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For a separable or nonseparable system an approximate solution of the 
Schrodinger equation is constructed of the form Ae”“-‘e. From the single- 
valuedness of the solution, assuming that A is single-valued, a condition on S is 
obtained from which follows A. Einstein’s generalized form of the Bohr-Som- 
merfeld-Wilson quantum conditions. This derivation, essentially due to L. 
Brillouin, yields only integer quantum numbers. We extend the considerations 
to multiple valued functions A and to approximate solutions of the form 

c Ak exp (ih-%s) 

In this way we deduce the corrected form of the quantum conditions with the 
appropriate integer, half-integer or other quantum number (generally a quar- 
ter integer). Our result yields a classical mechanical principle for determining 
the type of quantum number to be used in any particular instance. This fills a 
gap in the formulation of the “quantum theory”, since the only other method 
for deciding upon the type of quantum number-that of Kramers-applies 
only to separable systems, whereas the present result also applies to nonsepa- 
rable systems. 

In addition to yielding this result, the approximate solution of the Schrii- 
dinger equation-which can be constructed by classical mechanics-may 
itself prove to be useful. 

INTRODUCTION 

In the “quantum theory” the motion of a system is described by classical 
mechanics but certain constants of the motion are restricted to be integers. 
These restrictions are called the quantum conditions and the integers occurring 
in them are called the quantum numbers. In many cases better agreement be- 
tween theory and observation is obtained if half-integer quantum numbers are 
employed instead of integers. However no theoretical principle is available to 
determine whether an integer, half-integer or other quantum number is to be 
used in any particular case. It is the purpose of this article to provide such a 
principle. 

* This article is based upon a report (1) sponsored by the Geophysiks Research Direc- 
torate, Air Force Cambridge Research Center, Air Research and Development Command, 
under Contract No. AFl9(122)-463. 
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Historically the problem of deciding between integer and half-integer ~U;LII- 
turn numbers was circumvented by the invention of quantum mechanics, which 
replaced the “quantum theory”. Therefore the discovery of a procedure fog 
deciding between the two kinds of quantum numbers might now be considered 
to be of purely academic interest. However t,hix is not newssaril\~ the wse bc- 
wuse the procedure can still be used in the approsimate solution of qri:irrtrinl 
mr~hanical problems. 

.I way of deciding between int,eger and half-integer qwntum slumbers t’cw 
separable syst,rrns WLS found by Iiramers (2) by means of au approxim:~tt~ 
solution of the Schriidinger equation. His result also showed that for swh svs- 
tcms these conditions are consequences of qmmtum mcch:lnics in the limit :I:: 
Pl:m~k's corwt,:mt h tends to zero. Another derivation of t)hc qu:rntum cwrditiotw 
from the Schrodinger equation was given by Hrillouin (3’). It IV:W nrorc gctwr;~l 

than Kr:tmers since it) applied to both separable :ml Ilotlsqxw:ddr s~st~c~llls. 

but, it w:w irlcorrtxt since it yielded only integer clu:\lrtum Ilu~utwrs. lirillo~~i~~‘s 
:rrgumrnt~ is essentially t,he following: 

C’onsidcr :t quantum mech:mical system with .\’ c~oortlinate optrxtors (/r , .I 
cooujug:\tr inomrnt~un~ operators p, 3 -ifi-‘(d; a~,.), I’ = I 1 , .\; and IIaniil- 
totri:ur opetxtor Il(q, , p, , t), Let the Schriidingrr representor of the st:rtt> 01’ 
thcl system I)(, *(‘I~ , 1). Suppose that JI is approxim:rtely ectu:~l to \PII tf&tlc~cl 1)~ 

AS = ,nh. ( 2 i 

Here rl is ;m integer. This condition guarantees that 9, will be single ~~:~luc~l 
eve11 if ,s’ is not. The quantum conditions with integer quantum numbers folk)\\ 
from (2), as will he shown belo\v. We will a1so show t.hat (2) is cciui~xlrrrt to 
the qu:mtum condition postulated by Einstein (.i) in geruwlizing the 13ohr- 
Sonlmc‘rfeld-~~~ils;;oll condit,ions to nonseparable systems. 

