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We have designed and experimentally studied a simple beam splitter for guided atoms realized with a
current carrying Y-shaped wire nanofabricated on a surface (atom chip). Such a Y-configuration beam
splitter has many advantages compared to conventional designs based on tunneling, especially that it will
enable robust beam splitting. This and other similar designs can be integrated into more sophisticated
surface-mounted atom optical devices at the mesoscopic scale.

PACS numbers: 03.75.Be, 03.65.Nk

Beam splitters are key elements in optics and its appli-
cations. In atom optics [1] beam splitters were, up to now,
demonstrated only for atoms moving in free space, inter-
acting either with periodic potentials (spatial and tempo-
ral), material gratings [2], or semitransparent mirrors [3].
On the other hand, guiding of atoms has attracted much
attention in recent years and different guides have been re-
alized using magnetic potentials [4–9], hollow fibers [10],
and light potentials [11,12].

In this Letter we describe experiments which join the
above, namely demonstrating a nanofabricated beam split-
ter for guided atoms using microscopic magnetic guides
on an atom chip (see Fig. 1).

By bringing atoms close to electric and magnetic struc-
tures, one can achieve high gradients to create microscopic
potentials with a size comparable to the de-Broglie wave-
length of the atoms, in analogy to mesoscopic quantum
electronics [13,14]. One possibility is to use the interaction

V � 2 �m ? �B between a neutral atom (magnetic moment
�m) and the magnetic field �B generated by current carry-
ing structures [6,15,16]. The simplest configuration is a
magnetic guide built using a straight wire carrying a cur-
rent I. By adding a homogeneous bias field Bbias one can
produce a two-dimensional minimum of the potential [17]
and guide atoms in the low field seeking state parallel to
the wire (side guide). Mounting the wires on a surface al-
lows elaborate designs with thin wires which can sustain

sizable currents [16]. Such surface mounted atom optical
elements were recently demonstrated for large structures
(wire size �100 mm) [7,18,19], and nanofabricated struc-
tures [9], the latter achieving the scales required for meso-
scopic physics and quantum information proposals with
microtraps [20].

FIG. 1 (color). Beam splitter on a chip: (a) chip schematic
and (b) fluorescence images of guided atoms. As explained in
the text, the two large U-shaped 200 mm wires are used to load
atoms onto the 10 mm Y-shaped wire. In the first two pictures
in (b), we drive current through only one side of the Y, therefore
guiding atoms either to the left or to the right; in the next two
pictures, taken at two different guide gradients, the current is
divided in equal parts and the guided atoms split into both sides.
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1D geometry : x
atom laser

laser

adiabatic approximation : Ψ(~r, t) = ψ(x, t) φ(~r⊥ ;n)

where n(x, t) =
∫
d2r⊥ |Ψ|2 = |ψ(x, t)|2 (φ being normalized to unity)

hypothesis :
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{
V⊥(~r⊥) : confining potential
V‖(x, t) : obstacle

following Jackson et al., Phys. Rev. A 58, 2417 (1998)

−1

2
~∇2

⊥φ+
{

V⊥(~r⊥) + 4πasc n |φ|2
}

φ(~r⊥;n) = ε(n)φ(~r⊥;n) , (1)

(1) determines ε(n) : effective non-linear potential to be used in the 1D reduc-
tion of the Gross-Pitaevskii equation :

−1
2∂xxψ +

{
V‖(x, t) + ε[n(x, t)]

}
ψ(x, t) = i ∂tψ(x, t) . (2)

for parabolic confinement V⊥(~r⊥) = 1
2 ω

2
⊥ r

2
⊥, and (1) yields

ε(n) =







2ω⊥ n asc when n asc � 1 (dilute regime)

2ω⊥
√
n asc when n asc � 1 (Thomas-Fermi regime)



in the following one considers condensed atoms incident on a fixed obstacle

in the stationary regime : ψ(x, t) = exp{−i µ t}A(x) exp{i S(x)}

the density is n(x) = A2(x), the velocity v(x) = dS/dx

and the flux is a constant : n(x)v(x)
def

= J∞

Eq. (2) becomes :

−1

2

d2A

dx2
+

{

V‖(x) + ε[n(x)] +
J2
∞

2n2(x)

}

A(x) = µA(x) . (3)

boundary conditions (stationary regime)

no wake far down-stream because vgroup(k) = dω
dk

> vphase(k) =
ω(k)
k

Illustration for an obstacle moving at Vobs > 0 in a beam at rest :
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Vobs = vphase

condition  of
stationarity

v      > vgroup  phase

x

energy
propagates
 faster
than the
obstacle

Hence the boundary conditions can only be imposed far down-stream.
since, because of non-linearity, one cannot disentangle an incident and a reflected part in the perturbed

up-stream solution



Is it possible to define a
transmission and a re-
flection coefficient for a
non-linear wave ?

