(l+ b2z2)2 (4.31)

asis easily verified.We changetheperturbationphaseCII for theLarmorphase0. Fromfig. 4.3 weget:

Fig. 4.3. Projectionof agyration trajectoryof radiusR
1 with theguiding centeratpoint rcontotheplaneperpendicularto thesymmetryaxis0:

r, v particlepositionandvelocity;41,0 perturbationandLarmorphases,respectively.
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rsin cII = rc sin 0 assumingthat the projection of trajectory onto the plane perpendicularto the
symmetryaxis is a circle. Effectsof distortionof thecircle will bediscussedbelow.* We shallseealso
that while evaluatingthechangein IL it is sufficient to takeonly the first harmonicof particle gyration
into account,i.e. only the first term in eq. (4.30)which is relatedjust to the magneticline curvature.
The secondterm correspondingto the simplified Hamiltonian (4.24) gives an exponentiallysmall
correctionaswe shall see.To thesameaccuracyIL = const,andall variablesin the first termmay be
taken not at the particle trajectory but at the guiding center rc. Finally, (rvjc const owing to

-~\/B (IL const)and B~r2c const(the particlemovesover a surfaceof constantmagneticflux).
We get:

dIL rcov±
0b

2(1—2b2z2)(v2—ILB)
dt B

0 (1+b
2z2)3 51fl 0. (4.32)

Let us apply now Poincaré’ssurfaceof sectionmethod.To do thiswe recordthestateof thesystem
only at momentsof crossingthe surface(plane)z = 0, that is every half-periodof particle bouncing.
Exceptfor theazimuthaldisplacement(in ~) this stateis completelydescribedby two variables,for
example,0~and ILo. Two otherdynamicalvariables(besides0~,ILo, unknownQoandz = 0)of thetotal
number6 (3 degreesof freedom)may befound from two integralsof motion (energyandp, (4.23)).
The equationsof motiondeterminea certaincorrespondencebetweenvaluesILo, 0~atonecrossingthe
midplanez = 0 andthevalues jig, 0~at thenextcrossing,or a mappingof theplane(ILo, 0~)on itself:
ILo, 0o~ILo, 0~.That sort of mapping is customarywhen one displays the results of numerical
experiments[52].However,for a theoreticalanalysisthevariable ILo is not very convenient.As was
foundout alreadyin the first numericalexperimentsconcerningthemotion of a chargedparticlein a
magneticbottle [52]the main changein IL happensjust nearthemidplanewhile over the restof the
trajectoryIL constto theaccuracyof small oscillations(seealso ref. [50]).Therefore,it is naturalto
choosejust this nearly constantvalue of IL betweensuccessivecrossingsof the midplane as a
dynamicalvariable. In what follows we shall denotethe valueof the latter variable simply by IL for
the period of motion before crossingthe midplanewith the phaseOo and by 1 for that after this
crossing,or beforethenextonewith thephase0~. —

We turn to the evaluationof an explicit form for the mapping IL~0~-~ ~i,0~.We integrate the
equationsof motion overhalf thebounceperiod to obtain thechangein 0~andIL. The phasechangeis
equalapproximatelyto:

— - - ir(w) 1TW~ /1 v2 \
= 0~+ D(IL); D(IL)= ~r = 2bV2B*s/,i 2B

0~) (4.33)

This changedependson thevaluesof the frequenciesbetweenthe two crossings,that is on thevalue
of ji. The dependenceon ,i indicatesnon-isochronicityand, hence,nonlinearityof the oscillations.
Note that the changein 0~has been evaluatedin zero approximation,i.e. for the unperturbed
frequencies(w) and Cl. It is true that the perturbationaffectsboth frequencies,but by a negligibly
(exponentially)small amount(seebelow).

To get the changei~z= — IL we integrateeq. (4.32) having substitutedinto its right side the
expressionz(t) = a sin(Clt) (4.28) deducedfor IL = const. According to the results of numerical
experimentswe expect the main changein IL to be near t = 0. Therefore, we may assumeap-

5Thereis a trivial distortion dueto theinclination of vectorB to thesymmetryaxis. In what follows we assumethis inclinationangleto be

small.
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proximatelyz(t) aft andextendthe integrationinterval to infinity:

A rco .~ • ,, ____

~ I U751flr7~
1~2~3~V IL -

au0 j \1 7 ,

We shallevaluatethe integralin thecomplexplaneof a newvariable7 = abft. The integrandhastwo
polesatthepointsr~,= ±i. Note thatatthepole B = B0(1 + ~2) = 0. Undertheassumedapproximation
IL = const the term ILB may be removed,therefore,from the integral. We substitutesin 0 = Im(e~)
andclosethe integrationcontourin theupper 7 halfplane.The valueof ~ is mainly determinedby
theexponentialfactorexp(i0(7~)).Let us get it. Sincew w~(l+ ~2) we have:

00o+Jwdt~0o+~(r+~-) (4.35)

where

� = ab(Cl/wo)= (bR1o)(v11/vjo (4.36)

is theadiabaticityparameter.This is just thequantitydeterminingtheconditionsfor and theaccuracy
of IL conservationsincethe argumentof the exponentialfactor i0(r~)= iO(i) —213�.For �4 I the
changein IL is exponentiallysmall.Henceit is clear that highergyrationharmonicsm > 1 would give
additional terms exp(—2m/3�)which can be neglectedashasbeen done above.Expression(4.36)
shows that the adiabaticityparameteris of the order of the ratio of the bouncefrequencyto the
gyrationfrequency,or of the ratio of theLarmorradiusto the scaleof themagneticfield variationin
space(-- 1/b). Theparameter(4.36)was derivedin ref. [50].*Applicability of theparameteris limited
by theexpansionsin(Clt) ft = T/ab 4 1, which we haveusedabove.For ‘r = r~,= i we arrive at the
condition:

A ab = (v11/vj0~‘ 1 (4.37)

which is valid only for particles moving at a small angle to the magnetic line. In ref. [53] a
generalizationof theadiabaticityparameterto arbitraryvaluesof A hasbeenworkedout (seebelow).

It is preciselythecondition(4.37)which providesasharpchangein IL nearthe midplanesincethe
pole is, under this condition, very closeto the real f-axis: IClt~I= 1/A 4 1. The value of It~Igives the
orderof the time intervalduring which thechangein IL occurs.

Let us comebackto theevaluationof the integral(4.34).Sincethepole is amultiple oneweneedto
differentiatethe integrandto get the residue.For � 4 1 it sufficesto differentiatethe functionexp(iO)
only sincea largefactor 1/�appears(seeeq. (4.35)). Forthesamereasonit is enoughto takeaccount
only of that partof the integrandin eq. (4.34)which hasa poleof thehighest(third) multiplicity. We
get**;

AIL = K(IL) sin 0~ K(IL) 3IJ~ eV
3~. (4.38)

Now we can,at last,write down themapping:

51n an implicit form this parameteris containedalso in themoregeneralexpressionsof ref. [51].
•5A moredetailedevaluationof asimilar integral is carriedoutin theappendix.
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I.~ IL~’~(IL)sin 0~ Oo= 00+D(~i) (4.39)

whereD(IL) is given by eq. (4.33).The mapping (4.39)is not acanonicaloneasa resultof neglecting
the influenceof perturbationon thechangein frequenciesand, hence,in thephase0~(seeabove).To
obtain a canonicalmappingwe couldtakeaccountof this influence.Instead,we shall do it in another,
simpler way. Using thesmallnessof AIL we linearizethemapping(4.39)in IL- Choosearesonantvalue
of ~ = ILr, suchthatD(ILr) = 217n (n is an integer),andexpand

D(IL) D(ILr) + D,~(ILr)(IL — ILr) = 2irn + I (4.40)

whereD,~denotesthederivativein respectto IL~andwehave introduceda newvariable(momentum)

I. Droppingtheconstant217n we may write the linearizedmappingin the form:
I=I+KsinO0 00=00+1

(4.41)
32 T~ fv\

2f 3v2\ —2I3~

KK(ILr)D~(ILr)~~1 ~1+—~-,e
U1t

1 \V1~/ \ y11
where all quantitiesaretakenat z = 0 andfor IL = ILr. This mappingis just of the type introducedin
section4.2. We shall considerthis mapping in detail in sections5 and6.

In the frameworkof theassumedapproximationtheexpressionfor themappingparameterK (4.41)
resolvestheproblemof thestability of particlemotion in a magneticbottle.

Note that the quantity K exp(—1/e) (4.41) determining the stability of the motion depends
exponentially on the inverse of the small perturbationparametere—*O and, hence, cannot be
representedby any power series in �. The lattergives only small quasi-periodiccorrectionsto the
original expression(4.21)for the particle magneticmoment,correctionswhich nevergive rise to any
instability, that is, to a large changein IL [119].Successof the approachdescribedin this section
should be attributedto a different methodfor the constructionof successiveapproximations,the
methodbasedon a different kind of the small perturbationparameterK -~exp(—11�).This special
form of perturbationparameteris aconsequenceof taking accountof very weak(andoften ignored)
resonancesbetweenlongitudinal bounce oscillations and the Larmor gyration of a particle in a
magneticbottle (seeref. [8]).For a furtherdiscussionof this kind of approximationseesection4.4.

The conditionfor stability of themotion is: K < 1 (section5.1).For K> 1 thestochasticinstability
resultsin adiffusion of particlesoveran integralsurface,i.e. overa subsurfaceof the intersectionof
surfacesE = constandp, = const (4.23). If aparticle orbit encirclesthe field symmetryaxis (r = 0)
the integralsurfacegets closed,andthe particlemotion is boundedin spiteof stochasticinstability.
This is theso-calledabsoluteconfinementdue to exactintegralsof motion. For particleswhoseorbits
do not encircle the symmetry axis there is no absoluteconfinement,they may be kept inside a
magneticbottle only underconditionsproviding a sufficiently small variationof themagneticmoment
IL.

Integral surfacesin an axially-symmetric field of a magneticdipole were studied in detail by
Störmerasearlyas 1907 in connectionwith theanalysisof cosmicray motion in theEarth’smagnetic
field (seeref. [57]).Similar calculationsfor a magneticbottle are described,e.g., in ref. [56]. The
conditionof absoluteconfinementmay bewritten in the form (seeref. [55]):

r~<R~ R~=R~—R
2/k. (4.42)

Here R = yb
0standsfor the so-called“full” Larmor radiusandk = Bmax/Bo denotesthe mirror ratio
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whichcharacterizesthedepthof thepotentialwell (4.27) in amagneticbottle. The quantityR~may be
called the Störmerradius. The domain of phasespacein which a particle is confineddue to exact
integralsof motion is usuallycalledthe Störmerzone.

Expression(4.41)for the stability parameterK is valid, particularly,undertheconditionA ~‘ 1. For
arbitrarypitch anglesf~of aparticle velocity to themagneticline we needto integrateeq. (4.32)with
z(t) = a sin(Clt). The poles t~aredeterminedby theequationw(t) = 0 whence:

sinfflt~)= ±i/A; ~ = Qt~= ±iarsinh(l/A). (4.43)

The argumentof theexponentialfactorbecomes:

i0(t~)= —~ [(2+ A2) arsinh(~)— Vi + A2] _±. (4.44)

where �~is a new adiabaticityparameterdeducedby Krushkal [53].*For A ~‘ I �~is reducedto the
old parameter:�K —~

One cannotintegrateeq. (4.32) in infinite limits aseq. (4.34)sincethereare two infinite rows of
poles (4.43) now. Instead,we integrateover half a period of bounceoscillationsand thenclose the
contour in theupperhalf-planealong two vertical lines Re(T) = ±17/2as shownin fig. 4.4. Values of
the integralover eachof the two straightlinesare,generally,not equalowing to adifferencein phase
0. Yet, at aresonance(IL = ILr (w)= 2nCl, seeeq. (4.33)) this differenceis equalto 2irn, and the sum
of the integralsover the two straightlinesvanishes.The restof the integrationprocedureis similar to
that for A ~‘ 1 asdescribedabove.Finally we get:

~IL —~ rc000v.Loe_I/aKsin 0~ (4.45)

that coincidesexactly, for the assumedshape of magneticfield, with a more general result by
Krushkal [53]obtainedwith the saddle-pointmethodof integration.** Expression(4.45)differs from
(4.38) by the factor (vp/v)2 and also, of course,by anotheradiabaticityparameter.FactorK of the
mapping(4.41)linearized in IL becomes:

— 3ir rc f~ 3v \ —heX
K — —~j~ 1+ —r, e . (4.46)

a U1~j\ V
1j

One may still improve the accuracyof the expressionfor K evaluating the integral for ~IL
“exactly”, i.e. takingaccountof all the termsandnot only of the leadingone(in �)ashasbeendone

— a- —

-f fr-.~.t
Fig. 4.4. Integrationcontourfor eq. (4.32),arbitraryA.

sThesameexpressionhasbeenderivedrecentlyin ref. [137].
**The lastrelationis somewhatdifferentascomparedwithamoreaccurateonederivedin ref. [137].Nevertheless,asimplereq.(4.45)doesfit quite

well thenumericaldatain ref. [1371.
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above.We write theword “exactly” in quotation-markssince that “exact” valueof integralgives all
the samean approximatevalue of tAIL becausewe make use of an approximaterelation z(t)
a sin(Clt). The latter takes no account of higher gyration harmonics.It is true that the higher
harmonicsleadby themselvesto exponentiallysmall corrections.However,in the secondand higher
approximationsin � they maycontributeto the first harmonicagainand,hence,may changeeq. (4.32)
by an additionalterm �2. Therefore,wecanevaluateonly thecorrection—� without taking account
of exponentiallysmall terms.Having performedsomewhatcumbersomebut elementarycalculations
we arrive atan improvedparameterICE:

— - _bRv1lO+8A
2+A4

K~—K(l+ô), ~ 6v i+A2312 (4.47)

whereK is given by eq. (4.46).
Let us comparetheestimatesobtainedwith resultsof numericalcomputationsin ref. [55].*In the

latterwork a largenumberof muontrajectorieswerecomputedto find out theoptimal conditionsfor
muon confinementin a magneticbottle with the parabolic field (4.28). Parametersof 6 unstable
trajectories,i.e. thoseleavingthe bottle after sometime, nearthe stability borderare given in table
4.1.

Prior to the comparisonsome correctionsneed to be introduced. Namely, it would be more
accuratenot to take the quantities b and Wo (or R) just at the symmetry axis where they are
immediatelygiven but to averagethemover aLarmorcircle. For parabolicfield (4.28)thecorrections
havethe form:

R
1—* R1(1+ ~b

2(r2)); b —~b (1 + ~b2(r2)) (4.48)

where(r2) = r~+ R~is the meansquareof a particle distanceto the symmetryaxis (seefig. 4.3) and
R

1, b on the right-handsidesof theequationsare takenat theaxis.
The quantitiesR1and rc in table4.1 havebeencalculatedfor agiven energyand thepitch angle~

of a particle,and for magneticfield strengthB0 = 42.2kG at the centerof the bottle andparameter
b = 7.71 x iO~cm~at the bottle axis. Every particle startedits motion in the midplanez = 0 at a
radius r0 = R1 + rc = 60 cm and in a directionnormal to vector r0. Krushkal’sadiabaticityparameter
hasbeencalculatedaccordingto relation(4.44)andalsowith thecorrections(4.48).Thenthestability

Table4.1
The borderof particlemotion stability in amagneticbottle

E R1 rc R5 e~ N K0 K -~- o K K,
MeV cm cm cm K0 K0

450 40.7 19.3 16 63° 0.314 370 1.60 1.20 0.75 0.45 1.74 1.09 1.15
400 36.6 23.4 15 64° 0.271 340 1.62 1.05 0.65 0.41 1.48 0.91 0.87
350 32.5 27.5 14 64° 0.239 310 1.64 1.01 0.62 0.36 1.38 0.84 0.74
300 28.1 31.9 II 62° 0.219 270 1.68 1.14 0.68 0.31 1.49 0.89 0.82
250 24.1 35.9 7 59° 0.208 220 1.73 1.40 0.81 0.25 1.75 1.01 1.02
200 20.2 39.8 4 56° 0.192 180 1.79 1.50 0.84 0.20 1.81 1.01 1.02

Meanvalues 0.72 0.96 0.94

0For anotherexampleof thatcomparisonseeref. [1381.
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parameterK was evaluated,using eq. (4.46). It can be seen from the table that K> 1 for all
trajectories.This may be related to the fact that the stability border has been determinedcom-
putationally for a finite time of a particle confinementin the bottle. Namely, a trajectory was
consideredto be stableif the confinementtime exceededhalf the muon life time at a given energy.
The quantityN in thetablegives thenumberof crossingsof themidplaneduringthis time interval.As
will be shown in section5.1 the K valuesin this caseare somewhatgreaterthanfor N = ~ varying
with N accordingto theapproximaterelation: K0 1 + (100/N)°~

4.The valuesof K
0 are alsogiven

in the table. It is seennowthat eq. (4.46)underestimatesK (meanvalueof the ratiois (K/K0)= 0.72).
The agreementbecomesmuchbetter if one takesaccountof the correction6 (4.47): (K.,/K0) = 0.96.
The expectedaccuracyof the estimate(4.47) is ~ asdiscussedabove.Note that exponential
factorexp(—l/�K)is varying over thedataof table4.1 from 1/183 to 1/24, that is by morethanafactor
7. The biggestvalue of the exponentialfactor is still small enough to allow the neglectof higher
harmonictermsasdiscussedabove.It is interestingto notealsothatanalyticalestimatesareapplicable
notonly to trajectorieswhichdon’t encirclethefield symmetryaxis (rc > R1, the last3 eventsin table
4.1) but alsoto thoseencirclingtheaxis(rc <R1, the first 3 events)provided,of course,that the latter
trajectoriesdo not get into a Störmerzoneof absoluteconfinement(4.42)(cf. valuesof rc and R~in
table 4.1).

The numericaldatain table 4.1 may be processedanotherway. Namely,for a given K~onemay
find theborderof theso-calledeternalstability K,, that is of indefinitely long confinementof aparticle
in a magneticbottle, accordingto the relation(seesection5.1):

K1 K. — (100/N)°~
4. (4.49)

The valuesof K, aregiven in the last column of table4.1. The meanvalue(K
1) = 0.94 is in a good

agreementwith thevalueK~= 1 obtaineddirectly by themapping(4.41) in section5.1.
Recently an interestin the problemof a single particle motion in a magneticbottle hasrevived

again in connectionwith controllednuclear fusion research.Stability of a single particle motion is

suspectednow to be thebasiclimitation for somethermonucleardevicesevenin thecaseof a dense
plasma(see,e.g., ref. [87]).Unfortunately,magneticfields in plasmadevicesare,asa rule, neither
parabolicnor axially-symmetric,andstill moreso taking accountof theself-fieldsin adenseplasma.
This posesa problemof particle motion stability in a magneticfield of muchmoregeneralshapeas
comparedto thesimplestcaseconsideredin this section.

4.4. Motion in a vicinity of theseparatrix

A moreimportantoccasionto apply amappingof the type (4.11) is themotion nearthe separatrix
of anonlinearresonance(sections3.2 and 3.3). This problemwill be consideredin detail in section6.
Herewe will show how to constructamappingin suchacase.

Let us considerthe pendulum,as a model of nonlinearresonance,undera periodic parametric
perturbationdescribedby theHamiltonian(cf. section3.1):

H(p,ç, r) = H0(p,cc) + eV(ç,7), H0 = — cosç (450)

= �W~cos~ cosr = ~�co~[cos(Q— ‘r) + cos(cc+ r)]. -

Here � 4 1 is a small perturbationparameter;r = ft + ro; Cl, ro areperturbationfrequencyand initial
phase,respectively.For small oscillations(Id 4 1) and the frequencyratio Cl/wo = 2 a well known
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parametricresonanceoccurs (section3.1). Far off the resonancethe perturbationresultsin only a
small energymodulationwhich canbe neglectedin first approximation.Evenfor � -~1 themodulation
is small if the perturbationfrequencyis high enough (Cl ~ 00). As we know, the basic ideaof the
averagingmethod(section2.2) is just to neglectthoserapidly oscillating (non-resonant)perturbation
terms.We shall seeright now that neartheseparatrixtheaveragingmethoddoesnot work any more.

Let us constructa mappingdescribingthemotion of system(4.50)neartheseparatrix.We may do
it in a way similar to that in section4.3. We needto calculatethechangein thependulumenergy(~H)
over half a period of rotationof thependulum.This may bedone via integrationof theequation:

dH/dt = aH/at = � dy/at (4.51)

over a period of motion. Near the separatrixone canput approximately:ço(t) c~~(t)(2.30), that is
substitute the motion law at the separatrix for that near the separatrix, and then extend the
integrationtime interval to infinity. This is abasicapproximationfor theproblemunderconsideration
which we shall apply repeatedlyin what follows. Keepingonly one perturbationterm(cos(d— r)) so
far we get from eq. (4.51):

J di �w0Clsin(cc~~—7)

= — ~�w0fA2(Cl/wo) sin r~ — 4ir�f
2exp(— irf/2wo) sin ri,. (4.52)

HereAm(A) is the Melnikov—Arnold integral (the MA integral)evaluatedin theappendixand the last
expressiongives its approximatevaluefor Cl/wo ~ 1.

This kind of integral describingthe perturbationof the separatrixwas used,apparently,first by
Melnikov [12]and also by Arnold [5]. A qualitativestudy of the separatrixperturbationwascarried
out alreadyby Poincaré[6] (seesection6.1 for detail).

Insteadof calculatingthechangein thefull Hamiltonian(4.50)onemayfind that in theunperturbed
energyH

0. We have:

dH0/dt = [H, H0] = —ep DVIdq’ (4.53)

where [ , ] is thePoissonbracket.The last expressionhasasimple physicalmeaningof adriving
force power sincethespeed~ = p. Substitutingap~roximate1y:p(t) p,~(t)= 2w~cos(~/2)(2.29)and
integratingin infinite limits we arriveat:

f dt sin(c0~— r) cos(~ç8~)

= —~�w~(Ai+ A3) sin T~= ~�w0f A2 5~flTo (4.54)

that is exactly at eq. (4.52). The last expressionof (4.54) has beendeducedusing the recurrence
relation(A.8) for the MA integral.

The equality ~H = i~H0is related to the specialdefinition of the MA integral (see appendix).
Namely,we ignoretheoscillating partof the integral, that is the part periodic in cc and r. This part is
of ~ninorimportancefor us since its oscillations are bounded and have nothing to do with any
instability of motion. That oscillating part can be transformedaway, or “killed”, by a canonical
changeof variableseither (section2.2). In the particular caseunderconsiderationthe difference
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H — H0 = �V(co,r) is just suchaperiodicalfunction in both ~ and~r(4.50)whosevariationis bounded
and small due to � ~ 1. Sowe simply ignore this oscillating part and concentrateour efforts on the
calculationof aperiodicchanges(~H)in the Hamiltoniandue to theperturbation,the changeswhich
may cumulateover manypendulumoscillationsand,hence,give rise to instability.

We haveassumedabove,while evaluatingintegrals(4.52) and (4.54), that ~ >0. For ~,, <0 the
perturbationterm cos(Q— r) used gives a negligible contributionas soonas Cl ~ ~o (see appendix).
However,the secondperturbationterm cos(Q+ T) contributesexactly as much as the first term for
~ >0as is easilyverified. Thus,in thecaseof thesymmetricperturbation(4.50)theenergychangeis
given by eq. (4.52), or (4.54), for every half-periodof oscillationsand for eitherdirectionof rotation
providedCl ~ w0, theconditionwe assumeto be valid henceforth.

The energychange(4.54) dependson the perturbationphasevalue r0 at the surface~ = 0. The
changein r0 itself is determinedapproximatelyby the frequencyof pendulum oscillations w(w)
(section2.4):

To T0+ /w(~) i~+Aln(32/I1~?I) (4.55)

where A = fulwo and ~ = (HoIw~)— 1 is the relative oscillation energypastthe crossingsurface~ = 0
with phasei~o(cf. section4.3).Note that for A ~‘ 1 thechangein w occursovera relatively short time
interval -~ 1/Cl 4 11w0 < 11w aboutthesurface~ = 0.

Combiningeqs.(4.54)and (4.55)we arriveatthemappingdescribingthependulumoscillationsnear
theseparatrixundera periodicparametricperturbation:

~=w+WsinT0 To=To+AIn(3211w1) (4.56)

wheretheamplitudeof thechangein w:

W= —41T�A
2e’~2. (4.57)

Note that themapping(4.56)is canonical.
For A ~‘ 1 thechangeof w is small, andwe may linearizethe mapping(4.56) in w (but not in To!)

aboutaresonantvalue Wr to getanewmapping:

I=I+KsinO; 0=0+! (4.58)

where thenewmomentum:

I = —-~—(w— Wr) (4.59)

and theparameter

K = —~-~ = 4~3e~2. (4.60)

We havechangedthe phasenotation (To —~ 9) to emphasizeidentity of the lattermapping(4.58)with
the mapping (4.11) in section4.2 (f(9) = sin 9). In particular, both mappingsare equivalentto a
continuoussystemrepresentedby the Hamiltonian(4.18). Note that themapping (4.41)in section4.3
describingapproximatelythe motionof a chargedparticlein a magneticbottle is also the same.We
seethat anumberof dynamicalproblems(surelynot all though)canbe reducedapproximatelyto the
mapping(4.58),so the lattermeritsto bestudiedin detailas will bedonein sections5 and6. We shall
call eq. (4.58)the standardmapping.
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The mapping(4.56) is also of importancesinceit describesthe motion neartheseparatrixwhich is
the ultimate origin of stochasticinstability aswe shall see in section6. This is clearalso from eqs.
(4.58) and (4.60) sinceno matterhow small the perturbation,i.e. � and 1/A, thereexistsa domain(a
layer) sufficiently closeto theunperturbedseparatrix(W,.—~0) whereK> 1 and, hence,the motion is
unstable(sections4.2 and 5.1).Graphicallyspeaking,the mapping (4.56)describesaperturbationof
theArnold whiskers(section2.4), so we havesomereasonto call eq. (4.56)the whiskermapping.

ResonantvaluesW~of thewhiskermapping(4.56) aredeterminedby thecondition: A ln(32/IwrI) =

2irn with integern, whence:

I~1~rI= 32 e~2’”’~. (4.61)

This set of resonancescorrespondsapproximately to the resonancesJr = 2irm of the standard
mapping(4.58)asonecanseefrom eqs.(4.59)and (4.61).

It isworthnotingthat thestandardmappingcanbeimmediatelyappliedtodescribeits ownmotionnear
a resonanceseparatrix(with differentvaluesof theparameters,ofcourse).Indeed,thestandardmapping
is equivalentto thecontinuoussystem(4.18)but the latterdiffers from thesystem(4.50)of this section
only by high frequencytermswhichmakeanegligible contributionto theenergychange(seeeq. (4.52)).
Therefore,the standardmapping (4.58) describesnot only the system(4.50) for which it hasbeen
deducedabovebutalsothesystem(4.18)with —w~= k; Cl = I; A = 1/Vk = 2ir/VK; � = 2,and,hence,the
standardmapping itself (4.11).It hardly needsto be mentionedthat thephysicalmeaningsof the two
standardmappingsin this chain ((4.11) and (4.58)) (and still more their parameters)are completely
different. The original standard mapping (4.11) describesmain resonancesbetween the original
oscillations and an external perturbationwhereasthe secondstandardmapping (4.58) doesso for
resonancesbetweenthesameperturbationandphaseoscillationsata mainresonance.Theseresonances
maybecalledsecond-levelresonancesasdistinctfrom themain,ororiginal,resonancesofthefirst level.
Resonancesbetweenthe perturbationand phaseoscillationsat a second-levelresonanceare then
third-levelresonances(andaredescribedalsoby a standardmapping)andso on. An infinite recursive
hierarchyof different-levelresonancesappearswhich brings abouta very intricate structureof the
motion (seeref. [71]andsection5.5).Nevertheless,and this is alsoa strikingfeatureof themotion,the
resonancebehaviorcan be describedrecursivelyat every level by the samestandardmapping.This
remainsso even if the original systemis a continuousone like that consideredin this section(4.50).

Takingaccountof higher(or, perhaps,betterto say,deeper)level resonances,atleast,thoseof the
secondlevel, is of a greatimportancefor the problemof motion stability. Supposethe Hamiltonian
(4.50) describesa nonlinear resonancein the pendulum approximation (section3.2). Then the
frequencyof small phaseoscillations(of the first level) 00~~VIL, IL beinganothersmall perturbation
parameter(besides e). The parameter(4.60) of the second level mapping (4.58) is then K —

exp(—C/VIL),C being aconstant.It is customaryto say now that effectsof sucha (exponentially)
small orderare unreachablefor any asymptoticperturbationtheory.This term meansthat one is not
concernedabouteitherthe convergenceof the appropriateseriesor about its remainderterm being
satisfiedby theconstructionof a formalseriesin a small perturbationparameter(seethebeginningof
section4). It is true that a functionlike exp(—CIVIL) cannotbe expandedasapowerseriesin IL- But
it would be misleadingto concludethat we havegot the relation (4.60)by meansof somepowerful
non-asymptotictheory.Far from it! All we havedonewastheconsistentconsiderationof any kind of
resonancesencounteredincluding those of deeperlevelsas was explainedabove. We have used
nothingmore thanthe simple averagingmethodwhich is by the way a commonmannerto construct
an asymptoticseries.So the essentialpoint is not the type of a perturbationseries(asymptoticor
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convergent)but ratherthe natureof the perturbationparameterto expandin. Particularly,for the
second-levelresonancesthe small perturbationparameter(4.57) W-~exp(—C/VIL) is a non-analytic
function of IL (at IL = 0) from thebeginning. Similar problemshavebeensolvedearlierby Melnikov
[12] andby Arnold [5] preciselyin this way.

The moralof the abovereasoningis that the consistentresonanceapproachcombinedwith even
the simple averagingmethodpermitsus to resolveproblemswhich arewidely believedto be beyond
such an approach.This approachmay, therefore,be called the resonantperturbation theory as a
particularcaseof asymptoticperturbationtheory.

