STATISTICAL PROPERTIES OF REAL
SYMMETRIC MATRICES WITH MANY
DIMENSIONS

E. P. WIGNER, Princeton University

1. Introduction. Mathematically, the energy levels are charac-
teristic values (also called ‘‘roots’’) of hermitian operators; the
stationary states are the corresponding characteristic vectors or ¢
eigenfunctions. However, one’s attention is focused on very different
qualities of these characteristic values and characteristic functions,
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depending on the region of the spectrum. In the low energy region,
near the smallest characteristic value, one would like to have a
rather complete description of the stationary states and as complete
an explanation of the exact values of the energy levels as possible.
In the higher energy region there are so many energy levels that
their exact position is difficult to catalogue, let alone explain. In
this region, where the density of energy levels is high, that is, where
the hermitian operator has many characteristic values per unit
energy interval, one is interested only in the statistical properties
of the spectrum.

Three diagrams are shown to illustrate the situation. The first
of these refers to the energy levels of three nuclei, Be', B", and
C®. The diagram shows the eight lowest energy levels of B and
the lowest two energy levels of Be!® and C™. It gives the position
of these energy levels (1), their total angular momenta and parities.
It indicates a connection among the energy levels of these nuclei.
Not shown, but also of considerable interest, are transition probabili-
ties between these levels. Such transition probabilities can be cal-
culated if the characteristic functions associated with the character-
istic values are known. Conversely, agreement between the ob-
served transition probabilities, and the calculated values of these
quantities, gives an indication of the accuracy of the calculated
characteristic function.
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The second diagram shows five energy levels of Hf'®. This nucleus
has a rotational band (2): the angular momenta of the states shown
are J = 0, 2, 4, 6, 8 units of 2/27. The energy values of these states
should be proportional to J(J 4 1) where J is the angular momen-
tum quantum number. In the present case, this formula is so
accurate that the deviation could not be shown in the diagram.
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The third diagram shows those energy levels (3) of U the angu-
lar momentum quantum number of which is }. The diagram extends
over 200 ev and its lowest point is about 4.88 million electron volts
over the lowest energy level. It would be of little interest, and it
would be quite impossible, to calculate the exact position of these
energy levels. Their position is known with the accuracy shown
only because the addition of a low energy neutron to a U%® nucleus
gives a U™ nucleus with an energy of about 4.88 million electron
volts. It is clear that, in the energy region illustrated in the third
diagram, one will be interested principally in statistical statements,
such as the density of the energy levels, their average ‘“‘width,” that
is, the square of the wave function at the nuclear boundary, and so
on. In addition to the average density (that is, the reciprocal of the
average distance of adjacent energy levels) one is also interested in
the probability for a certain spacing. This includes the question of
whether the levels are, on the whole, equidistant or distributed
according to a probability law. Besides the average width of the
levels, one is interested in the distribution of the widths, that is,
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the fraction of levels the widths of which are in unit interval at a
certain width.

From the point of view of pure mathematics, the statistical
questions may be even more interesting than the question of the
exact properties of the low-lying energy levels because it is very
likely that the statistical properties of a large class of real symmetric
operators are in many respects identical. They should depend then
on only a few parameters which are characteristic of the problem.
One can restrict one’s attention to the class of real symmetric
operators because the energy operator is not only hermitian but
real; this follows from the time inversion symmetry.

2. The distribution of the widths. One might have thought
that the distribution of the widths of the energy levels—that is,
of the square of the wave function at the nuclear surface—is much
more difficult to determine than the distribution of the spacing of
levels—that is, the intervals between adjacent characteristic values.
"This, however, did not prove to be the case; although a detailed
theoretical argument is yet lacking, Scott (4), and Porter and
Thomas (5), found, on the basis of experimental information fur-
nished particularly by Hughes and Harvey (6) that the probability
that the zalue of the wave function be between v and v + dvy is

(1) @7v") " exp[—7*/2v"] dv.
Here »* denotes the average value of % Surely, (1) is the most

simple distribution law that could be postulated. It gives for the
distribution of the reduced width T'y = +*

(1a) (8% Tol's)~* exp[— I's/2T] dT.

where 'y = 5% The experimental data are compared with (la), the
so-called Porter-Thomas distribution, in Figure 4.

