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1. Introduction

External Fabry–Perot cavities [1] operated in the
pulsed regime [2] are considered as promising poten-
tial tools for producing high-flux monochromatic x or
gamma rays from the laser–electron beam Compton
interaction [3–5]. The domain of application of mono-
chromatic x-/γ-ray sources is extremely broad, includ-
ing medical imagery [6], medical radiotherapy [7],
coronary angiography [8], material science applied to
art craft expertise [9], nuclear radioactive waste
management [10], and high energy physics [11]. Var-
ious experimental programs have begun using dif-
ferent electron accelerator technologies and Fabry–
Perot cavity geometries (e.g., see [12]).
The high x-/gamma-ray flux required for the

above-mentioned applications imposes strong con-
straints on the external optical resonator. In particu-
lar, the typical resonator round-trip optical path

should be of the order of a few meters, whereas
the laser beam waist inside the cavity must be of
the order of a few tens of micrometers. This means
that two-mirror cavities should be discarded since
such a small beam waist corresponds to a highly un-
stable concentric configuration [1]. One is thus led to
choose four-mirror cavities (bow tie or Z folded),
which are known to provide stable operation condi-
tions even when the cavity mode waist is small. How-
ever, four-mirror cavities have a drawback that is
related to the fact that the circulating light beam
is reflected on the cavity mirrors under nonvanishing
incidence. More precisely, the high-reflection mirror
coatings needed for reaching a high finesse are made
of quarter-wave stacks [13] and we will show that,
under non-normal incidence, small mirror misalign-
ments and motion induce significant fluctuations of
the cavity’s eigenmode polarization. Since a varia-
tion of polarization coupling leads, in turn, to a var-
iation of the laser beam power stored inside the
cavity, it is of fundamental importance to study and
to quantify the effects of the unavoidable mirror
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motion or residual misalignment, especially for high-
finesse cavities. This is the purpose of the present
article.
Previous studies of polarization instability in

Fabry–Perot cavities exist that consider situations
where a nonlinear coupling is induced by a material
located inside the cavity [14]. In our work, we have
only considered the instability induced by coupling
the incident light polarization vector, which is as-
sumed to be fixed, with the eigenmode of an empty
cavity whose polarization is varying because of the
mirror motion or misalignment. To our knowledge,
geometrically induced polarization instabilities, such
as those we are interested in, have never been stu-
died in linear passive cavities.
This article is organized as follows: the typical

applications we have in mind and the specific con-
straints associated with them (high flux, high en-
hancement factor, high stability, etc.) are presented
in Section 2. The formalism used for computing
the transport of polarization inside planar and non-
planar four-mirror cavities is described in Section 3.
The geometries of planar and nonplanar cavities are
also introduced in this section. Numerical results are
presented in Section 4.

2. Laser–Electron Interaction and Technical
Constraints on the Four-Mirror Cavity Geometry

Ultrarelativistic particle beams are often exploited
as radiation sources due to the attractive character-
istics of the emitted photons. Depending on the
emission mechanism, different energy ranges and
brightness can be achieved. At present, a lot of syn-
chrotron light sources are operational in the world.
Synchrotron emission is a characteristic of charged
particles bent in curved trajectories and, due to
the significant flux produced, it is used in a wide
range of applications [15].
Among the other various light source mechanisms,

the Compton laser–electron beam scattering was
proposed in [3] but was not considered as a photon
source due its very small cross section. But recent im-
provements in lasers, accelerators, and optical reso-
nators put at one’s disposal high-density electron
bunches and high-energy photon pulses.

In Compton scattering, the photons are produced
by the kinematical collision between a charged par-
ticle and a photon. In experimental terms, this im-
plies colliding a charged electron bunch with a
laser pulse (see Fig. 1) in an interaction point (IP).
The relation between the scattered photon emission
angle and its energy is univocal. In the ultrarelativis-
tic limit, for head-on collisions and in the laboratory
rest frame, this relation reads as

Ef ðθÞ ≈ Ei
4γ2

1þ γθ2 ;

where Ef and Ei are, respectively, the photon energy
after and before the collision, and θ is the diffusion
angle, i.e., the angle between the outgoing photon
and the incident electron beam. The incident photon
energy is thus boosted by a factor of 4γ2, where γ ¼
Ee=mec2 is the Lorentz relativistic factor and Ee and
me are electron energy and mass. In Fig. 2(a),
Ef ðθÞ=Ef ð0Þ is plotted as a function of the diffusion
angle for three different electron beam energies Ee ¼
5MeV (γ ¼ 10), Ee ¼ 50MeV (γ ¼ 100), and Ee ¼
150MeV (γ ¼ 300), and for a laser beam wavelength
γ ¼ 1 μm. In Fig. 2(b), the scattered photon energy is
shown as a function of θ for Ei ¼ 1 eV and 2 eV (that
is, for the two laser beamwavelengths, λ ≈ 1 , 0:5 μm).
From these figures, one can underline the angular
dependence of the backscattered photons energy,
i.e., the 1=γ emission opening angle typical of the re-
lativistic electron radiations. This allows selecting a
spectral width with a simple diaphragm system.