4.5. Many-dimensionaloscillations

In this sectionwewill give somevery rough estimatesfor theconditionof stochasticinstability in a
many-dimensionaloscillator systemwith the main purposeto comparethe overlapcriterion to the
KAM theory(section4.6). Characteristicsof a singleresonanceof many-dimensionaloscillationsare
given in section3.3. We shall considerfirst, and in moredetail, thecaseof an autonomous,or closed,
system,i.e. that of coupling resonances:m,w = 0. For the reader’sconveniencewe againwrite down
theHamiltonian(3.24)(n = 0):

H(I, 0) = H0(I)+ � ~ Vm eim.ø (4.62)

andrecall that quantities1, 0, m, to are N-dimensionalvectors.We assume,further, for the sakeof
simplicity that H0(I) = 1112/2, then to = I, and the nonlinearity matrix dw/dI becomesunity. The
conditionfor stochasticinstability dependsessentiallyon thebehaviorof the Fourieramplitudesfor
largeIm I. We shallconsidertwo cases.

In the first we set:

Vm~VIC”~ S=~ImkI (4.63)

where V~gives the order of perturbationlower harmonics.This casecorrespondsto a perturbation
V(0) which is analyticalasfunctionof phases(see,e.g., [2]).*We will be interestedbelow in small
valuesof theparametero whentheperturbationpossessesmanyharmonics.

The secondkind of perturbationcalled smooth,or differentiable,correspondsto the estimate:

Vm V,IS’~
2 (4.64)

parameter1 characterizingthe smoothnessof function V(0). For an integer 1 it is thehighestorderof
still continuouspartial derivativeswith respectto thecomponentsof thevector0 (the dependenceon
I is assumedto beanalytic).Onesaysin this casethat the function V(0) belongsto theclassC’. The
relation (4.64) is readily understoodfor a functionof one variable (N = 1). According to (4.64)the
(1+ 2)nd derivativehasFourieramplitudesindependentof harmonicnumberS= m

1, andis, hence,a
kind of 6-function or a sum of such functions. Therefore, the (1+ l)st derivative has a jump
discontinuitybut the lth and all the precedingderivativesarealreadycontinuous.For a functionof
manyvariablestheestimate(4.64)implies that Fourieramplitudesof the (1+ 2)ndderivative

~1tis, of course,ahighly specificcase;a little moregeneralonewouldcorrespondto uS-.u0m0.
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~9I+2

flNV(0); nI+---+nN=I+280, ...

dependonly on ratiosof harmonicnumbersand not on their moduli.
UndertheaboveassumptionsconcerningH

0 thehalf-widthof a singleresonancem, to = 0 is given
by the relation(seeeq. (3.22)):

(~W)r= 2V�Vm. (4.65)

The volumeof a resonance,or,better to say,of a resonancelayer, in to-spaceis of theorder:

(I~W)rIwI~’~’V~v~
2IwV”~1.

Considerfirst a smoothperturbation(4.64). For agiven S therearens — S”1 different resonance
layers of total volumeV~ Vr ns. Thetotal volumeof to-spaceoccupiedby all the resonancelayersis
v -~~ v~,and the filling factor,or the relativevolume:

1/2 ~v —V
1 I

IL~1~V�,~ ~.I!2+2-N~ (4.66)
0) (~) S—I’.’

When IL ~ 1, all of to-spaceis filled up with resonances,and thestochasticinstability ensures;if IL 4 1
instability occurs in a neighbourhoodof resonancelayer intersectionsonly whereasfor most initial
conditionsthe motion is stable.

The sum in eq. (4.66)convergesunderthe condition:

l>1~=2N—2 (4.67)

where I,, is the critical valueof perturbationsmoothness.If I ~ I, resonancesare overlappingfor an
arbitrarily small perturbation�—~0, that is themotion is alwaysunstable.

In the caseof an analyticalperturbation(4.63)we get in asimilar way:
1/2 ~ 1/2 N

IL V~f~—S~ISN_Ie°’
512— V~f~-(~)- (4.68)

The last estimateis valid for N ~ 1 and o 4 1. For analyticalperturbationsthere always existsa
critical perturbationstrength�,~belowwhich the resonancesdo notoverlap.The value �~corresponds
to IL — 1, whence:

~ (~)~“ (4.69)

wherewe haveusedthe relationH
0 = 1112/2= 1012/2assumedabove.

It remainsnow to estimatethe ratio H0/ V1. For this we normalizethe small parameter� in sucha
way that:

H~=(V
2)=>~IVmI (4.70)

whereaveragingover phases0 is understood.For thespectrum(4.63):

(v2)~~V~SN_Ie_2~S_..
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whence:H0! V1 —. (N/a)”
2 and:

-~(o/N)3”~’2. (4.71)

It is thefinal estimatefor thecritical perturbationstrengthas a functionof theanalyticityparametero
and thenumberof degreesof freedomN. Oneshouldbearin mind that theestimateis very rough:not
only anumericalfactor,which may happento be fairly large,hasbeendroppedfrom theestimatebut
alsono accountof anon-uniformity of resonancedistributionover to-spacehasbeentaken.The latter
effect leadsto someincreasein �,~.

Let us considerin conclusionaparticularcaseof time-dependentHamiltoniancorrespondingto a
mapping(section4.2). It implies that all Fourierharmonicsof the “external” frequencyCl areof equal
amplitudes.The only differencefrom the aboveestimatesis that the numberof resonancelayers
m, to + nf = 0 for a given S is now ns SN ratherthan S”’’, so the critical smoothnessbecomes:

= 2N. (4.72)

In particular,for N = 1 (the mapping(4.11) in section4.2, for example) l,~= 2 aswasobtainedin ref.
[35].

4.6. TheKolmogorov—Arnold—Mosertheory(KAM theory)

Rigorous inequalitiesdeterminingthe position of the stability border for a systemwith the type
(4.62) Hamiltonianhavebeenobtainedin theKAM theory.As we mentionedalready,theproblemof
nonlinear oscillation stability has been successfullysolved thanks to two fundamentalideas by
Kolmogorov [1]. We havespokena lot about the first of them in section2.2—a new perturbation
theorywhich ensuresthe superconvergenceof successiveapproximations.The secondideaconcerns
thevery formulationof theproblem.To understandit let us introduceachangeof variables“killing”
theperturbation—�. Choosingageneratingfunctionas(m� 0):

F(Iw, 0) = 0, j(I) + �‘I~meim.o (4.73)

andsubstitutingI = JO) + i�mPrnelm.a into eq. (4.62)we get:

4~m= 1Vrn - (4.74)m,w(I ))

A distinct featureof this relationis the appearanceof “small denominators”(Urn = m, to vanishingon
any resonancesurface. Since the latter are generallyeverywheredensein phasespaceone may
readily imaginethe scaleof difficulties to be encountered.The difficulties arewell known in celestial
mechanics.The first task is not to get juston aresonancesurface.For thestandardformulationof the
stability problem,i.e. for given initial conditions,already j(~ in eq. (4.74) may happento lie on a
resonancesurface.Evenif this is not the caseit may be so afterthe nextcanonicaltransformation,
i.e. m, ~(J(2)) = 0. Since an infinite numberof transformationsare generallyrequiredit is completely
unclear how one could ensuremissing all the resonancesurfaces in all the approximationsof
perturbationtheory to saynothingof apossibility for 1~to comeso closeto a resonancesurfaceto
spoil the convergenceof aperturbationseries.To copewith this difficulty Kolmogorov haschanged
the formulation of the problem: insteadof studying the behaviorof a trajectory with fixed initial
conditionshe is studying trajectorieswith a fixed set of frequencies:to = = const in all ap-
proximations.Owing to a changein frequenciesfrom one approximationto another,due to the
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averagepart of perturbation(V~= (Vt”~(0°’~)))the initial conditionshave to be correctedin every
approximation to compensatethis change.For the sequenceof correctionsto be convergentthe
nonlinearityof the systemmust be not too small — a condition similar to one of the inequalitiesfor
moderatenonlinearity (3.14): a ~ �. One may say,alternatively,that in Kolmogorov’s approachthe
behaviorof aphasespacetoruswith fixed frequenciesis understudy.A stabletorusgetsonly slightly
distortedunderperturbation,an unstableonegetsdestroyedandconvertedinto somethingextremely
intricateand incomprehensible(seesection6).

The secondtaskis to estimatesmall denominatorsfrom below to ensuretheconvergenceof the
perturbationseries.This problemis quite similar to that of evaluatingthe condition for resonance
overlap (section 4.5). Indeed, we may exclude some “dangerous” neighbourhoodof resonance
surfaces(the resonancelayers)andthus boundsmall denominatorsfrom below.Sincethe frequencies
are fixed the small denominatorsremain bounded in all approximations.A difference from the
problemof resonanceoverlapis that the resonancewidth is determinedby thedynamicsof a system,
whereasthe width of the “dangerous”layerthat we excludefrom initial conditionsmay be chosen
arbitrarily and,hence,in an optimal way. The layerwidth hasto decreasewith resonanceharmonic
numbersto ensurethat the total volume of excludedfrequencydomainsremainsfinite (and small).
The estimate(4.66)shows that a power decreaselaw may be chosen.Since the estimatesusedfor
small denominatorsarenot alwaysoptimalwe will considerthequestionin moredetail.

Let to be within a resonancelayerexcludedso that

Itorni = Im, wi ~ 6/S” m~(~W)d (4.75)
where (i~W)d is the half-width of the layerand 6 is someconstant.We find first the relation between
mi and S:

S2 = mi2 + ~ m4 imji = 1mI2(1 + ~ lm,i Im,i/1m12). (4.76)

i~J i�i

The expressionin bracketsis maximalfor mu = 1m
21 . . . = Im~l= S/N, whence:

Imi~S~imI\/N. (4.77)

Eq. (4.75)gives then:

(~W)d ~ V~o/S~. (4.78)

Substituting(~0)d for (‘~w)~in theestimatesof the precedingsectionwe find the relativevolume of
theexcludedfrequencydomains:

IL ~ 1jVN ~, Sk+2~~~~ (4.79)

Convergenceof thesum determinestheminimal powerindex kmin in thedecreaselaw (4.75):

k>kminNl. (4.80)

Estimatesof small denominatorswereconsideredin many papers.For N = 2 it is the problemof
accuracyin approximationof a realnumberby rationaloneswith a given denominator(see,e.g.,ref.
[421).A generalestimatewith power index (4.80)hasbeengiven by Moser [60].RecentlyRüssmann
hasreconsideredtheproblemin detail [117].

For ananalyticalperturbationtheconvergenceof theperturbationseriesis almost“obvious” since
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small denominators(4.75)are decreasingmuch slower than Fourier amplitudes(4.63). However,a
detaileddescriptionof theproof for this “obvious” factcomprisesmorethanahalf of a bulky book
[611.A brief and lucid presentationof the proof is outlined, though,in anexcellentreview articleby
theauthorof theproof Arnold [2].

The techniquefor constructingconvergentperturbationserieshasbeenimprovedconsiderablyby
Moserwho managedto extendit onto a smoothperturbation.In the first paper[3] a mappingsimilar
to thoseof section4.2 was considered,anda critical valueof theperturbationsmoothness‘C = 333 (!)

hasbeenobtained.But evenfor this, rathermodestnowadays,achievementa special techniquefor
the approximationof a smoothperturbationby analytic functionswasrequired.It is interestingto
remark that the idea of suchan approachmaking use of finite trigonometricpolynomialsfor the
approximationhad beenmentionedas earlyasin 1955 by BogolyubovandMitropoisky (see[4],§13)
eventhoughlater on Mitropolsky andSamoilenkoutilized a different technique(smoothingoperator)
[63].

Thebestestimatefor the mappinghasbeenachievedso far by Rüssmann[64]:l~=6. In the book
[3] it is asserted(without proof) that the latter estimate can be lowered down to l~=4 and is
conjecturedthat in fact I~= 3. On theotherhand,for I = 2 themotion is unstableashasbeenshownin
ref. [651*.Thus rigorousestimatesobtained turn out to be fairly efficient, at least,in regard to a
sufficient smoothness of perturbation. The overlapcriteriongives for themapping: ‘C = 2 [35](seealso
section 4.5).

Quite unexpectedlynumericalexperimentshaverevealedthat themotion describedby amapping
proved to be muchmore stable,at least,in regardto the grossinstability, ascomparedto all above
estimatesincluding the lower onedue to resonanceoverlap.In thework [35],for example,amapping
of the type (4.11)with a smoothnessparameter1 = 1 and K = 1.145 was studied. Nevertheless,an
instability observed was remaining perfectly confined within a relatively small interval i~uJ—~1 as long
as 3 x 10~iterations (during all the computation time). This curious phenomenonhas beenap-
parently encounteredfirst in numerical experiments by Hine [84] but still has not received a
satisfactoryexplanation.There is only a suspicionthat it may be due to a very slow diffusion if
sufficiently high harmonicresonancesareinvolved.

Comingback to a continuoussystemwith the Hamiltonian (4.62)we observe,first of all, that to
ensuretheconvergenceof perturbationseriesit is not enoughfor FourieramplitudesVrn to decrease
fasterthansmall denominatorsin eq. (4.74).It would leadto thevalue IC = N — 3 in plain contradiction
to the lower estimatedue to resonanceoverlap(4.67).Evenfor theseries

II—I~I=�~mctme1”t~8H�~S+_k

of the first canonicaltransformationof variablesto be convergentwe have to requireI > 2N—2
(k > N — 1, seeeq. (4.80)). In subsequentapproximationsthe numberof continuousderivativeswill
progressively decreasedue to small denominators,and after a finite numberof successiveap-
proximationsthe seriesareno longerconvergent.“Smoothing” asmoothperturbationto an analytic
one allows us to copewith this difficulty, andMoser finds [60,66] (seealso ref. [3]):

I~=2N+2. (4.81)

usdrawattentionthatall valuesfor! mentionedaregreaterbyoneascomparedtothosein thebook[3)becausein this papertheparameter!is
acharacteristicof theHasniltonian(or generatingfunction)whereasin ref. [3] 1 is thatof mappingitself, thatis to say,of the “force”.
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Comparison with the overlap criterion (IC = 2N —2) showsthat thesufficient estimate(4.81)by Moser
is fairly efficient.

The more powerful techniquefor constructingconvergentseriesin the case of a smooth pertur-
bationmay be appliedbackto theanalyticalcase.To do so we observethat an anyticalperturbation
of thekind (4.63)canbe limited from aboveby asmoothone:

V1 e~S= -~ ~1+2 e”~~ ~i~(L-±-~). (4.82)

But accordingto Moser’s theorem[60,66] the lastperturbationdoesnot destroythe stability of the
motion if I > 2N+2 and �V1[(I + 2)/eo-]’~

2< e
0H0 where �~ is some(unknown)constantindependent

of a-. Hencethe stabilityof themotion for theoriginal system(4.62)with analyticalperturbation(4.63)
is assuredwhen

~ (eV,)~-~(o1N)’~
2e

0H~,; I > 2N + 2. (4.83)

Applying thenormalization(4.70)we get:

-~�0(olN)”; p > ~N + 4 (4.84)

which is rather close to the estimate(4.71) from the resonanceoverlap. We emphasizethat the
sufficient estimate(4.84) is related to the root-mean-squareperturbationowing to the specific
normalizationof � (4.70). Thatnormalizationis ratherconvenientsinceit doesnot dependon phase
relationsbetweenperturbationFourierharmonics.

Let us considernow in moredetailwhat doestheborderof stability (4.84)really mean.Literally it
impliesthat some(non-resonant,or “good”) invarianttori of theunperturbedsystemareonly slightly
distortedremainingtopologically tori and invariant. A “good” torus is related to thosefrequency
vectors to for which small denominators(4.75) arenot too small. The volume of thecomplementary
areaoccupiedby “bad” (resonant)tori whoseconservationcannotbe ensuredby the theoryis small
undersufficiently small perturbation(4.79). However,“bad” tori fill up the everywheredensesetof
resonancelayers.The problem of the behaviorfor sucha systembecomes,therefore,improper,or
ill-set, sinceit is actually impossibleto localize initial conditionswithin a “good” domain. Neverthe-
less,it turnsout that for a systemwith only two degreesof freedomthestability of themotion canbe
assuredundera sufficiently small perturbation.This is relatedto thespecial topological structureof
thephasespacefor sucha system.Namely,one saysthat 2-dimensionaltori divide a 3-dimensional
energysurface.It impliesthat any transitionfrom one torusto anotheris possibleonly throughall the
intermediatetori. In other words, the set of tori on an energy surface can be ordered as a
one-dimensionalset. It is clearly relatedto the factthat dimensionalityof theenergysurfaceexceeds
thatof a torusexactlyby one.It’s saidalso that tori areput insideone anotheron an energysurface.
This specific structurereminds,asan AmericanphysicistJ. Fordhasmentionedonce,theRussiandoll
“Matreshka”. Onemay alsographicallyimagine this structureon the frequencyplaneof the system.
Projectionof anenergysurfaceonto this planeis a line everypoint of whichcorrespondsto acertain
differentratio of thefrequencies.It is clear,therefore,thata systemconfinedwithin aresonancelayer
can move along the energy line only by a distanceof the order of the resonancelayer width. An
exception is a system whoseenergy lines go just along the resonancelines. They are so-called

non-steep,or quasi-isochronous,systems(seesection3.3).
From the aboveconsiderationit must be quite clear that no matterwhat may happenwith a two

degrees-of-freedomsysteminside a resonancelayerit cannotpenetratethe nearestinvarianttori and
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is, thus, confinedbetweensufficiently (althoughnot everywhere)denseinvariant tori. The maximal
distancebetweenadjacentinvarianttori is of the order of resonancelayerwidth, i.e. —V�-+0 for
� .-+ 0. From thephysicalpoint of view this is just stability of motion. Onemay say,alternatively,that
an instability, if any, is perfectlyconfinedto an arbitrarily small domainfor � -90.

The conservationof tori implies also conservationof the full set (N) of unperturbedintegralsof
motion, which arecloseto thoseof theunperturbedsystem.However,the integralsof motion are,or
may be,destroyedinsidethe everywheredensesetof resonancelayers. Hencetheir dependenceon
dynamical variables is everywherediscontinuous.This clarifies the meaning of the old Poincaré
theorem[6]that a genericHamiltoniansystemhasno analyticalintegralsof motion excepttheenergy
(seefootnoteon page285).

Similar considerationscan be applied also to a systemhaving one degreeof freedombut acted
upon by a periodicperturbation,that is to say,having1.5 degreesof freedom(seesection3.2).Again,
2-dimensionaltori divide 3-dimensionalphasespace(thereis no energyconservationnow!), or, more
graphically,resonantvaluesof theonly variablefrequencyto are separatedby non-resonantones.

For the number of degreesof freedomN > 2 the n-dimensionalinvariant tori do not divide
(2N — 1)-dimensionalenergy surfaceany longer sincethe dimensionality difference(2N — 1) — N =

N — 1 > 1. Another manifestationof the same property is an amalgamationof isolated resonance
layers into a united network over an energy surface. Indeed, in the N-dimensional to-spacean
intersectionof the (N — 1)-dimensionalresonancesurface and an energy surface (also (N — 1)-
dimensional)is of dimensionalityN —2 >0 for N >2. Hencethoseintersectionsdo also generally
intersecteachotherforming aneverywheredenseresonancenetwork,or a “web”, entanglingall the
energysurface.Invariant tori occupymostof thespaceoff the “web”. However,for initial conditions
inside the “web” a systemcan move over all the energy surfaceremainingall the time inside one
resonancelayer or another. Such a general conjecturehas been put forward by Arnold [67]
subsequentto his constructionof the first exampleof a systemmoving along a resonancelayer[5].
We shall considerthis problem in detail in section7. Let us just mention now that this peculiar
instability, called the Arnold diffusion, is really a universalone since it occursfor any, arbitrarily
small, perturbation.This is a distinction betweenArnold diffusion and stochasticinstability which
requirestheoverlapof resonances,i.e. a sufficiently strongperturbation.

5. Stochasticoscillationsof the pendulum

In this sectionwe shall considerin detail the motion of a dynamicalsystemrepresentedby the

mapping:

I=I+Ksin0; 0=0+1 (5.1)

whichwecall thestandardmappingfor brevity. In theprecedingsectionwe haveseenthat this mapping
describesapproximatelysomerealphysicalsystems,forexample,achargedparticlein amagneticbottle
(section4.3). Of a greater importanceis that the standardmapping describesthe motion nearthe
separatrixof a fairly generalnonlinear resonance(section4.4). So I believe the standardmapping
deservesthoroughstudyeventhoughthis mappingis butavery particularcasein thegeneraltheoryof
nonlinearmappings.In connectionwith variousapplicationsthestandardmappinghasbeenstudiedin
manyworks (see,e.g., [45—47]).Nevertheless,our knowledgeof its propertiesis still far from being
complete.Even sucha fundamentalcharacteristicas the stability border (the critical value of the
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perturbationparameterK = K
1) is known only approximatelyfrom numericalexperiments.Analytical

estimatesfor K1 are still fairly rough.Thesequestionsareconsideredin section5.1.
Theproblemof thenatureofthemotionandof therelatedstructureofthephaseplaneturnsoutto be

still more complicated.It is especiallytruenearthe stability border(K — K1) where the phaseplane
structureis extremelyintricate(section5.5).However,far insidetheunstableregion(K ~‘ K1) asimple
statisticaldescriptionprovesto be applicable(section5.4). It is found, in this connection,that the
instability occuringfor K > K1 resultsin anirregular (“random”) motion of thesystemwhich hasbeen
calledthestochasticmotion.The basicpropertyof suchamotion is a stronglocal instability implyingan
exponentialdivergenceof adjacenttrajectories(section5.2). Statisticalpropertiesof the motion are
subsequentjust upon that instability (section5.3).

A plain interpretationof the mapping (5.1) is the motion of a pendulum acted upon by the
successiveshort “kicks” (seesection4.2). Under some conditions theseregular (periodic) “kicks”
giverise to “random”(irregular)oscillationsof thependulum.This graphicpicturedeterminedthe title
of the presentsection. Let us remark that stochasticoscillations have proved to be a new and
somewhatsurprisingkind of pendulummotion, the studyof which is now justbeginning.

5.1. Theborderof stability

In this sectionwe shall considertheso-calledgrossinstability of motion (seesection4.2) implying
arbitrarily large excursionsin the unperturbedmotion integral I of system(5.1). We have learned
alreadyin theprecedingsection4 that themechanismof the instability is relatedto the transitionsof
thesystemfrom oneresonanceto another.The structureof thephaseplaneof thestandardmapping
is periodicnot only in 0 butalso in I (both areof period2ir, seeeq. (5.1)). The phaseplaneis, thus,
topologically equivalentto a torusand may be displayedas a squarewith oppositesides identified.
Henceit suffices to considerthemotion overthis squareand,particularly,over amomentumperiod
M = 2ir, that is over an interval betweentwo adjacentinteger resonances:‘r = 2~rn.Therefore,an
equivalentmapping

P={P+~—sin(2lTX)1; ~=X+qP (5.2)

may be usedto studythe standardmapping(5.1) wherecurly bracketsdenotethe fractionalpart. The
new mapping (5.2) is deducedfrom the standardone (5.1) via a change of variables: 0 = 2irX;
I = 2irqP andvia the “closure” of P overthe interval(0, 1), i.e. by identificationof thevaluesof P and
P + m for any integer m, the numberq being an integeras well. So the phasespaceof the mapping
(5.2) is aunit torus,or aunit square(see,e.g., fig. 5.1), andwe shall call it the reducedmapping.Since
integerresonancesof the standardmapping(Jr= 2iTn) areidenticalwith the resonancesP, = n/q for
the reducedmapping thereare exactly q integer resonanceswithin the unit squareof system(5.2)
(Pr = 0 and 1 correspondto the sameresonance)*.

For a numericaldeterminationof the stability borderthe value of q = 2 is most appropriate(two
integerresonances:P. = 0(l)~1/2). The critical perturbationstrengthK1 was determinedas follows.
For different valuesof K and various initial conditions (F0, X0) the motion time N (the numberof
iterationsof the reducedmapping)during which the systemhascomefrom the initial intervalabout
P = P0 0 (— 10~)into an interval aboutP ~ (IF — ~I<0.125) was computed.The quantity N can

usemphasizeagainthat we aretalking aboutintegerresonancesof thestandardmappingusingthereducedmappingto study theformer.
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—i-f
Fig. 5.1. Phasemap of system (5.2): K =0.96; q = 2; Po= Fig. 5.2. Thesameasin fig. 5.1 exceptK = 1.13; t= 10g.
0.219x I0~X0 = 0.502x 10~t = 106; resolution: 128 x 128 bins.

alsobe called the transition time betweenadjacentintegerresonances.If during the full motiontime t
(the total numberof iterationscomputed)thesystemhasnotgot into a specifiedintervalaroundP =

the motion is consideredto be stable(over the time interval t). It is worth noting that the useof
mappingsrather than differential equationsin numericalexperimentspermits us to study a fairly
long-term motion, the computationalerrors reducingactually to round-off errors only. A typical
motion time for the reducedmappingwas about 106 iterations,the maximal onehaving reachedio~.

In fig. 5.1 an exampleof thephasemapfor stablemotion over thetime interval t = 10~(K = 0.%) is
shown. A trajectory with initial conditions P0= 0.219 x io~X0 = 0.502x i0~fills up the hatched
domainsof thephasesquare.Both domainscorrespondto thesameresonancePr = 0. A singlebin of
the picture is of dimensions1/128x 1/128. For aestheticreasonsthe adjacentbins crossedby a
trajectory are drawnas a solid line. As is seen from fig. 5.1 the trajectory hasfailed during 106
iterationsto get into domainof theneighbouringintegerresonance.Hencethemotion is boundedand
stablein the above-mentionedsense,thereis no gross instability. This implies, in particular,that
resonancesdo not overlapthe whole interval Al = 2ir, or AP = ~. On the otherhand,the fact that a
trajectoryin fig. 5.1 doesnot look like a curvebut fills up acertainfinite areaindicatessomelocalized,
or confined, instability of motion. We shall considerin detail that confinedinstability in section6.
Now let us just note that the unstableareaforms somethinglike a layer along the separatrixof
resonanceP = 0.

In fig. 5.2 an exampleof thephasemapfor unstablemotion is shown.Now resonancesdo overlap
thewhole intervalof P. It implies, in particular,that a trajectoryof the standardmappingcancross
one resonanceafter another,and the variation cif I becomesindefinitely large, that is, a gross
instability setsin. As is seenfrom fig. 5.2 the instability takesplace,hbwever,only for somespecial
initial conditionsinsidethehatcheddomain.At thesametime therearealsomanydomainsof stability
which theunstabletrajectoryfails to enter.The two biggestdomainscorrespondto thecentralpartof
integer resonances:P. = ~ 0 (the latter is split in two halves in fig. 5.2). Besides,thereare many
smallerstability domainsto which we shall returnin section5.5. Thus far we canconcludethateven
under the resonanceoverlapthe unstabledomain comprisesonly a part of thewhole phasespace
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including, in the first place,vicinities of resonanceseparatrices.This is preciselythe reasonto choose
the initial conditionsfor computationnearthe separatrixof a resonance(P0,X04 1).

Numericaldataconcerningthedependenceof the transitiontime versusperturbationparameterK
arepresentedin fig. 5.3. A distinctive featureof this dependenceis asharpincreaseof N at someK.
We haveinterpolatedthedatausing the function(seebelow for explanation):

N = A/(K — KE)
8 (5.3)

where A, B andKE are constantsto be determinedvia interpolation.The leastsquarefit of thedata
provides:

A= 103; B =2.55; KI=KE=0.989=1. (5.4)
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Fig. 5.3. Transitiontime N versusperturbationparameterK for reducedmapping (5.2): • — a single trajectory;+ — the averageover 100
trajectories;0— from thediffusion rate(5.7). Solid curvegivesleastsquarefit of thedataaccordingto therelationwritten in thefigure.
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Eq. (5.3) showsthat the quantityKE canbe consideredasan empiricalvaluefor the stability border
K1.

Anotherpeculiar featureof dependenceN(K) is extremelybig fluctuations.Around K 1.8 the
fluctuationsare as largeas about two ordersof magnitude!We could add only that for someinitial
conditions (with K > K1) the motion proves to be even just stable, that is N > t. The latter
phenomenonis related, apparently, to entering very small stability domains. This question was
investigatedmorethoroughlyfor a similar mappingin thework [26].To suppressthe fluctuationswe
haveusedaveragingN over 100 trajectorieswith slightly different initial conditions (P0, X04 1, see
fig. 5.3).

For large K ~- K1 the describedmethodof measuringN doesno longermakeany sensesincethe
resonancesget completely destroyed,and the variation of P becomes“random”, or stochastic
(sections5.2and 5.4). In otherwords, thereare no moreresonancesto transit between.On the other
hand, this very stochasticityof motion suggestsanothermethod to apply in this region. Namely,as
will be shownin section5.4 the stochasticmotion canbe describedby a simple diffusion-like law:

((Al)
2) = ~t K~ (5.5)

where Al is the changein momentumduring time t, and the averaging is over an ensembleof

trajectorieswith different initial conditions.But nearthestability border(K ~ K
1) onecanwrite:

((Al)
2) = ~ t (5.6)

assuminga “random” transition betweenadjacentresonanceswith equalprobability in both senses
(t ~‘ N). Hencetheaveragetransitiontime N may becalculatedalso from the relation:

N = 41T2t/((AI)2). (5.7)

This methodfits any K, yet it canbe usedactuallyonly for sufficiently largeK (small N, seefig. 5.3)
sinceasubstantiallylongercomputationtime is requiredin this caseas comparedto the first method
(t ~ N). Values of N obtained by the secondmethod are marked in fig. 5.3 by a square E. An
averagingover 100 trajectorieshasbeenmadefor eachpoint (F

0,X0 4 1, t = 10~).One can seethat
both methodsfit eachotherquite well (regionK — 2.5).

Comparingeqs.(5.5) and(5.6) we get for K ~‘ K~:

N = 8i~
2/K2. (5.8)

On the other hand, the datain fig. 5.3 do reveala critical value of K = K~, suchthat N -+ ~ for
K -sK

1.Therefore,just theexpression(5.3) hasbeenchosento interpolatetheexperimentaldata.
The existenceof eternal(for any t -+ x) stability borderis a corollary of the rigorousKAM theory

(section4.6).The questionarises,however,to what accuracythisbordercanbedeterminedfrom the
datain fig. 5.3 for a finite motion time t ~ 10~?Big fluctuationsof N makeit difficult to get reliable
estimatefor theerrors.Onecanhope,however,that they mustnot be too largedue to a steepchange
of N nearK = K1. Measurementsof the critical strengthof perturbationby anothermethod (see
section6.2) suggestan errorin K1 of theorder of a fewper cent.