3. The distribution of the spacings. It is well known that
the characteristic values of a real symmetric matrix (and also of a
complex hermitian matrix) ‘‘repel’” each other (7). To be more
precise: if the matrix elements depend on a number of continuous
parameters, the dimensionality of the domain in the space of the

parameters, for which a real symmetric matrix has a double root,
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F1Gure 4. Distribution of the widths of energy levels. The curve is (1a), the
crosses represent the experimental points. The vertical stem of the cross gives
the probable experimental error.

is in general lower by two than the dimensionality of the parameter
space itself. This can be demonstrated already in the case of a two-
dimensional real symmetric matrix

(2) }

using the three matrix elements, @1, @13, @22, themselves as para-
meters. The roots (characteristic values) of the matrix (2) are

(2a) A= Yan + ax) £ (e — a)® + 44122]*.

The two roots given by (2a) will be equal only if a;1 = aq. and
@12 = 0. This represents a line in the three-dimensional space of the
parameters. It follows from this that the probability for a spacing
S (interval between adjacent roots) is proportional to S itself if
S is very small as compared with the average spacing which is
denoted usually by D. Some time ago, I surmised (8) that the
probability law is

(3) (xS/2D2)eS1P1GS,

a a;
a2 Q22
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It seems, however, that the experimental data agree better with
the distribution

(3a) (4S5/D?)e2512dS.

which has been suggested by Harvey and Hughes (9). The com-
parison of the distributions (3) and (3a) with the observed distri-
bution of four nuclei is given in Figures 5 and 6. The abscissa of
the figures is x = S/D, the ordinate the actual number of spacings
observed per unit x. The discrepancy does not seem large in either
case. However, if one computes the probability of finding four
spacings among 37 which exceed the average spacing by more than
a factor 2.5, one finds that this is too unlikely (around 10-4).
Actually, the argument which leads to (3) is vague and it is not at
all surprising that it fails. [t does seem surprising, on the other hand,
that no simple argument has yet been found to derive the distribu-
tion of the spacings and that one still has to resort to guesswork.
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4. The density of the characteristic values. The determina-
tion of the density of the characteristic values of a real symmetric
matrix is much simpler than the determination of the distribution
of the spacing. There are, to my knowledge, two approaches to this
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problem. The first of these is based on the theory of the Wishart
distribution (10) and was initiated, as far as I know, by Bargmann
and Von Neumann, The second method determines the distri-
bution by calculating its moments.

The method based on the Wishart distribution considers a par-
ticular set of real symmetric # dimensional matrices ||a;|]. The
number of matrices in the set in which the zn(n + 1) matrix ele-
ments a, with 7 < 2 have, within unit interval, the values speci-
fied by these numbers is proportional to

(@) expl—1h +... +an) — 3ah+ak+ ... +a2)].

In other words, the distribution of the 3n(n + 1) matrix elements
agwithi < kare independent of each other and each a «+ has a normal
(Gaussian) distribution. The root mean square of the distribution
of the diagonal elements is v'2, that of the off-diagonal elements is 1.
If it is true that the relevant statistical properties of the character-
istic values depend little on the set of matrices considered, the
Wishart set, given by (4), can be considered representative.

The remarkable point about the Wishart set is that the probability
for the characteristic values to be equal to Ay, Ay, ..., A\, (within
unitinterval) can be given in a closed form (11). It is proportional to
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(5) P(Au Ay ...,A) =const [ A — Njexp[—% 22 N1

i<k
One might conclude that it is easy to calculate, from (5), not only
the number of characteristic values in unit interval at A:

Ga) o) :ﬂf...f POy M) dha. .. N

but also the distribution of the intervals between adjacent roots.
The latter could be done by integrating (5) over all but fwo of the
A. However, even the integration (5a), over the very simple domain
indicated, is prohibitively difficult if # is a large number. It is
necessary, therefore, to use less direct methods to obtain the
quantities of interest. This was done by Bargmann and Von Neu-
mann who obtained expressions for the distribution of the smallest,
and of the largest, characteristic value.!