In light of these considerations, it is possible to
summarize the attractive characteristics of the
Compton scattering, the photon energy boost, the
angular-energy dependence and the directivity. The
first one leads to the production of hard x rays or
even 1:6–160keV gamma rays with relatively low
electron beam energies (Ee ∼ 10−100MeV for

Fig. 1. Schematic design of an electron ring accelerator and a
four-mirror optical cavity used to produce x rays by Compton
scattering.

Fig. 2. (a) Normalized angular emission of Compton scattering is
displayed for γ ¼ 10; 100;300. (b) Laser wavelength dependence of
the emitted photons energy cut for an electron beam of 50MeV and
for laser photon energies of 1 and 2 eV.
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Ei ¼ 1 eV), thus reducing the costs of the experimen-
tal apparatus. The second one allows the flux mono-
chromatization (up to a few percent of the emitted
spectrum) only by selecting part of the angular spec-
trum (i.e., by diaphragming) and the third one pro-
vides a high-brilliance photon flux in the direction of
the impinging electron beam.
Maximizing the average flux is crucial for the main

applications of the Compton scattering. Here we dis-
tinguish between two energy ranges.

• In the low emitted photon energy domain (10–
100keV), important developments of the Compton-
associated technologies are expected to create a
generation of high-flux (1011–1013 photons=second),
quasi-monochromatic (ΔE=E ¼ 1–10%), low-beam

divergence (a few milliradians or less), low-cost (a
few million dollars), and compact (an electron ring
of a few meters in circumference) radiation ma-
chines. These characteristics can be exploited in a
large variety of research domains, as described in
Section 1. However, to achieve the required flux
(comparable to that of the first- or second-generation
synchrotron sources) with a device that can be easily
installed in a hospital, a university, or a museum la-
boratory, it is indispensable to bring together the best
performances of both electron accelerators and laser
systems. These projects require high-quality electron
beams, e.g., for a small storage ring of a few meters of
diameter, we can consider an electron bunch charge
of 0:1–1nC, a bunch length of 5ps, and a high focus-
ing system to reach beam sizes of the order of 10 μm
or so in IP. Targeting an x-ray flux of
1013 photons=second, as required by radiotherapy
medical applications, the requirements for the opti-
cal system are a laser beam of∼100Waverage power
(repetition frequency of ∼100MHz, ∼1ps pulse
length, a wavelength λ ≈ 1 μm), and a laser pulse
stacking inside a passive Fabry–Perot resonator with
a power enhancement factor of ∼10; 000 in order to
reach 1MW average power at the IP.
• High-energy photons produced by electron—

laser collisions are envisaged [11] to generate polar-
ized positrons eþ by eþ–e conversion of the produced
gamma rays in amorphous targets. In this case, high-
er energy electron beams (1–2GeV for λ ¼ 1 μm) are
required, as well as a circularly polarized laser beam.
The final degree of polarization of the positron beam
depends crucially on the laser’s degree of circular po-
larization and its reliability and stability are essen-
tial to ensure the performance of the eþ source. The
laser beam waist must be reduced to a few tenths of
micrometers and the megawatt average power inside
the cavity is also required.

In summary, the constraints imposed on the opti-
cal cavity design by the requested x-ray and gamma-
ray fluxes are the following: good intracavity stack-
ing power stability below the percent level; good sta-
bility of the degree of circular polarization (for high-
energy gamma-ray application) also better than the

percent level; and small laser beam waist at the IP,
from ∼20 to ∼100 μm. As shown in Fig. 1, the design
of the cavity must also include an electron beam pipe,
whose diameter is usually of the order of a few cen-
timeters and, last but not least, the distance between
the spherical mirrors must be long enough (typically
around 1m) in order to reduce the laser–electron
beam crossing angle. This means that small ultra-
stable monolithic resonator design cannot be used
here and that tilting actuators must be integrated
into the mirror mounts to align the cavity. Therefore,
a cavity with a weak sensitivity to the vibrations in-
duced by the noisy environment of an electron accel-
erator should be designed.

3. Formalism

The performance of four-mirror Fabry–Perot cavities
of various geometries will be studied. The simpler
configurations are planar and are depicted in Fig. 3:
U folded [Fig. 3(a)], Z folded [Fig. 3(b)], and bow tie
[Fig. 3(c)]. The nonplanar extensions of these config-
urations are shown in Fig. 3(d) (U folded), Fig. 3(e) (Z
folded), and Fig. 3(f) (bow tie). For the sake of conve-
nience, a relative angle ϕ has been introduced such
that ϕ ¼ 0, π corresponds to the planar geometries,
and ϕ ¼ π=2 to the “tetrahedron” and the nonplanar
U-folded (a six-mirror version of which was used in
[16]), and Z-folded cavities. The “tetrahedron cavity”
explicitly is shown in Fig. 4. In this case, the reflec-
tions on mirrors 1 and 3 are located on axis Ox, sym-
metrically to the plane yOz, and the reflections on
mirrors 2 and 4 are located on axis Oy, symmetrically
to the plane xOz (see Fig. 4).

