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Nonlinear polarization waves in a two-component Bose-Einstein condensate
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A two-component Bose-Einstein condensate whose dynamics is described by a system of coupled Gross-
Pitaevskii equations accommodates waves with different symmetries. A first type of waves corresponds to
excitations for which the motion of both components is locally in phase. For the second type of waves, the two
components have a counterphase local motion. When the values of the inter- and intracomponent interaction
constants are different, the long-wavelength behavior of these two modes corresponds to two types of sound with
different velocities. In the limit of weak nonlinearity and small dispersion, the first mode is described by the
well-known Korteweg-de Vries equation. In the same limit, we show that the second mode can be described by
the Gardner equation if the values of the two intracomponent interaction constants are sufficiently close. This
leads to a rich variety of nonlinear excitations (solitons, kinks, algebraic solitons, breathers) which do not exist
in the Korteweg-de Vries description.
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I. INTRODUCTION

The two-component Gross-Pitaevskii (GP) equation de-
scribes the evolution of nonlinear excitations in various phys-
ical systems. Apparently, it first appeared in nonlinear optics
under the name of “vector nonlinear Schrödinger equation”
in order to describe self-interaction of electromagnetic waves
with account of their polarization (see, e.g., [1–4]). When the
values of the nonlinear constants are equal, the corresponding
problem is completely integrable by the inverse scattering
transform method [2] and many particular solutions have been
found (see, e.g., [5] and references therein, and also Refs. [6,7]
for an account of recent progress). Taking birefringence effects
into account [8] leads to an even richer dynamics, as confirmed
by experiments on propagation of light pulses in fibers
[9]. Recently, the realization of spinor atomic Bose-Einstein
condensates (BECs)—see the reviews [10,11] and references
therein—as well as microcavity polariton condensates [12]
arouse a surge of interest in vector solitons.

A specific feature of two-component condensates is the
existence of two types of elementary excitations. In one mode
both components move locally in phase; in the case of a
small-amplitude potential flow this corresponds to the usual
sound waves, which consist in density oscillations. In the other
mode—denoted henceforth as the “polarization mode”—the
two components move in counterphase in such a way that, in
some situations, the total density remains constant in spite
of the excitation of the relative motion of the condensate
components. These two modes have different dispersion rela-
tions with different long-wavelength behaviors—i.e., different
sound velocities—and, due to their different symmetries,
different methods are required for their generation [13,14].
In some sense, this is analogous to the situation observed for
the first and second sound in superfluid HeII: The second
sound, which corresponds to a temperature (and entropy)
wave, cannot be excited by oscillations of the container wall,
contrarily to the usual density waves associated with the first
sound (see, e.g., Ref. [15]).

In the present paper, we study the weakly nonlinear and
weakly dispersive evolution of these two modes. Whereas
in this limit the density waves are described by the stan-
dard Korteweg-de Vries (KdV) equation which accounts for
quadratic nonlinearities, the polarization mode is much more
peculiar. We show that, in typical experimental situations,
its description requires one to take into account third-order
nonlinearities and that the dynamics of the corresponding
nonlinear polarization wave is then modeled by the Gardner
equation. As is well known, this is a quite generic equation
which arises when the coefficient of the quadratic nonlinear
term is small and when the wave amplitude has the same
order of magnitude as this coefficient. In particular, the
Gardner equation (and also the modified KdV equation, which
shares strong similarities with it) has been employed for
describing internal waves in stratified fluids [16,17], lattice
dynamics modeled by the discrete nonlinear Schrödinger
equation [18], and quantum dynamics of condensates in optical
lattices [19]. The Gardner equation admits a wide spectrum
of nonlinear excitations [20] which can be generated by
the flow of a fluid past an obstacle [21]. We expect that
the phenomenology associated with this rich dynamics can
be observed experimentally in the flow of a two-component
BEC.