In order to calculate the over-all density ¢()\) of the characteristic
values, one may observe that the problem is, mathematically, very
similar to problems encountered in statistical mechanics. One
may use, therefore, the approximate methods of that discipline.
If the density of the roots at X is (), the logarithm of the proba-
bility P is given by
(6) In P(Ay, Ay, ..., A) = const — 2 3IAS 4+ D5 In|h, — A

i i<k

i

It can be approximated by the following functional of &
(6a) [o] = const — fdANo(N) + 3fdN[dus(N)o(u) In|x — pl.

All integrations have to be extended from — « to « and ¢ is so
normalized that

(N fe(A)dn = n.

The first integral in (6a) reproduces the first sum of (6) accurately
if the number of dimensions # is sufficiently high. This is not true

1Personal communication of Dr. V. Bargmann. The smallest and largest
characteristic values of the matrices of the Wishart set lie in the energy regions
in which the density of the energy levels tends to zero as n increases. Hence,
o(A\) = 0 for both lowest and highest roots considered by Bargmann and Von
Neumann. See also H. H. Goldstine and J. V. Neumann, Bull. Amer. Math.
Soc., 53 (1947), 1021, and particularly Proc. Amer. Math. Soc., 2 (1951), 188.
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of the second integral: this neglects correlations between the posi-
tions of the roots. However, these correlations can be expected to ex-
tend only over a few neighbouring roots and since the total number
of roots is large and since the second integral in (6a) converges,
one can expect that the effect of the correlations between the
positions of the roots is negligible. The factor 3 of the second inte-
gral in (6a) stems from the condition 7 < & in (6).

One may now proceed, as in statistical mechanics, by postulating
that the actual density makes the expression [¢] a maximum con-
sistent with the requirement (7) and the condition ¢(A) > 0. This
leads to the integral equation

(8) —1)2 -+-_J-d,u o(u) InfA — |l =C

where C is independent of A. Actually, (8) has to hold only for A
for which ¢(\) > 0: one cannot add a negative increment to o(\)
where o(A) = 0 and (8) can not be derived for such A. It is not
difficult to solve (8). This will not be done, however, but the solu-
tion given and then verified.

Differentiation of (8) with respect to A eliminates C. Before carry-
ing it out, one must replace the integral by

A—e o
I.i:? <'f_m du + ‘J;+(dp) o(p) In|x — ul.

When this is differentiated with respect to A, the terms arising from
the differentiation of the limits drop out and only the derivative
of In|]\ — x| remains. The integral becomes a principal value inte-
gral, or the arithmetic mean of two integrals in the complex plane,
one contour C, above, the other contour C_ below the singularity
at p = A. Hence, (8) becomes

dp o (u) dp o (u)
Guole) Wl -\
(82) c+ A —u + - A —wpu

Conversely, if (8a) is satisfied by some o, (8) also will follow if &
is an even function. We try

(9) o(p) = c(4? — un)t lu| < 4
=0 lu| > A.

The sum of the two integrals on the left of (8a) can now be united
to an integral going around all three singularities, at uy = — 4, ), 4.
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If the path of integration is deformed into a circle of very large
radius R, one can set
(10) u = tRe™ ™ dp = Re* dé.