‘l%‘e not,e that Brillouin’s argument assumes th:rt -1 is single ~xluctl. Howelrcr 
if i3 is not singlr valued then in order for \k,) to 1)~’ single valued (2 I must tw 
replaced 1)) 

A log -4 n-j-i-- . 
2* I 

Suppose, for example, that two \-nlues of A differ only in sign. Then A log ;l = 
- in and (3) yields 

A,c = h.[n + /li]. (1) 

From (5) t,he quantum condition mit’h a half-integer ctunntum number follows. 
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We have just indicated how to modify Brillouin’s argument in order to ob- 
tain the appropriate integer, half-integer or other quantum number. To com- 
plete the argument we must examine the amplitude A. This will be done in the 
next sections. However we must first make another change in the method. In- 
stead of (l), we will assume that \ko is a sum of t,erms given by 

\ko = fJ Ak(qr , t, fz) exp [ih-‘Sk(qV, t, fill. 
k=l 

(5) 

This more general form of approximate solution is required in almost all prob- 
lems in which S is multiple valued. The various functions Sk and Ak will be 
considered to be different branches of multiple valued functions S and A. We 
will also make our considerations more definite by assuming that \E is asymptotic 
to *o as Planck’s constant fi tends to zero. This viewpoint was introduced by 
Birkhoff (5). 

ASYMPTOTIC SOLUTION OF THE SCHRODINGER EQUATION 

The function \k satisfies the Schrddinger equation 

(6) 

Upon inserting the expression (5) for i&k~ into (6) and considering the leading 
terms in fi we obtain equations for the Ak and Sk . These equations were derived 
by Dirac (6) when PO consists of a single term and the same analysis applies 
when PO is a sum of terms. The result is that each Sk satisfies the classical Hamil- 
ton-Jacobi equation 

H(q$J) = -g. 

The equation for each Ak , written in terms of Pk = Ak2 and 

is 

ah 
dt + g $ brpkl = 0. 

I 

(7) 

(8) 

Equation (8) is the Liouville equation of classical statistical mechanics for the 
probability distribution Pk of a classical mechanical system with Hamiltonian 
H. It is a special form because Pk depends only upon qr and t, but not upon 
v, or p, as is usual in classical mechanics. This is a consequence of the fact that 
quantum mechanics does not yield joint probability distributions of conjugate 
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variables. It. is to be noted that Pk is not necessarily positive, nor even real. it1 
the present case. We will also permit Sk to be complex. 

Let’ us solve (7) when H is independent of t. Then 11 = E, where the coust:uit 
li/ is t)he t,otnl energy of t’he system. Non- if q?(t), p,(t) denote :I t,r:ijectory, the11 
the function Sk is given at any point, of t,he t,rajectory iu terms of its v:1111c 
X,(O) at some fixed point on the t.raject.ory b? 

Equation (8) can also be solved at once if Ph is independent of f, for thwi it 
becomes 

(10) 

kk~uation (10) asserts that the probability flux is divergenceless, and t,herefore 
by applying Gauss’ theorem to a tube of trajectories we obtniu 

In (I 1) 

and I~U is the normal cross sectional area of t,he tube of trajectories, both evalu- 
ated at the same point at which PA- is evaluated. The corresponding quantities 
7’0 , c&r0 , a.nd P,(O) are evaluated at some other point on the same trajectory, 
and thus (I 1) merely asserts the conservation of “probability”. Act,unlly (1 I ) 

holds in the limit as do,, tends to zero, in which case du/ciao denotes t,he Jacobian 
of the mapping of one cross section onto another by means of trajectories. The 
problem of Rutherford scattering has been treated by Gordon (?‘) and by the 
present aubhor (1) by means of Eqs. (9) and (11). 

THE QUASTUM CONL)ITIONS 

Quantum mechanics requires that Q be a single valued function of t*he qy and 
therefore \EO must satisfy the same condition. Consequently each term in the 
expression (5) for Qo must be single valued. As we have shown in the Introduc- 
tion, t,his requires that each Sk and t’he corresponding A4k must satisfy the condi- 
tion (3). If any Al; is single valued, t,his condition becomes the simpier conditiou 
(2) for t’he corresponding Sk . 
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The differences ASk(qr, t) and A log Ak(q, , t) are expressible as line integrals 
over some closed curve in qr space beginning and ending at q,. . In terms of these 
integrals, (3) becomes, for each value of k, 

#VS.& = h 
[ 

n+&$VlogA.ds 1 . (12) 

Equation (12) must hold for every closed curve in the q, space, since only then 
will \liO be single valued at every point. However the line integrals in (12) have 
the same value for every two closed curves which are deformable into one an- 
other without crossing a singularity of the integrand. For example, they are 
zero for a curve which can be deformed into a point. There are, in general, only 
a finite number of classes of independent curves which cannot be deformed into 
points. Any other curve is deformable into a linear combination of such curves 
with integer coefficients. Therefore (12) will be satisfied for all curves if it is 
satisfied by one curve in each of the independent classes of curves. Thus we 
have, in general, a finite number of quantum conditions, in each of which the 
integer n is arbitrary. 