The paper is organized as follows. The main equations and
the linear excitations of the system are presented in Sec. II;
in this section we also discuss the degree of admixture between
the density and the polarization waves. In Sec. III we derive
the equations governing the weakly nonlinear and weakly
dispersive dynamics of the system. When the values of the
intraspecies interaction constants of the two components are
close, we find that the polarization waves have to be described
by the Gardner equation. In Sec. IV we display some solutions
of the equations established in Sec. III and show that they are
in good agreement with the ones deduced from a numerical
integration of the full vector GP equation which governs the
dynamics of the system. Finally, we present our conclusions
and discuss experimental issues in Sec. V. Some technical
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points on the derivation of the nonlinear perturbation theory
are given in Appendixes A–C.

II. MAIN EQUATIONS AND LINEAR WAVES

We consider a two-component condensate confined in a
one-dimensional structure (e.g., a cigar-shaped trap in the
case of an atomic BEC or a quantum wire embedded into
an elongated cavity in the case of a polariton condensate).
The condensate is described by a one-dimensional (1D) two-
component order parameter (ψ+(x,t),ψ−(x,t)). In the case
of an atomic BEC, the two-component order parameter may
describe a two-species BEC such as realized by considering,
for instance, 87Rb in two hyperfine states [22], or a mixture
of two elements [23], or different isotopes of the same atom
[24]. In the case of a polariton condensate, the components
ψ+ and ψ− account for the pseudospin of the polariton which
consists in eigenstates of a system of interacting excitons
and photons with spin projection ±1. The dynamics of the
system is modeled by a set of coupled Gross-Pitaevskii
equations,

i∂tψ± + 1
2∂xxψ± − [(α1 ± δ) |ψ±|2 + α2 |ψ∓|2]ψ± = 0, (1)

written here under a standard nondimensional form. The
parameter δ measures the difference between the intraspecies
nonlinear interaction constants: α1 + δ and α1 − δ correspond
to interactions between the particles described, respectively,
by the components ψ+ and ψ− of the order parameter. It is
supposed that the two species are labeled in such a way that
δ > 0. The interspecies interaction constant is denoted by α2.
It may be either positive or negative. In the following we
mostly concentrate on the case α2 > 0 but for completeness
we give formulas valid for both signs of α2 at the end of
Sec. III A [Eqs. (21) and (22)], Sec. III B [Eqs. (24) and (25)],
and Sec. III C [Eqs. (28) and (29)].

It is convenient to describe the dynamics of the condensate
in terms of the field variables ρ, �, θ , and φ defined by
[25] (

ψ+
ψ−

)
= √

ρ ei�/2 ζ, ζ =
(

cos(θ/2) e−iφ/2

sin(θ/2) eiφ/2

)
. (2)

Here ρ(x,t) = |ψ+|2 + |ψ−|2 denotes the total density of the
condensate and �(x,t) corresponds to the velocity potential
of its in-phase motion. The angle θ (x,t) is the variable
describing the relative density of the two components [cos θ =
(|ψ+|2 − |ψ−|2)/ρ] and φ(x,t) is the potential of their relative
(counterphase) motion. According to Eq. (2), the densities of
the components of the condensate are given by

ρ+(x,t) = |ψ+|2 = ρ cos2(θ/2),
(3)

ρ−(x,t) = |ψ−|2 = ρ sin2(θ/2).

Their phases are defined as

ϕ+(x,t) = 1
2 (� − φ), ϕ−(x,t) = 1

2 (� + φ), (4)

and their velocities are

v+(x,t) = ∂xϕ+, v−(x,t) = ∂xϕ−. (5)

It is also convenient to introduce a unit vector S representing
the spinor ζ . One defines it as

S(x,t) = ζ † σ ζ, (6)

where σ = (σx σy σz)T is the Pauli matrices vector. In
terms of the angles θ and φ and of the complex fields ψ+ and
ψ−, the vector S reads

S(x,t) =

⎛
⎜⎝

sin θ cos φ

sin θ sin φ

cos θ

⎞
⎟⎠ = 1

ρ

⎛
⎜⎝

2 Re(ψ∗
+ ψ−)

2 Im(ψ∗
+ ψ−)

|ψ+|2 − |ψ−|2

⎞
⎟⎠. (7)

The vector S can be called the polarization vector of the two-
component condensate.