Let us comparenow the experimentaldataobtained with an estimateby the overlapcriterion
(4.20): KT = ~,.2/4 2.5. The latter overestimatesmaterially the critical value as comparedto the
experimentalone (5.4). Examinationof fig. 5.2 reveals,at least,threereasonsfor that discrepancy:
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1. The overlap is provided not only by integer resonances,as was assumedin evaluatingthe
estimate(4.20), but also by higher harmonic resonances.In fig. 5.2 two half-integer resonances
(harmonic number m = 2) are clearly seen via their stability domains. Inside each half-integer
resonancethereare two stability domainsalong the X-axis, one of which being split in the figure in
two partsby the line X = 0 = 1. Four resonanceswith m = 3 (3 stability domainseach)arealso seen,
and two m = 4 resonancesseemto exist on both sidesof the integerresonancePr = 0(1). It is clear
thathigherharmonicresonancesfacilitatetheoverlap.

2. Resonanceseparatricesare distorted (“twisted”) due to a resonanceinteraction that has not
beentakeninto account.

3. Separatricesare actually layers (see also fig. 5.1) ratherthan curves (the stochastic layers,
section6) that also facilitatesthe resonanceoverlap.

Below we shall attempt to improve the simple estimate(4.20) taking accountof some higher
harmonicresonances.We shall not considerseparatrix“torsion” which is of a less influenceon the
resonanceoverlapasis obviousfrom fig. 5.2. Accountof a finite width of separatrixstochasticlayers
will be takenin section6.4.

To study the influenceof higherharmonicresonanceswe transferfrom thestandardmappingto an
equivalentcontinuoussystemwith Hamiltonian(seesection4.2):

H(J, 0, t) = ç+ k ~ cos(0— nt); J = i—; k ~ (5.9)

Assumingk to be small we takeH0 = J
2/2 as the unperturbedHamiltonianand introduceacanonical

transformation1, 0-sJ
1, 0~suchasto “kill” the perturbation~—k(seesections2.2 and 4.6). We are

looking for ageneratingfunctionof theusual form:

F(J1, 0) = 0.11 + k 1(J1, 0, t)

whence

.1 = Ji + k$e; Ol = 0 + k Ii,; H1 = H + kct~. (5.10)

Substitutingtheserelationsinto eq. (5.9)we arriveattheconditionfor “killing” theperturbation—k in

H1 in the form of a partial differential equationfor the function 1(J1,0, t):

.11 ‘I~+~ + V(0,t) = 0; V= ~~,,cos(0_ nt). (5.11)

A solutionof this equationmay be lookedfor in the,form

4(J~,0, t) = ~ a~(J~)sin(0 — nt)

suggestedby the type of perturbationV. Substitutingc1 into eq. (5.11)we get: a~= l/(n — J,), whence:

— ~, sin(0 — nt) — ~ cos(0— nt) — sin(0 — nt)
_1 ‘ ~t~jt ~ . (5.12),, n ~1 ~ n .~ ,~ ~ .~,

The newHamiltonian is:

H1 = ~J~+ k
2 V

1(J1, 01, t) (5.13)
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wherethenew perturbation

V 4~ 1 ~ cos(0—mt)cos(0—nt) 5 41T~Li (m—J1)(n—J1) ( .1)

and0(J~,01, t) is determinedby the secondrelationof eq. (5.10).

The perturbation(5.14)hastermsresultingin half-integerresonances:Ji = ~

1ir = (2p + 1)/2 with any
integerp. Correspondingresonancephasesare 20~— (m+ n)t, m + n = 2p + 1 where we have set
approximately0 01 sincethe difference 0— o~I— k is small (seeeq. (5.10)and below). Note that the
new Hamiltonian is inapplicablenearintegerresonances(11, = 2p) owing to small denominatorsin eq.
(5.14). Characteristicsof a half-integerresonanceJ1,~= p + aredeterminedby the sum:

= — I —J = — 1 ! 2 = _.2 (5.15)
m+n=2p+1 (m ir) (n ir) ,, (n p 2)

Since this sum is independentof p all half-integerresonancesare alike excepta shift in J. This is
obvious also just from theperiodicityof thephasespacestructurein I discussedat thebeginningof
this section: thereis only one half-integerresonanceper unit squareof the reducedmapping (5.2).
SubstitutingJ

1 = Jir = ~into eq. (5.14)and neglectingnon-resonanttermswe deducefrom eq. (5.13)
theHamiltonianfor ahalf-integerresonanceas

H~
2~~ — (~rrk)2cos(20— t). (5.16)

Applying the techniqueof section3.2 we find theseparatrixto be describedby:
j(2) = ~÷ ~wkcos(0— ~). (5.17)

Substitutingnow 0(0k) accordingto eq. (5.10) into the perturbation(5.14)we may representH
1 asa

seriesin thesmall parameterk However,it makessenseto retainonly terms — k
3 in addition since

following a new canonicaltransformationaccording to Kolmogorov the perturbationwill be —k4
(section2.2).To getterms—k3 it sufficesto set in eq. (5.10)

0 01 — kcIj,(0~)= 01 — k~ sin(O—np.

After substitutionof this expressioninto eq. (5.14)we get terms—k3as

k2vt3~— k3 ~ sin(20
1 — (m+ n)t) sin(01— it) 518

— 2 ,~( (m — J1) (n — J1) (I — 11) ( . )

Sometermshere result in third harmonicresonanceswith phases30— (m + n + l)t; m + n + I = p and
.11 = -

tir = p/3 (p� 3q for any integerq to avoidintegerresonances).All the resonancesarealike again
excepta shift in J~.Indeed,the denominatorin eq. (5.18) may be written as: (3m — p) (3n— p)X

(3m+ 3n — 2p)2. It suffices to consideronly p = 1; 2 within the interval of periodicity Al
1 = 1 (see

below). But quantities(3m — 1) and (3m —2) are exchangedunder m -s 1 — m, the sum (5.18)being
unchanged.The sameis true also for n. Thus,eachof third harmonicresonancesis determinedby the
sum:

S3 = m2~+i=i(3m —1)(3n— 1) (31— 1)2 = ~ (3m —1) (3n —1)(3m+ 2n — 2)2 —86.4. (5.19)

The Hamiltoniandescribingathird harmonicresonancehasthe form:



B.V. Chirikov, A universalinstability of many-dimensionaloscillator systems 317

H~1
3~~ — ~S

3k
3cos(30— t) (5.20)

and the resonanceseparatrixis

~ 521

(Al)
3 = 1S31”

2k312 9.30k312. ( . )

Resonancesof the first threeharmonicsareoutlined in fig. 5.4at t = 0. Onecanseethatthemaxima
of all the resonancescoincide in 0 (cf. fig. 5.2). Therefore,the overlapconditioncorrespondsto the
maximal width of resonanceseparatrices:

(AJ)
1 = 2V’k; (Al)2 = irk; (Al)~= lS3l~’

2k312. (5.22)

Now we can improve the theoreticalestimatefor critical perturbation.First, we takeaccountof
half-integerresonancesonly. Then the perturbationis critical if a half-integerresonanceseparatrix
just touchesseparatricesof two adjacentinteger resonances,overlappingthe gap betweenthem:
(AJ)

1 + (Al)2 = ~, whence:

v/i +ir/
2— 1 0.192; K

12= 1.46 (5.23)

wherethe subscriptindicatesthe resonancepair determiningcritical perturbation.The value(5.23) is
considerablylower than the old one due to integerresonances:K1, 2.5, yet the former still much
exceedstheexperimentalK1 1.

Taking accountof third harmonic resonanceswe need to considerthe two pairs of adjacent
resonances:(0,~)and (~,~). In the first casetouchingcondition is: (Al)1 + (Al)3 = ~, whence:

Vk~=0.151; K13=0.90. (5.24)

For thesecondpair: (Al)3 + (AJ)2 = ~whichgives

V~=0.185; K23= 1.35. (5.25)

Thelattervalueof K is decisive,but it improvesonly slightly theestimate(5.23).*
Furtherprogressin theoreticalestimatesmay follow two lines:
1. Takingaccountof still higherharmonicresonances:m >3. I wonderif oneof thereaderswould

like to try this.

Fig. 5.4. Diagramof separatricesfor resonances:Jr = 0; 1/3; 1/2; 2/3; 1.

Aswasshownby Cary [140Jtheestimate(5.25)canbeimprovedby takingaccountof thefrequencyshift dueto (V,(8))�0 (seeeq. (5.14));

hearrivesat V~=o.i80;K~=1.28.
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2. Takingaccountof a finite width of the stochasticlayer.It will be consideredin section6.4.
To thebestof my knowledgetheonly work wherethestability borderfor thestandardmappinghas

beendeterminednumericallywasthat by Liebermanand Lichtenberg[46].Theyhaveobtainedalsoa
theoreticalestimateby adifferent methodas comparedto thepresentpaper.Here aretheir results:

KE=0.80; KT=2. (5~26)

The theoreticalestimateis somewhatbetter than ours (4.20) due to integer resonances.The experi-
mentalvalue is also closeto that in eq. (5.4). In any event,thevalue KE = 1 doesnot contradictthe
datain ref. [46](seefig. 10 there).

A critical perturbationfor the standardmapping can be extractedalso from the numericaldata
obtainedby Channell[100].In thiswork motion stability for a systemgivenby themapping

!=I+�sino; O=0+Tw(I)

to(I) = a + f3mIm_l (5.27)

wasstudied.Linearizingin I we arriveat thestandardmappingwith theparameter

K = �Tw’(I)= �f3m(m— 1)Im_2; (K1) = 0.97. (5.28)

The lastvaluegives theaveragedcritical perturbationstrengthrecalculatedfrom thenumericaldatain
ref. [100].In numericalexperimentsof ref. 1100] thecritical valueof I = I~wasdetermined,suchthat
for I> I,, themotion becamestochasticjudging by thephasespacepicturesdisplayed.

As we know themappingdescribesaninfinite setof resonances(5.9). Let us considertheopposite
limiting caseof the two resonanceinteraction(cf. section4.1). A model of the lattersystemmay be
describedby a Hamiltonianof the type (5.9) if we keeponly two termsin theperturbation:

H(J, 0, t) = ~J
2 + k[cos 0 + cos(0— t)]. (5.29)

The first approximationresonances(integer) remain unchangedundersuch a “truncation” of the
perturbation.Considerationof higherharmonicresonancesin thenextapproximationis similar to that
for the standardmappingashasbeendone above.It turnsout that the sumsS

2 and S3, havingnow
just a few terms,changeonly slightly owing to rapiddecreasingof the terms.So now we get: S2= —8
insteadof _ir2, and S3= —60.8 insteadof —86.4. Hencethecritical perturbationstrengthfor the two
resonanceinteractionprovesto be only a bit largerthanin the caseof an infinite setof resonances.
From experimentaldataon theoverlapof the two resonancesgivenin section4.1 onecandeducethat
KT/KE 2.26 whereKT = ir

2/4 is relatedto theoverlapof integerresonancesonly. Hencefor the two
resonancesthe K

1 = KE 1.09 ascomparedto K1 1 for the mapping.

5.2. The Krylov—Kolmogorov-.Sinaientropy(KS-entropy)

Let us considernow thenatureof the instability, arisingin system(5.1) describedby thestandard
mappingfor K > K1. In this sectionwe considertheso-calledlocal instability, a basicpropertyof the
unstablemotion. The local instability characterizesthe behaviorof closetrajectories,strictly speak-
ing, infinitely close.Let thevector I with components~, i~ describethe mutualpositionof two close
points in thephaseplaneof standardmapping:

~=O’—0; i~=I’—I. (5.30)
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The variationof thevectorI is describedby the linearizedmappingwhich is deducedfrom eq. (5.1)by
differentiationwith respectto I and0:

ñn+~Kcos0; ~ (5.31)

wheretime-dependenceof 0(t) is determinedby the original mapping(5.1). Linearizedmapping(5.31)
is called the tangentmapping. Vector I is alsocalled the tangent*.Although the tangentmapping is
linear its coefficientdependson time (via 0(t)). Therefore,its analyticaltreatmentis almostasdifficult
asthat of theoriginal nonlinearstandardmapping(5.1). To get someideasaboutthenatureof motion
in the system(5.31) let us considerfirst anothercanonicalmapping:

~=p+kx; i={x+~}. (5.32)

Owing to the fractional part taken({. . . }) thedependenceof the perturbationon x is not linear, of
course, but has a jump discontinuity at x = 0 (a “saw-toothed” perturbation).Nevertheless,the
tangentmappingin this caseis plainly linear:

ñ=n+k~ ~ (5.33)

Therefore,this mapping is much simpler to study since its completesolution is well known in an
explicit form that is not thecasefor themapping(5.32).The eigenvalues(At) and theeigenvectors(e±)
of mapping(5.33)areobtainedby a routineprocedureandmay be written as:

= 1 + ~k±\./k(1 + ~k); ,~+/~±= k/(A±— 1) (5.34)

where ~±, q±are the componentsof eigenvectors.Let u, v be projections of the vector I onto
eigenvectors(I = ue+ + ve_).Then,thesolutionto eq. (5.33) is well knownto havethe form

u = u0A~ v = v0A~ (5.35)

where u0, v0 correspondto the initial vector 1~,and t is adiscretetime (numberof iterations).For

(5.36)

theeigenvaluesarecomplexnumbers,and IA±I= 1 (5.34). Thatmeans,asis alsowell known,that the
oscillationsof 1 are bounded.One speaksin this event about the local stability of motion for the
original (nonlinear) system(5.32) sincethe variation of the distancebetweenclosetrajectoriesis
bounded.

We are more interested,however,in the oppositecaseof parameterk to be outside the stable
interval (5.36). Let IA+I> 1 and IA_I < 1 in the latter case (A+A_ = 1). The motion (5.35) is then
doubly-asymptoticaccordingto Poincaré[6]: luI—~oc,v-sO(t—*+oo); u-sO, vI—~(t-s—cn) (seefig.
5.5). The asymptotesare directed along the dilation (e+) and contraction(e_) eigenvectors(for
t —~+ oo), and are exchangedunder time reversal.The motion of the original system(5.32) is now
locally unstablesince its closetrajectoriesare divergingexponentially.Note that the divergenceof
trajectoriestakesplacein both directionsof time (t -s±cc), the fact which is of greatimportanceto
understandproperly the implicationsof local instability in the statistical behaviorof a dynamical
system[43].

*The meaningof this term is relatedto thefactthatthevector I characterizesaninfinitely smallsectionof acertaincurvein thephaseplane.
Thecurveis transformedaccordingto theoriginal mapping(5.1) but its small sectiondoessoaccordingto linearizedmapping(5.31),which, thus,
describesthebehaviorof abeamof closetrajectories.Letus mentionalsothatthe completely linear mapping(5.31)shouldnot beconfusedwith
thepartly (in I only)linearizedstandardmapping(5.1).
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Fig. 5.5. A trajectoryof tangentmapping(5.33) for system(5.32)(solid curve).

For t ~‘ 1 the vector I nearly coincideswith dilation eigenvectore÷(5.35) by directionandvaries

accordingto the law:

1(t) i~,IA+I’ = 1~et In~A+I (5.37)

The quantity

h = LnIA+I (5.38)

describingthe rate of divergencefor close trajectories,is called the Krylov—Kolmogorov—Sinai
entropy,or, in short, the KS-entropy.This quantitywas widely usedby Krylov [7] in his studieson
thestatisticalpropertiesof mechanicalsystems,he neverusedthetermentropythough.Lateron the
samequantity has beenindependentlyintroducedin the ergodictheory by Kolmogorov [13]via a
quite different considerationbasedon the information theory,andwascalled by him the entropyper
unit time.The relationbetweenthe Kolmogoroventropyand the local instability of motion hasbeen
found out by Sinai [14]. One should not confuse the KS-entropy with the entropy in statistical
mechanics.Althoughacertainlink doesexistbetweenthem[9], thesearequite differentquantities.In
statistical mechanicsthe entropydescribesan instantaneousstateof a systemvia the distribution
function and may be definedas a dimensionlessquantity. The KS-entropyhasthe dimensionsof a
frequencyanddescribesthe rateof local instability, or of the mixing processin adynamicalsystem
(seesection5.3).

Now weturn backto thetangentmapping(5.31)for system(5.1). Herewe cannotfind thesolution
for anarbitrarytrajectory0(t) of the standardmapping(5.1). Yet, one may study a particularcaseof
periodicmotion. The simplestone is themotion of period 1 (fixed pointsof standardmapping):0 = 0;
ir (I = 2irn). In the lattercaseeq. (5.31) is reducedto eq. (5.33)with k = ±K. Then,asfollows from
eq. (5.36), one of the fixed points (0 = 0) is alwaysunstable(for K >0, the separatrixof an integer
resonance)whereastheother(0 = ir, thecenterof aresonance)becomesunstableonly for K >4. The
latter condition is consideredby some authors as a certainstability border [46,92]. Indeed, under
K >4 the largestdomainsof stability inside integerresonancesdo disappear(seefig. 5.2).Oneshould
bear in mind, however, that the gross instability sets in undera considerablyweaker perturbation
(K> 1). Besides,somestabilitydomains,of smallerdimensionsthough,persistfor K >4 aswell (fig.
5.9).

Resultscloser to the borderof gross instability canbe obtainedfrom the instability conditionfor
trajectoriesof longer periods[71,72]. It canbe shown,for example,that for the standardmappinga
solution of period 2 (1 = ir; 0 = 0; ir — two centersof a half-integerresonance)becomesunstableif
IKI >2 (seesection5.5).The latter valueis somewhatgreaterthanthat due to the overlapcriterion,
taking accountof half-integerresonances(5.23),sincethe resonancecentersmay remainstableevenif
theseparatricesdo touch eachother(fig. 5.2). It is not excluded,however,that consideringsolutions
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of a sufficiently long periodone would be able to geta stability conditioncloseenoughto theactual
borderof grossinstability.* Anotherapproachto using the local instability for the predictionof the
onsetof stochasticitywasconsideredby Toda[120].For subsequentdiscussionsanddevelopmentsof
this methodseerefs. [111, 121, 122].

According to Sinai [14]the KS-entropyof a mappingis givengenerallyby the relation:

h=(ln(i/I)) (5.39)

wherethe averagingis performedover a motion trajectoryor, due to ergodicity,over the stochastic
component,i.e. over a compactphasespaceareaof the unstablemotion. The stochasticcomponent
for the standardmapping is generallyof an extremelyintricate structureas is seen,e.g., in fig. 5.2.
Numericalexperimentsshow, however, that for K ~‘ 1 this componentoccupiesactually the whole
phaseplane(see,e.g., fig. 5.9). Since asymptotically i/I-s IA+I where A+ is given by eq. (5.34) with
k = K cos0 theaveragingin eq. (5.39)canbemadejust over thephase:

h (InIA+(O)I). (5.40)

For K ~. 1 thequantity k = K cos0 is largeexceptin narrow(in phase)stablephaseintervals (5.36).

HenceIA+l Iki = K cos01(5.34),andeq. (5.40) is reducedto afairly simpleexpression:

hT ~- J do Inlcos 01+ In K = In ~ (5.41)

The numericaldeterminationof the KS-entropywas carried out by simultaneouslyiterating both
tangent(5.31)andstandard(original) (5.1) mappings.The mappingsaretakenin the reducedform (5.2)
(q = 1) to avoid a rapid diffusion due to the stochasticinstability. The quantity I in (5.39) was kept
constant:1 = + q2 an 1 during computationby the reducingvectorI, after everyiteration, to that
of theunit length without anychangeof its direction:~ = i/i; i~ = i~Il (cf. ref. [39]).Theentropywas
computedthenaccordingto Sinai’s formula(5.39):

h=~E~ln1~ (5.42)

where n standsfor an iteration serial number and t is the total numberof iterations. The method
describedis now understudyin collaborationwith G. Gasati,J. Ford andF.M. Izraelev.We attempt,
in particular,to applythismethodto muchmorecomplicated,many-dimensionalsystemsto locatethe
onsetof thestochasticinstability. The methodis similar to one usedby Froeschlé[70].In the lattera
use of the tangent mapping is also made,the eigenvaluesbeing computedin every iteration.This
requiresa lot of computationas comparedto our version of the methodbut yields much more
information.

Computationresultsfor theKS-entropyof thestandardmappingaregiven in table5.1 (the quantity
h

1). Valuesof h1 wereaveragedover a numberof trajectoriescomputed,themotion time being t =

iterationspertrajectory.The value of h1 was almostindependentof the initial directionof vector I~
and,for K> 1, dependedonly slightly on initial conditionsfor theoriginal mapping(5.1). For K = 1.3,
for example,6 different trajectorieshaveyielded: h, = 0.220—0.237.The dependenceon the motion
time is illustrated by following data: h1 = 1.126; 1.162; 1.164; 1.165 for t = l0~10~l0~106,

*Recently Greenehasarrivedin this way at thestability borderfor thestandardmapping at K = 0.971635...1146].
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Table5.1
The KS-entropyof thestandardmapping

h
2 [39] h, hT hI

K 2 trajectories linearmap (5.41) hT h, = h, T,

1000 6.206 6.213 6.215 0.9997 1.11
200 4.603 4.601 4.605 0.9991 1.17
100.2 3.914 3.918 3.914 1.0010 1.12
50 3.227 3.222 3.219 1.0009 1.02
25 2.537 2.522 2.526 0.9984 0.89
6.21 1.157 1.164 1.133 1.027 0.78
4 — 0.833 0.693 1.202 0.82
3 — 0.672 0.405 1.659 0.90
1.3 — 0.227 — — 0.80

— 0.132 — — 0.64
0.5 — 6.86x 10_2 — — 0.77
0.2 — 2.OOx 10_2 — — 0.65

respectively(K = 6.21). For K = 1.3 the valueof h1 obtainedis well in agreementwith the resultby
Froeschlé[70]:h1 0.22 (see his fig. 1; note that in ref. [70]log A is decimal!), For comparisonthe
valuesof KS-entropyobtained by meansof anothermethod [39]are alsogiven in table 5.1. In this
method the vector I was determinedby the two close trajectories(of the original mapping (5.1))
computedsimultaneously.In the work [39]the initial !o = 1O~and the full motion time t = lO~were
used.

Accordingto the datain table5.1 thequantity h1 is fitted fairly well for K >4 by the simple relation
(5.41). The meanratio (hl/hT) = 0.9998 over the interval K = 25—1000.This shows, in particular,that
the stochasticcomponentof the motion really fills up homogeneouslyall the phasesquareof the
reducedsystem(seealso section5.5). At K = 3 a betteragreementwith the measuredvalueof the
entropy is given by a more complicatedexpression(5.40): hT = 0.613. For still lower K the latter is
getting invalid as well dueto the largedomainsof stability formed,in the first place,insidethe integer
resonances(fig. 5.2).

For K < 1 thestochasticcomponentoccupiesonly narrowlayers alongthe resonanceseparatrices.
This casewill be consideredin detail in section6. Let us justmentionnow that thequantityh~= h, Ta

is approximatelyconstantover this region accordingto the datain table 5.1. Since Ta is the mean
half-period of oscillations inside a stochastic layer the product h1 Ta gives KS-entropy per this
half-periodneara resonanceseparatrix.The variationsof h~within theintervalK = 0.2—1.3amountto
about20 per centonly eventhoughthevalueof h1 changes there by a factor of 10. The values of Ta
in this interval of K were calculatednumerically and proved to be in a good agreementwith the
analyticalrelation(6.18)(seetable6.1).Curious enough,that if onecalculatesh~for all the valuesof
K in table5.1 it turnsout that h~changesless than by a factorof 2 for h1 varying by 300 times! This is
especiallysurprising if one recalls that for K >4 the stochasticlayers are no longer of any sense
becausethereare no more stabilitydomainsinside the integerresonances(fig. 5.9).

Certainly,all thevaluesof h1 given arerelatedto the stochasticcomponentwhich occupiesonly a
partof the phasesquare,and just a small part for K < 1. In the domainof stability h an 0. However,
themeasurementof h1 by the methoddescribedabovealways yields somefinite values.For K = 1.3;

t = io~and the initial conditions:0~= ir;
1o = 1, for example,themeasured“entropy” h

1 = 7.53X l0~
(cf. theentropyof stochasticcomponenth1 = 0.227,table5.1).The finite valueof h1 is relatedto the
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fact that closetrajectoriesare diverging even in the stabledomaindue to a difference in frequency
which dependsin the nonlinearsystemon initial conditions.The divergenceof closetrajectoriesin the
stability domainis known to be linear with time* (see,e.g., ref. [76]).Hencethe measuredvalueof
“entropy” h, will decreaseroughly in inverseproportion to the motion time: h1 —~(in t)lt (5.39).This

peculiaritypermits usto discernastablemotion from a stochasticone. Forthestandardmapping,e.g.,
at K = 0.5 and initial conditions:0~= 0.3; 4 = 0 the measuredvaluesof “entropy” turnedout to be:
1.14x iO~1.18x iO~for t = lOs; 106, respectively(h1 = 6.86x 10_2 inside the stochasticlayer, table
5.1).

The linear divergenceof closetrajectorieswas frequently usedas an empirical criterion of the
stability of motion for nonlinearoscillator systems.In particular,just by meansof that methodFord,
StoddardandTurnerdiscovered[95]theabsolutestability, or thecompleteintegrability,of theToda
lattice— a highly nonlinearmany-dimensionalsystem[108].

5.3. Local instability and stochasticity

A stronglocal instability of motion,i.e. a rapid (exponential)divergenceof closetrajectories,is not
only of an intrinsic importanceasone of thebasiccharacteristicsof motion but it hasalso important
consequences.It turns out that suchan instability resultsin an irregularmotion of thesystemwhich
may be called, in a sense,random or stochastic.The irregularity of motion, lack of the time
correlationsleads, on the one hand, to an inexhaustiblediversity and intricacy of the dynamical
pictureof motion, of its particulartrajectories,in a stochasticsystem.On the otherhand,however,
this sameirregularityas if levelsall the trajectorieson an averageand permits, thus,a fairly simple
statisticaldescriptionof suchasystemin termsof theaveragequantitiesandprobabilities.

It is worth noting that sucha motion hasbeen searchingfor sincelong ago with the purposeof
foundationof the statistical mechanics.However,subsequentupon the first poor attemptsof the
classicalergodictheoryto derivethe statisticalpropertiesfrom thedynamicallaws an erroneousidea
hastakenroot that the intricacy of motion is determinedostensiblyby the complexity of a system
and,in the first place,by thenumberof its degreesof freedom.Meanwhile,it turnsout that thestrong
local instability of motion is capableofgiving rise to anextremelyintricatemotionevenin a systemas
simple asthesystem(5.1) havingonly 1.5 degreesof freedomaltogether.An ideaof that intricacycan
begained,for example,from fig. 5.2.

Statisticalpropertiesof a mapping similar to the standardone were studiedin somedetail in the
work [39].Let us mention also the classicalexampleby Sinai [ii] who has proved rigorously the
stochasticityof motion in a conservative(closed)systemhaving asfew as two degreesof freedom.
Such a systemmay be, for example,just a ball sliding over a billiard-table and bouncingfrom its
closedrightangularrim and from someeverywhereconvexboundaryinside, say,from afixed cylinder.
What may be still simpler?In the latter examplethe stochasticityof motion is subsequentupon
bouncingfrom a convexboundarythat leadsto a scatteringof trajectoriesand, hence,to the local
instability of motion**.

Now why doesthe local instability result just in astatisticalbehavior?The intrinsic developmentof

aNow it is just high time to clarify thenotion of trajectory.The latteris understoodnotso much asapath thesystemfollows butratherasa

processof motion along a motionlesspath,or an orbit. For the problemunderconsideration,for example,there is adivergenceof adjacent
trajectorieslinear in time but noneof theorbits.

~ sort of “billiard problems”wasdiscussedby manyauthorsincludingHadamard[143]andBirkhoff [171.
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that instability is regular,isn’t it? Just look at the regulartrajectories(5.35) of the tangentmapping
(5.33)describingthe local instability of a stochasticsystem(5.32).The point turnsout to bein factthat
a domain of the stochasticmotion is always boundedin phasespace.Thus, in Sinai’s examplethe
motion of a ball is boundedby theexternalrim of thebilliard-tableas well as by energyconservation.
In the case of standardmapping the phaseinterval (0, 21T) is limited owing to the periodicity of
perturbation(K sin 0), and so doesthesystem(5.32)aswell. In otherwordsthe stochasticmotion is
always oscillatory (in a broadsenseof this word), i.e. a recurrentmotion, at least,in someof the
dynamicalvariables.

Under the local instability closetrajectoriesdivergeafterall up to a distancecomparablewith the
size of the whole domainof motion. It is just the momentwhen the mixing beginsto result in the
dying-outof the time correlationswith initial conditions,that is the systemforgetsits initial state.As
soonas the divergenceof trajectoriesis exponentialthe systemforgets the initial conditions very
quickly and for ever. In other words, the “stochastic memory” is short (~-=1/h) and it gets lost
abruptly.

Onemay considerthemechanismof mixing in anotherway. Theresultsof Sinai’s work [75]permit
usto concludethatastochasticsystempossessesan everywheredensesetof periodic trajectories,the
numberv(T)of the trajectorieswith period ~T fitting theasymptotic(T-soo) estimate:

v(T)-~e6T. (5.43)

The meaningof this estimateis quite simple: any trajectoryof a stochasticsystemcan be “closed”
into a periodic oneby a slightchangeof the initial conditions,or by a displacementin phasespace,
due to a rapid divergenceof adjacenttrajectories. Since the mechanismof local instability is
immediately applicable only to very close trajectories,a finite “deformation” of the trajectory
necessaryto “close” it into a periodic one has to be done via a seriesof successivetransitions
betweentheadjacenttrajectories.Sucha transitionchain hasbeeninventedby Arnold andappliedby
him to a different problem [5] (see also section 7.1). The required displacementis the smaller
(exponentiallysmaller)the longeris the time of motion arounda “closed” trajectory.This leadsto an
exponentialincreasein thenumberof periodic trajectorieswith theirperiod (5.43).Sincetheperiodic
trajectoriesare unstable,the other, non-periodic,trajectoriesas if scatterby the former. Such a
very vivid pictureof the mixing in a stochasticsystemis due to Ford [76]. This sort of phasemotion
resemblesthemotion of a small shoton theGaltonBoard[123].Its simplestversionis just awooden
plank fixed vertically with manypins stucksquarelyinto it. A shot is falling throughthe “forest” of
pins scatteringby them “randomly”. This classicaldevice for a visual demonstrationof random
processesis a typical systemwith an exponentiallocal instability of motion (comparewith Sinai’s
“scatteringbilliard-table” describedabove).