The left side of (8a) then becomes
2x —ig 2w 2 24 24 %
Re “d¢ 9 2-2~;¢g_J' L AE /_R)_
: N — iRe ™ iRe_“’C(A 4+ R%¢ ") = ! icRe 1T /R do.
Since R is large, the integrand can be expanded into a power series
of 1/R. As was to be expected, only the term independent of R

gives a non-zero contribution and this is 2rcX. Hence, (8a) gives

(9a) c=1/2x

and (7) gives (1/27)(w/2)A% = n. Thus

(9b) o) = @m)~4n — u)} pt < 4n
=0 u? > 4n

indeed satisfies (8a). Since it represents an even function of u, it
also satisfies (8) wherever a(u) # 0. Note that the preceding evalua-
tion of the left side of (8a) is valid only if A\| < 4, as only in this
case does the path which surrounds the p = —4 and p = 4 points
contain the singularity p = A. If IA\| > 4, the integral on the left
side of (8a) contains an additional term, from the singularity at
)\ and is not proportional to A any more. As a result, (9b) does not
satisfy (8a) or (8) for A > A? = 4n; but this is not necessary

because () = 0 in this case.

5. Generalization of (9b). The expression (9b) for the density
of the characteristic values of the matrices of the Wishart set is
identical with the expression obtained before, by another method,
for the density of the characteristic values of another set of real
symmetric matrices (12). This latter set will be called random sign
set. The diagonal elements of the matrices of this latter set all
vanish, the non-diagonal elements are, with equal probabilities,
41 or —1. This suggests that the density of the characteristic

values is given by (9b) under more general conditions, embracing

both sets as special cases.
An analysis of the derivation of (9b) for the random sign set

shows that this is indeed the case (12). The conditions under which
the earlier derivation given for (9b) is valid are:

. P. WIGNER
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If the path of integration is deformed into a circle of very large
radius R, one can set

(10) uw = iRe " dp = Re* do.

The left side of (8a) then becomes
2 i 2 2 24 2.4
Re “d¢ 2 2—2~;¢;_J'- _w(l+ A /R
N rew A RN =, iR T /R °*
Since R is large, the integrand can be expanded into a power series
of 1/R. As was to be expected, only the term independent of R

gives a non-zero contribution and this is 2rch. Hence, (8a) gives

(9a) c=1/2xr

and (7) gives (1/2m) (w/2)-A* = n. Thus

(9b) o(p) = 2m)'4n — p) p? < 4n
=0 ut > 4n

indeed satisfies (8a). Since it represents an even function of p, it
also satisfies (8) wherever a(p) # 0. Note that the preceding evalua-
tion of the left side of (8a) is valid only if [A| < 4, as only in this
case does the path which surrounds the p = —A and p = 4 points
contain the singularity p = X If |A| > 4, the integral on the left
side of (8a) contains an additional term, from the singularity at
\ and is not proportional to A any more. As a result, (9b) does not
satisfy (8a) or (8) for 2\ > A? = 4n; but this is not necessary

because o(A) = 0 in this case.

5. Generalization of (9b). The expression (9b) for the density
of the characteristic values of the matrices of the Wishart set is
identical with the expression obtained before, by another method,
for the density of the characteristic values of another set of real
symmetric matrices (12). This latter set will be called random sign
set. The diagonal elements of the matrices of this latter set all
vanish, the non-diagonal elements are, with equal probabilities,
+1 or —1. This suggests that the density of the characteristic

values is given by (9b) under more general conditions, embracing

both sets as special cases.
An analysis of the derivation of (9b) for the random sign set

shows that this is indeed the case (12). The conditions under which
the earlier derivation given for (9b) is valid are:
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(1) The distributions for the matrix elements a, with 7 < % are
independent of each other.

(2) All these distribution functions, which may be different
from each other, are even functions of the corresponding a .

(3) The second moments of all these distribution functions is 1.
This can be further relaxed to the condition that the second moments
of almost all of these distribution functions is 1. A further, rather
trivial generalization replaces 1 by another arbitrary number,
independent of z and k; (9b) is then changed correspondingly.

(4) All moments of all distribution functions exist and are
uniformly bounded in 7 and k. In other words, the n#th moment of
all the distributions is smaller than a number which may depend on
n but is the same for the distribution functions of all a.

Unfortunately, these results on the density of the characteristic
values do not shed any light on the distribution of the intervals
between adjacent characteristic values. They do show, however, that
at least one statistical property, the density of the characteristic
values, is the same for a great variety of real symmetric matrices.
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