Substitution of Eq. (2) into Eq. (1) yields the system,

ρt + 1

2
[ρ (U − v cos θ )]x = 0,

�t + ρ2
x

4 ρ2
− ρxx

2 ρ
− cot θ

2 ρ
(ρ θx)x + 1

4

(
�2

x + θ2
x + φ2

x

)
+ ρ (α1 + α2 + δ cos θ ) = 0,

ρ θt + 1

2
[ρ Uθx + (ρ v sin θ )x] = 0,

φt + 1

2
U v − 1

2 ρ sin θ
(ρ θx)x

−ρ [(α1 − α2) cos θ + δ] = 0, (8)

where U = �x and v = φx are, respectively, the mean and
the relative velocities; hence the velocities (5) of the two
components are equal to v± = (U ∓ v)/2. In what follows,
we shall consider solitons and other nonlinear excitations
corresponding to small deviations from a uniform quiescent
condensate and, to simplify the treatment, we shall assume that
the values of the nonexcited densities of the two components
are equal. This can be realized by choosing either θ → π/2 or
θ → 3π/2 when |x| → ∞. To be definite, we shall consider
the case θ → π/2 ≡ θ0 since the other choice leads to similar
results. The other parameters of the wave satisfy the boundary
conditions,

ρ → ρ0, U → 0, v → 0 when |x| → ∞. (9)

In the uniform (i.e., constant density) state the time dependence
of the two components of the order parameter is described by
the multiplicative phase factors ψ± ∝ exp(−i μ± t), where the
chemical potentials μ+ and μ− are given by

μ+ = 1

8
(U − v)2 + ρ0

[
α2 + (α1 − α2 + δ) cos2 θ0

2

]
,

(10)

μ− = 1

8
(U + v)2 + ρ0

[
α2 + (α1 − α2 − δ) cos2 θ0

2

]
.

For future convenience we keep in Eq. (10) the general notation
“θ0” (even if we chose θ0 = π/2).

We shall first consider linear waves propagating on top of a
uniform background. Linearizing the system (8) with respect
to the small variables ρ ′ = ρ − ρ0, θ ′ = θ − θ0 = θ − π/2,
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U , and v, one obtains

ρ ′
t + ρ0

2
Ux = 0,

Ut + (α1 + α2) ρ ′
x − 1

2 ρ0
ρ ′

xxx − ρ0 δ θ ′
x = 0,

(11)

θt + 1

2
vx = 0,

vt + ρ0 (α1 − α2) θ ′
x − 1

2
θ ′
xxx − δ ρ ′

x = 0.

One can notice that for δ = 0 the system (11) splits into two
pairs of independent equations: The first pair describes density
modes (corresponding to oscillations of ρ and U ) and the
second pair describes polarization modes (corresponding to
oscillations of θ and v). The distinction between these two
modes is not strict when δ 
= 0, but for convenience, we keep
using the denominations “density modes” and “polarization
modes” in what follows since the corresponding excitations
are no longer hybridized in the limit δ → 0.

If we look for the solutions of the system (11) in the form of
plane waves, i.e., assuming that ρ ′, U , θ ′, and v are proportional
to exp[i(k x − ω t)], then we readily get the dispersion laws,

ω2
d (k) = ρ0

2

(
α1 +

√
α2

2 + δ2
)
k2 + k4

4
,

(12)

ω2
p(k) = ρ0

2

(
α1 −

√
α2

2 + δ2
)
k2 + k4

4
,

for the density and the polarization modes, respectively.
Expressions for the dispersion laws of linear waves prop-
agating along binary condensates in which the background
densities of the two components are not equal were found in
Refs. [26,27].