Since VS.ds = c,. p,dq, , (12) can be rewritten as 

$zp,.dq, = h n+&$VlogA.ds . 
T 1 

When Ah is single valued, the conditions (13) become exactly the quantum con- 
ditions postulated by Einstein (4) for a system in a steady state of constant 
energy. He pointed out that these quantum conditions are invariant under a 
contact transformation of variables because c p,dq, is invariant. If the vari- 
ables are separable in the Hamilton-Jacobi equation, so that each p, can be 
expressed in terms of the corresponding qT alone, and if Ah is single valued, then 
these conditions reduce to the well known Bohr-Sommerfeld-Wilson quantum 
conditions for a separable system in a steady state of constant energy. 

In order to clarify the conditions (12) and (13) let us consider a multiple valued 
solution S of the Hamilton-Jacobi equation. Such a solution generally has 
infinite multiplicity, i.e., an infinite number of different values or branches. 
However only a finite number of its branches, say M of them, are essentially 
distinct. Every other branch differs from one of these branches by an additive 
constant. Therefore the function OS will have only the finite multiplicity M 
since any two branches differing by a constant yield the same value for VS. 
Let us introduce an M-sheeted qv space and associate one branch of the function 
OS with each sheet. We will denote each sheet by an integer I; and the correspond- 
ing branch of VS by VSk , with k ranging from one to M. Any two sheets-say 
sheets j and k-are to be joined together at all points where VSj = VSk . Further- 
more if VS is defined in only part of the y, space then only that part is covered 



BOHR-SOMMERFELD QUANTUM CONDITIONS 18.5 

by additional sheets. The M sheeted qr space so constructed is called the covering 
space for the function VS. Its main property is that on it OS is a single \valued 
funct,ion. The Riemann surfaces of function theory are examples of such spaces. 

The same considerations may be applied to the multiple valued function log il. 
It#s gradient, has the same multiplicity M as does r’$ as we see from (8) and it,s 
different, branches become equal where those of VS do. Therefore the s:tnw 
covering space on which VS is single valued also serves as the covering spaw for 
V log A. Consequently t.he line integrals in (12) alrd (1X) may be t$ought of :I:: 
being cvnluated along a closed path on this covering space. Then t#he omission 
of the subscript X: in (12) and (13) is appropriate since any number of hranchw 
may be int-olved in each integral. Also the question of whether one c~losed cur\-(1 
is deformable into nnother becomes clear in this space. Furt,hermorr, the ill&- 
pendent closed curves can be recognized as t,hr basis of the fundnmrnt:rl gro11p 
of the covering space. In this way we see that the topology of the (ww-ing SJXIW 

determines the number of quantum conditions, This numhrr is just t.he ur~m~wr 
of closed curves in the basis of the fundamental group. 

Let us non- consider the evaluation of 

A log iI = ,$ V log il .d.s. 

WC will restrict, our attention to steady st)ates since then .4’ = P is explicitly 
given by (11). From this equation we see that P becomes infinit,e whenever IV~U 
becomes zero. We will call points at! which this O~Y~UI’S caustic points, in annlog~ 
with optics where points at which da = 0 we so named. A locus of caustic poiut,s 
is called a caustic of the family of trajectories :wsociated wit.h t)hr S func*tioll 
under consideration. Those caustics which correspond to the vanishing of C/U :IIY 
envelopes of the family of trajectories. Therefore CS i$ multiple s-:rlued near thew 
surfwrs. (.lonsecluently such c-au&s are the loci of points at whkh t,n-o diff’crwrt 
branches of VS become equal. Thus these caustics form the houndaries at whit-h 
different sheets of the covering space for TAS are j(Jilled together. Thosr cxustiw 
at whic,h 1’ = 0 also form part of these boundaries , ;wuming that twch p, cGthc,r 
changes sign along each trajectory on which 1’ \xnishw 01’ is itlcllticxlly zero IKYI~ 
the rustic. I’or then V8, which has thr pY as wnlponcnts, r~~~~~‘sw its dirwtiotr 
at t,hc caustic+. Thus this t,ype of caust~ic- is also :I houuti:wy OII whic*h two hr:ltrc~hw 
of Y/S join. 