Using theabovementionedmethodof “trajectory deformation”by meansof a transitionchainone
canproceedmuchfurther. For example,the trajectorieslinking anytwo prescribeddomainsof finite
dimensionscan be found provided the time of motion is long enough. Thus, we arrive at the
topologicalMarkovianchain,that is to say,the motion of sucha systemwill bequalitatively similar to
aMarkovianrandomprocess.Thelatterapproachhasbeenwidely usedby Alekseevin his theoryof
quasi-randomdynamical systems [77]. To apply a quantitative, probabilistic description of the
stochasticmotion the latter needs to conservesome measure,e.g. the phase spacevolume for
Hamiltonian systems.Then a topological Markovian chain can be convertedinto a standardprob-
abilistic Markovianchain,that is the systembehavescompletelyasa“random” one.

Finally, one can find such trajectories of a stochasticsystemwhich go over any prescribed
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sequenceof the (finite) domainsin phasespace,including infinite andnon-periodicones[77,78]. The
presenceof suchtrajectoriesnaturallyfollows from the statisticaldescriptionand,in particular,from
the existenceof the transition probabilities for a Markovian chain. All this emphasizesagainthe
wealthanddiversity of the dynamicalpicturefor a stochasticmotion.

Let us mentionstill anotherapproachto theunderstandingof statisticalpropertiesof thedynamical
motion [79]. In principle, any two trajectories,arbitrarily closeto eachother, respresentcompletely
differentdynamicalmotion of a system.Indeed,anytrajectory is determinedby the initial conditions,
i.e. by asetof real numbers.In the exact formulationof the classicalmechanicseachof thosereal
numberscontains,borrowing the term of the information theory, infinite information on the future
(and the past) motion of the system. Equally, the difference in the information for two distinct
trajectoriesis also infinite for any finite distancebetweenthem. However,for the stablemotion,
which hasbeenthe main, not to say the only, subjectof studyin mechanicsuntil recently, all that
potentialdiversity of motions is not realized,and the behaviorof a systemis monotonous(quasi-
periodic!) anddrearywith only a weakand smoothdependenceon the initial conditions.Yet, under
the local instability (especiallyexponentialone) all those hidden microscopicdetails of the initial
conditionslead, in the courseof time, to an inexhaustiblediversity of motionsevenin the systemas
simple asoneof the type (5.1).

Apparently the first* who clearly understooda link betweenthe instability of motion and the
statistical behavior of mechanical systemswas Poincaré [81], he even made some estimatesfor
molecularcollisions in a gas. Smoluchowski [89] expressedthe condition for applicability of the
probabilisticconceptionto aphysicalsystemby thephrase:“little causes,big effects”.Mises [83]was
of a similar view. The first mathematicaltheory rigorously linking the instability and ergodicity of
motion hasbeendevelopedby Hedlundand Hopf for a somewhatspecific case— thegeodesicflow on
a surfaceof everywherenegativecurvature[80]. This line of researchhasbeenpursuedby Anosov
who introducedan importantgeneralnotion of the C-systemandthoroughlystudiedthe peculiarities
of its motion [15]. Roughly speaking,a distinctive feature of the C-system is a homogeneous
exponentiallocal instability of motion, that is the instability whoserate is limited from below and,
moreover,homogeneouslyin the initial conditionsfor both the main phasespaceof a systemandthe
tangentspaceof linearizedequationsof motion.The termC-systemis relatedjust to thedemandfor a
systemto fit that special condition. For example,the mapping(5.32) is aC-system(off the interval
(5.36)) sincetheeigenvaluesA±dependonly on k but not on the initial conditions.Yet, the standard
mapping(5.1) we areinterestedin is not, apparently,aC-systemfor anyK becauseit seemsalways
to havesomedomainsof stablemotion (section5.5).

Somewhatweakerconditionsaredetermineda centralin the modernergodictheory notion of the
K-systemintroducedby Kolmogorov [13] (underanothernameof the quasi-regularsystem).Again
oversimplifying the situation, one may say that a distinctive featureof the K-systemis apositive
(non-zero)KS-entropyof motion for any initial conditions,that is thenon-zeromeaninstability rate.
Owingto thepresenceof stabilitydomainsthestandardmappingis not a K-systemeither.

Both K- and C-systems(with an invariant measure)possessthe full set of statisticalproperties
knownsofar: ergodicity,mixing, positive KS-entropyand thecontinuousspectrum.We arenot going
to discussall theseproperties**butwill, instead,considerin thenextsectionamoregraphicprocessof
diffusion for the standardmapping.

aSee,however,[123]andabove.
**A formal presentationof themodernergodictheorymay befoundin theexcellentbook by Arnold andAvez[2];anadaptedrepresentation

“for pedestrians”is contained,e.g. in thereview article [9].Recently,anewandthe strongeststatisticalpropertyof dynamicalmotion hasbeen
discovered,namely,theso-calledBernoulli property(see,e.g,ref. [145]).
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Let us touchupon, in conclusion,an interestingquestion:to whatextentthestochasticmotion of a
dynamicalsystemcanbe consideredas a “genuine” randomprocess?Someresearchersflatly object
to suchapossibility repudiatingit by definition, saying: if thereareexactequationsof motion no true
randomnessis possible. Indeed, despite a strong local instability, resulting in a fast mixing of
trajectories,somecorrelationsbetweenan instantstateof thesystemand the initial conditionsalways
remain,if negligibly small, yet of principal importance,the correlationswhich permit to restore,in
principle, all the pastmotion. Many peoplewill apparentlyagreethat our intuition is againstsuch
correlationsin the “genuine” random process.Recall, for example,the irregularity postulatefor a
randomsequenceintroducedby Mises[83].But may intuition misleadus?Could it be that in Nature
thereareno such“genuine” randomprocessesaswe fancy them?In my opinion,presentedin more
detailin ref. [79]it is not excludedthat no “more random”processesthan, for instance,themotion of
aK-systemdo really exist.

5.4. Diffusion

The diffusion is a distinctive randomprocess.Soif we considermotion of thestandardsystem(5.1)
for K> 1 at least, asbeing similar to a randomone, a diffusion in momentumI must occur. The
diffusion will developjust in I sincethe motion is unboundedin thisdirection. As to thephase0 its
variationsare limited by the interval (0, 2ir), and for K> 1 all this interval is passedthroughin a few
iterations.

Variationsof I aredeterminedby the sequenceof phasevalues0(t):

t~I=K~sin 0(t) (5.44)

where t is anintegertime, or theserialnumberof the iteration.The function 0(t) depends,in turn, on
the behaviorof the reducedsystem(5.2) within its unit phasesquare,or that of the standardsystem
within the phasesquare2ir x 2ir (seethe beginningof section5.1). If the stochasticcomponentof
motion were to occupy all this square the distribution of 0 over the interval (0,2ir) would be
homogeneous due to ergodicity of the motion. The numerical experiments already mentioned in
section5.2 suggestthat it is nearlysofor thesufficiently large K ~‘ 1. Moreover,sincethe rise time of
local instability and,hence,alsothecorrelationrelaxationtime is -~1/h —~ l/ln(K/2) (seeeqs.(5.37)and
(5.41)) eventhe valuesof 0 for adjacentiterationsare almostindependent.In short,we canassume
approximatelythat thephasevalues0 arerandomandindependentfor both thesuccessiveiterations
and different initial conditions.Let us call this approximationthe limiting stochasticity,it is also the
simplestone.Thenfrom eq. (5.44) it follows immediatelythat:

(41) = ((41)) = 0; ~ = ((4J)2) = ~t K
2. (5.45)

Here, asusual, the bar and the anglebracketsdenotethe time meanand the phasespacemean,
respectively.Both are equaldue to the ergodicity,~the phasespacemeanbeingreducedin the case
underconsiderationto theaveragingover 0 (5.44).Relations(5.45)showthat themotion in questionis
a diffusionlike processwith the rate:

DT = ((41)2)/t = ~K2. (5.46)

This rate was measurednumerically by averaging over 100 trajectories with various initial
conditionsfor everyof 180 valuesof K within the interval (10—1000).The leastsquarefit of thedata
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with a powerdependenceD(K) gives:

DE = K~2/l.866. (5.47)

Thatis very closeto theasymptotic(K ~ 1) theoreticalrelation(5.46),especiallyasto thevalueof the
power index. Nevertheless,it shouldbe noted that the root-mean-squaredeviationof DT from DE
over the K interval given is equal to V((DT/DE— 1)2) 0.056 and exceedsconsiderablythe bare
statisticalerror expected:V’2/(100 x 180) 0.011. This discrepancyshows that the simplestassump-
tion of the limiting stochasticityholds only approximatelyeven at an average,with a fairly good
accuracythough.Let us considerthis questionin moredetail.

Fig. 5.3 revealssome periodicity in the dispersion of experimentalpoints. Such a periodical
variationof DE with K goesas far asup to K -= 100. Thevariation turnsout to be of aperiodcloseto
2ir. It is clearly seenin fig. 5.6 where thedependenceof normalizeddiffusion rate DE/DT versusthe
fractionalpart {K/2ir} is plotted.A possibleexplanationof this curiousphenomenonwill be discussed
in section5.5.

A moredelicatetestconcerningstatisticalpropertiesof thestandardmappingis theexaminationof
distribution function f(4I, t) where I~Iis a changein momentumover the motion time t. Relations
(5.45) imply thenormal (Gaussian)distribution:

1(41,t) = exp(—(4I)2l2~(4I)2’))~ ((4J)2) = ~t K2. (5.48)
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fractionalpartof K/2ir; statisticalaccuracyof DEJDT measurementabout±15percent;numbersat somepoints give K values.
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For comparisonwith the numerical resultsit is convenientto introducethe normalizeddistribution
function:

f~(I~II)= 21V~ik~’=e_E; E = (i~I)2/(tK2). (5.49)

In fig. 5.7 an exampleof the distribution function obtained by two methodsis given for K = 5.
According to the first method the distribution was plotted using the computation data of lO~
trajectorieswith random(over the phasesquare2ir X 21T) initial conditionsand for the motion time
t = 100 iterations(symbolsV in fig. 5.7). The secondmethodutilized the dataof a single trajectory
computedover the motion time tm = l0~.The trajectory was subdividedinto time intervals of the
length t = 10~iO~l0~,and thedistribution of valuesI~IIover eachinterval wascalculated.In both
methodsthewidth of a distributionbin (.51)/KVt = 1/10was used,and thequantityE wascalculated
at thecenterof a bin.
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7 +
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Fig. 5.7. Normalizeddistribution function (5.49) for K = 5.0; V — l0~trajectorieswith random initial conditions,motion time t = 100; a single
trajectoryover 10’ iterations:+ — motion intervalst = 102, 0— t= 10’, •— t = 10’ (seethe text); straightline is theoreticaldependence(5.49); all
errorsarebarelystatistical.
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In the whole range of the distribution function variation (of about 4 orders of magnitude)a
satisfactoryagreementwith the theoreticaldistribution (5.49) (solid line in the figure) is generally
observed.The statisticalerrorsshownfor somepointsgivean indicationof theaccuracyin measuring
fr,. Within theerrorsthe normalizeddistribution functiondoesnot dependon themotion time t. It is
worth noting, however, that the distribution “tail” goes, at the average, above the theoretical
dependence,that is the actualprobability of largefluctuations in thediffusion exceedsthe expected
one.

The summarydataconcerningdistributionfunctionaregiven in table5.2. In the two casesmarked
by asteriskthe datawere obtainedfrom a single trajectoryand in the rest it was done from 3 x i05

trajectorieswith randominitial conditionsashasbeenexplainedabove.In all casesthe motion time
was t = 100 iterations.

The parametersof the distributionfunctionwere calculatedas follows. The leastsquarefit of the
computedf~was madeusing the function

—lnf~=A+BE. (5.50)

The diffusion rate Df normalizedto the theoreticalvalue(5.46) and the shareof diffusing component

WD werecalculatedfrom the relations:
— ID.

1. / DTE\ Df — 1
ffl—wD~/—expI——--—J ———, W~--=’ (5.51)

VJJf \ DfJ DT B

The two fits were made:1) weightedin proportionto f~2) unweighted(orequally weighted).The first
fit stressesan initial interval of the distribution function (E~ 1) wheref~is large. A discrepancy
betweenthe two fits indicatesa deviationof the distribution from the normal one. Note that in all
casesin table 5.2 the D~valuesof the weightedfit are smaller if only a bit. This indicatesa slower
decreaseof the distribution “tail” as comparedto eq. (5.51). In other words, the probability for the
systemto gain an energymuch in excessof the meanvalue is increasedin regard to the expected
distribution(cf. fig. 5.7). Thequantity WD in table5.2 correspondsto theweightedfit asa moreaccurate
one.TheshareWD differs from unity for smallerK. This is relatedapparentlyto thepresenceof stability
domainsinsidewhich thereis no diffusion at all.

Table 5.2
Parametersof thedistributionfunction

L~1 Df/Dr D~/D~ DE
K 12,rJ unweighted weighted D, H’D

988.457 0.32 1.023 0.9997 — 0.9991
96.016 0.28 1.085 1.078 — 1.0004

*96016 0.28 1.161 1.091 1.0004

92 0.64 0.850 0.842 0.675 1.001
82.434 0.12 1.198 1.174 1.600 1.0003
5.0 0.80 1.073 1.028 0710 0.971

* 5.0 0.80 1.196 1.034 0.710 0.992
4.9 0.78 1.453 1.082 — 0.994
4.25 0.68 1.113 1.059 1.303 0.998
4.0 0.64 1.013 0.865 0.741 0.972
3.8 0.60 1.093 0.753 — 0.971
3.75 0.60 0.8 14 0.673 — 0.985
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Summarizingonecansaythat theresultsof numericalexperimentsconfirm thediffusionlike nature
of motion for thestandardmapping(5.1) underK > 4. The motion canbe describedapproximatelyby

the simple relations(5.46) and (5.48). Apparently the first suchresult for a similar systemhasbeen
obtainedby Hine [84].Remarkably,evenfor a fairly largeK 100 thecleardistinctionsof themotion
from a purely randomone are observed.We shall considerthis questionin somedetail in the next
section.

For a smaller K <4, near the stability borderK = 1, the simple diffusion picture of motion is
obviously not thecase,mainly, due to a strongcorrelationin the successivevaluesof phase0. The
correlationarisesbecausethe motion goes almost along a resonanceseparatrix.Nevertheless,the
transitions betweenresonancescan be consideredapparentlyas random since the systemmoves
inside a stochasticlayer. Then for a time interval which is much in excessof the transition time
betweenthe adjacentresonancesthe motion canbe described,as before,by a simple diffusion law.
The diffusion ratein this regioncan be foundfrom eqs.(5.6), (5.3) and (5.4):

D = (2ir)2/N = 0.38(K— 1)255. (5.52)

An approximateapplicability of the diffusion law for K ~ 1, and, hence,the idea of a random
transition betweenthe adjacentresonances,areconfirmed by the datain fig. 5.3 (section5.1). As is
seenfrom this figure the resultsof the direct measurementof transitiontime N agreesatisfactorily
with thosefrom thediffusion law (5.7) (cf. eq. (5.52)).

It shouldbe emphasized,however,that thebehaviorof a systemin the intermediatezone(K -~1),

i.e. aboutthe stability border, is extremelycomplicated.This problemwas studiedin somedetail in
refs. [26, 39]. Here we just mention a curious eventwhich hasbeenencounteredduring numerical
experimentswith thestandardmapping.In fig. 5.8 thedistributionfunctionfor K = 3 is presented.A
striking peculiarity of motion in this case is the presenceof the two quite different diffusion
components.For the first one of sharew~ 0.83 the diffusion rate is aboutnormal: D~D/D.r= 0.683
whereasfor thesecondof w~ 0.06the ratemateriallyin excess:D~2~/DT= 5.71. Thereis alsoa third
componentof w~! 0.11 with thediffusion rate nearlyzero(the pointswith In> 1 in fig. 5.8). For the
manytrajectorieswith variousinitial conditions (points in fig. 5.8) this componentis quite compre-
hensible,andrelatesto theexistenceof stabledomains.Remarkably,it is presentalso in thecaseof a
single trajectorywhich hasno possibility to enterastabledomain(daggersin fig. 5.8). It may be that
the latter eventis due to a very slow diffusion in an intermediatezonearoundthestability domains
(seesection5.5). It is interestingthat thepeculiarstructureof motion describedis observedonly in a
narrowintervalof K 2.95—3.15.

5.5. Isletsof stability

A distinctpeculiarityof thestandardmappingis theexistenceof domainswith aregularmotion for
arbitrarily largeK —* ~, that is far inside the stochasticregion. This problemwas studiedin detail in
thework [39](seealsoappendixin ref. [88]).Theoccurrenceof suchdomainsis relatedto the fact
that for the standardmapping therealways exists the stablephaseinterval (5.36) within which the
eigenvaluesof tangentmapping(5.31)arecomplex-conjugateand IA±I= 1 (5.34).The simplestregular
motion of this type is the motion with constantphase0 = 0~.Togetherwith the stability condition
(5.36) theparametersof sucha trajectorycanbe foundfrom the relations:

KsinO
1=2irn; —4<KcosO1<0 (5.53)
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Fig. 5.8. The sameasin fig. 5.7 exceptK = 3; + — a single trajectoryover t,,, = iO~,t= 100; S—randominitial conditions,t= 100 (3 series);
straightlines representtheleastsquarefit accordingto eq.(5.50): A = 0.01, B = 1.465 (1); A = 3.62, B= 0.175 (2).

where n is any integer,zeroincluded.Both conditionsarecompatibleonly for thevaluesof K within

the intervals:

(2irn)2<K2 < (2irn)2 + 16; {K/2ir} < ~n~(\/l+ (2/irn)2 — 1). (5.54)

Remarkably,thesespecialvaluesof K may be arbitrarily large. For InJ~~*xthe values of K 2irn
increaseindefinitely, and the interval width decreasesas AK 4/idnj 8/IKJ but remainsfinite. If
n = 0 thevalueof I = 2irm = const(seeeq. (5.1)) with any integerm, i.e. themotion is of period T = I
(a fixed point of mapping (5.1)). Around eachof thosefixed points thereis a stability domain— the
centralpartof an integer resonance(section5.2). This stability domainis destroyedfor K >4 (5.54),
yet, for K > 2ir anew stability domain (n = 1) arisesand so on. The characterof motion in the
domainsrelatedto n� 0 is quite different as comparedto thosewith n = 0, namely:

I = 4+ 2irnt; 4 = 2irm, (5.55)

i.e. I is changingmonotonicallywith time. The relation holds exactlyfor thecentraltrajectorywith a
constantphase0 = 01, and doesso at an averagefor neighbouringtrajectories.Recently such an
“accelerator”regime of motion was studiedfor a similar mappingin ref. 185]. Generally,this sort of
motion is known since long ago, and is of basic importancefor the performanceof an electron
accelerator—themicrotron (see,e.g., [86]).Perhaps,it is not appropriateto call the motion (5.55) a
stableonesincethe variationof I is unbounded,it would be better to speakaboutaregularmotion.
Actually we meanthe stableoscillationsof phase0 aroundthe fixed value0~.Besides,if we change
over from the standard(5.1) to reduced(5.2) mappingthe trajectories(5.55)becomeperiodic(T = 1).
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Bearingall this in mind weretainthe former term— thedomains,or isletsof stability. The latter term
emphasizessmall dimensionsof the isletsfor K ~ 1.

The sizeof an islet of stability canbe estimatedfor K ~‘ 1 in the following way [39].The size in 0 is
determinedby thestablephaseinterval (5.53): A0 -~4/K. The sizeAl mustbe of thesameordernot to
drive the phase0 out of the interval (5.53). Since the structureof the phaseplanefor the standard
mappingis of period2ir in I the relativeareaof a stability domain

0~-~(AI)(AO)/(2ir)2 1/K2. (5.56)

Let us consideralso trajectoriesof period T = 2 (in phase0). We introducenotation: k
1 = K cos0,.

For theproblemin questionthis quantityhasonly two valuesk1, k2 correspondingto *he periodical
oscillationsof the phase:01~±02.Multiplying the two matricesof tangentmapping(5.31) with k= k1,

k2 weget matrix for theperiod T = 2. The stability condition(jA±~= 1) is deducedsimilarly to that for
thecondition(5.36)andhasthe form:

—4<k1k2+2(k1+k2)<0. (5.57)

Note that in theeventk1 = k2 this conditionis reducedto theformer (5.53)for T = 1, andit remainsso
for any T. Indeed,if k1 = k2 . . . = k~-thematrix of the tangentmappingover periodT is thesameas
for themotion with aconstantphase0. -

Fromtheperiodicitycondition(in 0) we have(seesecondeq. (5.1)): I + I = 2irn with any integern,
or morebriefly: I + I = 0 (mod2ir). If the trajectoryis periodicalso in I thensin 01 + sin 02= 0, and,
hence,thereareonly two possibilitiesas to thephasevalues:

02+ 01 = 0 (mod2ir); k1 = k2 (5.58a)

02— 01 = 12 = IT (mod2ir); k1 = —k2. (5.58b)

Like 0 the momentumI hasalsoonly the two values,and I~+ ‘2 = 0 (mod 2ir). Since I2~I~= 212 =

K sin 01 (mod2ir) and 12—~02—0~= —20k (mod 2ir) (in case(5.58a)) we arrive at a transcendental
equationfor thephase0~:

K sin 01 = 2irn — 40k. (5.59)

Togetherwith the stability condition (5.53) it determinesthe intervals of K valueswithin which the
periodic motion underconsiderationexistssurroundedby some stablearea.The size of this areais
estimatedby the formerexpression(5.56)sincethe stability conditionremainsas before (5.53).

In the secondcase(5.58b) k1 + k2 = 0, and stabilitycondition(5.57)yields:

1K cos0~I<2. (5.60)

In combinationwith the relation 212 = K sin 02 and eq. (5.58b) it leadsto the inequalitiessimilar to
those(5.54):

(2irn)
2 < K2< (2irn)2 + 4; {K/2ir) < InI(V’l + 1/ir2n2— 1). (5.61)

Besides the purely periodic trajectoriesconsideredthere are also “accelerator”trajectoriesof
period T = 2 when only motion in 0 is periodic whereasthe variation of I is unbounded(cf. eq.
(5.55)). In this casethe condition I + I = 2irn implies K (sin O~+ sin 02) = 2ITl with an integer l� 0,
and,hence,thereare muchmorepossibilitiesfor the valuesof 01, 02 ascomparedto eqs.(5.58),the
morethe largerK is.
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The analysisof periodic trajectoriesbecomesprogressivelycomplicatedastheperiodgrows.Some
roughestimatesaregiven in ref. [39](seealso ref. [43]).

An exampleof the isletsof stability arounda trajectoryof period T = 2 is presentedin fig. 5.9 for
the reducedmapping(5.2)with q = 2 andK = 5. The periodic trajectoryinsidethe islets is of thetype
(5.58a) with 0~= — 02 2.02,andit correspondsto n = 1 in eq. (5.59).This 01 valuelies nearthecenter
of stableinterval (5.53): K cos01 —2.17.Therelativeareaof thestablecomponentmeasureddirectly
on fig. 5.9 and alsoby anothermethod(seebelow) amountsto about1.5 per cent.Besidesthe four
comparativelylargeislets of stability themany(34) little spotsmissedby a trajectoryare seenin fig.
5.9. Theseare not, however,necessarilyrelatedto the additionalislets of stability. On the contrary,
they are an inevitable corollary of the random motion. According to the Poissondistribution the
expectednumberof randomlymissedbins for the total amountof bins N0= 128 x 128 and during
t = iO~iterationsis equalto Nm= N0exp(— tIN0) 37.

The isletsof stability areapparentlythecauseof a periodicalvariationof thediffusion ratewith K
as hasbeendescribedin section5.4 (see fig. 5.6). The influence of “accelerator”domains(5.55) is
especially substantial. Even though a stochastic trajectory cannot enter those domains it does
approachtheir very border and stays therefor a long time due to a very slow diffusion nearthe
stability border (seefig. 5.3). As a resultthe oddly fast variationof themomentummay occur which
increasesthe meandiffusion rate.According to eq. (5.54) this must takeplace for {K/2ir} 0. The
latterpeculiarity is clearly seenin fig. 5.6, indeed.

A fundamentalproblemconcerningthe isletsof stability is their total area.Although thesizeof the
isletsrelatedto short-periodtrajectoriesis small and is rapidly decreasingas K grows(seeeq. (5.56)
and fig. 5.9) we have actually no knowledgeas to the long-periodtrajectories,nor havewe evena
roughestimatefor the correspondingdomainsof stability. Meanwhile, the numberof all periodic
trajectoriesin astochasticsystemis exponentiallylargeaccordingto Sinai’sestimate(5.43). It is true,
thatmostof them are unstablein all likelihood, yet somemay happento be stableaswe know from
theaboveconsiderationof the short-periodtrajectories.So amisgiving that the total stableareama~
be muchlargerthanit seemsto be from a simple estimatelike (5.56)or from a phasemapas in fig. 5.9
is not groundless.Similar indicationsfollow also from abnormalitiesof thediffusion processevenfor
the K values as large as 100 (section5.4, table 5.2). May it turn out that the measureof the whole

P

x
Fig. 5.9. Phasemapof system (5.2) for asingle trajectory:K = 5; q = 2; motiontime t= 10’; resolution:128x 128 bins.
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stablecomponentof the motion is closeto unity, and the measureof the complementarystochastic
componentis nearly(or evenequalexactly to) zero?

To clarify this questionthemeasurementsof the relativesharesfor both thestochasticand stable
componentshavebeencarriedout in thecaseof the reducedmapping(5.2) with q = I. Two methods
wereused.In the first onethephasesquarewas subdividedinto 100 x 100 bins, and thenumberN. of
the bins crossedby a trajectoryduring t~iterationswas counted.The relative areaof the stochastic
componentwas assumedto be o~= N~/l04.The motion time t~was beingincreaseduntil o. reached
somelimit. The valuesof o~for K 1—5 aregiven in table5.3. It is seenthat for K ~ 5 thestochastic
componentoccupiesalmost all bins of the phasesquare,that is the trajectorycrossesnearlyall the
binsprovidedthemotion time is long enough.However,the sizeof abin is really not so small, anda
doubtarisesif thestructureof thestochasticcomponentmay be so intricatethat the latterpenetrates
all the bins in spiteof a small (zero?)total area?Why may it not consist,for example,of very thin
but denselylocatedlayers?

To make clear the situation a different methodwas used.For eachof the Nr initial conditions
chosenrandomly over the phasesquarea trajectorywas computedduring time interval tr and the
valueof KS-entropyh

1 wasmeasuredby themethoddescribedin section5.2. All theentropyvalues
obtainedfor agivenK weresortedinto the 20 intervals,andthehistogramn• wasplotted,n~beingthe
numberof values within an interval of the serial numberi = 1,... ,20 proportionalto the entropy
value h1. An exampleof the histogramis given in fig. 5.10 for K = 2; N. = 100; tr = i0

4. The two
componentsof motion are clearly seen, namely, the stochasticpeak (77 per cent) and stable
trajectories(19 per cent)with h

1 0. Therearealso4 trajectorieswith an intermediateentropyas a
resultof the fluctuationsof local instability, in all likelihood. The relativeareaof thestablecomponent
was assumedto be 0r = fli/Nr. The valuesof u. arealso given in table5.3. They agreesatisfactorily
with the valuesof r, (o~+ a~. 1). We seethat thestablecomponentof themotionnearlyvanishesfor
K>5.

The decisive advantageof the last methodfor measuringthe share of stablecomponentis

Table 5.3
Measure of stochastic com-
ponent for the reduced map-

ping (5.2)

K 0,

8.888 — <i0~
7.701 — iO—~
6.59 — 0.0099
6.28 — 0.0025
6.21 — 0.004
5 0.98 0.014
4 0.92 0.08
3 0.89 0.11
2 0.79 0.19
I 0.44 0.52
0.5 — 0.96

o, o’,—relative area of
stochastic and stable com-
ponents of motion, respec-
tively.
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Fig. 5.10. Histogramof theKS.entropyfor 100 trajectories;motion time t= l0~K = 2.

relatedto the fact that the set of all possibleinitial conditions is incomparablymorerich than those
lO~binsof thephasesquareusedin the first method.In somesensethetransitionto the randominitial
conditions is equivalentto the increaseof the amountof bins in the first method up to the total
numberof all different initial conditions(~~~1024for our computations).This enormousnumberallows
us to hope, in my opinion, that the resultsof the 0~rmeasurementreally confirm a negligible area
occupied by the stable component of the motion for K ~‘ 1. Nevertheless,the problemin question
cannotbe consideredas completelysolved.Oneof the reasonsis relatedto theprincipal limitation of
the numericalexperiments,namely, the limitation connectedwith the discretenessof the computer
representationfor any quantity. In otherwords, any numberin the computeris always integer in
essence.Particularly,we have always to dealwith a discretephasespacein the numericalexperi-
ments.No matterhow small sucha “quantum”of thespacemay be it certainlyinfluencesthemotion
underan exponentiallocal instability. Only a few papershavebeen devotedso far to this specific
problemin thenumericalexperiments,apaperby Rannou[91]amongthem* (seealso ref. [431).