In the long-wavelength limit k → 0 we obtain the ex-
pressions for the density and polarization sound velocities
c2
d,p = limk→0 ω2

d,p(k)/k2:

c2
d = ρ0

2

(
α1 +

√
α2

2 + δ2
)
,

(13)
c2
p = ρ0

2

(
α1 −

√
α2

2 + δ2
)
.

When δ 
= 0, the degree of admixture between the density
and the polarization waves can be evaluated by studying
the dynamic structure factor S(k,ω) of the system. At zero
temperature S(k,ω) = − 1

π
�(ω) Im χ (k,ω), where � is the

Heaviside step function, and χ (k,ω) is the density response
function (see, e.g., Refs. [28,29]). The susceptibility function
χ (k,ω) characterizes how the density of the system responds
to a weak external scalar potential with wave vector k and
frequency ω. In the presence of such a perturbation, using a
trivial modification of Eq. (11) accounting for the effect of an
external scalar potential, one obtains

χ (k,ω) = Zd (k)

(ω + i 0+)2 − ω2
d (k)

+ Zp(k)

(ω + i 0+)2 − ω2
p(k)

,

(14)

where

Zd (k) = ρ0

2

(
1 + α2√

α2
2 + δ2

)
k2

(15)

and Zp(k) = ρ0

2

(
1 − α2√

α2
2 + δ2

)
k2.

This yields

S(k,ω) = Zd (k)

2 ωd (k)
δ[ω − ωd (k)]

+ Zp(k)

2 ωp(k)
δ[ω − ωp(k)]. (16)

One has
∫
R ω S(k,ω) dω = [Zd (k) + Zp(k)]/2 = ρ0k

2/2, in
agreement with the f -sum rule [28,29]. In the case where
δ = 0, Zp(k) vanishes and the sum rule is exhausted by the
peak at ωd (k). As stated above, this means that when δ = 0 the
density fluctuations are completely described by the branch
with dispersion ωd (k). A further verification is that, in this
case, the Feynman relation holds: ωd (k) = k2/(2 Sk), where
Sk = ∫

R S(k,ω) dω [30]. When δ 
= 0 the relative contribution
to the density fluctuation of each branch can be evaluated
by computing in which proportion the two peaks in Eq. (16)
contribute to Sk . The ratio of these two contributions to Sk

is easily evaluated in the low- and large-k limits. Provided
one does not go in the Manakov regime described below,
one sees in each of these two limiting cases that, for small
δ, the contribution to Sk of the mode with dispersion ωp(k)
is lower by a factor of order (δ/α2)2 than the contribution
of the mode with dispersion ωd (k). Hence, in the case of
interest in the present work, where δ is small compared to
α2, one can legitimately denote the branch with dispersion
ωd (k) the “density modulation branch,” and the one with
dispersion ωp(k) the “polarization modulation one.” Note that
the above analysis has been done in the case where α2 > 0.
When α2 < 0, the roles of the density and of the polarization
mode are exchanged, hence the subscripts “d” and “p” have to
be permuted in Eqs. (12)–(16). Note also that in all the present
work we suppose that

α2
1 > α2

2 + δ2, (17)

which is the condition of modulational stability of the
polarization mode (see, e.g., Ref. [31]).

As we can see from Eq. (13), in the Manakov regime
where the nonlinear constants are equal (i.e., when δ = 0 and
α1 = α2), the polarization sound velocity vanishes. In this case
the linear dispersion relation ωp � ± cp k can no longer be
considered as correctly describing the dispersion relation in
the long-wavelength limit and the dispersive effects cannot
be considered as small, even when k → 0. In the opposite
configuration where the difference α1 − (α2

2 + δ2)1/2 is large
enough, the regime of linear dispersion becomes of great
importance when the characteristic value of the wave vector k

satisfies the condition,

k2 � c2
d,p. (18)
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In this case, for linear waves propagating in the positive-x
direction, the dispersion laws (12) can be approximated by

ωd,p(k) � cd,p k + 1

8 cd,p

k3. (19)

Correspondingly, the wave amplitude, say, ρ ′(x,t), satisfies the
linear equation,

ρ ′
t + cd,p ρ ′

x − 1

8 cd,p

ρ ′
xxx = 0, (20)

where the last term describes a small dispersive correction to
the propagation of pulses with constant sound speeds cd or cp.