We h:I\.e sceu that A becomes infinit,e on :I wustic~ UI~ that) :L c~u~stic~ nlust t w 
crow$tl by a path which goes from one sheet’ of the ro\.wing space to another. It 
is well know1 it1 opt,& t,hat the phase of A4 is ret,arded by 7r ‘2 (i.e., A,I is mult,iplic~ti 
tly c ~~-ir’2) (~1 :I ray which passes through :L caustic on which IID \-:tnishw simply. 
(Thc~ positi\-c dirwtion along a ray is the dire&o11 of YS.) E’urthermorc the ph:w 
is ret.:lrdcd by T on :I ray passing through :t focus, which is ;I rustic p&t, :II 
which C/C \xnishes to the second ordrr. The usual mrlthotl for pro\.ing thwv t’:wts 
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is based upon the asymptotic evaluation of certain double integrals which repre- 
sent the wave function. These integral representations are deduced from Green’s 
theorem, and the integrals are evaluated by the method of stationary phase. 
Both of these considerations can be immediately extended to problems such as 
the present one in which the number of dimensions is N. The result is this: The 
phase of A is retarded by ms/2 on a trajectory which passes through a caustic 
on which do vanishes to the mth order. We may replace the statement “dg 
vanishes to the mth order” by the equivalent statement “the dimensionality of 
the cross section of a tube of trajectories is reduced by m”. This result is an 
analogue for partial differential equations of the Kramers connection formulas 
which are employed in the WKB treatment of ordinary differential equations. 
In the present case the caustics play the role of the turning points. 

From the foregoing analysis we see that log A changes by -ima/ along a 
path which passes from one sheet of the covering space to another in the direction 

h of VS. Here the positive integer m is the number of dimensions “lost” by a tube 
of trajectories at the caustic. Obviously m must be replaced by -m if the path 
is traversed in the opposite direction. Considerations similar to those outlined 
above show that at the caustics on which v vanishes the phase of A is also re- 
tarded by ma/2, so log A changes by -imr/2 where m is the number of p, which 
change sign at the caustic. 

The total change A log A along a closed curve is generally just the change 
associated with the various caustics through which the curve passes. Therefore, 
in general, we have 

$AlogA = &$VlogA.ds = F. 
K (14) 

Here m denotes the total number of dimensions “lost” by the trajectories at the 
caustics through which the curve passes plus the number of p, which change sign 
at the v = 0 caustics through which the curve passes. In evaluating m account 
must be taken of whether the curve traverses the caustic in the direction of in- 
creasing or decreasing 8. When (14) is used the quantum conditions (13) finally 
become 

$Cprdq,=h n+; . [ 1 (1% 

These are the corrected quantum conditions for separable or nonseparable sys- 
tems. In each quantum condition the positive integer n is arbitrary but the integer 
m is determined by the considerations described above. 

THE “CLASSICAL q FUNCTION” 

We will call the function \ko given by (5) the “classical !P function” because it 
can be constructed by classical mechanical considerations alone. In spite of this 
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the probabilities computed from ) @o 1’ still show quantum mechanical interfer- 
ence effects if the sum in (5) contains more than one term. 

If only one term occurs in (5) then 1 \Iro ir = 1 -1 ~’ cxp (-2he11mSj, and t,he 
probability, as well as \kO itself, is exponentially damped in regions where 
ImS > 0. The probability in such regions vanishes as h tends t’o zero, correspontl- 
ing to the fact that these regions are excluded in classical mechanics. This C:UI 
be seen from the fact that the solution of the Hamilton-Jacobi equation is not 
real there. The expouential tail shows that 90 describes such quantum mechaniwl 
effects as “tunneling”. 