Summarizingthe aboveconsiderationswe can say that for a sufficiently large K the standard
mappingbecomes“almost” a K-system,i.e. its motion allows asimple statisticaldescription(section
5.4). The word “almost” means here the exclusionof the small but finite domainsof regular
motion — the isletsof stability. Therefore,sucha systemis, strictly speaking,neithera K-systemnor,
still more, a C-systemin the senseof the modernergodictheory.This is just a reasonfor various
“abnormalities”of its motion and,particularly,of thediffusionprocess(section5.4).

Whatis moreseriousis that a systemwith the isletsof stability is structurallyunstable.This means
that the structure of its motion may qualitatively changeunder the influence of an additional
arbitrarilysmallperturbation.A weakdissipationisanexampleof suchaperturbation.This questionwas
studiedin ref. [39]for amappingsimilar to thestandardmapping.Watchingmotionof thesystemby a
displaywe always observeda “degeneration”of stochasticmotion into a periodicalone due to the
“capture”of astochastictrajectoryinto somestability domainsorother.The “lifetime” of stochastic
componentgrows,naturally,asdissipationdecreases,yet thecaptureonto aperiodicorbit doesoccur
afterall. It is worth noting that for asystemwith 2.5 degreesof freedomof the type of two coupled
oscillatorsunderan externalperiodic perturbationwe failed to observethe capturefor a sufficiently
strongcoupling [90].

Althoughthestandardmappingis certainlynot a structurallystablesystemin thecommonsenseof
the term, i.e. for the arbitrary perturbation,it seemsto be structurally stable if we restrict the
permissibleclassof perturbationsby thecanonicalperturbationsonly. All our numericalexperiments
indicate that. Since the simple standardmapping describesreal physical systems always only

*In anumberof worksasimilar problemfor theso-calledpseudorandomnumbergenerators— usuallyone-dimensionalandnotarea-preserving
mappings— wasstudied,see,e.g., [124).
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approximatelyit wereof greatimportanceto developarigoroustheoryof sucha restrictedstructural
stability.

Theappearanceof the islets of stability is related,as hasbeenshownabove,to the existenceof
stablephaseintervals(5.53).The latterappear,in turn, for aperturbationV(0) sufficiently smoothand
periodic in phase0. It suffices for thederivative V”(O) to be continuous,or for the V(0) to havethe
smoothnessparameter1 ~ 2 (section4.5).Subjectto this condition anddue to theperiodicityof V(O)

the derivative V”(O) necessarilycrosseszero that leadsto the formation of stablephaseintervals
(5.53). It is interestingto mentionthat thecondition for thepresenceof the isletsof stability asK —~

(1 ~ 2) almostcoincideswith thecondition for the stabilityof the motionas K —~0 (1 > I~= 2, seethe
end of section4.5).

Thus, the structureof motion with the islets of stability is a typical one for the nonlinear
oscillations.We call this structurethe dividedphasespace,divided into a regularand a stochastic
componentof motion, the regularcomponentpossessingthe full set of the integralsof motion and
beingstratifiedinto the invarianttori supportinga quasi-periodicmotion. Note that theconfinementof
the stochasticmotionto somedomainof thephasespacemay be interpretedas the influenceof some
weakconservationlaw. It restrictsthemotion not to a certainsubspaceof smallerdimensionality,as
theusualconservationlaw does,but only to a part of the spacewith the full dimensionality.

The structureof thedividedphasespaceis alwaysextremelyintricatesincetheborderbetweenthe
regular and stochasticcomponentshasto be always a stochasticcurve (surface). That intricate
structureis graphicallydisplayed,for example,in refs. [82,47, 39] (seealsofig. 5.2).Someresearchers
[76, 78] call this structurea pathology.As to me,I admirethe wealthand diversity of motion in even
extremelysimpledynamicalsystems.

6. Stochasticlayer

In this sectionthe behaviorof the standardmapping (5.1) for a small perturbationK < 1 will be
considered.Formost initial conditionsthemotion in this caseis just thestableoscillations.However,
as we shall see,thereare domainswhere the motion is stochasticfor an arbitrarily small K. Those
domainsare the so-calledstochasticlayers in a vicinity of the separatrixof a nonlinearresonance.
Quite naturally,themotionneara separatrixmustbe extremelyunstablesincethe latterseparatesthe
qualitatively different kinds of motion (oscillation and rotation), transitions betweenthem being
possibleundera very weak perturbation.Hencethe motion in this areais extremelyintricate, or
“pathological” [76]. In particular,insteadof the single unperturbedseparatrix,as is the case,for
example,in the free oscillationsof a pendulum (section2.4), the two separatrices,or, in Arnold’s
language,the two whiskersinterwovenin an intricatemannerappear(whiskersleft “uncombed”).
According to a presentlypopular quotationfrom Poincaréone is struck by the complexity of the
interwovenseparatrixfigure thathe (Poincaré)himself wasnot evenattemptingto draw [6].This has
beendoneby Melmkov [12],andsincethenhis drawinghasgoneover manyarticlesandbookson the
nonlinearoscillations.Much laterthewhiskerstructurehasbeencomputedin anumberof cases(see,
e.g., refs. [47,82]) andturnedout to haveastriking resemblenceto Melnikov’s sketches.

Some qualitative ideas concerning that homoclinic structurewere applied to prove the non-
integrabiity of certain dynamicalequations(see, e.g., refs. [27, 107]). The qualitative theory of
homoclinic structureis being developedby many researchers(see, e.g.,refs. [96—98]),and it has
formedby nowa newsectionin thegeneraltheoryof dynamicalsystems— theso-calleddifferentiable



B.V. Chirikov, A universalinstabilityof many-dimensionaloscillator systems 337

dynamics [74].In particular, Smale and Shilnikov have proved the existence of the quasi-random (in a
certain sense) trajectories in the homoclinic structure. This follows also from Alekseev [77].Some
interesting applications of the differentiable dynamics to the problems in the general theory of
relativity has been published recently in ref. [125].

The first quantitativeresultsin the theoryof homoclinic structurehavebeenobtainedby Melnikov
[12] who estimatedtheorderof magnitudefor the separatrixsplitting. To thebestof my knowledge,
presentlythereis no rigorousestimateas to the full size of the domain of instability aroundthe
separatrix.One hasbeenmanagedto solve this problemonly in the frameworkof a semi-empirical
criterionfor the resonanceoverlap.It wasdone first in ref. [99],and lateron, in amore explicit and
generalform, in ref. [9](seealso refs. [62, 43]). More accurateestimatesfor thewidth of astochastic
layerin theproblemof thedestructionof amagneticsurfacehavebeenobtainedrecentlyin ref. [69].

The behaviorof a dynamicalsystemin the stochasticlayerof a nonlinearresonancewas observed
apparentlyfirst in thenumericalexperimentsby HénonandHeiles [38], andlater on, by manyothers
as well (see,e.g.,refs. [99,34, 43, 47]), in all casesfor amapping.By now thepicture of irregularly
scatteredpoints which all belong to a single trajectory is already customary.The examplesof
relatively broadstochasticlayersmay beseenin figs. 5.1, 5.2.

Below we will describethe results of the numericaland analytical studieswhich rely upon the
propertiesof thestandardmapping(section5). Our main taskis to considergenericpropertiesof the
motion in avicinity of theseparatrix.It turns out that the motion here is much simpler and not as
“pathological”afterall asit may seemto be from amore scrupulousmathematicalanalysis.

6.1. The whiskermapping

As hasbeenshownin section4.4 the motion in a closevicinity of thependulumseparatrixmay be
describedapproximatelyby themapping:

= w + W sinr; f = ‘r + A ln(32/I,3~I); A = flIwo. (6.1)

Here w is a relative energyshift from the unperturbedseparatrix(section2.4); wo, fi standfor the
frequencyof small pendulumoscillationsandof the perturbation,respectively;‘r is the perturbation
phaseatthe time whenthependulumcrossesthepositionof stableequilibrium(we havedroppedhere
the subscriptof r as comparedto eq. (4.56)). A small parameterdeterminingthe approximationto
which eq. (6.1) holds is the frequencyratio: wo/fl = 1/A 4 1. In otherwords,we aregoing to consider
the influence of a high-frequencyperturbationon the pendulum oscillations near separatrix.A
particularexpressionfor the amplitudeof perturbationin eq. (6.1):

WT= —4ir�A2e’~2 (6.2)

was obtainedin section4.4 for theparametricperturbation(4.50).Fora different kind of perturbation
the descriptionremainsqualitatively thesameaswe shall seein thenext section7.

As wasmentionedalreadythereboth thewhiskermapping(6.1) and therelation(6.2)canbe applied
alsoto describethemotionofthestandardsystem(5.1)neartheseparatrixofanintegerresonance,using
theparameters:

—o4=k; fI=1; A=2ir/Vk=1/\/i~ e=2. (6.3)

The whisker mapping (6.1) is the basisof our considerationof the motion in a stochasticlayer.
Therefore,we will check,first of all, to what accuracydoesit describethe actualmotion nearthe
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separatrix.Below we shallcomparethe first of eqs.(6.1) with the resultsof numericalexperiments;
thecheckingof thesecondequationis postponeduntil thenextsection.

The numericalexperimentswerecarriedout with thestandardmapping(5.1)for theK valuesin the
interval (0.05—1).The initial conditionswerechosenin sucha way to providethesystemto be inside
the stochasticlayer of the resonanceI~= 0; usually: 1(0), 0(0)— 10”~—lO”~.Note that in the com-
putationonecannotput just 1(0) = 0(0) =0sinceit is an unstableone thoughyet still theequilibrium.

The successivevaluesof w• weredeterminedat the time of the maximalapproachof pendulumto
the positionof unstableequilibrium 0 =0, that is wheneither I =0 (pendulumoscillations)or 0 =0
(the rotation).Sincethemotion of system(5.1) wasgovernedby a discretemappingthevaluew1 at the
specifiedinstantof time wascalculatedfrom thevaluesof 0~or I, obtainedby the linear interpolation
of thesevariablesbetweenthenearestintegerinstantsof time. The valuesof theperturbationphaser~
were calculatedin thesameway. Assumingthat theadjacentvaluesw• arerelatedasfollows (seeeq.
(6.1)):

i~w1= w•±1— w1 = WE sin(1~+ f3) (6.4)

onecancalculatethemeanvaluesfor both the amplitude WEand apossibleadditionalphaseshift (3.
This was doneduring thecomputationby the threemethods:

1) for each pair of successiveeqs. (6.4) (i, j + 1) the values of WE, (3 were computed and
subsequentlyaveragedover all i; WE= W~

2) themaximal value_l~WjJmax(= W~E~for the relation(6.4)) wascomputed;
3) the meansquare(i~w,)

2(= (W~)2/2for eq. (6.4) and for thehomogeneousdistribution of r, over
the interval (0,2ir)) wascomputed.

The resultsof thenumericalexperimentsindicate,first of all, that within statisticalerrorsthephase
shift f3 =0for all valuesof K investigated.A typical accuracyin thedeterminationof themeanvalue
(3 is —3 x i03 but the standarddeviationfor a single (3 value amountsup to -=0.3. This indicatesa
morecomplicateddependencethaneq. (6.4). It is alsoconfirmedby thedataof measurementof WE.
The valuesof WEE” ~ yet the values ~ are muchlargeras arule. The ratio W~IW~grows
with K from —‘1.5 (at K —0.1) up to —2.5 for K —1. We shall useW~=W~anWE in what follows.

The ratio WEIWTdoesnot dependon K, and is equalat theaverageto:

r = KWE!WT~= 2.15±0.04. (6.5)

This meanvaluehasbeenobtainedby 52 points with thestandarddeviationof 28 per centfor a single
value.Thus, the experimental(actual) perturbationnear separatrixof an integer resonanceof the
standardmapping is more thanby a factor of 2 strongerascomparedto the theoreticalprediction
(6.2).The latterhasbeenevaluated(section4.4)in the first approximationof the resonantperturbation
theory, and it is suitable, thus, only to estimatethe order of magnitude.The discrepancy(6.5) is
apparentlydue to higherapproximations.Now recall that the small parameterof theproblemunder
considerationis the frequencyratio 1/A = = ‘svW/2ir (6.3) which is fairly small even for the
maximal value of K = 1 considered.Therefore,so strong influenceof thehigher approximationsis
unusualandshouldbe ascribedto apeculiarityof theMA integral.

To elucidatethequestionconsidertheHamiltonian:

H(p,q,t)=~-+~~0+~cos(o±t) (6.6)
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which describesa parametricperturbationof apendulumand which is equivalentto the Hamiltonian
(4.50) with fi = 1; A = 1/too. Introducinga canonicaltransformationof variableswe candecreasethe
order of non-resonantperturbation: �/A2—~�2/A4but subsequentupon this sametransformationthe
secondharmonic in 0 appearsin the perturbation.Hence the parameterm of the MA integral
increasesby 2 times (m = 2—~4)that leadsto an additionalfactor—-‘A2 (seeeq. (A.11) in theappendix).
Thus, in thesecondapproximationonly an additionalfactor—e is left in theperturbation.If � 4 1 the
effects of higher approximationscan be neglected.But the standardmapping is approximately
equivalentto the system(6.6) with � = 2; A = i/v’i~ (4.18). In this casethe effectsof the second
approximationareof thesameorder as of the first approximation.A similar situationremainsin the
nextapproximationas well. Therefore,theexactexpressionfor theamplitudeWT is given by a series
without any small parameter.As to the convergenceof this seriesit seemsto be ensuredby the
gammafunctionin theexpressionfor theMA integral(A. 11). Yet, theevaluationof this seriesis not
an easytask.In whatfollows we shallusetheempirical value(6.5) asthecorrectiondue to thehigher
approximations.

The mapping (6.1) describes,in particular,a perturbationof the separatrixitself. Without the
perturbation(e = 0; W = 0) theseparatrixis a singlecurvedescribedin termsof thevariablesw and r
by the condition: w = =0. Under theperturbationit splits into thedeparting(w =0; ~� 0) and the
arriving (w�0; ~ = 0) whiskers.The maximal “distance”betweenthe whiskers(21W1) characterizes
the scaleof the separatrixsplitting. It agreesin the order of magnitudewith the estimatesdue to
Melnikov [12].

6.2. Width of stochasticlayer

In section4.4 it was shown that linearizationof the whisker mapping (6.1) in w leads to the
standard mapping whose parameter may be written in the form:

K, = A W/Wr. (6.7)

According to the results of the numerical experimentsdescribed in section5.1 the region of
stochasticityfor the standardmapping is determinedby thecondition: IKI> 1. If so, it follows from
eq. (6.7) that thestochasticinstability neartheseparatrixtakesplacewithin a layer:

Iwl~ws; w,=APW~. (6.8)
This expressionis approximatebecausetheparameterK, in eq. (6.7) is relatedto aresonantvalueof
W = Wr (4.61). Letus considerthis questionin moredetail.

First, we rewritethewhiskermappingin the form:

~=s+(sinT)/A; T’TAlfl~S~+G (6.9)

wherewe have introduceda newdimensionlessvariables w/w, describingthepositionof a system
neartheseparatrixin thescaleof thehalf-width w, of astochasticlayer.The constantG = A ln(32/w,)
affectsonly the resonantvaluesof s = s~.Thesearedeterminedfrom thecondition G — A ln~s~I= 2irn
andareequalto:

Sri =~e_2~P*~. (6.10)

It follows also immediatelyfrom eq. (4.61).Let us recall that the resonancesof whiskermapping(6.9)
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arethesecondlevel resonancesof theoriginal system(5.1) (seesection4.4), i.e. the resonanceswith
thephaseoscillationsat a resonance(of the first level) in the system(5.1).

We set s = s~+ ös andexpandthe logarithmin eq. (6.9):

lfllSr+ osi = lfli5ri + &/Sr+~(ôs/sr)
2+~

The standardmappingis deducedby neglectingthe last termwhich estimates,thus, tl~eorderof the
error. it is small for 168/SrI 4 1. The quantity Ss is determined,first of all, by the mapping itself:
16s1 ~ 1/A that leadsto thecondition:A Sri ~ 1. IntroducingthenewmomentumP ~ —A(6s)/s~we get
the standardmappingfrom eq. (6.9):

P=P+K,sinr; r=’r+P; Ks~’l/5r. (6.11)

This mapping describesthe motion of system(6.9) in some neighbourhood&s around an integer
resonances = s,~.In regardto the resonanceoverlap and stochasticinstability a minimal neighbour-
hood must comprisethe changein P by 2ir (cf. section5.1), whence:165/Sri ~ ir/A. Therefore,the
conditionsfor theapplicability of thestandardmappingto a local descriptionof system(6.9)may be
written in the form:

A~’ir; t5rI~’1/i~ (6.12)

Now we canimprovetheestimate(6.8) for thewidth of astochasticlayer.The formerdependson
a particular disposition of the resonantvalues 5r. For instance,if one of them has Sri = 1 the
half-width ST of the layer will exceedthe value (6.8) by a half-width of the resonancewith i5ri = 1
sincethesystemwill movealong theseparatrixof this resonanceindependentof its overlapwith the
adjacentresonanceof a larger Sri. On the other hand,the overlapwith theadjacentresonanceof a
smaller Sri is ensuredbecauseit occursfor is I < 1. Obviously,themaximal 5T correspondsto sucha
disposition of the marginal resonancethat its lower (in isl) edge correspondsto si = 1. Then ST

exceedsthevalue (6.8) by the full width of the resonanceseparatrix.Assumingthehalf-width of an
integerresonancefor system(6.11)to be (L~P)r 2VK, A(AS)rISr,or (1~5)r 2/A (K,, iSri 1) (see
section4.2) we may write for thehalf-width of a stochasticlayer:

ST(~)=1+—~—~1+~ ~ (6.13)A

The last expressioncorrespondsto a resonanceseparatrix of the standardmapping for which
A = 2i’rIVK (section4.2).The evaluationof ~is amoredifficult problemsinceit dependsgenerallyon
theoverlapof fractionalresonancesin system(6.11).However,the relateduncertaintyin thewidth of
thestochasticlayer is insignificant for largeA.

In table 6.1 the results of the measurementconcerningthe width of the stochasticlayer for an
integerresonanceof the standardmappingare presentedfor various valuesof theparameterK. The
quantity 5n = i Wimax/AWr was calculatedfor the maximal value I Wi~ reachedin computationfor a
given K. The quantity Wr was assumedto be equalto the theoreticalvalue (6.2) (with parameters
(6.3))multiplied by themeanempiricalcorrectionr (6.5). Accordingto eq. (6.13)thevaluesof SEmust
lie within the interval:

I ~ S~~ Smax= ST(l) = 1 + 4/A. (6.14)

The lastquantity is alsogiven in table6.1. It is seenthat in manycasesthevalueof 5E getsoutof the
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Table6.1
Width of stochasticlayer

K A N S~ Si Sm~x T~

6.28 22580 4.04 1.64 4.43 4.83 0.69
(0.69) (0.75)

0.9 6.62 20936 2.24 1.60 4.47 5.49 0.47
(1.10) (1.26)

0.8 7.02 15662 2.00 1.57 6.38 6.33 0.30
(0.85) (0.96)

0.75 7.26 139170 1.29 1.39 1.55 7.18 6.85 0.24
0.7 7.51 12732 1.17 1.40 1.53 7.85 7.44 0.17
0.6 8.11 10700 1.17 1.43 1.49 9.34 8.96 0.85x 10
0.5 8.89 8432 0.93 1.10 1.45 11.86 11.15 0.33x l0~
0.4 9.93 6510 0.82 0.96 1.40 15.36 14.54 0.88x l0_2
0.3 11.47 4~79 0.77 0.92 1.35 21.37 20.41 0.12x 10—2
0.2 14.05 3062 0.81 1.02 1.28 32.64 32.69 0.39x l0~
0.15 16.22 2225 0.86 1.15 1.25 44.92 45.45 0.19xiO~
0.1 19.87 1336 0.64 0.82 1.20 74.81 71.85 0.12x l0~
0.05 28.10 6350 0.69 0.80 1.14 157.5 154.8 0.81x iO~

interval (6.14)and,moreover,in both sides.Lowervaluesof 5E < 1 could be explainedpartly by the
insufficient computationtime so that the systemhas not enough time to reachthe edgesof the
stochasticlayerwhere thediffusion is very slow (fig. 5.3). Using the empiricaldependence(5.3) with
the parameters(5.4) we can corrects~in a way similar to that in section4.3. In the presentcase
K, -+ 1/sE;K

1 —~1/s1 wheres~is thecorrectedvalueof
5E~The quantityN in eq. (4.49)meansnowthe

numberof crossingsof thesurface0 = iT to which thewhiskermapping(6.1) relates.The valuesof N
andS~arealsogivenin table6.1. It is seenthatafterthecorrectionthenumberof eventswith s

1< 1
hasbeenreduced,yet they still persist.It is related,perhaps,to big fluctuationsof theslow diffusion
(seesection5.1)).

All eventswith SE> Smax correspondto K 1. Such a big width of the stochasticlayer is related
apparentlyto an overlapof the layerwith somenearestfractionalresonances.In any event,for K =

the resonancesdo overlapthewhole intervalof periodicityAl = 2iT (section5.1) so that w will grow
indefinitely with time. Note that it is true only for theouterpartof a stochasticlayer(w >0). Insidea
resonance(w <0) the stability domainspersistso that the negativevaluesof w are bounded.These
valuesarealsopresentedin table6.1 for the first threecases(in brackets).For K = 1 thecorrespond-
ing S~< 1 that is related apparentlyto a ratherlong “wandering” of the systemamid the adjacent
fractionalresonances(in aregionof w > 0).

Thus, the actual width of a stochasticlayer is describedsatisfactorily by the eq. (6.13) based
ultimately on the propertiesof the standardmapping (section5). The accuracyof the analytical
estimateincreasesasA grows.The agreementbetween.the theoryandnumericalexperimentsmay be
really consideredas satisfactoryif one takesinto accountthat the layerwidth (w,) changesover the
dataof table6.1 by 13 ordersof magnitude!Thewidth of stochasticlayerfor small K is so little that
the two lastcasesin table6.1 had to be computedwith thedoubleprecision.The width of a stochastic
layer may be immediatelyfound also from thecomputationof thewhiskermapping (6.9). It is true,
that themapping(6.9) describesthemotion neara separatrixonly approximately.On theotherhand,it
requiresmuch lesscomputationas comparedto the original standardmapping (5.1). As a result we
havemanagedto computemapping (6.9) with A = 700 (ascomparedto themaximal valueof A = 28.1
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in thepreviousmethod,seetable6.1) andfor 6 x 106 iterations(cf. thevaluesof N in table6.1).We
haveobtained that the quantity s~lies within the interval (1.004—1.013)that is compatiblewith the
valueof 5max = 1.006.

We may usethis result to checkthe critical value of K = K
1 for the standardmapping found in

section5.1: K1 = 0.989. Applying the relation K1 1/ISri (6.11), where S~are the two nearestto s~
resonantvalueswe havegot from thecomputationdata:

0.98~K1~1. (6.15)

Let us considerstill anothermethodto determinethe width of a stochasticlayer. The method is
basedupon the measurementof themeanrotation period (or a meanoscillation half-period) T in a
stochasticlayer. For the free oscillationsof apendulumneartheseparatrix(seesection2.4):

1 /32\ 1 / 32 \T(s)=—lnt-—J—*—--z=lnl--———--J. (6.16)
to0 ‘Iwli \“K \l5I W~J

The lastexpressionis againrelatedto thecasein which thependulumrepresentsan integernonlinear
resonanceof thestandardmapping(5.1),period T being measuredin the numberof iterations.From
thenumericalexperimentsonecaneasilyfind themeanvalueTE = tN/N wheretN is the time interval
of motion correspondingto exactly N periods,or to the N + 1 crossingsof the surface0 = ir.

To deducethe theoreticalmean(Ta) oneneedsto averageeq. (6.16)overtime, which s(t) depends
on,or, due to theergodicity, over thestochasticcomponentin the layer.Neglectingstability domains
insidethelayer,which areof importancenearthe layeredgesonly, we canaverageeq.(6.16)over the
whole layer. Recallnow that theoriginal mapping,whosepropertieswe are studying,is the standard
one (5.1). Since the transformationof variables (I, 0)—*(s, r) by transition from the standardto
whisker mapping is not canonicalwe need the Jacobianof this transformation.The latter may be
representedas a sequenceof successivetransformations:(I, 0) (5.1)—~(J, 0) (4.18)—i.(I,, ~,)—i.(w,r)
(6.1)—* (s, ‘r) (6.9) whereI,, q’, aretheaction-anglevariablesof theunperturbedsystem(4.18)with the
Hamiltonian:

H0=~J
2+kcos0=k(1+w) (6.17)

describingthe oscillationsof frequencyw(w) (seeeq. (2.33)) nearthe separatrix.Jacobiansof all the
transformationsbut one (I,, ~‘, -+ w, r) in theabovechainareconstantsindependentof thedynamical
variables. So we need to evaluateonly the Jacobianc9(w, r)/8(I,, q,,) = (3w/81,) (8r/aç,). The last
expressionis dueto thefact thatw dependsonlyon I,butnot on ç,. Thedeviative8w/81.may befound
from the relation 8H

0/8I,= w(w), whence:ôw/öI,= to/k (seeeq. (6.17)). To evaluate8r/ÔQ, we write:
= LIt°and tot°= ~, = const— the valueof q,, atthe surface0 = ir; t°is the time atwhich thesystem

crossesthis surface.Eliminating t°we get: ‘r = —fl~,/w,and 8r/ö~,= —LI/to, whencetheJacobianwe
areinterestedin 8(w, r)/D(I,, ~,) = —fl/k doesnotdependon thedynamicalvariables,andso doesthe
full Jacobiant9(s, r)/8(I, 0). Hencewe canevaluateany averagesimply over thephaseplane(r,s) of
thewhiskermapping.SinceT(s) doesnotdependon ‘r we get:

Ta Jds T(s) = in(~) - In (~2)

(6.18)
w, = 32 exp(—1 — VKTa).
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Wehaveusedhere therelations(6.2), (6.3) and(6.8)to evaluatew, as well asthecorrection(6.5). The
last expressionin eq. (6.18) permits us to calculatethe width of a stochasticlayer from the mean
periodof motion.

The comparisonof the theoretical (Ta) and measured(TE) values of the meanperiod is given in
table 6.1. A good agreementbetweenthem over the whole interval of K variation provides an
additional confirmationfor the theoreticalestimatesof the width of a stochasticlayer. It is also a
checkof thesecondequationin thewhiskermapping(6.9).

Thus,we cometo theconclusionthat themapping(6.9) satisfactorilydescribesthe motion insidea
stochasticlayerof a nonlinearresonance.An exampleof thephasemap for suchamotion is given in
fig. 6.1 with A = 8.89 (K = 0.5). The layerwidth measuredfrom the figure is lSImax= 1.16. This value
should be comparedwith the quantity s, in table 6.1 becausethe phasemap in fig. 6.1 has been
computedfor a ratherlargeN = 106.

The most important peculiarity of the whisker mapping is a strictly boundeddomain of the
stochasticmotion, that is a finite width of the stochasticlayer.This width dropsexponentiallyas the
perturbationparameterK of the original systemdecreases.In order of magnitudethe width of a
stochasticlayer w, provesto be largerby a factorof A thanthe separatrixsplitting (W,seeeq. (6.8)).
The structureof a stochasticlayer is fairly complicatedespeciallyat its edgesdue to innumerable
isletsof stability (fig. 6.1). This structuremay be studiedin detail using the standardmapping (6.11).
Roughlyspeaking,the layerconsistsof the two parts— the centralone (isl ~ ~)wherea fast diffusion
takesplace,andthereare practically no islets of stability and the peripheralone (~isi ~ 1) with a
slowdiffusion and asubstantialshareof thestablecomponent(fig. 6.1).Let us mentionthat a similar
structureof the phaseplanehasbeendescribedfor the problemof the Fermiacceleration[46],the
latterbeingqualitatively similar with theproblemof themotion inside a stochasticlayer.

6.3. The KS-entropyin thestochasticlayer

Somedata concerningthe KS-entropyof the standardmapping (5.1) for K < 1, i.e. inside the
stochasticlayer, werepresentedin table5.1 (section5.2).As wasmentionedtheretheproductof the
entropy h1 (per iterationof mapping (5.1)) by the meanmotion period Ta in the stochasticlayer

Fig. 6.1. Structureof astochasticlayerasdescribedby thewhiskermapping(6.9)with A = 8.89(K = 0.5);s >0—outer half of thelayer(rotation);
s <0—theinner half (oscillations);layerwidth si,.., = 1.16; motiontime 10’ iterations.
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remainsapproximatelyconstantover a broadrangeof K variation.This producth1 Ta = h, is nothing
but the entropy per iteration of the whiskermapping (6.9). Thereforewe will begin just with the
considerationof the KS-entropyfor this mapping.Since its local propertiesare describedagainby
somestandardmapping(6.11)with theparameterK,(s) dependingonly on s but not on A theentropy
of thewhisker mapping(6.9) is really someuniversalconstant.It canbefoundby theaveragingof the
entropyof standardmapping(6.11)overs.

Assumethedependencefor theentropyof the standardmappingon K, 1/s in the form:

Iln(1/2s); S<Sb
h(s)=1 (6.19)

~ y/s; S>Sb

where
5b, ~ are someconstants.The first dependencecorrespondsto eq. (5.41),and judging by the

data of table 5.1, describesthe KS-entropy of the standard mapping quite well for K ~‘ 4. It
correspondsto the centralpart of the stochasticlayer(ist ~ 1/4). The secondof eqs.(6.19) can be
deducedfrom the relations:h, 0.8 (table 5.1) and K Ta 5 (seeeq. (6.18) andtable6.1).Numerical
valuesfor thesenearlyconstantquantitiesaretakenin thedomainof K, 1 which is most important
for theaveragingover s. Thenthevalue of y = h,/K, T~ 0.16.This value may be obtainedalso in a
differentway. In accordancewith a roughstructureof thestochasticlayerdescribedat theendof the
precedingsectionwe attributethe two dependencesof h(s) (6.19)to thecentralandperipheralparts
of the layer,respectively,and assume5b = ~. The quantity y canbefoundthenfrom the conditionof
theequalityof both relationsfor h(s) at s = 5b~We get:

)‘Sblfl(1/25b)=0.173; Sb~ (6.20)

that is closeto theabovevalue. In what follows we assumethevalue(6.20).
Now we canevaluatetheKS-entropyof thewhiskermapping(6.9). Using eqs.(6.19)and (6.20)we

have:

h~= Jdsh(s) = Sb ln(e/2sb)+ y ln(1/sb)= 0.423+ 0.240= 0.663. (6.21)

The value of h~hasbeenobtainedalso from numericalexperimentswith thewhisker mapping(6.9)
employing the methodof tangentmappingdescribedin section5.2. The h~value averagedover 28
trajectorieswith variousinitial conditionsandfor different valuesof parameterA in the interval (3—9)
is equalto:

(h~)= 0.666±0.013 (6.22)

thestandarddeviationof a singlevaluebeing±0.069. Within thespecifiedinterval of A the valueof
(h~)doesnot dependon A to the accuracydeterminedby fluctuations.For A <3 the mean(h~)
decreases,apparently,due to an increaseof the layer width (6.13), and for A >9 it increases,
probably,dueto an insufficienttime of motion (t = 10’ iterations)to penetrateinto thelayerperipheral
domainof aslow diffusion (isi 1).