In Figs. 3 and 4, mirrors 1 and 2 are flat and mir-
rors 3 and 4 are spherical. The radii of curvature of
the spherical mirrors will be chosen in order to mini-
mize the waists of the cavity modes for each geome-
trical configuration. The reference frame x, y, z is also
shown in Figs. 3 and 4, together with the length para-
meters L, h, and d, and the incident angle θ0. For the
sake of simplicity, the cavity geometries are con-
structed in such a way that the angle of incidence
θ0 is the same on all mirrors, but the formalism de-
scribed below can handle any other configuration.

The cavities are said to be perfectly aligned when
the mirror geometric centers are located at the refer-
ence points MCi ¼ ðX0i;Y0i;Z0iÞ with i ¼ 1;…; 4. The
normal vectors at these points are denoted by N1,
N2, and N03, N04 for the two flat and the two spherical
mirrors (the subscripts 03 and 04 indicate that the
normal vectors are taken at the geometric center
of mirrors 3 and 4, respectively). The reflection
points on the mirrors are denoted by Mi (with
i ¼ 1;…; 4) and Mi ¼ MCi when the cavity is aligned
(see Fig. 4).

The misalignment of mirror i is described by five
parameters: ΔXi, ΔYi, ΔZi, Δθxi, and Δθyi, which
characterize the departure in position and angle
from perfect alignment. Precisely, the geometric cen-
ters of the misaligned mirrors and their normal di-
rections at these points read as
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MCi ¼ ðXi;Yi;ZiÞ
¼ ðX0i þΔXi;Y0i þΔYi;Z0i þΔZiÞ;

i ¼ 1; 2; 3; 4;

ni ¼ RxðΔθixÞRyðΔθiyÞNi; i ¼ 1; 2; 03; 04;

whereRαðΔθαjÞ is the three-dimensional (3D) matrix
describing the rotation of an angle Δθαj around the
axis α (α ¼ x or y) in R3.

A. Accurate Optical Axis Calculation of Misaligned
Cavities

Given a set of misalignment parameters ΔXi, ΔYi,
ΔZi, Δθxi, and Δθyi, the method usually used to de-
termine the optical axis of a slightly misaligned com-
plex cavity is the extended ABCD matrix formalism
[17,18]. However, we need here to accurately deter-
mine the angle of incidence on the cavity mirrors

in order to adequately compute the reflection coeffi-
cient of themultilayer coatings.We found it more sui-
table to use Fermat’s principle [19], which embodies
the exact mirror shapes and which can be simply
implemented iteratively on the basis of Newton–
Rafstone algorithm, allowing us to reach very high
numerical accuracy. The approach is the following:
we start by expressing the surface equations of the
misaligned mirrors z ¼ f iðx; yÞ, i ¼ 1;…; 4. Then, we
arbitrarily choose points Mi ¼ ðxi; yi; ziÞ on the misa-
ligned mirrors (with zi ¼ f iðxi; yiÞ) and evaluate the
closed orbit corresponding to the round-trip optical
path:

Λ ¼ ‖ ~M2M1‖þ ‖ ~M3M2‖þ ‖ ~M4M3‖þ ‖ ~M1M4‖;

for planar and nonplanar bow-tie cavities. For planar
and nonplanar U- or Z-folded cavities, the round-trip
path corresponds to six reflections and the previous
expression generalizes to

Λ ¼ ‖ ~M3M1‖þ ‖ ~M4M3‖þ ‖ ~M2M4‖þ ‖ ~M5M4‖

þ ‖ ~M6M5‖þ ‖ ~M1M6‖; ð1Þ

where points M5 and M6 are, respectively, located on
mirrors 4 and 3. It turns out that, in all our simula-
tions, the physical solution that minimizes Λ in
Eq. (1) (for U- or Z-folded cavities) always corre-
sponds to a self-retracing orbit with M5 ¼ M4 and
M6 ¼ M3, though we do not impose any a priori con-
dition onto the optical path, except that the reflection
points should lie on the mirrors’ surfaces.

According to Fermat’s principle, the physical tra-
jectories determining the optical axis correspond to
minima of Λ; therefore, the coordinates of the actual

Fig. 3. Cavity geometries: (a) planar U folded, (b) planar Z folded, (c) planar bow tie, (d) nonplanar U folded, (e) nonplanar Z folded, and
(f) nonplanar bow tie. Numbers 1 and 2 indicate the locations of the flat mirrors and numbers 3 and 4 the locations of spherical mirrors. The
reference axes x, y, z are shown.