If the amplitude ρ ′ is small but finite and such that the last
term in Eq. (20) has the same order of magnitude as the leading
nonlinear correction [typically, ∼(ρ ′)2], then nonlinear effects
cannot be omitted for correct description of the propagation of
the pulse. This issue is addressed in the next section.

III. EVOLUTION EQUATIONS FOR WEAKLY
NONLINEAR WAVES

A. Nonlinear density waves

We now take into account nonlinear effects in the propaga-
tion of a density pulse, with an accuracy up to second order in
the field variables ρ ′, U , θ ′, and v. As shown in Appendix A,
if, in a first stage, we neglect the dispersive effects, then the
system (8) reduces to a single evolution equation [ Eq. (A8)].
Dispersion can then be correctly taken into account by simply
adding in this equation the dispersive term taken from Eq. (20).
This is legitimate because the only other possible quadratic
and dispersive term (∼ρ(1) ρ

(1)
ξξ ) which one could consider

including in our description is forbidden since it does not
have the same symmetry with respect to the transformations
x → −x and t → −t as the other terms. Physically, this
term would correspond to a nonlinear damping absent in the
conservative model (1). Thus, we arrive at the equation,

ρ ′
t + cd ρ ′

x +
3 cd

(
2
√

α2
2 + δ2 − |α2|

)
2 ρ0

√
α2

2 + δ2
ρ ′ ρ ′

x

− 1

8 cd

ρ ′
xxx = 0, (21)

where ρ ′(x,t) = ρ(x,t) − ρ0. Once the solution of Eq. (21) is
found, the other field variables can be obtained using relations
(A5) which we rewrite here for completeness with the final
notations:

U (x,t) = 2 cd

ρ0
ρ ′(x,t),

θ ′(x,t) =
α2 − sgn(α2)

√
α2

2 + δ2

ρ0 δ
ρ ′(x,t), (22)

v(x,t) =
2 cd

[
α2 − sgn(α2)

√
α2

2 + δ2
]

ρ0 δ
ρ ′(x,t).

Equation (21) is the KdV equation for weakly nonlinear
density waves. Although we only detailed the computation
leading to Eqs. (21) and (22) in the case where α2 is positive,

we wrote the final results in a form which is also valid when
α2 is negative. In the latter case, formulas (13) defining the
sound velocities cd and cp have to be exchanged.

In the limit δ → 0 we get the equation (valid for both signs
of α2),

ρ ′
t + c

(0)
d ρ ′

x + 3 c
(0)
d

2 ρ0
ρ ′ ρ ′

x − 1

8 c
(0)
d

ρ ′
xxx = 0, (23)

with c
(0)
d ≡ cd (δ = 0) = {ρ0(α1 + α2)/2}1/2, which reduces to

the KdV equation for shallow Manakov solitons in the case
where α2 = α1.

B. Nonlinear polarization waves: Quadratic nonlinearity

The equation of propagation of nonlinear polarization
waves with account of quadratic nonlinearities can be obtained
by a method similar to the one employed for obtaining the
results presented in Sec. III A (see Appendix B). Starting from
Eq. (B4) and reintroducing the dispersive effects as explained
in Sec. III A, we arrive here also at a KdV equation,