Theresultsof measurementconcerningtheKS-entropyof thestandardmapping(5.1)arepresented
in table6.2. Thesedataexpandthosein table5.1 overthe regionof small K values.The entropywas
measuredemployingthe tangentmapping(section5.2) overthemotion time t = iO~.In themiddle of
table6.2 themeasuredvaluesof h, are in agood agreementwith the theoreticalprediction(h~,eq.
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Table6.2
TheKS-entropyin thestochasticlayer

h, hjhw
K linear map h,=h

1T, (6.21)

0.15 0.0231 1.050 1.58
(0.00643) (0.292) (0.44)

(1.2 0.0295 0.964 1.45
(0.0200) (0.654) (0.99)

0.3 0.0355 0.725 1.09
0.5 0.0686 0.765 1.15
0.7 0.0920 0.684 1.03
1 0.132 0.638 0.96
1.3 0.227 0.799 1.21
2 0.425 0.896 1.35
3 0.672 0.8% 1.35

4 0.833 0.824 1.24

(6.21)). For very small K thevalue of h, grows, apparently,due to an insufficient motion time (see
above). The values of h, for t = 106 are given in brackets.In the case of K = 0.2 h, value has
“descended”down to the theoreticalone but for K = 0.15 it did so still muchlower. This is caused,
perhaps,by a “sticking” of the systemin a peripheralpart of the layer. For K> 1 the ratio hjh~
grows up appreciably,probably,due to theoverlappingof different stochasticlayers.Summarizing,
we canconcludethat the ideaof aconstantKS-entropyin thestochasticlayer(permotion period Ta)

permits us to describesatisfactorily and, what is both important and pleasant,very simply the
instability rateinside thestochasticlayerup to K -~1 andeven,strangethoughit may seem,for fairly
largeK, with lessaccuracythough (seetable5.1).

6.4. Againabout theborderof stability

Now we canturnbackto the evaluationof theborderof grossinstability for thestandardmapping
(section5.1). The bestestimatededucedfrom the overlapcondition for the resonancesof the first
threeharmonicsgives: KT 1.35 (5.25). Taking accountof the stochasticlayer around separatrix
permitsus to improvethis estimate.

Below wewill confineourselvesto a simplified schemefor theoverlaptaking accountof the integer
and half-integer resonancesonly and neglectingthe stochasticlayers of the latter. The relation
betweenthe dimensionlessenergy w and displacement61 from the unperturbedseparatrixcan be
found from the Hamiltonian (6.17). Since w = 8H0/k = J(6J)/k = 1(61)/K we get: (61)/I = Kw/1

2—i.
w/4, the latterexpressioncorrespondingto the maximal width of separatrixat0 = IT (I ~ Im = 2V~)
which determinesthe overlapcondition. The edgeof the stochasticlayer is relatedto w = STW,, ST

being given by eq. (6.13). It is convenient to describethe influence of stochastic layer on the
resonanceoverlapby afactorgiving an effectivewidth of a resonance:

61 STW, 16ir4 ~ 623
l(K)=1+

1=1+—~—=1+rsT-~e

wherer = 2.15 is theempirical correction(6.5) due to higherapproximations.
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Taking accountof the factor(6.23)we canwrite down the conditionfor the touchingbetweenan
integerand the adjacenthalf-integerresonancesin the form (cf. section5.1):

2V~k1(K) + ~K = IT. (6.24)

For 1 = 1 thecritical valueof KT = 1.46 (5.23). Solving eq. (6.24)with 1(K) given by eq. (6.23) we get

thecritical valueof Kr within the interval:
KT = 1.019—1.098. (6.25)

The uncertaintyof Kr is relatedto the uncertaintyof the layerwidth ST (6.13)due to the marginal
resonance.The endsof interval (6.25)correspondto the limiting valuesof the unknownparameter
~= 1; 0, respectively.Notethat if we had ignoredtheempiricalcorrection(6.5),andhad setjust r = 1
in eq. (6.23) we would getKT= 1.14—1.21insteadof eq. (6.25).The valueof ~ may be foundfrom the
whisker mapping (6.9) with A =

2IT. The numericalexperimentsover the motion time t = 106 reveal
Is Ima~= 1.25, whence~= 0.39. Substituting this value into eq. (6.23) and solving eq. (6.24) we get:
KT = 1.062. This value aswell as that from eq. (6.25) is still larger than the actualcritical value
KE 0.99 (section5.1) but are alreadyfairly closeto the latter. This confirmsoncemorethat a quite
simplepictureof the resonanceoverlapis not too far from the truth.

7. The Arnolddiffusion

The motion inside the stochasticlayer of a resonancemay be consideredin a senseas some
manifestationof a universal instability since those stochasticlayers always exist almost in any
nonlinearoscillator system.If, however, the numberof degreesof freedom~ 2 such a universal
instability is of no importancebecausefor a sufficiently small perturbationthe unstablemotion is
confinedwithin a very (exponentially)small domain, and thestochasticlayersof different resonances
are separatedfrom eachother by stableinvariant tori (section4.6). Therefore,the changein the
integralsof the unperturbedmotion due to that instability is also exponentiallysmall eveninside a
stochasticlayer.

But it’s quite anotherthing whena nonlinearoscillator systemhaving more thantwo degreesof
freedomis involved. In sucha casethe stochasticlayersof different resonancesdo intersect.Since
the motion insidea layeris stochasticand,particularly,ergodic,it will inevitably spreadout over the
whole systemof intersectinglayers(section4.6). Suchan instability of many-dimensionalnonlinear
oscillationshasbeenpredictedby Arnold and demonstratedby him via a fairly simple example[5]
(seesection7.1). Arnold conjecturedalso that the mechanismof this instability is agenericone for
many-dimensionalnonlinearoscillations[67].An analysisof the instability by meansof theoverlap
criterion hasrevealedthat it is a stochasticinstability. This is just a reasonto call it the Arnold
diffusion [43,41].

TheArnold diffusion apparentlywasactuallyobservedalreadyin theexperimentswith electronsin
a magneticbottle [101](an analysis of theseexperimentsis given in refs. [43, 138]) and also in
experimentson the interactionof colliding electron—positronbeams [102].Recently a numberof
experimentson the electronmotion in a model of thegeomagneticfield hasbeencarriedout [126]*
closein results to thosein ref. [101].In thenumericalexperimentswith a many-dimensionalnonlinear

‘For analysisof theseexperimentsandtheir relationto the Arnold diffusionseerefs.[138,142].
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mapping [35]a very weak instability was observedwhich is also relatedapparentlyto the Arnold
diffusion. A more definite analysisas to the nature of a similar weak instability observedin the
numericalexperimentswith a simple model is presentedin ref. [41].The distinctive peculiaritiesof
this instability agree, qualitatively and quantitatively (at least, in order of magnitude), with the
inferencesof an analytical theory for the Arnold diffusion. One can believe, therefore, that the
existenceof the Arnold diffusion is proved.Let us makeclear that in thenumericalexperimentsof
ref. [41]just the diffusion natureof the developinginstability hasbeenestablished;a proof, and
moreovera rigorousone,of the very existenceof instability hasbeengivenalreadyin thefirst paperby

Arnold [5].

7.1. Arnold’s example

In ref. [5] a simple exampleof a systemhaving 2.5 degreesof freedom(5-dimensionalphase
space,see (7.1)) was considered.The motion of this systemhas proved to be always unstablefor
certaininitial conditions.The systemis describedby theHamiltonian:

H(11, ‘2, 0~,02, t) = ~ + I~)+ �(cos0~— 1) (1 + ~B(02,t)) I)

B = sin 02+ cOSt.

For � = = 0 thesystemhastwo integralsof motion I~,‘2 = constwhich determinethe invarianttori
supportinga quasi-periodicalmotion of two frequenciesto1.2 = 11,2.

For ~ = 0; �� 0 therearestill two integrals: ‘2= constand:

H1 = ~ + �(cosO~— I) = const. (7.2)

The latter integraldescribesthe nonlinearresonance = 0, functionH1(11, 0~)beingthe resonance
Hamiltonian(cf. sections3.3 and 3.2). The separatrixof the resonancecorrespondsto the value of
H1 = 0 (section2.4). Sincefor .t = 0 the systemis still completelyintegrablewe shall take it for the
unperturbedonewith theHamiltonian:

H0=H1+H2 H2=~I~. (7.3)

Theoriginal (perturbed)system(7.1) may berepresentedthenby theHamiltonian:

H = H0(11,I2, 0~)+~V(0~,02, t)
(7.4)

V = e B(02, t) (cos0~— 1).

The periodic (in 02, t) perturbationV affectsthe phaseoscillationsat a nonlinearresonanceto~= 0
(7.2) and leads,in particular, to the formation of a stochasticlayer around the separatrixof this
resonance(section6). In thepresentcase,however,the perturbationchangesnot only 1~but also ‘2

owing to thedependenceof V on 02 (7.4). Therefore,a motion along thestochasticlayer(in 12) takes
place. By virtue of stochasticityof the motion inside the layer the variation of ‘2 will be also
stochastic,giving rise to a diffusion in ‘2. As a result, ‘2 will changeindefinitely, that is we havea
gross instability.

The resonanceto~= 0 is not theonly oneevenin the first approximation.The full setof resonances
in thisapproximationis outlined in fig. 7.1; it includes6 resonances:

w~=0; w~=0; to~±w~=0;to~±l=0.
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—

Fig.7.1. First approximationresonancesfor Arnold’s example(7.1).

The resonancelines intersectat 7 points: co~= to
2 = 0 and to1 = 0; w2 = 0; ±1.Hence the diffusion

spreadsover all this resonanceset. However, for ~ 4 1 the diffusion rate is negligible along all
resonancesbut to~= 0 (seesection7.2).

The position of the unstableequilibrium for system (7.2) (I~= 0~= 0) correspondsin the full
(5-dimensiOnal)phasespaceof theoriginal system(7.1)to a 2-dimensionaltorus themotion on which
is determinedby the variation of phase02 and time t. This is just a whiskeredtorus accordingto
Arnold. The three-dimensionalwhiskers “fastened” to this whiskered torus correspondto the
separatrixof resonancew~= 0 (cf. section2.4).For ~ = 0 thewhiskersof the tori with different values
of ‘2 areisolatedfrom eachotherbecause‘2 = const(invariant).However,if ~a� 0 thevariationof ‘2

resultsin an intersectionof thewhiskersbelongingto adjacent(in ‘2) whiskeredtori. A fine point of
Arnold’s elegantproof [5] is the transitionfrom an elementaryfactof the intersectionof whiskersof
closetori to theexistenceof trajectoriesconnectingsomeneighbourhoodsof thewhiskeredtori which
are arbitrarily far (in 12) from eachother. To prove this far from trivial fact Arnold employs,
essentially,the local instability of motion in a small vicinity of whiskers,hedoesnot speakaboutthat
explicitly though. A basicideahow to “construct” suchunstabletrajectoriesunder theconditionof
the local instability of motion was outlined in section5.3, it may be done just by meansof Arnold’s
transitionchain.

7.2. Evaluationof thediffusion rate

We considernow Arnold’s example,employingthe regularitiesof the stochasticmotion described
in sections4 through6. Let initial conditions lie inside the stochasticlayerof the resonanceto~= 0
(7.2). We want to find achangein the full Hamiltonian(energy)(7.1) overa half-periodof thephase
oscillations.We have(cf. section4.4):

H = ~ aV/at = q~sin t+~E~(sin(01—t)—sin(0~+ t)). (7.5)

Here 01(t) may be expressedapproximatelyvia theasymptoticmotion on the separatrix(2.30):

01 = ç,,,(t) + IT = 4arctan(exp{V�(t— t°)}) 7 6

~1=2V�sin(~01) ( . )

where t°is the time when 0~= IT. Note that in the relationfor O1 (7.6) only thepositive signneedsto
be usedassumingthatonebranchof theseparatrixcorrespondsto 01 >0whereastheotherdoessoto
0~<0. The latterdefinition of asymptoticmotion turnsout to be moreconvenientascomparedto the
former (2.29),andwe will employ it henceforth.
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On the right sideof eq. (7.5) we ignorethe first term,which brings aboutonly small oscillationsof

H, andarrive,by meansof theMA integral(seeappendix,~ = 0~—i’), at:

i~H ~ f dt sin(01— t)= ~ A2(~-L.) sin t°. (77)
2 2

For a symmetricperturbation (havingthe termsfor both phases01 ±t which are equal in modulus) the
expression(7.7) holds for both signs of 0~(seethe appendixand section4.4). Note that sincethe
differenceH — H0 = ~ V(01, 02, t) (7.4) is a periodic functionof theargumentsit doesnot contributeto
the MA integral(seethe appendixandsection4.4).Therefore,t~H0= z~H(7.7).

Inside the stochasticlayer(in its centralpart, to be precise)the successivevaluesoft°may be
takenasrandomto a goodaccuracy,that is the limiting stochasticitycanbe assumed(sections5 and
6). However,it would be erroneousto concludethat all the valuesof t°in eq. (7.7) are randomand
independentof eachother.We would get thus awrong relation for thediffusion rate (cf. eq. (7.20)):

2 2 ____ 2

D (i~H) q~A2t’_i_’~ 2 O..~A2 1 78
H Ta ~f 2~V_)Slfl 8Ta 2

where Ta is the meanhalf-periodof phaseoscillationsin thestochasticlayer(6.18). Actually, some
correlationsbetweendifferent valulesof t°arisewhen thesystemapproachesthe edgesof the layer.

To clarify this questionlet us considerthe variationof H2 = I~/2(7.3). We have:

H2 = 1212 = q.tto cos02—~E~LW(cos(01— 02) + cos(01+ 02)) (7.9)

whereto = O~= ‘2 constowing to a small changein ‘2. Similarly to theevaluationof tsH (7.7) we can
neglectthe first termin eq. (7.9). Sincethe restof theperturbationis symmetric(0~±02) we havefor
both signsof 0~:

~H2 WEI.LtoA2(w/\/E)cos0~ (7.10)

where 0~= 02(t°). Again, if we would considerthe successivephase values 0°~as random and
independentthediffusion rate in H2 were:

2 22 ____ 22

~ 200_EILWA2IW 7112 Ta — 4Ta 2kç7=)cos 2 8Ta 2t~7~

Both relations ((7.8) and(7.11))undoubtedlyhold during sufficiently short intervalsof time while the
systemis wanderingin thecentralpart of stochasticlayer, that is while the variations~H; i~H2are
less than the width of the layer. We are interested,however,in the oppositelimiting case of a
long-range(“far”) diffusion. In this caseboth diffusion rates (DH, D2) will vary from the maximal
values (7.8), (7.11) within the centralpart of the layer down to zero at the layer edges.Moreover,
being averagedover a sufficiently long period of time both ratesmust be equal: DH = D2, sincea
substantialvariationof H is possibleonly via thevariationof H2 whereastheenergyH1 (7.2) is to
remain constantto the accuracyof the order of layerwidth. This leadsto a relation betweenthe
phases:

sin
2 t°= v2 cOs20~

— (7.12)

v = W~~1~) to2 ex~{u— to)
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This relationshowsthat for v� 1 both sequencesof phases(t°;0~)cannotbe randomsimultaneously.
It is clear, therefore,that without_a detailed_analysisof the phasecorrelationnearthe edgesof the
stochasticlayerthevalue of sin2 t°(or cos20~.)and,hence,thediffusion rateDH cannotbeevaluated.
On the other hand,any analysisof the phaserelation in the peripheralpart of the stochasticlayer
seemsto be too complicatedfor a physicist. Therefore, we have to introduce some additional
assumptionswhich seemto be, however,quite natural.

We note,first of all, that aslow diffusion in theperipheralpartof thestochasticlayerreducesboth
sin2 t°andcos20°2.The reductionfactor (RT) canbe estimatedroughly asthe ratio of thewidth of the
centralpart to thefull width of thelayer: RT ~(section6.2). A moreaccurateestimatefor RT canbe
obtainedby averagingthe ratio of theactualdiffusion rate (5.52)to the limiting one (5.46).Assuming
this ratioas R.r(s) (K — 1)2/K2 (~— ~)2 (seesection6.2) we get:

RT=JdsRT(s)=~ (7.13)

which is in a reasonableagreementwith theaboveroughestimate:RT
We take into account,further, that thephasecorrelationrelated_tothe limitation of free diffusion

acrossthe stochasticlayer diminish still more the value of sin2 t°(and/orof cos20~).Let v2 4 1
(to> 1), for example.It is plausibleto assumethat the larger meanis approximatelyrandomone(with
the factor RT, of course, i.e. cos20~ RT/2) whereasthe smaller mean is just suppressedby the
correlation.For v2 ~‘ 1 (to < 1) it will be vice versa,namely: sin2 t° R.~./2.In otherwords,we assume
that in spiteof somecorrelationpresentthephaseof thesmallerperturbation (e.g.,0°~for v2 4 1, see
also eq. (7.14)) is still partly randomin thesensethat the sum squared:

(±cos0~i)2—__.~~RTt; t—~c~

growsin proportion to the time of motion but thegrowth rateis reducedby thefactorRT< I due to a
slow diffusion in the peripheralpart of the stochasticlayer. We shall call this type of motion the
reducedstochasticityasdistinct from the limiting stochasticity(section5.4) with RT = 1. Below we
shallconsiderthis assumptionfrom anotherpoint of view.

It turns out that the Arnold diffusion can be also describedby a mapping. To constructthis
mappingwe find first the changein the unperturbedresonanceHamiltonianH

1 over ahalf-periodof
the unperturbedphaseoscillations. The simplest way to do this is to make use of the relations:
H0= H1 + H2 (7.3) andL~H0= taH (7.7), whence:

i~H~=~V�/.LA2(l/V�)(sin t°—vcos0~j. (7.14)

The perturbationt~H1dependson the two phases(t°;0~),their variation being determinedby the

relations(cf. sections4.3 and4.4):
?~=t°+T(~); ö~—0°2+toT(~). (7.15)

Here T(w) is ahalf-periodof theunperturbedphaseoscillationswhich dependson the relativeenergy
w = H1/� (section2.4). Sincethe variationof to is small (j~i— col 4 to) we can introducea new phase

= 0~/wwhich obeysthe equation:~ r°+ T(~).Hencer°— t = = constand 0°2 w(t°+ f3). We
haveexcluded,thus,oneof phases.Combiningeqs.(7.14)and (7.15)we arriveat a mapping:
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= w + —.~=A2 (ç~=)(sin t°— vcos(to(t°+ 13)))

(7.16)

which describesthe phasecorrelationduring the Arnold diffusion in thesystemunderconsideration.
This mappingresemblesthewhiskermapping(6.1) in somerespects.The most importantdistinctionis
a quasi-periodicalcharacterof theperturbationin eq. (7.16) for an irrationalto.

Employing the mapping (7.16) we may analyseagain the phasecorrelation.Since the latter is
relatedto theboundedness(by stochasticlayer)of the w variationit seemsquite plausibleto suggest
that the phasevaluesof the larger term in the first of eqs.(7.16)will be correlatedbecausejust this
term doesdeterminethe motion acrossthe stochasticlayer. To this accuracythe mapping (7.16) is
reducedto thewhisker mapping (6.1),and we canimmediately apply all the inferencesof section6
concerningthe motion acrossthe stochastic layer. In particular, the layer width is given by the
expression(seeeq. (6.8)):

Iwo; v41 (to>l)

IT (7.17)

w0=

The meanhalf-periodof phaseoscillationsin thestochasticlayercanbe foundthenfrom eq. (6.18):

I /32e\ ITo; v41Ta~1n(H~ (718)~ \ Wj ~To—ln(tov); v~ 1

1 /32eT0=~=In~,—

The meandiffusion rate which describesa long-term motion inside the stochasticlayer can be
evaluatednow from eq. (7.8) taking accountof the phaserelation (7.12): sin

2t°= v2 cos20~and the
inferenceof the reducedstochasticity,namely:

_____ v 41
sin2t°= (7.19)

~RT; v~’l.

For themeanrateof theArnold diffusion in Arnold’s examplewe get finally:

IDov2 v41
DR=.~_______

11—ln(wv)/To’ v~”1
(7.20)

D e~2RTA2fI \8IT2~2RT I IT
°~ 8T

0 2~~7 T0 exP~_ç7=

Unlike the motion across the stochasticlayer the diffusion along the layer is determinedby the
smallerperturbationterm in eq. (7.16).

Let us call the resonancealongwhosestochasticlayerthediffusion goestheguiding resonance.It
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may be called also the actual resonancesince the system is moving just within a domain of this
resonance,of its stochasticlayer,to beprecise.The otherperturbationtermsof Hamiltonian(7.4) are
relatedto the resonanceswhich we shall call driving resonances.They may be called also virtual
resonancessinceunderdifferent initial conditionssomeof themmay becomethe actual,or guiding,
resonances.

Eq. (7.20) shows that the rateof Arnold diffusion is determined,mainly, by the “strength” of the
guiding resonance,i.e. by the strengthof the perturbationresponsiblefor guiding resonance.The
diffusion rate (7.20) dependsexponentiallyon the perturbationparameter� related to the guiding
resonance.Therefore,thediffusion ratealongotherresonancesis negligible for ~s4 1 (7.1).

7.3. A moregeneralcase

Let us considernow amoregeneralproblemconcerningtheArnold diffusion. Let theHamiltonian of
amany-dimensionalsystembe:

H(I, 0) = H
0(I) + �Vgcos(m’, 0)+ eV

(7.21)

V = ~ Vm cos(m,0)

where � is small perturbationparameter;quantities I, 0, to, m are N-dimensionalvectors,and ~
standsfor thevectorof guiding resonance:m~,~r = ~ to’~= to(I’) = t9H0J8I (section3.3).We confine
ourselves,thus, to a conservativesystem,or to coupling resonances*.The Arnold diffusion in this
systemis due to the influenceof perturbationV on the phaseoscillations nearthe separatrixof a
guiding resonancedescribedby the Hamiltonian (7.21). We make the canonicaltransformationof
variablesI, 0 —~p, ci’ to introducetheso-calledorthogonalmetric (seesection3.3).Recall that it means
a specialform of the transformationmatrix ~ (3.28),namely:

g r r k

= m~ !.~2i = to1/ to /.L~j= e, (k = 3,. . . , N) (7.22)
where all vectorse’~areunit andorthogonalto thevector tor andto eachother. Besides,we choose
now e” to beorthogonalwith thenormaln’ = m

8, öto/öI to theguiding resonancesurface(in I-space,
seebelow for explanation).The vectors(7.22)determinethedirectionsof newmomenta,andareall
(exceptfor the first one) mutually orthogonalandof unit length. The vectorp.~,is orthogonalto ~2i

but generallynot to somee”. Indeed,theanglea betweenthe vectorsn’ and~ may be foundfrom
the relation

I~T~m~Jcosa = = ~ öw/öI, & = lIMg

and is notequalgenerallyto zero.It is essentialalso that a� 1112 or thependulumapproximationfor a
guiding resonancebreaksdown (Mg = ~, seesection3.3). In this casethevectors(7.22) would be no
longer independentsincethe vector ~1j being orthogonalto vector ~r might be resolvedinto the
vectorseec.

Let us explainnow thespecialoption for vectorsek. The point is that theArnold diffusion spreads
approximatelyover the intersectionof anenergysurfacewith the guidingresonancesurface.Indeed,
on the one hand,the systemkeepswithin a stochasticlayer, that is nearthe resonancesurface~

to(I) = 0. On theother hand,the total energy(H) is conservedexactly that implies an approximate

‘A particularcaseof thetime-dependentHamiltonian will be consideredin section7.5.
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conservationof the unperturbedenergy H0 as � -40. The subspaceof intersectionof the two
mentionedsurfaceswill be calledthe diffusion surface,and theplanetangentialto this surfaceatthe
point J = 1’ the diffusionplane. This (N — 2)-dimensionalplaneis built just upon the (N —2) vectors
e’~.Thesevectors determine,thus, a local spaceof the Arnold diffusion. Let us denote,in this
connection,the projection of the new momentumvector p onto the diffusion plane by q. It is a
(N — 2)-dimensionalvectorwith componentsqk (k = 3,.. . ,N).

A typical disposition of vectors (7.22) is shown in fig. 7.2 for N = 3—the minimal numberof
degreesof freedomwhentheArnold diffusion is still possible.The diffusion planedegeneratesin this
caseinto a line (one-dimensionaldiffusion).

In the new variablesit suffices for the problemunderconsiderationto keeponly the following
termsin theHamiltonian(7.21)(seesection3.3):

H(p, i/i) H0(fl + H1(p1, i/i1) + �V(p,,/‘) 23)

H1 = p~I2M~+ �Vgcos i/it; I/Mg = m’, L9W/t91 ?fl~

where theperturbationV is definedby eq. (7.21), andthe driving resonancephases(m,0) areto be
expressedin termsof thenewphases~‘ (seebelow). Without perturbation(V = 0) thequantitiesP2,q,~
are integralsof motionwhich we set to be zero. The quantityH1 is also conservedfor V = 0, which
follows immediately from H = const and P2= q~= 0 (7.23). So we have the full set of N
integralsof motion.

Underthe influenceof theperturbation(V� 0) all the integralsarevaryingsomehow.To calculate
theirvariationswe transform,first of all, thedriving resonancephases(seesection3.3):

cm=m,O— P,ci~m1~bi+tomt+13m

Cm = MgIM(m) = M5 ~ p,,JM~1 (Urn = m, tü = Itol ~ (7.24)

1 to’aw g 1 kdto g 1 t9to

Mii=Mg; ~—=1—ij~-~j~m; ~_=e~-~j~m ;
where 13m stands for some constantphases.The first representationfor cm follows from the
transformation0-~~fr,the vector v having generally real componentsas distinct from the integer
vectorm (seebelow). Thesecond(approximate)representationfor cm can bederivedif onechanges
the function 0(t) for the unperturbedone (V = 0; eq. (3.39)); Cm = Mg/M(rn) in this case.If we use,
however,the unperturbedfunction ifr(t) (seeeq. (3.38)),M2 = 1, we arriveat the secondexpression
for Cm(v), and alsoat the relation torn = Ito’i i’2 (7.24).

Now we canfind the variationof the unperturbedintegrals:

8Vp = —e-~-~= � ~ v(m) Vm 5111 Qm. (7.25)

~d
-\ 2’

m
9

Fig. 7.2. Kinematicsof theArnold diffusion for conservativesystem(7.21)with N 3. Vectord is perpendicularto theplaneof thefigure which
is tangentialto energysurfaceH

0 const.Vector nl is a projection of thenormal to the guiding resonancesurfaceonto the energysurface.
Dottedline indicatesthediffusionplane(line in this case).
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This equationholdsfor all componentsof thevectorp exceptp1 which is notanunperturbedintegral.
Insteadof p~we evaluatethevariationof integralH1. We have(cf. section4.4, eq. (4.53)):

= ci~(—~~)= � ~ v1(m)Vmci’i sinç~. (7.26)

To integrateeqs. (7.25)and (7.26)we substitute,as usual, the function i/’1(t) at the separatrix_for
that neartheseparatrixof theguiding resonance,and set If/i 2flg sin(1fr1/2) wherefig = V�VgIMg ~5

the frequencyof small phaseoscillations,andboth cu, ‘/‘~havesignsalike. We neednow to evaluate
the two integrals:

‘1= J dtsinq~rn(t); 12 J dtIfisincm(t). (7.27)

The first one is immediatelyexpressedvia the MA integral(seetheappendix):

Ii = ~ A21~j(Am)5ifl ç~
(7.28)

Am = ~ sign(~mIf’i) c~= CmiI’?+ (Umt°+ Pm

wherecZ = com(t&), and ci’? = i/ui(t°)= ±IT. To get ‘2 we keeponly that termof the integrandwhich has

themaximal modulusof the factorat ‘I/i sinceit makesthemain contributionto the integral:

2 sin(~Ifi1)sin ~Pm~ sign(~m)cos(sign(~m)(ICm I + ~)~‘i + tomt + Pm).

We get:

‘2 —sign(~m)A21~i+i(Am) cos(c~+ ~IT sign(~mIfui))

0 torn—~—jçA21~1(Am)Slfl cm = ~ Il. (7.29)
Sm g Sm

Employingthe integralsI~,‘2 we find from eqs.(7.25) and (7.26):

� . 0

tipTh—>.. v(m)Qmsincom
v1(m)v~(m)Q sinc~ (7.30)

Qrn = VmA21~p(Am)

where we have usedalso the relation tom = torI sf2. The expressionfor tip holds againfor all the
componentsexcepttip1 insteadof which tiH1 shouldbe taken.

The Arnold diffusion for system(7.21)may bedescribedalsoby a mappingsimilar to that (7.16)for
Arnold’s example.First we find thechangein phasesc~over aperiodof theunperturbedmotion. Let
T(w) denote,asusual,a half-period of oscillationsor a period of rotation for the phase‘fr’ asa
function of the dimensionlessenergy w = (H11�V,)— 1. The changein t°is tit°= T. For the phase
rotation (w >0) ti~p?= ±

2ir in dependenceof thedirectionof rotation,and this quantitymustnotbe
neglectedunless~

mis an integer.For thephaseoscillation (w <0) everydriving resonance“works”
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only during one of the two successivehalf-periods since during the other one Am <0 and its
contributionis neglegible.In this casetic,?= 0 (phasemotion is periodic)but tit°= T

1 + T2 where T1,
T2 arethe successivehalf-periodsof oscillations.GenerallyT1 � T2 owing to a changein w at every
half-period underthe influenceof somedriving resonances.In order not to complicatethe general
relationsto be derivedwe shall considerthe two limiting cases:

1) A symmetricperturbation(seesection7.2), that is all thedriving resonancesare brokenup into
pairs,both componentsof eachpair contributing equally to the variationof the integralsof motion
during both half-periodsof the phaseoscillation, respectively.This is just the casefor Arnold’s
example.Then At°= T, that is theperturbationis of theperiod T.