Fig. 4. Tetrahedron nonplanar cavity together with the wave vec-
tors and normal vectors of mirrors 2 and 3. The points MCi corre-
spond to mirror centers.
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reflection points on the mirrors are given by the
solution of the equations f∂Λ=∂xi ¼ 0; ∂Λ=∂yi ¼
0g€i¼1;…;4. Since these equations are nonlinear in xi
and yi, in a first stage we perform a first-order expan-
sion in ðXi − xiÞ, ðYi − yiÞ, resulting in a system of lin-
ear equations that is solved numerically (eight
equations for bow-tie cavities and 12 for the U-
and Z-folded types) using theMATLAB software [20].
Once the unknown coordinates xi and yi are deter-
mined accordingly, we reconstruct the optical path
using the law of reflections on the mirrors without
any approximation, starting from the direction

~M3M4. After a round trip, the point of arrival on
mirror 3 is denoted by M3

0 and the distance
‖ ~M3M3

0 ‖ is computed. Finally, one substitutes Xi →

xi and Yi → yi in order to iterate the procedure until
the numerical precision is reached such that
‖ ~M3M3

0 ‖ ≤ 10−12mm.
We checked that this method gives results in good

agreement with the extended ABCD matrix formal-
ism. However, in order to precisely check our numer-
ical results, we have also computed the optical axis
for a planar cavity with planar misalignments using
a simple independent noniterative method. For the
sake of clarity, the method is only described here
for the bow-tie geometry. This method is based on
the fact that mirror reflections are isometries, and
that two successive reflections are equivalent to the
product of a space rotation and a translation [21]. Ne-
glecting the translation, the reflections on the flat
mirrors 1 and 2 are equivalent to a rotation of an an-
gle cos α12 ¼ n1 · n2=2 around the direction n1 × n2.
Since the optical axis is restricted in this case to
lie in the plane of the cavity, one can easily write the
condition for a ray direction to reproduce itself after a
round trip. This leads to the following condition for
the rotation matrix describing the reflections on mir-
rors 3 and 4:

Rn3×n4ðα34Þ ¼ R−1
n1×n2ðα12Þ ⇒ n3 ¼ −R⊥ðδαÞn2

if n4 ¼ −R⊥ð−δαÞn1;

where δα is the only free parameter. Since unique
points M3 and M4 correspond to the normal vectors
n3 and n4, δα is determined numerically by matching
the point of departure and the return point after a
round trip on the surface of mirror 3.
The comparison between the results obtained with

this method (in the planar case) and the iterative
Fermat’s method shows a perfect agreement within
theMATLAB software numerical precision. It should
be mentioned that, since the product of two rotations
in 3D space obeys complex quaternion algebra, we
did not find any way to efficiently extend this simple
method to nonplanar configurations.

B. Jones Round-Trip Matrix

We first concentrate on the bow-tie and tetrahedron
cavities. The calculation of the Jones round-trip ma-
trix of a nonplanar oscillator has been described in

[22]. For each misalignment configuration, once the
optical axis has been determined, the incidence an-
gles θi on the cavity mirrors are obtained. These in-
cidence angles may differ from the nominal incidence
angle θ0 that we assume as having been used to de-
fine the thickness on the coating layers. Let us de-
note by ri the reflection matrix of mirror i in the
fsi; pig basis attached to the plane of incidence

ri ¼
�
ρis expðiφisÞ 0

0 ρip expðiφipÞ
�
:

The real parameters ρis, ρip, φis, and φip can be com-
puted using the matrix propagation formalism in di-
electric multilayers [23]. The mirror coatings that we
consider have the following multilayer structure: a
λ=2 SiO2 protection layer, N λ=4 double layers
Ta2O5=SiO2, a λ=4 Ta2O5 layer, and a fused silica
substrate. If θi is different from the θ0 for which
the coating has been optimized, one has φip − φis ≠ π.
This means that s and p waves accumulate a differ-
ent phase after a cavity round trip, i.e., they will re-
sonate at different frequencies, although the cavity is
made of an even number of mirrors (see, e.g., [24] for
the extreme case of an odd number of mirrors).

From the knowledge of the ris, the Jones matrix J
is obtained by accounting for the change of frame
when going from one plane of incidence to another
[22,25,26]:

J ¼ r1N41r4N34r3N23r2N12; ð2Þ

where

Ni;iþ1 ¼
�
si · siþ1 p0i · siþ1

si · piþ1 p0i · piþ1

�
: ð3Þ

Denoting by ki and kiþ1 the incident and reflected
wave vectors of mirror i (see Fig. 4) and ki ¼ jkij,
the vectors s, p, and p0 appearing in Eq. (3) are
given by si ¼ ni × kiþ1=kiþ1 and pi ¼ ki × si=ki, p0i ¼
kiþ1 × si=kiþ1. Note that J in Eq. (2) is expressed as
the basis fs1; p1g and that the orthogonal basis
fsi; pi; kig is chosen here to be direct.