If ImS = 0 and / A j2 = A2 = P, then / !Po /’ = P. Thus as /L tends to zero 
the quant,um mechanical probability distribution approaches that given by thcb 
km-ille equation of classical statistical mechaniw , and we map say that C~II:W 
turn mechanics approaches classical statist)ical mechanics, as /L tends to zero. 
The customary statement that quantum mechanics approaches classical mec*han- 
its is thus not strictly correct, but holds only when the initial dat,a are such t,h:tt 
P = 0 except’ on one trajectory, in which case classical stntisticnl mecxhanic*s ro- 
duces to classical mechanics. Since the classical met’hod of cxomputing differential 
scattering cross s&ions is actually based on classical stat~istiwl mechanicas, thch 
precaeding considerations show t,hat the quantum mec~hunical cross sections nil] 
approach them as h tends to zero when only one term occurs in (3). 

Finally itI is to be noted from (13) or (15) that, h and 11 twt,er the solution OIIIJ 
in the combination (,n + ,Jz4m)h. In some problems the solution for fixed 12 does 

not ha\-e the asymptotic behavior assumed in the derivation. However when thtl 
limit in which n becomes infinite while h becomes zero :mti (I) + l~m)h is (‘on- 
stant, 1s considered, the assumed asymptotic bchnl.ior may result,. In sucah c:Is(‘?; 
the asymptotic solution applies only for high qu:ultum numbers 71. 

To exemplify the preceding results, let us consider the Pt,eady state of a OIP 

dimensional harmonic oscillator of mass m, energy E, frequency v,, , and momcn- 
turn p. Rcralling that S, = p, we have from the drfinit,ion of momentum 

8, = p = f(2,m E - m VO.?‘)’ ‘. (Ifi1 

We see that ‘78 = S, is real and double valued in the interval -x0 5 s 5 .rU 
where x0 = (2E~o-~)~‘*. The two branches of S, become equal at t,he endpoints of 
this interval. Thus the covering space for X, consists of t’wo line segments joined 
together at their two ends. This space is topologically equivalent to a circle, and 
there is only one basic closed curve on it. Therefore t)here is only one quant,um 
condition. The closed curve passes through the two caustics x = fxo at both of 
which v = m-‘p vanishes and p changes sign. Thus in (15) we have m = 2 .S’O 

(15) becomes 
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J 2o (2mE - myox2y2 dx - szo (2mE - ?nvox2)1’2 dx = h (n + ;) . (17) 
-10 20 

Equation (17) is just the result given by the usual WKB method in this case. 
A similar analysis holds for a particle in any one dimensional potential well. 

To construct *,, we note that duo/da = 1 in the present case so (11) yields, 
with A,, a constant, 

A = A,, 6”‘. w  

Inserting 2, = m-‘p in (18) with p given by (16) we obtain the two results 

A+ = A,,~YL”~(~E - vox2)- l/4 
(19) 

A- = e-i ='2Aom"4(2E - yG2)-1'4e (20) 

The phase retardation represented by the factor eCi r/Z in (20) accounts for the 
phase shift which occurs upon passing through either caustic. In the present 
example it arises formally when p is negative and the square root of p-l is taken. 
Of course our previous considerations are necessary to ensure that we take the 
correct root. 

Upon inserting (19), (20), and (16) into (5) and setting X(Q) = 0, we obtain 
for qko(x) in the region j x 1 6 xo , 

qo(x) = Ad4(2E - Y,,x~)-“~ {exp [ -ifi-’ lo (2mE - most)112 dz] 

-i 5 + z%-~/‘~ (2mE - rn~ox~)~‘~ dx 
z 1 ] (21) 

=e -i(“/4’Aom”4(2E _ y&1/4 cos fi-’ 

[I 1 2 
” (2mE - m~c,x~)~‘~ dx - ;] . 

This is the usual WKB result. We may obtain the result for a particle in any one 
dimensional potential V(x) by replacing va2 by 2V(x) in (21). 
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REFERENCES 

I. J. B. KELLER, New York University, Mathematics Research Group, Research Report 
No. CX-10, July, 1953 (unpublished). 

2. H. A. KF~AMERS, Z. Physik 39, 828-840 (1926). 
3. L. BRILLOUIN, J. phys. radium 7, 353-368 (1926). 
Q. A. EINSTEIN, VerhandZ. deut. physik. Ges. (1917). References to prior work are given in 

this paper. 
6. G. D. BIRKHOFF, Amer. Math. Sot. Bull. 39, 681-700 (1933). 
6. P. A. M. DIRAC, “The Principles of Quantum Mechanics,” 3rd ed., pp. 121-123. Oxford 

Univ. Press, London and New York, 1947. 
7. W. GORDON: Z. Physik 48, 180 (1928). 