2) The influenceof driving resonancesduring one half-periodof the phaseoscillation is much
strongerthanduring theotherone. Then T1 1’2 that may be consideredas equivalentto the former
relationtit° T with the frequencies~m twice asmuch.

Underthe aboverestrictionsthechangein a resonancephasemay be written in the form:
0

= tom I + Lm
where Cm is someconstant,for example,Cm = ±2ITCmfor rotation.Employingthe relation (7.30)for
tiH1 we arriveat a mappingdescribingtheArnold diffusion in a many-dimensionalsystem:

WmS~fl(~

co~+tomT(~)+Cm (7.31)

Wm = pi(m)v2(m)Qm

Assumelike in section7.2 that oneof the terms in this sum is muchlargerthantheothers.Owing to
an exponentialdependenceof the quantities Wm on the parametersa substantialdifferencein their
valuesseemsto be atypical case.The dynamicsof themotion acrossthestochasticlayerof a guiding
resonance,that is thevariationof w, is determinedapproximatelyjust by this largesttermwhereasthe
other termsbring aboutthe Arnold diffusion over the layer (cf. section7.2). In other words, the
diffusion is driven really by all the driving resonancesexceptthe strongestone which is mostly
responsiblefor the formation of the stochasticlayeras well asfor its properties(width, KS-entropy
etc.). Therefore,it would be moreappropriate,perhaps,to retainthe term driving resonancefor all
the resonancesbut the strongestone (and theguiding resonance,of course)which we shall call the
layer resonance.Let us mark the quantities related to the layer resonanceby subscript L and
introducethe ratios:

Vm = Wm/WL4 1 (VL 1); rm = tom/toL; 5 = W/W~

where

w~= A WL (7.32)

is the width of stochasticlayer, and A = — toL/fig >0. Comparing the relation for tiç~= toL T+ CL

(7.31) with that for tiq,~= torn T + Cm = rm(toL T + CL) + Cm — rm CL we canexpressall phasesc~via
thephasec~whichwe preferto denoteby r:

c~rmr+bmt+dm. (7.33)
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Here bm = Cm — rm CL and dm aresomeconstants;time t is measuredin thenumberof iterationsof
themapping(7.31). Further(seeeq. (2.33)):

~L T(w) = —A ln(32/IwI) = A lnlsf — G; G = A ln(32/w0)

andwe may write mapping(7.31) in the form:

sin(rmr+bmt+dm)
(7.34)

r r+AlnI~l—G

where primeat the symbolof the sum meansthe exclusionof the largestterm(sin r). This mapping
differs from a similar one (7.16), a largernumberof termsapart, in an explicit dependenceof the
perturbationon time unlessall ~mareintegers.

Letus definethe diffusion tensoras:

= tiq1 tiqjITa. (7.35)

Here i, j = 3,. . ., N in correspondencewith the definition of vector q which is confinedto the
diffusion plane,andTa is the meanhalf-periodof thephaseoscillation insidethestochasticlayerof a
guiding resonance.According to eq. (6.18):

Talfl(~~). (7.36)

To evaluatethe meanstiq1 tiq1 we assumethe reducedstochasticityto hold for the systemunder
considerationaswe did so alreadyfor Arnold’s example(section7.2).Recallthat it meanswetakefor
grantedthat the boundednessof w (or s) variationis provided by the correlationof the phaser

relatedto the largestperturbationtermonly. As to theotherphasesthe relation

2 0 1~

Sin c~—~”~
is implied wherethe reductionfactorRT (7.13)takesaccountof a slow diffusion in theperipheralpart
of thestochasticlayer.

A newfeatureof theproblemunderconsiderationascomparedto Arnold’s example(section7.2) is
apossible_interferenceof severaldriving resonances.The interferencetermsappearin evaluatingthe
meanstiq1 tiq1 andhaveaform like:

sin(rrm + tbm + drn) sin(rrm’ + tbrn’ + dm’)

—*cos(r(rm ±rm.)+ t(bm ±bm~)+dm ±dm~).

The interferenceis importantif rm = rm. and bm = bm~for a pair of the driving resonances. In this case
theinterferingtermsshouldbesummedup beforehandand thenbetreatedasa singleterm.If rm � rm.
or bm� bm~the correspondinginterferenceterm is averagedaway for a sufficiently long time of
motion. For a small differenceIrm — rm.I a largeG in eq. (7.34)helpssinceit makesthevalueof ‘r large.
A big G impliesabig A (G —. A

2), orasmallperturbation(G — 1/e),aswell asavery narrowstochastic
layer.Yet, all this is not the casefor a small Ibm — brn’I. Besides,the quantity (bm ±bm’)/2i~ mustbe
irrationalsince t is integer.

Now the tensor(7.35) is immediatelyevaluatedfrom eqs.(7.30), andhasthe form:



B.V. Chirikov, A universalinstabilityof many-dimensionaloscillator systems 357

e2R.~.~‘ P1P1 ~ (Am)
a gm
2 2 4I~l 2

2IT�RTv1p~ 2tom Vm IITIWmI 737
TaIW’!2 ~‘ ~‘2 fig F2(

2ICm!)ex~ ~

Here I’(x) is thegammafunction,andp (ps,. . . PN) standsfor theprojectionof thevector v onto the
diffusion plane.The lastexpressionin eq. (7.37)makesuseof theasymptoticrepresentation(A.!!) for
the MA integral. The relation (7.37) holds under the condition I vmI 4 1, yet it persistsapparentlyin
orderof magnitudefor IvmI 1 as well (seesection7.6).

The tensor(7.37) is symmetric,andcanbe diagonalized,so therateof theArnolddiffusion depends
generallyon N —2 coefficients.For this, however,the sum in eq. (7.37) has to contain at leastthe
N —2 terms with linearly independentvectors p(m), or the diffusion will be confined to some
subsurfaceof thediffusion surface.The minimal numberof resonanceswhich providesthe Arnold
diffusion in a systemof thetype (7.21) is equalto 3: guiding, layer, anddriving resonances.To ensure
thediffusion over thewhole diffusion surfacetheN resonancesarerequired,thatcorrespondsto the
completesetof linearly independentvectors i’ (or m, including &).

7.4. Nekhoroshev’stheory

The estimatesfor the rateof theArnold diffusion derivedin theprecedingsectionarenot rigorous,
of course,if only becausewe havefailed to analyzethedynamicsof the resonancephasesandhad to
assumesome suppositionsinstead. A rigorous estimatefrom above for the rate of the Arnold
diffusion has been given by Nekhoroshev[24]. His theory is basedupon the separationof the
perturbationinto resonantand non-resonantparts,and “killing” the latter by meansof successive
canonicaltransformationsof variables.Below we aregoing to explainthebasicideasof this theoryas
well as to representits main results.

Let us start againfrom Hamiltonian of the type (7.21) where the termswith amplitudes Vg (not
necessarilya singleoneasin theprecedingsection)describethe resonantperturbation,and thosewith
Vm do so for thenon-resonantone.Theresonanttermsaredefinedby thecondition:

Im~,toI<n (7.38)

where ,~is a small quantity to beoptimized. Note that for asufficiently small ,~themaximal number
of linearlyindependentvectorsm’ is equalto N — 1. If ~ = 0 (a multiple resonance,seesection3.3) all
vectors& belongto theplanetangentialto an energysurfaceat somepoint I = 10. No matterwhat
interactionmay occur betweenthe resonancesin questionthe systemneverleavesthis planeunder
the influenceof theseresonances.For a steepunperturbedHamiltonianH0 any planetangentialto the
energysurfacecannotintersectthe latter(see section3.3).Therefore,the resonantperturbationcan
resultonly in aboundedandsmall changein theunperturbedintegralsno matterhow long thetime of
motion is, i.e. ftiI~<(tiI)~—? where the constantp < 1 dependson the geometryof the energy
surface(7.39). This resultpersistsunderasufficiently small ~ in eq. (7.38), theallowedchange(Al),7
growswith ,~though.Thus, the resonantperturbationprovesto be not dangerousfor the stability of
motion unlesstheunperturbedmotion is quasi-isochronous,or the Hamiltonianis not steep.

The non-resonantperturbationterms (Im, wi ~ ,~)can be “killed”, in principle, by a canonical
changeof variablesas this is donein theKAM theory(section4.6).However,thepresentproblemis a
different and moredifficult one. In the KAM theory thevector to is chosenin the specialway that
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permitsto “kill” theperturbationcompletely,yet the inferenceof theeternalstability of motionholds
only for special initial conditions.Nekhoroshevrepudiatesthe latter restriction,and investigatesthe
motion for arbitrary initial conditionsbut in this casethe vector to doesnot generallysatisfy the
conditionsof the KAM theory. Consequentlythe non-resonantperturbationdefies to be “killed”
completelyevenunderan arbitrarily small perturbation(e-*0), andone(Nekhoroshev)succeedsonly
in estimatingthe effect of the perturbationfrom above.This setsan upper limit for the rateof the
Arnold diffusion.

It seems,at thefirst glance,that theconditionIm, wJ> q for non-resonanttermsis just oneweneed
to ensurethe convergenceof the perturbationseries.However,the vector to is no longer constant
nowas it wasin theKAM theory.Although the resonanttermsleadonly to aboundedvariationof the
vector I, ashas beenexplainedabove,they bring about the phaseoscillationsof vector to. These
oscillationsare generallyin a resonancewith someperturbationharmonics(m,0) which are called
“non-resonant”only provisionally,in thesensethat theyare off any resonancefor theunperturbed,
constantfrequenciesto. The condition Im, wI> i~ permits, therefore,only to bound theamplitudeof
the termsresponsiblefor the resonancesof “non-resonant”perturbationwith thephaseoscillations.
The strengthof theseresonancesgrowsas~ decreases,so we havethe contradictorytrendsin the
behaviorof resonantandnon-resonantcomponentsof theperturbationin respectto thevariationof
~. Optimizing somehowthevalueof ~ Nekhoroshevarrivesat an asymptotic(�—*0) estimatefor the
meanrate of the instability. Here we representhis estimate in a simplified form (for rigorous
formulationseeref. [24})*:

Ij~IwI jIf �~~P exp(—!I�°)

~ p=.~. (7.39)

~ ~N(N — 1); a(Ho)~ 1.

The equalityin the two lastexpressionsis reachedfor, andonly for, aquasi-convexH0 (seesection
3.3). Justasthe relation(7.37)for thediffusion rate,Nekhoroshev’sestimatepredictsan exponential
dependenceof the instability rate on theperturbationparameter�. However,it leapsto theeyethat
the power q in eq. (7.39) is rathersmall: q(3)= 1/29.5 evenfor the minimal N = 3. At largerN the
quantity q(N) — !13N

2 dropsrapidly. Meanwhile, in the relation (7.37)the correspondingpower,at
least, at the first glance, q = ~ (fig — \/�), and doesnot dependon N at all. Let us considerthis
questionin moredetail.

It is clear, first of all, that the exponentin eq. (7.37) dependsdrastically on the quantities
tom = m,~r But this is just thosesmall denominatorswhich spoil the convergenceof perturbation
series(section4.6). It is well known that thevalueof thesedenominatorsrapidly dropsas rn I grows
(section4.6).On theotherhand,theamplitudeof perturbationharmonicsVm alsodecreaseswith Irn
Let theperturbationV(0) be ananalyticalfunctionto which theestimate(4.63)is applicable.Owing to
the inequalities(4.77) we may employ the quantity Im I insteadof S that is more convenientin the
presentcase.Hence,we canusetheestimate(4.75)with k> N — 1 (4.80)havingexchangedalso Sfor
ml.

As follows from eq. (7.24)C
m = Mg/M(m) — Im ie~wheretheconstantCg — I/Im~Iis determinedby the

guiding resonance.On theother hand,employingthe representationof Cm via i~ (seeeq. (7.24)) we

‘In the last paper[141]Nekhoroshevhasannouncedan improvedestimatewith q(N)= 1/(3C+ N +4).
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find that z~— I excepti’
2 which is muchsmaller.The reasonfor i’2 to bedistinguishedfrom theother

componentsof thevector ii is relatedsimply to the fact that just thedriving resonanceswith a small
v2 maketheprincipal contributionto theArnold diffusion since tom = Ito’1p2 (seeeq. (7.24)). Finally,
estimatingthegammafunctionaccordingto Stirling’s formulawe may representeq. (7.37) in orderof
magnitudeas:

—lnD—fl~jrnJk+4IrnICgin(uIgF~mJ’~’)—(l+3k)lnlml—6lnflg+ U;

(7.40)

F = -~exp(o/2C5).

Here U is somenearly constantquantity including alsoa doubly logarithmicdependenceon Im I and
fig due to eq. (7.36). For agiven perturbationV� — fig the function(7.40)hastheminimum at certain
I mj = m0relatedto themaximal diffusion rate.As we shall seea bit later thequantitym0 increasesas
fig -*0. Hencefor a sufficiently small fl5 (large m0) we can keepin the right-handsideof eq. (7.40)the
two first termsonly. Differentiatingeq. (7.40)with respectto ImI we arriveat theequationfor m0:

y in y = bk e’~ y= Fflg(emo)~
1 b = ~r exp(u/2Cg). (7.41)

If b = 1 anobvioussolutionto thisequationwerey = e”. For b — 1 we arelooking for the solutionof
the form y = ~ Substitutingit into eq. (7.41) and taking logarithmwe find:

y = b~’~ ek = (I )k/(k+I) e2~+D) (7.42)

subjectto thecondition(In b)/k o/2kCg4 1. Whence:

1 1/(k+I)

flI/(k+l) (7.43)

We seethat m
0 increases,indeed,asfig goesdown.Therefore,by substitutionof m0 into eq.(7.40) we

can againkeeponly the two first termsasfig —*0. Subsequentto someelementarymanipulationswith
the above relations the asymptotic (fig —*0) estimatefor the rate of the Arnold diffusion can be
reducedto the form [43]:

1I(k-I-1)

D — D~exp(—Afi’~~~);A = 4Cg(4~g~Ik+1) In b (7.44)

where D~is somequantity of the properdimensionswhich may be consideredas a constantto the
accuracyof the estimate.For a large u ~‘ 2C~andfor k ~! thequantity A 2o-. However,for o

the expressionfor A in eq. (7.44)makesno senseany longerbecauseIn b <0. This is related,first of
all, to theviolation of theapproximateeq. (A. 11) employedabove.Indeed,accordingto theAppendix
the accuracyof eq. (A.ll) —y

2=(m/A)2,hence,eq. (A.ll) holds for y41. In the notationsof this
section:

_2ICmIfi~~~lk+I. — IT 745
~‘ ~mI — g m

1 ,

702b1!(k+I)

whereYo = y(mo),i.e. atthemaximumof thediffusion rate.Thus, wecanapplytheestimate(7.44) for
b1/(k-i-1) ~ 1 or for o ~ 2Cg(k + 1), only. As o~—*0, and, in particular,for r .= 0, which correspondsto a
smoothperturbation,we canemploy eqs.(7.37)and(7.40)in the region ImI < m

0(y < Yo) only, that is
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somewhatbelow themaximumof thediffusion rate.If yIy~= (Im IImo)~4 1 the factorA in eq. (7.44)
canbe representedin the form:

1I(k+I)

A2~(~~) (l+~lnb)~1~. (7.46)
7 2Cg IT 7

The last fairly simple expressionis relatedto thecasek ~‘ 1.

Another,moreseriousreasonfor ~yto beboundedis relatedto the limitation of small denominators
= (m, to) in Nekhoroshev’stheory. Indeed, if rn, toJ < ~ the correspondingperturbation term

becomesresonantaccordingto Nekhoroshevthat implies a strictly boundedmotion due to this term:
IAII <(AI),7. If thesize of this boundeddomain is muchlessthanthe width of theguidingresonance
layer((AI)~4 (AI)~)the correspondingdriving resonance(or resonances)will only slightly distort the
unperturbedphaseoscillationswithout any long-rangediffusion (cf. the effect of a multiple resonance
discussedin section3.3). So the lower limit for tom, or the upperlimit for ml of a driving resonance
can be assumedas determinedroughly by the condition (AI),7 — (tiI)~.For a quasi-convexHamil-
tonian (section3.3) the size(AI)~is proportionalto theanglepm betweenthevectorm and theplane
orthogonalto the vector r. This anglecan be found from the relation: m, r = torn rn I Ito’i ~

Similarly, the width (AI)~is proportional to the angle swing ~ of the vector to due to phase
oscillationsat theguidingresonancewhere (seeeq. (3.36)):

— (Ato)?/Ito’P fig/Im~IIto’~I.
Hencetheabovecondition (Al),, — (AI)~may be written also in the form:

~g//3rn— mIflg/I&~tom— ‘I’ — 1 (7.47)

wherewe haveusedeq. (7.45)and theestimateICm I — rn I/Imi (seeabove).
Estimate (7.44) for the rate of the Arnold diffusion in a many-dimensionalsystemis similar in

functionaldependenceon theperturbationparameter� to that due to Nekhoroshev(7.39),thepower
index q in eq. (7.44)dependingnow on thenumberof degreesof freedom:

q(N) 1/2N

sincefl5 — V� (cf. eq. (7.39)). We havesethere k N — 1 insteadof k> N — I (seeabove)because

theconsiderationin section4.6 showsthat it sufficesfor k to exceed(N — 1) only slightly.

7.5. Anothermodel

In this sectionwe shall considerasimple model closeto Arnold’s example.TheArnold diffusion in
this modelwasstudiedat length both numericallyand analytically[41].We havealreadytreatedparts
of this model in previoussections.Let theunperturbedsystembedescribedby theHamiltonian(3.41).
This systemconsistsof the two identical nonlinearoscillatorscoupledby a linear term —~&. This
particularmodel describesqualitatively somerealphysicalsystemsof practicalinterest,for example,
themotion of achargedparticlein the focusingmagneticfield of an acceleratoror a storagering. A
most importantdifferenceof the model from real systemsis a large nonlinearityof the oscillators
(nonlinearityparametera = ~(2.28)). This is done to ~imp1ifythe analytical analysisof the Arnold
diffusion.

We choosethe initial conditionsof the motion nearthe main coupling resonanceof the system
(3.4!): w~= w~= to0. In thenewvariables(p; c,) (seesection3.3, eqs.(3.43)and around):
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11=I0+P1+P2; I2=IO~PI+P2; I0=~(J1+I2)=const (748)

O1=~(*1+*2); 02=~(*2—*1).

The Hamiltonian(3.41)may be written approximatelyin the form:

H,. H0(10)+ 2toop2+ H1(p1, c,i), H1 ~rP~— cos,/,~ (7.49)

where H0(10) is someconstant,anda denotestheoscillation amplitudewhich we assumeto be about
the samefor both oscillatorsdue to the resonancecondition to1 to2 and ~ 4 1; /3 0.8472 (section
2.3).

Now we introducean externalperturbationof the two frequenciespreciselyaswasdonein section
4.1 for j.t = 0 (cf. eq. (4.2)):

H(p, c,, t) = H,.(p, c,) + V(p, Ifu, t) 50)

V = —~af0(cos(~(c,1+ ‘fr2) — r÷)+ cos(~(c,1+ c,2) —

where we have retained the low frequency terms only and changed01 for i/li, c,2 (7.48); r~=

Q±~t+To~r.

Let the initial conditionsbe closeto theseparatrixof couplingresonanceto = to. First we evaluate
thechangesin both H andH1 over a period of theunperturbedmotion neartheseparatrixemploying
the techniqueof sections4.4; 7.2; 7.3. We choosethe perturbationfrequenciesas follows:

fi+-too=wo-fi~na(8w)>0. (7.5!)

This correspondsto a symmetric disposition of the two driving resonancesin respectto the initial
position of the system in the frequencyplane(see fig. 4.2). Then, in dependenceof the sign of

211,. sin(if/1/2) (or that of c,~)eitherone or theotherdriving resonancefor which A > 0 “works”;
fi~.= pv’i is the frequencyof small phaseoscillations (3.45). Let t°be, as usual, the time when

= ±IT, and *2 = 2to0t+ x (seeeq. (7.49)). We have:

H = 8V/at —~afowosind*1 ~ t (öto) + — r~)
= ~af0toosin(~I*iI— t (ôto)±~X~ rot)

~afowocos(~I*iI— ~ir— (t — t°)(8w))sin(~IT— t°(8w)± ~ r~)

H1 = —i/i, aVIac,1-~af0fi,.cos(l/i, i t(8w)+~~—r~)
= ~af0fi,.cos(I*1I — ir — (t — t°)(8w))cos(1r— t°(ôto)± ~ r~).

Here thearrowsindicatethat only themain terms,which maketheprincipalcontributionto the MA
integral to be evaluated,are retained.The alternatingsignscoincide with those of i/u’ (or i/u1) and
(8w) 4 to0 is assumedso that 11+ fi_ to0. Applying the MA integralwe get:

AH = ~ °~°A,(A)cos ~,, AH1 = _~~2A2(A) cosc (7.52)

A=8w/11,.; ct°(8w)~x±io~.

We seethat both changes,AH andAH,, dependon thesamephasec. Hence,as long asthephaseIf,,
is rotating the sign in eq. (7.52)for AH remainsunchanged,and the variationof H is boundedand
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small due to the confinementof H, within the stochasticlayer. The Arnold diffusion is possible,
therefore,in thecaseof the i/u, oscillation only.

Since the changeAH1 dependson the single phasec the mapping which describesthe motion
inside the stochasticlayer of the coupling resonanceunderconsiderationwill be almost identical to
themapping(6.9) in section6.2 for the simplestexampleof thedynamicsinsidethe stochasticlayer.
In any event,we canapplyliterally all the techniqueof section4.4 to get:

s=s—(cosc)/A; ~=c—AlnI.~I+G±ro (7.53)

where s = w/w,; w = (2H1/j~a
2)— 1; G = A ln(32/w~)and To is relatedto theconstantsx’ ~ The width

w~of thestochasticlayercanbeevaluatedemployingeqs.(6.8); (7.52),andis equalfor A ~ 1 to:

w~= 4irj~~~2~ (7.54)

It is instructiveto comparethe mapping(7.53)with that in Arnold’s example(7.16) or with a more
generalmapping(7.34)for a conservativesystem.In bothlattercasestheminimal numberof phasesin
themappingequalstwo that correspondsto threeresonancesaltoghether(seetheendof section7.3).
In the presentcasethe motion is determinedby the single phase(7.53), yet the total numberof
resonancesis still three.The presenceof the two driving resonancesis important. With a single
driving resonancenot only thediffusion ratedropsdrasticallysincefor one sign of i/u, theparameter
A <0 but alsoany long-rangediffusion becomesimpossibleat all. This is relatedto the fact that the
function A~(A) changessign if A doesso (seeeq. (A.7) in the appendix),hence,thevariationof AH
goesin proportion to that of AH

1 even in the caseof the if’1 oscillation (seeeq. (7.52)), and both
quantitiesH, H, remainstrictly bounded.

A principaldistinctionof themapping(7.53)from thewhiskermapping(6.9)similar to the formerin
appearanceis that the presentmapping (7.53) describes,nevertheless,a many-dimensionalsystem
(7.50) in which the Arnold diffusion is possible.The variation of the total energyfor this systemis
determinedby the sum (seeeq. (7.52)):

H(t) = H(0) + A,(A) ~ (~cosc~) (7.55)

where successivephasevaluesc~aregiven by the mapping(7.53). If we assumethat, takingaccount
of sign alternation in eq. (7.55), i.e. in the caseof the i/u, oscillationsat the guiding resonance,the
reducedstochasticity(seesection7.2) takesplacethenthediffusion ratein H is immediatelyderived
from eq. (7.55)and is given for A ~ 1 by theexpression:

D — (AH)
2 — (irafowo)2 RT -,rA 7 56T Ta — 11 L(S)e . ( . )

Here RT is the reductionfactor(7.13),andL(s) standsfor the logarithmwhich determinesthe mean
periodof motion in the stochasticlayer(seeeq. (6.18)):

L(s) = ln(~~)= + In(~Is~ZA2). (7.57)

In what follows we shall needalso the diffusion rate acrossthe stochasticlayer, i.e. that in H,,
sincewe are interested,mainly, in a long-rangeArnold diffusion when the time of motion is much
longer thanthe time interval requiredfor thediffusion to crossall the stochasticlayer.ComparingH
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andH1 in eqs.(7.52)we get(A ~ 1):

= (AH1)
2ITa = D~(8w/too)2 (7.58)

that is thediffusion acrossthe layeris, unfortunately,muchslowerthanthat alongthe layerassoonas
(8w)4 to

0. Theenergyhalf-width for thepart s of thestochasticlayeris equalto: 8H1 = sw,~ta
2/2.Let

us introducethequantity:
3 3/2

2 D,t — /3 RT /~ 759
S(5H)2 452L(5)(~~

wheret is the time of motion. For 5~~ 1 thediffusion hasenoughtime to “fill up” thestochasticlayer
and to spreadout far along the layer. If, however,S~~ I a finite width of the stochasticlayer is
insignificant, andwe havea short-range(“near”), or local diffusion.

7.6. Numerical experiments

The simplestnumericalexperimentswerecarried outwith themapping(7.53)which approximately
describesthe Arnold diffusion in system (7.50). As was explained in the preceding section the
diffusion ratedependson the behaviorof the sum ~(±cosci) (7.55). A sequenceof phasesci is
determinedby the mapping (7.53), hence,the sum ~ cosci is bounded.The numericalexperiments
havebeenintended,thus, to find out the influenceof sign alternation,or equivalently,of the phase
shift by ir, on the phasedynamics.That phaseshift cannotaffect, of course, the reduction of the
diffusion rateat theedgesof thestochasticlayer(factorRT), yet the shift may destroysuchspecific
phasecorrelationswhich result in astrict boundednessof the sum E cosci. Therefore,the quantity:

RE = ~ (* (±cosci)) (7.60)

was computedin numericalexperiments.A typical time of motion for onetrajectoryof the system
(7.53) was t = 106 iterations. The meanvalue of RE (7.60) was calculatedover 10 sectionsof a
trajectorywith n = !0~.The valuesobtainedhappenedto bewithin the interval (0.25—1.09). The mean
valueoverall (9) trajectories

(RE)~—0.52. (7.61)

Within (fairly large)fluctuationsno dependenceon the mappingparametersA = 3—9 andG = 9—99was
observed.Thevalue (7.61)is closeto theexpectedone (RT ~, eq.(7.13)).

In the other seriesof experimentsthe mapping (7.34) in the simplest caseof the two phases
(r; c = rr + bt + d) was employed.Recall that Arnold’s examplemay be reducedto preciselythat
mapping(7.16).The dependenceof thequantities

RE = .~. (~sin i~)2; R~~ (~sin ci) (7.62)

on v was studiedunderthesameconditionsasin thepreviousseriesof experiments.The resultsare
presentedin table7.1 wherethe valuesof RE, R~aregiven averagedover several(—10) trajectories
for everyvalueof v. Themapping(7.34)hasalreadyquitea lot of parameters,soany systematicstudy
of their influencehasnot been done. However,it was observedthat the resultsare sensitiveto the
valueof G. For G ~ 10 the big fluctuationsof RE, R~beganapparentlydue to thecorrelationbetween
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Table 7.1

v 0.11 0.33 0.5 1
R~ 0.427 0.233 0.169 0.130
RE 0.00712 0.0233 0.0388 0.137

thephases‘r andc (seesection7.3).Any significantdependenceon theother parametershasnotbeen
observed.

Datain table 7.1clearly indicatethedifferencein thevaluesRE4 R~up to v — 1. This confirmsthe
reducedstochasticity assumptionacceptedin sections 7.2, 7.3 and 7.5 as to the fact that the
correlationsaresignificantonly for thephaseof the largesttermin thesum of eq. (7.34).Forv 4 1 the
value of R~for the “free” phasec is closeto the value (7.6!) obtainedfrom a different kind of
experiment.A discrepancybetweenthem is certainlywithin the big fluctuations.The main origin of
the latter is a prolonged“sticking” of the trajectorysomewherein theperipheralpartof thestochastic
layer (cf. section5.1).

Most thoroughnumerical experimentsrelatedto the Arnold diffusion were carried out with the
model describedin section7.5. The preliminary results are presentedin ref. [41]. A detailed
descriptionof thesestudieswill be given in a separatepaperto appear[411.Below we aregoing to
considersomeof theseresultsrelatedto themechanismof theArnold diffusion.

The model parameterschosen for a series of numerical experimentswere as follows. The
perturbationperiods(7.50): T+ = 25; T_ = 29 time units of thesystemin question.SinceT~areinteger
the perturbation is of the period 25 x 29=725. This permitted to tabulatein advancethe time
dependenceof the perturbationthat materially cut down the computation time. The perturbation
frequencies:11+ = 0.2513; fL = 0.2167. The initial conditions were takenfor a systemto be about
half-way betweenthe two driving resonances(seefig. 4.2). That is the frequencyto

0 (11+ +114/2=

0.234 which correspondsto the oscillation amplitude a 0.27, the detunebeing (6w) 0.0173. The
initial conditionswerechosen,further, in sucha way to put the systeminsidethe stochasticlayerof
the coupling resonance,namely: if’, = 0, — 02 ir (7.49), that means the out-of-phaseoscillations.
Unlike the preliminary experimentsavery closedispositionof thedriving resonances(small detune
6w) was acceptedto advanceinto the region of a smaller perturbation(f~~p.). Both perturbation
parametersto, p. were decreasedin proportion to keep the ratio foIp. = 0.01 constant.Sucha small
ratio was acceptednot only to suppressthe effectsof higher approximations(seesection6.1) but,
mainly, to shift theoverlapof the resonancesto as largep. aspossible.