The electric field circulating inside the cavity and
the cavity enhancement factor G are given by

Ecirc ∝ ½
X∞
n¼0

ðJeiψÞn�t1V0; G ¼ ‖½
X∞
n¼0

ðJeiψÞn�t1V0‖
2;

ð4Þ

where t1 is the 2 × 2 transmission matrix of the injec-
tion mirror 1, ψ ¼ 2πΛ=λ is the part of round-trip
phase shift that is independent of φip, and φis [1]
and V0 is the polarization vector of the incident laser
beam (V0 ¼ ð1; iÞ= ffiffiffi

2
p

and V0 ¼ ð1; 0Þ for a circularly
and linearly polarized beam, respectively). The se-
ries is conveniently calculated in the eigenvector ba-
sis fe1; e2g, which diagonalizes J. One obtains
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Ecirc ∝ U

� 1
1−ξ1eiζ1 eiψ

0

0 1
1−ξ2eiζ2 eiψ

�
U−1 · t1 · V0: ð5Þ

In Eq. (5), U is the matrix changing to the basis
fe1; e2g, that is,

U ¼
�

s1 · e1 s1 · e2
p10 · e1 p10 · e2

�
; ð6Þ

and ξ1 expðiζ1Þ and ξ2 expðiζ2Þ are the two eigenva-
lues of J, i.e.,

U−1JU ¼
�
ξ1 expðiζ1Þ 0

0 ξ2 expðiζ2Þ
�
: ð7Þ

When the cavity mirrors are misaligned, one has
ζ1 ≠ ζ2, which means that the two eigenvectors ex-
hibit different resonance frequencies. Since a cavity
is locked on a unique frequency, one is free to choose
between the two eigenmodes. To perform our numer-
ical choice, we have considered the following simple
algorithm, which can be put into practice:

if je1 · t1V0j > je2 · t1V0j : Ecirc

∝ U

� 1
1−ξ1 0

0 1
1−ξ2eiðζ2−ζ1Þ

�
U−1t1V0;

if je2 · t1V0j ≥ je1 · t1V0j : Ecirc

∝ U

� 1
1−ξ1e−iðζ2−ζ1Þ

0

0 1
1−ξ2

�
U−1t1V0:

Finally, the Stokes vector components are computed
from the expression of the circulating beam:

S1 ¼ jEcirc · sj2 − jEcirc · pj2
‖Ecirc‖

2 ;

S2 ¼ ðEcirc · sÞðEcirc · pÞ� þ ðEcirc · sÞ�ðEcirc · pÞ
‖Ecirc‖

2 ;

S3 ¼ i½ðEcirc · sÞðEcirc · pÞ� − ðEcirc · sÞ�ðEcirc · pÞ�
‖Ecirc‖

2 : ð8Þ

4. Numerical Results

The numerical computations have been performed
for cavity designs fulfilling the requirements of the
laser Compton experiments described in Section 2.
More specifically, we consider a cavity with L ¼
500mm, h ¼ 100mm, and a laser beam of wave-
length λ ¼ 1030nm. For the Z-folded planar and non-
planar cavities, we further take d ¼ 250mm. These
numbers correspond to a round-trip length of
∼2m. The radii of curvature of mirrors 3 and 4
are taken to be the same. We further impose

R ¼ ‖ ~Mc3Mc4‖ cosðθ0Þ, which corresponds to the
smallest cavity waist [27].

A. Mechanical Tolerances

To estimate the numerical tolerances, the optical
axis is computed for all the 220 combinations of
misalignment parameters Δri ¼ f−1;þ1g μrad, with
Δri ¼ ΔXi;ΔYi;ΔZi and ΔΘi ¼ f−1;þ1g μm, with
ΔΘi ¼ Δθxi;Δθyi (i ¼ 1;…; 4). These values are arbi-
trary and will be related to the tolerance parameter
defined below.

For each configuration, we record the distances
‖ ~MciMi ‖ between the mirror centers Mci of mirror
i and the reflection pointMi of the optical axis on this
mirror. The maximum distance ‖ ~MciMi ‖ among the
220 configurations is denoted by Δmax and is consid-
ered as the tolerance length parameter.

We obtain a tolerance length of 9 μm for the bow-tie
planar and tetrahedron nonplanar cavities. Keeping
L unchanged and varying h from 100 to 200mm does
not change significantly the tolerances (one gets
9:5 μm instead of 9 μm) and changing L from 500
to 1000mm increases the tolerance to 12 μm.