In regions where V‖(x) is zero (or constant) (3) admits a first integral

1

2
A′ 2 +W [n(x)] = Ecl with W (n) = −

∫ n

0

ε(ρ)dρ
︸ ︷︷ ︸

ε(n)

+µn+
J2
∞

2n
, (4)

where Ecl is an integration constant.
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Ecl ' W (n1)

incident current : JI transmitted current : JT = TJI = J∞

Ecl = W (n1) + 2
v2

1 − c21
v1

JI(1 − T ) up-stream : V‖(x → +∞) → V0 and Eq. (4)

still holds (Ecl takes a different value E0
cl and µ is repaced by µ− V0)

Since n(x→ +∞) should be constant, it is of “type n2” or of “type n1”
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Landau criterion

in 4He

vLandau = min
ε(k)
k

' 60 m/s

due to vortex formation,

in most experiments :

1 mm/s <∼ vcrit,exp <∼ 5 m/s

in BEC

M.I.T. experiment

ω2(k) = k2 (c2 + k2/4)

→ vLandau = c = 6.2 mm/s

vcrit,exp = 1.6 mm/s

Phys. Rev. Lett. 83, 2502 (1999)
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Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas

C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle
Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
(Received 20 August 1999)

We have studied dissipation in a Bose-Einstein condensed gas by moving a blue detuned laser
beam through the condensate at different velocities. Strong heating was observed only above a critical
velocity.

PACS numbers: 03.75.Fi, 67.40.Vs, 67.57.De

Macroscopic quantum coherence and collective ex-
citations are key features in our understanding of the
phenomenon of superfluidity. The superfluid velocity is
proportional to the gradient of the phase of a macroscopic
wave function. Collective excitations determine a critical
velocity below which the flow is dissipationless. This ve-
locity is given by Landau’s criterion [1],

yc � min

µ

´�p�

p

∂

, (1)

where ´ is the energy of an excitation with momentum p.
Critical velocities for the breaking of Cooper pairs in 3He
and the generation of rotons [2] and vortices [3] in 4He
have been extensively studied.

Bose-Einstein condensed gases (BEC) are novel quan-
tum fluids [4]. Previous work has explored some aspects
related to superfluidity such as the macroscopic phase [5]
and the phonon nature of low-lying collective excitations
[4,6]. In this Letter we report on the measurement of
a critical velocity for the excitation of a trapped Bose-
Einstein condensate. In analogy with the well known ar-
gument by Landau and the vibrating wire experiments in
superfluid helium [7], we study dissipation when an object
is moved through the fluid. Instead of a massive macro-
scopic object we used a blue detuned laser beam which
repels atoms from its focus to create a moving boundary
condition.

The experiment was conducted in a new apparatus for
the production of Bose-Einstein condensates of sodium
atoms. The cooling procedure is similar to previous work
[8]—the new features have been described elsewhere
[9]. Briefly, laser cooled atoms were transferred into
a magnetic trap in the Ioffe-Pritchard configuration and
further cooled by rf evaporative cooling for 20 sec,
resulting in condensates of between 3 3 106 and 12 3

106 atoms. After the condensate was formed, we reduced
the radial trapping frequency to obtain condensates which
were considerably wider than the laser beam used for
stirring. This decompression was not perfectly adiabatic,
and heated the cloud to a final condensate fraction of
about 60%. The final trapping frequencies were nr �

65 Hz in the radial and nz � 18 Hz in the axial direction.
The resulting condensate was cigar-shaped with Thomas-

Fermi diameters of 45 and 150 mm in the radial and axial
directions, respectively. The final chemical potential,
transition temperature Tc, and peak density n0 of the
condensate were 110 nK, 510 nK, and 1.5 3 1014 cm23,
respectively.

