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Cold atoms on a chip :

Prentiss at Harvard, 99

recent experiment, Schmiedmayer

mooving BEC on a chip :

Zimmermann at Tiibingen —
Hansch at Munich
Ketterle at M.I.T.

at Heidelberg :
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F1G. 3. The time evolution of the Bose-Finstein condensate

is shown at ¢ = Oms, ¢t = 100 ms, ¢ = 200 ms, and ¢ = 300 ms
respectively. The trap was tarmed off 20 ms before the first
image of the condensate was obtained and after the potential
madification described in the text was complete. The number
of atoms in the condensate is estimated to be 1.5 = 10°
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. X
1D geometry : — )
adiabatic approximation : U(rt) = w(x,t) ¢(rL;n)
where TL(.I’, t) = fd2T’J_ |\If|2 = |¢($, t)‘z (¢ being normalized to unity)
hypothesis :
phase typical size L
ly = | coherence | > | of the flow and fransverse < longitudinal
scale scale
length pattern
Vi (7.) : confining potential
Vi(z,t) : obstacle
following Jackson et al., Phys. Rev. A 58, 2417 (1998)
1= S _ -
—5V20+ { Vo) +dmase n o} o(Fiim) = () o(Fiin) (1)
(1) determines : effective non-linear potential to be used in the 1D reduc-
tion of the Gross-Pitaevskii equation :
—50m% + { Vj(z,t) + U@ t) =i0w(a,t). (2)

for parabolic confinement V| (7)) = 3 w? r?, and (1) yields

when (dilute regime)

when (Thomas-Fermi regime)



in the following one considers condensed atoms incident on a fixed obstacle

in the stationary regime : | ¢ (x,t) = exp{—iut} A(x) exp{i S(z)}

the density is n(z) = A%(z), the velocity v(z) = dS/dx
and the flux is a constant : n(z)v(r) = Jy

Eq. (2) becomes :

boundary conditions (stationary regime)

no wake far down-stream because vy (k) = %—% > Uphase(K) = 5

[llustration for an obstacle moving at Vs > 0 in a beam at rest :

condition of
L n(x) V obs = Vphase \Stationarity
J propagates
faster
Vgroup = Vphase | thanthe
obstacle
o
X

Hence the boundary conditions can only be imposed far down-stream.
since, because of non-linearity, one cannot disentangle an incident and a reflected part in the perturbed
up-stream solution



Is it possible to define a
transmission and a re-
flection coefficient for a
non-linear wave ?

In regions where V| (x) is zero (or constant) (3) admits a first integral

where F; is an integration constant.

1
EN Ecl = W(ng)
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min 1 max 2
incident current : J, transmitted current : J, =TJ, = J
Vi —cf

E,=W(n)+2 11—1 J,(1 =T) up-stream : Vj(z — +o00) — Vj and Eq. (4)
still holds (E, takes a different value EY and p is repaced by p — V;)

)

Since n(x — +00) should be constant, it is of “type ny” or of “type n;”
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Landau criterion

in “He

20 . .

ULandau = min # ~ 60 m/S 15 | i

E/ky (K)
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due to vortex formation, -
in most experiments : 7

Ll mm/s < Ueiterp S Om/s o] ' ' :

in BEC

M.L'T. experiment
W (k) = k* (¢ + k*/4)

— ULandau = € = 6.2 mm/s

Verit exp = 1.6 mm/s

(2001

Phys. Rev. Lett. 87, 080402

T LR

Evidence of

vortex formation :

Non-linear effects alter the perturbative Landau
criterion



n(x) = ne + on(z). equivalent to Landau criterion.
One always finds a stationary solution :

Uso < Cx then F; =0 Voo > Coo then Fy= —2ny|Vj(x)[?
the flow is superfluid the flow is dissipative
typically : typically :
n(x) n(x)
obs:;tacl e X obsltacle X

BUT'! the perturbative approach fails when v, =~ c. In this case, the flow is
non-stationary and besides nonlinearities play an important role.

As an illustration, consider the simple case V(2) = A d(z). The different types
of stationary flow are :

25

15 -

v, /c

0.5

is a dissipative flow.

The shaded zone of the plane (vso, A) is the do-
main of existence of stationary solutions occur-
ring for a potential V| (x) = A d(x). The axis are
labelled in dimensionless units. The insets re-
present density profiles n(x)/neo typical for the
different flows (the condensed beam is incident
from the right). Each inset is located at values of
Voo and X typical for the flow it displays. The left
(right) lower one is a superfluid flow across an

attractive (repulsive) potential. The upper one



Determination of the drag

the drag exerted by the atom laser on the obstacle is :

Fy(t) = / e n(e. ) d:lf) | (5)

oo

Fy(t) can also be computed via the stress tensor T'(x,t) :

where
+oo

the total impulsion of the beam is P(t) = / dx Im(¢*0,1). Tt is related to
T(x,t) and Fy(t) through :

dP
— = T(=00,1)=T(+o0,t)=Fy(t) ~~ —  Fy=T(-00)=T(+00) (6)
dt in the stationary

regime

Eq. (6) allows for an analytical determination of the drag in simple stationary
cases and is a test of the numerical accuracy of the numerical procedure.

Finally, note that for stationary flows, the stress tensor reads

where
(7)

In regions where the spatial variations of Vj(x) are negligeable, T'(x) is a
constant (as easily seen from (3)).

As an illustration, (6) and (7) yield for stationary dissipative flow over a delta
peak potential : Fj = —2n. A\* for V(z) = X 6(x).

In this way, analytical expressions (computed via a quadrature) can also be
obtained for the drag exerted by a square well potential (attractive or repulsive).



Same behavior as the delta peak and square well potentials :

Two critical velocities : v.i1 (< ¢x) for the onset of dissipation
Verit2 (> Cx) for a new stationary regime

the flow is time dependent in the region
The drag is :
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Drag exerted by a low density beam on a Gaus-
sian potential (Vo&? = 0.2, 0 = 0.5¢), as a
function of the beam velocity. The dashed line
is the perturbative result. The solid line is the
exact drag evaluated in the stationary regime.
The circles correspond to the drag evaluated in
the time-dependent regime. The error bars cor-
respond to the extremal values of the time de-

pendent Fy(t).

Time evolution of the drag exerted by a low den-
sity beam (of velocity ve = 0.9 ¢s) on a Gaus-
sian potential (Vo &2 = 0.2, 0 = 0.5&). Fy and t
are expressed in dimensionless units. The upper
(lower) inset represents a density profile obser-

ved when the drag is maximum (minimum).



CONCLUSION

I Narrowing guide :

For p fixed, there always exists a special
value of J; such that 7" = 1.

Besides the corresponding flow is
dynamically stable.

Il Obstacle :

SUPERFLUID DISSIPATIVE | DISSIPATIVE

I | beam
STATIONARY 'NON STATIONARY 'STATIONARY

T

) <~ new regime —
Verit < Vsound 5

The perturbative regime is valid far from the velocity of sound . Besides, when
Vbeam = Viound the flow is quasi-superfluid (dissipation goes to zero).

o non-linear effects :

(1) Vit < Viandau for repulsive potentials
BUT Landau critical velocity is always reached for a/fractive potentials

(2) enormous difference in drag between attractive and repulsive potentials :
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Drag exerted by a low density beam on a Gaus-
sian potential (Vo&2 = £1.0, 0/¢ = 1.0), as a
function of the beam velocity. The main figure
displays the drag for a repulsive potential (solid
line) together with the perturbative result (da-
shed line) which is not affected by the sign of the
potential. The inset displays an enlargement of
the main figure allowing to see the (very small)

drag for an attractive potential.