It is interesting to discuss here in greater detail
the cases of the U- and Z-folded planar cavities, in
view of the results of [28], where it has been shown
that the condition R ¼ ‖ ~Mc3Mc4‖ cosðθ0Þ corresponds
to an instable configuration. Contrary to [28], where
Z-folded cavities were considered for dye lasers, in
our setting, we are free to modify the distance D be-
tween the flat and curve mirrorsD ¼ ððh=2Þ2 þ d2Þ1=2
(see Fig. 3). Figure 5 shows the tolerance lengthΔmax
as a function of D for the four planar and nonplanar
U- and Z-folded geometries. To draw these curves,
we only considered tilt misalignments ΔΘi ¼
f−1;þ1g μm (with Δri ¼ 0) and we fixed L ¼
1000mm and θ0 ¼ π=4 for the Z-folded planar and
nonplanar configurations. One sees from the figure
that, for large D, nonplanar configurations are much
more mechanically stable than the planar ones. One

Fig. 5. Tolerance lengths as a function of the distance between
the flat and the spherical mirrors for the U- and Z-folded, planar
and nonplanar geometries. Only mirror tilting misalignments are
taken into account to compute Δmax (see Subsection 4.A).
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also sees that U-folded cavities are more stable than
Z-folded ones, a better mechanical stability being
reached for nonplanar U-folded cavities. We have
checked that, in all cases, Δmax decreases when
R < ‖ ~Mc3Mc4‖ cosðθ0Þ, as observed in [28].
From the point of view of mechanical stability, it

comes out that all of the U- and Z-folded geometric
configurations can be considered, provided the cavity
parameters h, d, and θ0 are carefully chosen. Among
these configurations, U-folded nonplanar cavities
offer interesting geometric features when the imple-
mentation of an optical four-mirror cavity on an
electron accelerator is envisaged. However, one
drawback is that the corresponding cavity eigen-
modes are strongly elliptical.

B. Polarization and Enhancement Factor Stability

We shall now numerically estimate the sensitivity of
the polarization eigenvectors and of the circulating
field to cavity mirror misalignment and motions. The
cavity length parameters L and d, the laser beam
wavelength, and the mirror radius of curvature R
are set as the same values as in Subsection 4.A.
Three values of the parameter h ¼ 50; 100; 200mm
are considered here. We adopt the following numer-
ical procedure:

• first, the optical axis is computed as in Subsec-
tion 4.A for a given set of tilt misalignment angles
ΔΘi for i ¼ 1;…; 4, and we further set Δri ¼ 0 in or-
der to save computer time; and
• the Jones matrix is then computed, leading to

the eigenvectors and enhancement factor of the
cavity.

These two steps are first performed for each com-
bination of the tilt misalignment angles ΔΘi ¼
f−500; 0;þ500g μrad with i ¼ 1;…; 4, i.e., 38 config-
urations. Note that the choice of 500 μrad for the mis-
alignment angle corresponds to the typical residual
misalignment of a long Fabry–Perot cavity. Since we
are interested in applications where the laser beam
inside the cavity is circularly polarized, we assume
that the polarization vector of the incident laser
beam is V0 ¼ ð1; iÞ= ffiffiffi

2
p

. As for the number of double
layers constituting the mirror coating, we choose
N ¼ 4, 12, 20 for mirrors 2, 3, and 4, and N − 2 for
the entrance mirror 1 in order to account for the cav-
ity phase matching.
After computing the degree of circular polarization

S3 of Eq. (8) and the cavity enhancement factor G of
Eq. (4) for each combination of tilt misalignments,
we obtain the two ensembles fS3g and fGg, from
which we calculate the following simple statistical
estimators: the averages hS3i ¼ meanðfS3gÞ, hGi ¼
meanðfGgÞ, the root mean squares σðS3Þ ¼
rmsðfS3gÞ, σðGÞ ¼ rmsðfGgÞ, and the maximum
spread ΔðS3Þ ¼ MaxðfS3gÞ −MinðfS3gÞ, ΔðGÞ ¼
MaxðfGgÞ −MinðfGgÞ. We have numerically checked
that, for values of L up to 2m (with R ¼
‖ ~Mc3Mc4‖ cosðθ0Þ), the previous estimators only de-

pend on the ratio h=L as expected, since the effects
studied in this article are related to angles of inci-
dence on the cavity mirrors (in fact, these effects also
depend on the mechanical tolerance, but at a negli-
gible level in our numerical cases). We shall, there-
fore, show our numerical results as a function of
the single parameter

e ¼ h
2L

;

instead of L and h separately.
We start to show our numerical results by compar-

ing the stability of the two-dimensional (2D) bow-tie
and 3D tetrahedron cavities. Figures 6–9 show hGi,
hS3i, ΔðGÞ=hGi, and ΔðS3Þ as functions of the num-
ber of coating double layers N for e ¼ 0:4, 0.2, 0.1.
From these figures, one sees that the averages hGi
and hS3i are not strongly affected by the misalign-
ments, whereas the values of ΔðS3Þ and ΔðGÞ can
be very large. In fact, Figs. 8 and 9 illustrate that
ΔðGÞ and ΔðS3Þ are negligible for all the values of
e and N in the 3D case. However, for the 2D case,
these figures show that ΔðS3Þ and ΔðGÞ are large
for large values of N or e and negligible for all N
when e≲ 0:1.