The laser beam for stirring the condensate had a
wavelength of 514 nm and was focused to a Gaussian
1�e2 beam diameter of 2w � 13 mm. The repulsive
optical dipole force expelled the atoms from the region
of highest laser intensity. A laser power of 400 mW
created a 700 nK barrier resulting in a cylindrical hole
�13 mm in diameter within the condensate. The laser
barrier created a soft boundary, since the Gaussian beam
waist was more than 10 times wider than the healing
length j � �8pan0�21�2

� 0.3 mm, a being the two-
body scattering length.

The laser was focused on the center of the cloud. Using
an acousto-optic deflector, it was scanned back and forth
along the axial dimension of the condensate (Fig. 1). We
ensured a constant beam velocity by applying a triangular
waveform to the deflector. The beam was scanned over
distances up to 60 mm, much less than the axial extent

FIG. 1. Stirring a condensate with a blue detuned laser beam.
(a) The laser beam diameter is 13 mm, while the radial width
of the condensate is 45 mm. The aspect ratio of the cloud
is 3.3. (b) In situ absorption image of a condensate with the
scanning hole. A 10 kHz scan rate was used for this image to
create the time-averaged outline of the laser trajectory through
the condensate.

2502 0031-9007�99�83(13)�2502(4)$15.00 © 1999 The American Physical Society

Evidence of

vortex formation :

Phys. Rev. Lett. 87, 080402 (2001)
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FIG. 3. Observation of the phase singularities of vortices
created by sweeping a laser beam through a condensate.
Without the sweep, straight fringes of �20 mm spacings were
observed (a), while after the sweep, forklike dislocations
appeared (b)–(d). The speed of the sweep was 1.1 mm�ms,
corresponding to a Mach number of �0.18. The field of view
of each image is 1.1 mm 3 0.38 mm. (d) A pair of dislocations
with opposite circulation characteristic of a vortex pair. At the
bottom, magnified images of the forklike structures are shown
(d1) with lines to guide the eye (d2). The orientation of the
condensates is the same as in Fig. 2(b).

by counting the number of vortices and the fractions were
plotted versus the speed of the sweep (Fig. 4). The clas-
sification was done after putting images in random order
to eliminate a possible “psychological bias” in interpreting
images that had low contrast. The plot suggests that the nu-
cleation of vortices requires a velocity of �0.5 mm�ms,
corresponding to a Mach number yc�cs � 0.08, consis-
tent with our previous measurement [14]. However, a
direct comparison is not possible due to different geome-
tries —in the present experiment, the stirrer was swept
along the radial direction of the condensate and almost cut
the cloud completely, whereas in the previous experiment,
the stirrer moved along the axial direction of an expanded
condensate.

Previous experiments have dramatically demonstrated
the robustness of the long-range coherence of the conden-
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FIG. 4. Velocity dependence of vortex excitation. The fraction
of images with zero (solid line), one (dashed line), and two or
more vortices (dash-dotted line) are plotted versus the speed of
the sweep. After the sweep, the atoms were released from the
trap without delay. The total number of evaluated images was
50. Ambiguous low contrast images were excluded; therefore,
the sum of the fractions is less than one.

sate [6,9]. The interferometric technique used here is a
sensitive way to assess whether a condensate has the as-
sumed ground state wave function which is characterized
by a uniform phase. Sweeping through the condensate ex-
cites turbulent fl ow. By delaying the release of the atoms
from the trap by a variable amount of time, we can study
the relaxation of the condensate towards its ground state.
Figure 5 shows that the condensate completely recovers
its uniform phase after 50–100 ms. Vortices have disap-
peared after �30 ms. Of course, these measurements de-
pend crucially on the specific geometry of the cloud, but
they do indicate typical time scales. The sensitivity of this
method was illustrated by the following observation: in a
weaker trap, we saw an oscillation in time between im-
ages with straight high contrast fringes and images with
low contrast fringes. This was probably due to the ex-
citation of a sloshing motion along the weak axis of the
condensate.