According to the datain section4.1 (eq. (4.7)) the critical amplitudeof the force at which the
overlap of the two driving resonancesstarts is equal to fE 2.55x !0~.For fo/p. = 0.01 it leads
to theconditionp. <2.55x iO~,or I/Vp.> 20, to get rid of theoverlap.A morestringentconditionto
meet is related to the overlap of the three resonancesincluding the coupling one (section4.1).
Applying the relation (4.10) we get: i/Vp. >62. This condition, however, takes accountof the
unperturbedresonancewidth. For thetwo driving resonancesa similar condition would leadto the
critical amplitudeIT 5.76x 10~(4.7) and, respectively,to theunequality: i/Vp. > 13. If we assume
that thecorrectionfactordue to the resonancesof higherharmonicsis thesamein both cases,i.e. for
the overlapof both 3 and2 resonances,theaboveborderwill drawup to 1/Vp.>95.

The main quantity to be measuredwas the diffusion rate in the energy.The techniquefor its
measurementis describedin section4.1. The dependenceof the diffusion rate on the coupling
parameterI/Vp. aswell assomeotherauxiliary quantitiesare presentedin table 7.2. Thedatafor
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every value of p. wereobtained from a single trajectoryover the time of motion t = 10~exceptthe
casesmarkedby asteriskfor which the meanvalues over a numberof trajectoriesaregiven, those
numbersbeingindicatedin bracketsnext to the asterisk.

The basic problem in that sort of experimentis the reliability of the data obtained,that is an
effective exclusionof various side processessuch asthe boundedenergyoscillations,computation
errorsandthe like. Checkingtheresultswascarriedout in differentways. First, thediffusion ratewas
computedfor the two averagingintervals of time (D4, D5) which differ by an order of magnitudeas
describedin section 4.1. An approximateequality D4= D5 indicates that the motion is really
diffusionlike. If, however,D4 ~ D5 someprocessesof a different natureare obviously at hand.The
datain table7.2 showthat up to 1/Vp. 200 bothdiffusion ratesarefairly close,so we haveacertain
diffusion process,indeed.It is worth noting, however,that even in this regionD4> D5 always that
indicatesacertain,insignificant though,contributionof somenon-diffusionprocesses. It will be more
correct, therefore, to take D5 = DE as the experimentaldiffusion rate. For 1/Vp.> 200 both rates

Table 7.2
Arnold diffusion

I -lgD~ R4

\/~ —lgD, F,1 4, R~ RN

23.93 11.77 16.1 411 0.173
s(ll) 11.00 83.5 0.110 0.04

43.93 12.25 103 171 1.179
12.49 1100 0.677 0.75

63.93 13.74 M5 98 0.418
13.79 115 0.372 0.79

83.93 14.04 13.6 6.4 0.438
*(11) 14.7! 42.1 0.372 1.20

103.93 15.32 12.9 46.5 0.637
15.52 16.4 0.407 1.48

123.93 16.44 9.1 0.307
16.47 20.9 0.287 1.07

143.93 17.06 8.5 0.440
*(6) 17.26 8.5 27.5 0.278 0.95

163.93 17.72 8.0 22 0.532
*(l1) 17.97 21.7 0.305 0.88

183.93 18.44 3.0 18 0.0544
18.83 17.4 0.224 0.50

203.93 18.69 1.7 155 1.577
18.97 40.3 0.828 1.35

223.93 19.01 13 3.788
19.59 — 0.997 1.13

243.93 19.25 10.72
20.10 — 1.507 1.13

263.93 19.28 48.43
20.58 -— 2.406 1.l6

283.93 19.25 243.3
21.28 — 8.5 2.268 0.67

303.93 19.46 701.2
21.21 — 12.3l 2.18

323.93 19.58 2421
21.9! — 6.5 11.22 1.15
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disagreea lot, actuallyD4 ceasesto decreasewith p. and is determinedapparentlyby thecomputation
errors. The rate D5 is less sensitiveto the errors due to a better averaging,yet under the lack of
checkingany inferencesabout thenatureof the diffusion in this regionare unreliableand, at least,
preliminary.

The secondcheckingmethodemployedthe“switching-off” oneof the two driving resonances.The
ratio of thediffusion ratefor the two driving resonancesto thedoubleratefor one resonanceis also
given in table 7.2 (quantity F21) for both D4, D5, respectively.The fact that always F21 ~‘ I (this is
especiallytrue for D5) indicatessome highly specific mechanismof the diffusion which requires
necessarilythe two driving resonances.These raise our confidence in the interpretationof the
experimentaldataas the Arnold diffusion the theory of which naturally explainsalso this specific
peculiarityof themotion.

In table7.2 onemoreauxiliaryquantity6, (7.59) is given. Roughlyspeaking,it showsby how many
times therangeof thefree diffusion would exceedduring time t thewidth of thestochasticlayerif the
latter did not confine it. The valuesof 6, in table 7.2 are calculatedfor t = 5 x l0~which roughly
correspondsto the meantime of diffusion accordingto theparticularprocedureof measurementfor
thediffusion rate (seesection4.1).As a width of thestochasticlayerthewidth of its centralpart has
beentaken(s = ~)sincein the peripheralpartof the layer thediffusion rate is alreadyconsiderably
slower.We seethat, at least,in the region up to I/Vp. 200 the quantity 6, ~ 1, so it is really the
caseof along-rangeArnolddiffusionwearejustinterestedin. Notethat6, variesroughlyin proportionto
F21 (for D5). Thisrelatedto thefact thatthe“switching-off” oneof thedriving resonancesinfluencesthe
diffusion ratethe strongerthe longeris the rangeof diffusion sincein a short-rangediffusion the two
driving resonanceshaveno advantageas comparedto asingleone.

Still anothercheckingmethodwasbaseduponthemeasurementofthediffusionratein dependenceon
the initial conditionsof motion. A distinctive featureof theArnold diffusion is the localizationof the
diffusion within the narrowstochasticlayers.Usually, the initial conditionswere takenin the form:
P, = P2= 0;X1 = —X2 = a (theout-of-phaseoscillations,seesection7.5andeq. (3.41)).Thiscorresponds
to i/Il = ir, that is to theunstableequilibriumat thecoupling resonance.If we startedwith the in-phase
oscillationinstead(X, = X2) thesystemwerein thestablecenterof thecouplingresonance.Togetonthe
separatrixsomedetunein frequency(amplitude)betweenthe two oscillatorsis necessary.Let us set:

X1=a+d; X2=a—d. (7.63)

In fig. 7.3 an exampleof the dependenceof diffusion rate on the initial conditions is given for

.00_Go .6o~o d.o~

Fig. 7.3. Rateof theArnold diffusion versusinitial conditionsfor system(7.50): x — valuesof —Ig 1)4; I—the samefor —Ig 1)~i/V~= 143.93.
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I/Vp. = 143.93.A stochasticlayerof thewidth AdE 1.8 x io~with thecenterat dE 0.65x l02 is
clearlyseen.On theoutersideof the layerthediffusion rateD5 dropsby 4 ordersof magnitude,and
the valuesD4, D5 differ by 2 orders that indicatesa negligible backgroundto the Arnold diffusion.
The backgroundis larger by an order of magnitudeon the inner side, yet it is still negligible as
comparedto thediffusion inside the layer. At somedistanceon both sidesof the layerthediffusion
rate growsanddependson d in a complicatedmanner.The valuesD4, D5 differ there,at least,by an
orderof magnitudethat indicatesa confinementof thediffusion. In all likelihood, the increase,mainly,
of .04 is relatedto someresonancesoutsidethestochasticlayer.

The shift d (7.63) in the oscillation amplitude is relatedto the frequency:w,~2= to0±/3d (seeeq.
(2.26)). Employingeq. (3.45)for thewidth of theseparatrixwe canpredict the theoreticalpositionof
the layercenter:

dT=V~=0.70x10_2; AdT=~w,dT=l.38x iO~. (7.64)

The theoreticalrelationfor thewidth of the layer(AdT) is derivedfrom eq. (7.49)for H, (at i/u’ = 0) via
the quantity w, (7.54)(cf. section6.4). The numericalvaluesaregiven for 1/Vp. = 143.93.The layer
turnsout to be shifted somewhatinsidethe resonance(dE/dT 0.93)apparentlydue to a distortion of
the unperturbedseparatrixby the driving resonances.The measuredwidth of the layeralso agrees
quite well with theexpectedone:AdE/AdT 1.30. Thus,thecheckingby the initial conditionsconfirms
also that we do observetheArnolddiffusion.

In the two lastcolumnsof table 7.2 the main resultsof thenumericalexperimentson theArnold
diffusion aregiven. The quantityR wascalculatedby comparisonof the experimentalvaluesfor the
diffusion rate(D4 or D~)with the theoreticalrelation (7.56), in which we substitutedthevalue s = 1

sinceduring asufficiently longtimeinterval thediffusion spreadoverthewhole stochasticlayer. The
dependenceof R versus1/Vp. is plotted also in fig. 7.4. The two different regionswith theborderat
I/Vp. 200 betweenthem are clearly seen in the figure. For 1/Vp.<200 the quantity R remains
approximatelyconstantexceptthe two leftmostpointsaffectedundoubtedlyby the resonanceoverlap
(seeabove).The remaining7 points leadto themeanvalues:

(R5) = 0.321; (R4) = 0.474 (7.65)

to be comparedwith the valuesRE = 0.52 (7.61) from themapping (7.53).Owing to largefluctuations
of R it is difficult to judge if thereis any other origin for the discrepancy.In the region under
consideration(63.93~ I/Vp.~ 183.93) the values of R5 differ less than by a factor 2 whereasthe
diffusion ratedropsover this regionmore thanby 5 ordersof magnitude!We can regard,therefore,
that the theory satisfactorilydescribestheArnold diffusion in this particularregion. It is important
that the theorydoesnot contain any arbitraryparametersto be fitted; themeanvalue of R5 (7.65) is
closeto theexpectedRT = 0.33 (7.13).

Apart from the meandiffusion rate theenergydistribution was studiedin the following way. For
eachof 10 trajectorieswith_the samep. and the time of motion t = I0~but with different initial
conditions the 100 meansH~over successiveintervals At= I0~as well as 99 differencesAH =

H1÷1— H, characterizingthe changein energyover eachinterval At = l0~were computed.The total
amount(990)of the quantitiesAH wasdistributedover 20 bins accordingto their AH values,and the
histogramn,(IAHI) was plottedin termsof coordinates(AH)

2 ln(n,). An exampleof the histogramis
presentedin fig. 7.5 for 1/Vp.= 83.93. At largeIAHI thedistributionfunction hastheGaussian“tail”:
ln(n

1)— —(AH)
2, yet at small IAHI asubstantialdeviationfrom theGaussiandistribution is observed.

It is naturalto attributetheGaussian“tail” of thedistributionfunctionto themost rapiddiffusion in
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Fig. 7.4. Rateof theArnold diffusion,comparisonwith theory: * -R5 X - R40-RN.

the centralpart of thestochastic_layerwhereasaslow diffusion in the peripheralpart increasesthe
distribution functionat small AHI. If so, the diffusion ratefor the “tail” mustbe describedby the
theoreticalrelation (7.56)with R

t’~’ 1 ands ~. From thedistribution in fig. 7.5 we can immediately
determineonly therateDr (at the “tail”). If we assumethat Dr/D

4 Dr/D5 therateDr canbe
also recalculated.We get: Rr = 0.937, that is very closeto unity, indeed.It shouldbe mentioned,
however,that thesamerecalculationfor i/Vp.= 163.93 gives an appreciablyworseagreementwith
the theory:.Rr = 0.463.

We now turn backto fig. 7.4 andconsidertheregion of small p.. For i/Vp.> 200 the theoretical

Pi~(n1)

Fig. 7.5. Fluctuationsof the Arnold diffusion; straightline fits thedistribution “tall”, ignoringtheright-mostinterval whichis obviouslyoff the
regularityowingto apoor statistic.
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relation(7.56) is certainlyinapplicable.It is true,aswas mentionedabove,that just in this regionboth
diffusion rates(D4, D5) differ considerably,so one hassomereasonto believe that adeviationfrom
the theory is simply due to the computationerrors. However, there is another,more interesting
explanation.The point is that the theoreticalrelation(7.56)takesinto accountonly threeresonances
of the first approximation the coupling and two driving ones.Meanwhile,for a sufficiently small
perturbationthe resonancesof higher harmonicscomeinto play, and we get into the Nekhoroshev
region where the diffusion rate dropswith the perturbationsubstantiallyslower(section7.4). Let us
try to comparethe numericaldatawith the estimatesof the type (7.39)or (7.44).The estimate(7.44)
maybe representedalso in the form:

DN = D~exp(~A/p.”); ln ln(DJDN)= ln A + 2q ln(1IVp.) (7.66)

whereD~,A, q aretheunknownparametersto be fitted to thenumericaldata.It hasturnedout that
thedataon D5 do fit thedependence(7.66)notonly for 1/Vp. >200butalso,muchto our surprise,for
1/Vp.<200! The leastsquarefit gives for theparametersof eq. (7.66)(1/Vp.~ 43.93):

q = 0.178; A = 5.53; .D~= 7.5X i0~. (7.67)

The valuesof RN = DS/DN for thesevaluesof theparametersaregivenin the last column of table7.2
aswell asin fig. 7.4. Exceptthe largestperturbation(1/Vp. = 23.93)the ratio RN changesby a factor
of 4 with theroot-mean-squaredeviationof ±27per centwhereasthevariationof thediffusion rateD5
over this rangeof p. comprisesalmost 10 ordersof magnitude!Thereis nothingbut astonishmentfor
sucha simple relation (7.66) to describequite acceptablyall this enormousrange of the Arnold
diffusion. Theempiricalparameterl/q 5.60maybe comparedto thequantity2(k+ 1) = 2N (7.4S). By
the senseof parameterk the quantity N is equal to the number of basic frequencies which
combinationsdeterminethe resonancesof higher harmonics(section 4.5). In the presentcase
N =

4(toi, to
2, if,., IL.). Whence:1/q = 8 that is moreor lessclose to theexperimentalvalue.The other

two parameters(A, D~)remain, however,barely empirical. Here is a significant distinction of the
simple (and more general?)estimate(7.66) from a more complicatedand restrictedrelation (7.56)
whichgives,however,theabsoluteestimatefor the rateof theArnold diffusion.

7.7. How doestheArnold diffusion “work”?

It seemsatfirst glancethat theArnold diffusion is of no importancefor realphysicalsystemssince
it occursonly for very specialinitial conditions— insidetheexponentiallynarrowstochasticlayers.On
theotherhand,the full setof thoselayers is everywheredensein the phasespace.Subjectto such
controversialconditions the problemof the dynamicalmotion becomesactuallyimpropersinceone
cannotresolvewhere a real systemis in fact,whetherit is in a stability domain or in a stochastic
layer. A method for the regularizationof this problemis describedin ref. [43].It consistsof the
introductionof someadditional, or external(in respectto the system)diffusion with the rate D0—~0
independentof initial conditions.Sucha diffusion is alwayspresentin anyreal system.For instance,
in thecaseof achargedparticlemoving in acceleratorsit is theCoulombscatteringin the residualgas.
Taking accountof the external diffusion the exactinitial conditionsbecomeinsignificant sincethe
externaldiffusion brings the systeminto oneof thestochasticlayersfrom time to time. The resulting
motion dependsthenon the ratio DA/Do where DA is the rateof the Arnold diffusion. It depends,
mainly, on theguiding resonance.Fortheanalyticalperturbation(section4.5):
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a5 — V~V~— exp(—dm112).

Now, if one makes use of estimate(7.44) the rate of the Arnold diffusion, as a function of the
harmonicnumber1m

51 for guidingresonance,dropsaccordingto the doublyexponentiallaw [43]

DA — ~ exp(—A. ~—1!(2k+2) exp{oIm5I/(2k+ 2)}). (7.68)

It shows, in particular,that for any given D
0 thereexistsa finite setof theguiding resonanceswith

DA~ D~which we shall call the working resonances.The guiding resonancesof higherharmonicsare
insignificantin thepresenceof theexternaldiffusion owing to DA 4 D0. The motionof a systemunder
theseconditionsproceeds,roughly speaking,in the following way. During sometime T0 the system
enters,due to theexternaldiffusion, the stochasticlayerof one of theworking resonances,and then
rapidly moves,dueto theArnold diffusion (DA ~ D0), alongasetof stochasticlayersover thewhole
phasespace(or over an energy surfacefor a conservativesystem), the total diffusion time being
determined,mainly, by the time of the initial diffusion T0. This time is muchlessthanthe time of the
purely externaldiffusion (for DA = 0) sincethe meanspacingbetweenthe working resonancesis
typically small (A04 ItoI for some mi = m0~‘ 1). Veryroughly, the Arnold diffusion reducesthe total
diffusion rate by a factor of (IwI/Ao)

2. This factor is, by the way, the largerthesloweris the rateof
external diffusion D

0 sincethe resonancesof higher harmonicsand, hence,of a smaller spacing
betweenthem beginto work. Very roughly, A0(m0)— Ito I/1~1rwhere Nr — m~‘ is the totalnumberof the
resonanceswith theharmonicnumbersup to ~—m0,whence:

((toI/Ao)
2— 1/my”. (7.69)

The quantity m
0(D0) is determinedby theestimate(7.68) from theconditionDA(mO)— D0.

Owing to an extremely slow ratethe Arnold diffusion may play a role only in the systemswith a
negligible energydissipation.The motion of a chargedparticlein a magneticfield givesanexampleof
such a system.It is especiallytrue in caseof heavyparticles,for instance,protonsfor which the
energylossesdue to the electromagneticradiationcan be completely neglectedin any reasonable
conditions.As wasmentionedalreadyabovetheArnold iiffusion hasbeenobservedapparentlyin the
experimentswith electronsin a magneticbottle [101](seealso ref. [126]).It wasconjecturedalso that
sucha diffusion could be responsiblefor aslow “inflation” of theprotoncolliding beams[103].In any
event,the specialexperimentswith an additional nonlinearlens indicateda stronginfluenceof the
oscillation nonlinearityon the lifetime of a protonbeam[104].Recentlysomeinterestingimplications
of a slowinstability of theprotonmotion in thegeomagneticfield asto thedynamicsof the radiation
beltswere discussed[1261.The instability hasbeenstudiedin the model experimentswith electrons
and was,in all likelihood, theArnold diffusion again.

Another systemvery closeto a conservativeone is the Solar system.The Arnold diffusion may
result herein the formationof so-calledKirkwood’s gapsin thefamily of theminor planets-asteroids.
Thegapsmeandips in thedistribution of asteroidsaccording to their rotation frequencyaroundthe
Sun, and they occur near some lower harmonic resonanceswith Jupiter’s motion. The related
estimatesaregiven in ref. [43].Foradifferent explanationof thegapssee,e.g.,[127,128] andalso[49]
(the book by Siegel andMoser,§34). Still another,andquiteunexpectedconjectureis due to Shuryak
[20].

It shouldbe emphasized,however,that the quantitativetheory of the Arnold diffusion, if only a
semi-empiricalone, hasnot yet constructedso far for any realphysicalsystemapartfrom a special
model (section7.5).
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Sincethe Arnold diffusion is extremelyslow manyotherfactorsomitted in the first analysismay
comeinto play. One of them is related to the quantum peculiaritiesof motion. The discussionof
quantumeffectsis beyondthe frameworkof this paperwhich is devotedto the classicalnonlinear
oscillations.Nevertheless,it will be not superfluous,I believe,just to mention that some surprise
restrictionsof theArnold diffusion appearin thequantummechanics.Owingjust to an extremelyslow
rateof this diffusion the restrictionsmay be of importanceeven in a systemwhich would seemto be
perfectlyclassical.First interestingestimatesof this sort weremadeby Shuryak[20].

8. Concludingremarks,problems

The stability analysisof nonlinearoscillationspresentedin this paperrelies essentiallyupon the
simple criterion of the resonanceoverlap(section4.1). Subject to that overlapthe influenceof a
regular,particularly, periodic perturbationis equivalentto that of a “random” perturbation.Such a
queer,at the first glance,“regeneration”of the perturbationis confirmed, nevertheless,by all the
numerical experimentssomeof which have beendescribedabove. The overlap criterion is fairly
simpleand efficient, yet thereare still a lot of relatedproblemsto be solved.Herearesomeof them.

1) The analysisof a basicphenomenonof thenonlinearoscillation— thestochasticinstability — was
madeabovevia a set,or, betterto say,achainof successivelysimplified models.As arule, all those
modelsarenot structurallystable.Therefore,theproblemof the reliableesteemasto the influenceof
various approximationson the evolutionof a system,and especiallyon a long-termevolutionarises.
In this respectit would be of importanceto developa theoryof the restrictedstructuralstability (see
section5.5).

2) An importantexampleof this problemis the impactof a specific (“integer”) representationof
any quantity in computer on the dynamicsof motion (section5.5). We meanthat any quantity in
computeris representedby a finite numberof digits. This particularproblemis the moreimportant
that thenumericalexperimentsby computerhaveservedalreadya gooddealandwill do so asa basic
methodof investigationin the field of nonlinearmechanics.

3) As we have seenevenin extremelysimple casesthe stochasticmotion possessesa regular
componentof the motion which has a fairly complicatedstructure(section5.5). Even though the
numericalexperimentsjustify theneglectingthis componentfar enoughinsidethestochasticregiona
morethoroughstudy of theproblemis desirable.It shouldbeemphasizedthat sofar we haveevenno
reliableestimatefor the measureof the stochasticcomponent,could thismeasureturnout to be very
small (section5.5)?

4) For the simple mappingsconsideredthe inferenceof the “random” motion meanssimply that
certainphasevaluesarerandomandstatisticallyindependentof eachother— the limiting stochasticity
(section5.4) or its version—thereducedstochasticity(section 7.2). The kinetic equation which
describesthat randommotion is reduced,thus, to a simpleversionof thediffusion equation(section
5.4).How to derive thekinetic equationin a generalcaseirreducibleto a mapping?Someaspectsof
this problemwere consideredand havebeen solved,e.g., in refs. [30,9, 43, 88, 105], yet ageneral
method for deriving of the kinetic equation basedon the stochasticityof motion is still to be
developed.

5) Theaboveanalysisof nonlinearresonanceswas essentiallyrestrictedto thecaseof amoderate,
in particular,not tooweak,nonlinearity.Sincein manyapplicationsthenonlinearitymay very well be
weak theproblemof stability for theweakly nonlinearoscillationsarises.
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6) A most difficult problemis relatedapparentlyto the so-calledcompletelyintegrablenonlinear
systems (see, e.g., a recent review article by Zakharov [68]). Thesesystemspossessa hidden
symmetrywhich ensuresthecompleteset of the integralsof motion. A classicalexampleof sucha
system is the so-calledToda lattice [108]which consistsof an arbitrary numberof equalmasses
coupledby thenonlinearforcesof aspecial type.The absolutestability of oscillationsin this system
hadbeendiscoveredby Fordandco-workers[95],and subsequentlyHenonhasfoundtheanalytical
expressionfor all the integralsof motion [i06]. Anotherinterestingexampleof a whole family of the
completely integrablenonlinear systemshas been constructedby McMillan [109]in the form of
special nonlinearmappings.Gardneret al. [110]havemarkedthebeginningof the intensivestudies
(and/or“construction”)of completelyintegrablesystems.It shouldberecalled,however,that the first
systemwith a hidden symmetry, which is well-known by now, was a classicalsystemof the two
bodies interacting via Newton’s law of gravitation,the systemwhich markedthe beginningof the
classicalmechanicsitself~*

The simple methodsemployedin this paper are not capableto discerna completelyintegrable
system.We may comfortourselves,of course,that suchsystemsareexceptional,or non-generic,in a
sensewhich is rigorouslyformalized,by theway, in themoderntheoryof dynamicalsystems[73](see
also thebook [2],§5). Nevertheless,theproblemof the “extra” integralsremains.

7) There is a more constructiveproblem concerningthe behavior of the systemclose to a
completely integrable one. Some preliminary studies [37, 111] indicate that even a very weak
perturbationsharply destroysthe integrability of sucha system,so thedomain of the Hilbert space
with an improvedstability arounda completelyintegrablesystemseemsto befairly small. Is it always
like this?What is the mechanismresponsiblefor the rapiddestructionof thestability of motion?
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Appendix:the Melnlkov—Arnold (MA) integral

Considerthe improperintegral*:

Am(A)= J dt cos(~m~(t)— At) (A.1)

wherethe function

ç(t) = 4 arctan(ë)— (A.2)

describesthe motion along the pendulum separatrix (2.30) with to
0 = 1 and ~>0; m and A are

parameters.Sincecosine’sargumentis antisymmetric(q~(—t)= — p(t)) the MA integralmaybewritten
in the form:

Am(A) = f dt exp{i(~mç—At)}. (A.3)

Let x = 2 arctan(e’),whence:

/x\ e
1~—1 je/2 . ~ 1 + iet

e = tan~)= i(etx + 1)’ e = —ie = i+e’

and

Am(A)f dtet(’.~). (A.4)

For integer m the MA integral can be expressedexactly via the integrandresidues.If m >0 the
integrandpolesareat thepoints:

e’~= —i; t~,= —~iir— 2irin (A.5)

where n is any integer including zero.
For A >0we closethe integrationcontourin the lowerhalf-planeof thecomplex t. This operation

needsto be clarified. We may closethe contour,for example,along the two lines Re(t)= ±T. The
integral over these lines does not equal zero, generally, but is proportional for T —* to the
expression:sin(~m1r— AT), that is the MA integral oscillatesas T grows. It is clear also from the
asymptoticbehaviorof the indefinite integral:

f dt exp{i(~mp— At)} —+ ~ exp{—iAt ±~m1r}as t —~ ±co.

~ integralswereevaluatedalso in ref. [69).
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For theproblemof thestability of motion theseperiodicoscillationsareof minor importance(section
4.4), sowe may justdropthemfrom theexpressionfor the MA integralandretaintheaperiodicalpart
only.

Substitutinga newvariablez = t — t~,into eq. (A.5) andevaluatingthe residueswe get:

Am(A) = im(rn— 1)! e_1~2lim~“i’~(e~ (1 + : e~2’~”
~rA/2

— L~T e (2A\m_h11+, A A6
(m—1)!sinh(irA)’ ~I k Jm

wherewe haveintroducedthenewfunctionsfm(A) (seebelow). Note that theintegrationis beingdone
in thenegativedirectionaroundthecontour.

ForA <0weclosethecontourin theupperhalf-planeandintegratearoundin thepositive direction.
Thenearestpoleto therealt-axisisnowatthepoint t

0 = 3wi/2 buttherelationet = —ie
5 remainsthesame

as for A >0. Therefore,we may write immediately:

Am(A <0)= (_1)mAm(IAI) ~ (A.7)

For large IAI thevaluesof the MA integral is considerablysmallerin this case.
To derivethe functionsfm(A) it is convenientto applythe recurrencerelationfor Am(A) foundby

O.V. Zhirov:

Am+i = Am — Am_i. (A.8)

It can be deducedif one integrateseq. (A.4) by partsalong the real t-axis and neglectsthe term
—(2/A). sin(~m1r— AT). But this is just thequantitywe haveignoredalreadyon thegroundsdiscussed
above.From eqs.(A.8) and(A.6) we arriveat the recurrencerelation:

fm+ifm (1+fm_i) m(m— 1)/4A2. (A.9)

A fewfirst fm are:

11=12=0; f
3=—1/2A

2 f
4=—2/A

2

f~= —5/A’ + 3/2A4 16 = —10/A2+ 23/2A4.

For IA I ~‘ m the functionsfm describesmall correctionsto the leadingtermof the MA integral:

e’~’2 A ~‘ m. (A.10)

Let us checkthe relationsobtainedusing the exactexpansionfor pendulumoscillationsnearthe
separatrix(section2.1):

-~—=cos(f\=~Vcos(A~wot) A !!~.
2w

0 \2/ to0 ~‘ cosh(irA/2)’ “ to0

On the other hand,we can expressapproximatelya Fourier coefficient of this seriesby the MA
integral:
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F~ ~ f dtcos(~)cos(A~w0t)= —~--(A1(A)+ A1(—A))= ~0 cosh(irA/2~

For the real (non-integer)valuesof m the MA integralcanbe evaluatedapproximatelyif IA I ~m.
We integratearoundthecut, comingalongthe imaginaryt-axis up (or down)to thesingularitynearest
to the real t-axis.For A >0it is a poleat to = —~1ri(A.5). We introducea newvariabley accordingto
the relation: t = t0 — iy/A, whence:

e_~At=e_1~
2e_5; ~+et~~_; y4A.

The MA integral (A.4) takesthe form:

Am(A) _~~e_~~2(2A)mf dy (—y)m e~.

The integrationcontours in the t- and y-planesare shown in fig. A.!. The last integral can be
expressedin termsof thegammafunction(see,e.g.,ref. [58]), andwe get:

A ‘A’ — 4ir(2A) —,rAI2 A 11)m~J F(m) e

For integer m this relationcoincideswith theapproximateformula(A. 10) andhas,thus, theaccuracy
— (m/A)2.

For A <0 andreal m >0 the nearestsingularity to the real t-axis is a branchpoint (zero) of the
integrandat to = iri/2 (1 + iet°= 0). Like the previouscasewe put: t = t

0+ iy/~A~to find:

e_~t= e”~’
2e5 ~. : ~ Y ~ IAI.

Substitutingtheserelationsinto eq. (A.4) andintegratingaroundthecut (fig. A.1) weget:

d —,~pAp/2 4 —ir~Afr2

Am(A <0) f ~f~2IAI)me~’(y)m = (2iAI)m~’r(m + 1)sin(lrm).

This expressionbecomesinapplicablenearanintegerm whereeq. (A.7) shouldbe used.If IA I ~ m the
valuesof theMA integralarealwayslargerfor positive thanfor negativeA.

We haveassumedm >0and~ >0until now. As is seenfrom theoriginal representationof the MA

—~— -L

A>0

Fig. A.l. Integrationcontoursfor evaluationof theMelnikov—Arnold integral.
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integral (A.!) only relative signs of m~band A are essential,the bigger value of the integral
correspondingto thecase:mçoA >0.

Let us mention in conclusionthat the main contribution to integralis gainedover the interval of
t — 1/IA I aboutt = 0.
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