We have chosen to discussΔðGÞ andΔðS3Þ instead
of σðGÞ and σðS3Þ because they are the relevant quan-
tities for the applications described in Section 2. The
latter estimators are indeed smaller by a factor of∼5,
as can be seen by comparing Fig. 8 to Fig. 10, where
the values of σðGÞ=hGi are plotted.

To pin down the origin of the instability, i.e., the
large values of ΔðS3Þ and ΔðGÞ, the eigenvector po-
larizations are shown in Fig. 11 for all the misalign-
ment configurations of a 2D cavity with e ¼ 0:2 and
N ¼ 4, 12, 20. The Poincaré sphere representation of
these polarization vectors [29] is adopted here, with
the following choices for the polar angle,

Fig. 6. Average enhancement factor hGi over 28 misalignment
configurations (see Subsection 4.B) as a function of the number
of double layers of the mirror coatings.
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θPs ¼ cos−1ðS3;eÞ, and the azimuth angle, ϕPs ¼
tan−1ðS2e=S1eÞ (Sie are the components of the Stokes
vector corresponding to the polarization vectors e1 or
e2 of the cavity eigenmodes). From Fig. 11, one thus
sees that the eigenmodes are linearely polarized (i.e.,
θPs ¼ π=2 and ϕPs ¼ 0; π, which correspond to
S1 ¼ �1) for N ¼ 4, and that they become more
and more elliptical as N increases. The instabilities
observed in Figs. 8 and 9 for the 2D cavities are thus
related to the variations of the eigenvector polariza-
tion with the misalignment angles. As for the 3D cav-
ities, it comes out that the eigenvectors are always
circularly polarized (i.e., θPs ¼ 0; π for all the misa-
lignment configurations). The instabilities of G and
S3 are, therefore, induced by the coupling of the in-
cident polarization vector V0 with the cavity eigen-
vectors e1 and e2, which represent the polarization
of the cavity eigenmodes.

We turn now to the study of mirror motions. The
same study for ΔΘi ¼ f−5; 0;þ5g μrad with i ¼
1; ::; 4 is performed [note that, for a 1 in: (2:54 cm) dia-
meter mirror mounted in a gimbal mount, a tilt of
5 μrad corresponds to a vibration amplitude of
∼75nm of the mirror edge with respect to its center].
The corresponding values of ΔðGÞ and ΔðS3Þ are
shown in Figs. 12 and 13, respectively. By comparing
these figures with Figs. 8 and 9, one sees that the in-
stability reduction is not enough for large value of N
where a simple scaling by a factor of 1=100 does not
hold. This figure shows that, if one wants to reduce
the polarization instabilities induced by the mirror
motion of a very high finesse cavity below the percent
level, a 3D tetrahedron geometry or a 2D geometry
with e < 0:1 must be used.

We also numerically investigated the effect of
the incident polarization and of the laser beam

Fig. 7. Average degree of circular polarization hS3i over 28 mis-
alignment configurations (see Subsection 4.B) as a function of the
number of double layers of the mirror coatings.

Fig. 8. ΔG=hGi corresponding to the 28 misalignment configura-
tions (see Subsection 4.B) as a function of the number of double
layers of the mirror coatings.

Fig. 9. ΔS3 corresponding to the 28 misalignment configurations
(see Subsection 4.B) as a function of the number of double layers of
the mirror coatings.

Fig. 10. σðGÞ=hGi corresponding to the 28 misalignment config-
urations (see Subsection 4.B) as a function of the number of double
layers of the mirror coatings.
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wavelength. Considering an incident linearly polar-
ized laser beam, i.e., V0 ¼ ð1; 0Þ, we observed quali-
tatively the same instabilities for the 2D geometry
and still a high degree of stability for the 3D geome-
try. Changing the wavelength from 1030 to 515nm,
we found that the instabilities increase by a factor of
∼5. The polarization instabilities induced by the cav-
ity mirror misalignments or motion therefore occur
whatever the polarization and wavelength of the in-
cident radiation, but at a different degree.
Finally, we also performed the same numerical

study for U- and Z-folded cavities. We set the geo-
metric parameters d ¼ 250mm and L ¼ 500mm,
and varied the number of coating double layers N
and the length parameter h as described above. As
a result, we obtained results similar to the planar
bow-tie cavity ones. Here the nonplanar extensions

of the Z- and U-folded cavities do not reduce the in-
stabilities. The reason is that the optical axis is
always self-retracing, so that the eigenmodes are lin-
early polarized for low finesse and become slightly
elliptical as the finesse increases, as in the 2D geo-
metry case.