For interferometric detection of vortices, two different
techniques have been discussed. The one employed here
uses a separate condensate as a local oscillator. The other
alternative is to split, shift, and recombine a single con-
densate with vortices. In this case, all singularities and
distortions appear twice in the fringe pattern [16], leading
to a more complex pattern especially when there is more
than one vortex in the condensate. After completion of
this work, we learned that this second technique was used
in ENS, Paris, to observe the phase pattern of a single
vortex [17].

In conclusion, we have studied vortex excitation
in Bose-Einstein condensates using an interferometric
technique. This technique is suited for the study of
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Non-linear effects alter the perturbative Landau
criterion



Perturbative treatment :

n(x) = n∞ + δn(x). equivalent to Landau criterion.
One always finds a stationary solution :

v∞ < c∞ then Fd = 0
the flow is superfluid
typically :

xobstacle

n(x)

v∞ > c∞ then Fd = −2n∞|V̂‖(κ)|2
the flow is dissipative
typically :

xobstacle

n(x)

This behavior is generic : low velocity → superfluidity and high velocity →
dissipation.

BUT ! the perturbative approach fails when v∞ ' c∞. In this case, the flow is
non-stationary and besides nonlinearities play an important role.

As an illustration, consider the simple case V‖(x) = λ δ(x). The different types
of stationary flow are :
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Determination of the drag

the drag exerted by the atom laser on the obstacle is :

Fd(t) =

∫ +∞

−∞
dx n(x, t)

dV‖(x)

dx
. (5)

Fd(t) can also be computed via the stress tensor T (x, t) :

T (x, t) = − Im (ψ∗∂tψ) + 1
2 |∂xψ|2 − ε[n(x, t)] − V‖(x)n(x, t)

where ε(n) =
∫ n

0 ε(ρ) dρ ,

the total impulsion of the beam is P (t) =

∫ +∞

−∞
dx Im(ψ∗∂xψ). It is related to

T (x, t) and Fd(t) through

dP

dt
= T (−∞, t)−T (+∞, t)−Fd(t) −→

in the stationary
regime

Fd = T (−∞)−T (+∞) (6)

Eq. (6) allows for an analytical determination of the drag in simple stationary
cases and is a test of the numerical accuracy of the numerical procedure.

Finally, note that for stationary flows, the stress tensor reads

T (x) =
1

2

(
dA

dx

)2

+W [n(x)] − V‖(x)n(x) where W (n) = −ε(n) + µn+
J2
∞

2n
(7)

In regions where the spatial variations of V‖(x) are negligeable, T (x) is a
constant (as easily seen from (3)).

As an illustration, (6) and (7) yield for stationary dissipative flow over a delta
peak potential : Fd = −2n∞ λ2 for V‖(x) = λ δ(x).
In this way, analytical expressions (computed via a quadrature) can also be
obtained for the drag exerted by a square well potential (attractive or repulsive).



Gaussian potential : V‖(x) = V0 exp
{
−x2/σ2

}

Same behavior as the delta peak and square well potentials :

Two critical velocities : vcrit,1 (6 c∞) for the onset of dissipation
vcrit,2 (> c∞) for a new stationary regime

the flow is time dependent in the region vcrit,1 < v∞ < vcrit,2

The drag is :
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CONCLUSION

I Narrowing guide :

For µ fixed, there always exists a special
value of JI such that T = 1.
Besides the corresponding flow is
dynamically stable.

II Obstacle :

- Vbeam

6
Vsound6

6
Vcrit

SUPERFLUID DISSIPATIVE DISSIPATIVE

STATIONARY NON STATIONARY STATIONARY

� -new regime

The perturbative regime is valid far from the velocity of sound . Besides, when
Vbeam � Vsound the flow is quasi-superfluid (dissipation goes to zero).

• non-linear effects :

(1) Vcrit < VLandau for repulsive potentials

BUT Landau critical velocity is always reached for attractive potentials

(2) enormous difference in drag between attractive and repulsive potentials :
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2
 = −1.0 Drag exerted by a low density beam on a Gaus-

sian potential (V0 ξ2 = ±1.0, σ/ξ = 1.0), as a

function of the beam velocity. The main figure

displays the drag for a repulsive potential (solid

line) together with the perturbative result (da-

shed line) which is not affected by the sign of the

potential. The inset displays an enlargement of

the main figure allowing to see the (very small)

drag for an attractive potential.