C. Eigenmodes of the Tetrahedron Cavity

While the shape of a planar four-mirror cavity is well
known [27], the one of a tetrahedron has not been de-
scribed yet to our knowledge. Therefore, we now in-
vestigate the shape of the fundamental eigenmode of
the tetrahedron cavity. The eigenmode of such a cav-
ity belongs, in the paraxial approximation, to the
class of general astigmatic beams [30] (its intensity
profile is elliptical and the orientation of the ellipse
axes changes during the beam propagation). Such
modes are indeed numerically computable using the
formalism of [31]. To illustrate the properties of the
fundamental mode, we use the following numerical
values: h ¼ 100mm, R ¼ 500mm, λ ¼ 1 μm, and L ¼
495:2 and 511mm. The corresponding beam radii ω1
and ω2 along the major and minor ellipse axes, and α,
the ellipse orientation angle in the fs3; p3g basis, are
shown in Figs. 14 and 15, respectively, as a function
of the unfolded coordinate along the mode prop-
agation axis zbeam. We respectively obtain the beam
waists ω01 ¼ 32 μm (ω01 ¼ 97:3 μm) and ω02 ¼ 53 μm
(ω02 ¼ 97:5 μm) between the two spherical mirrors
for L ¼ 495:2mm (L ¼ 511mm). As expected [30],
Fig. 15 shows a fast rotation of the ellipse close to
the waist position. In addition, as also expected
[31], a full π rotation of the angle α is obtained during
a cavity round trip, and one further sees that, for
small waits, this rotation occurs almost completely
between the two spherical mirrors. Figure 14, shows
that the beam ellipticity strongly decreases as the
waists increase, so that for L ¼ 511mm, the intensity
profile is almost circular.

Fig. 11. Eigenvector representations on the Poincaré sphere for a
bow-tie cavity and various numbers of mirror coating double layers
N. The points correspond to the 28 misalignment configurations
(see Subsection 4.B). The geometric parameters are fixed to L ¼
500mm and h ¼ 100mm.

Fig. 12. ΔG=hGi corresponding to the 28 mirror motion configura-
tions (see Subsection 4.B) as a function of the number of double
layers of the mirror coatings.

Fig. 13. ΔS3 corresponding to the 28 mirror motion configura-
tions (see Subsection 4.B) as a function of the number of double
layers of the mirror coatings.
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The main difference between the bow-tie cavity
and the tetrahedron cavity is the rotation of the el-
liptical intensity profile, which is only noticeable
when the waists are small. In this case, as we are in-
terested in colliding the laser beam onto an electron
beam of typical longitudinal length ∼1mm, Fig. 14
shows that the ellipse rotation is small within such
a distance, so that a good-enough overlap between
the beams can be kept. A quantitative estimate of
this effect on the laser–electron beam luminosity is
outside the scope of the article and will be reported
on elsewhere.

5. Summary

We have investigated the stability of various geo-
metric configurations of four-mirror cavities in the
context of future x- and gamma-ray Compton ma-
chines. We indicated that stringent constraints are
indeed put on the geometric design and operation
stability for the applications envisaged for these
machines.

We have numerically shown that the polarization
coupling of the incident laser beam with the four-
mirror cavity eigenmodes induces an enhancement
factor and polarization instabilities when mirror
misalignment motions are taken into account. We ob-
served that this instability depends on the ratio of
the cavity width to the cavity length e ¼ h=2L (see
Fig. 1) and not on h and L independently.

For planar bow-tie and Z-folded geometries, these
instabilities are small when the angles of incidence
on the mirrors and the cavity finesse are kept small
enough, that is, when e < 0:1. They increase non-
linearly when the cavity finesse increases and, for
a given finesse, they decrease when the angle of
incidence decreases. The latter feature leads to an
incompatibility with the mechanical stability condi-
tions of U- and Z-folded cavities, which worsens when
the incidence angle decreases. The design of high
finesse and highly stable U- or Z-folded planar reso-
nators may therefore prove difficult, whereas stable
bow-tie cavities can be considered, provided that the
condition e < 0:1 is fulfilled.

We have studied nonplanar extensions of the bow-
tie and Z-folded planar cavities. We found that, while
the nonplanar Z-folded geometry does not reduce the
polarization instabilities, the tetrahedron geometry
does reduce them at a very small level for all the
values of the parameter e. This configuration must
then be experimentally studied to provide a good
technical solution for the applications described in
Section 1. This is a research and development activ-
ity that has started in our laboratory and that we
shall report on in the near future.

One aspect of the cavity coating that has not been
tackled in this article is residual birefringence [32].
Although this very small effect should have notice-
able effects for very high finesse cavities, we did
not find a robust method to include them in our nu-
merical studies.
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