θ ′
t + cp θ ′

x + sgn(α2)
3 cp

(
α2

2 + 2 δ2 − |α2|
√

α2
2 + δ2

)
2 δ

√
α2

2 + δ2
θ ′ θ ′

x

− 1

8 cp

θ ′
xxx = 0, (24)

describing the dynamics of weakly dispersive and weakly
nonlinear polarization waves. As stated in Appendix B,
whereas in Sec. III A the KdV Eq. (22) has been written for
the field variable ρ ′, it is here more convenient to derive the
nonlinear perturbation theory using θ ′. The other field variables
are expressed in terms of θ ′ as follows:

ρ ′(x,t) = ρ0 δ

α2 + sgn(α2)
√

α2
2 + δ2

θ ′(x,t),

U (x,t) = 2 cp δ

α2 + sgn(α2)
√

α2
2 + δ2

θ ′(x,t), (25)

v(x,t) = 2 cp θ ′(x,t).

The derivation of Eqs. (24) and (25) presented in Appendix B
is only valid when α2 > 0, but we took care to write the final
results (24) and (25) in a form which is also correct when
α2 < 0. Note, however, that in the latter case, the definition of
cp has to be replaced by the one of cd in Eq. (13).

In Eq. (24), contrarily to the case of the density waves
exposed in Sec. III A, the coefficient of the nonlinear term
vanishes in the limit δ → 0: when δ � |α2| we get

θ ′
t + c(0)

p θ ′
x + 9 c(0)

p δ

4 α2
θ ′ θ ′

x − 1

8 c
(0)
p

θ ′
xxx = 0, (26)

with c(0)
p ≡ cp(δ = 0) = {ρ0(α1 − α2)/2}1/2. This result is

valid for both signs of α2. It implies that when |θ ′| ∼ δ � 1
the level of accuracy accepted here is not sufficient: The cubic
nonlinear terms [∼(θ ′)3] neglected in the present treatment
have the same order of magnitude as the quadratic term in the
KdV Eq. (26). Thus, in the limit of small δ, we have to consider
the next order of approximation.
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C. Nonlinear polarization waves: Cubic nonlinearity

As advocated in Sec. III B, cubic nonlinearities become
important when δ ∼ |θ ′| is small: Their contributions can
therefore be calculated from the system (8) with δ = 0. The
detailed calculations are presented in Appendix C. After
reintroducing the dispersive effects according to the procedure
exposed in Sec. III A, the result (C5) takes the form of the
following modified KdV equation:

θ ′
t +c(0)

p θ ′
x−

3 c(0)
p (9 α1 − α2)

8 α2
(θ ′)2 θ ′

x−
1

8 c
(0)
p

θ ′
xxx = 0. (27)

If δ is small and |θ ′| ∼ δ, we also have to take into account
the quadratic nonlinearity of Eq. (26) and corrections of order
O(δ2) to the velocity of the polarization sound, which finally
yields

θ ′
t +

(
c(0)
p − ρ0 δ2

8 c
(0)
p α2

)
θ ′
x + 9 c(0)

p δ

4 α2
θ ′ θ ′

x

− 3 c(0)
p (9 α1 − α2)

8 α2
(θ ′)2 θ ′

x − 1

8 c
(0)
p

θ ′
xxx = 0. (28)

This is the Gardner equation describing the evolution of non-
linear polarization pulses in a two-component condensate in
the limit where the intraspecies interaction constants are close
[32]. This can be considered as an “intermediate” region when
the quadratic and cubic nonlinearities make contributions
of the same order of magnitude in evolution of the wave.
In the limit of very small δ, when the quadratic nonlinearity
effects can be neglected, the nonlinear polarization waves are
correctly described by the modified KdV equation [Eq. (27)].
If instead δ is large, then the cubic nonlinearity effects are
negligible and the evolution of nonlinear polarization pulses is
described by the KdV equation [Eq. (24)].

Once the solution of the Gardner equation [Eq. (28)] has
been found, the other field variables can be expressed in terms
of θ ′ by the formulas,

ρ ′(x,t) = 1

2 α2

[
ρ0 δ θ ′(x,t) − 3

(
c(0)
p

)2
(θ ′)2(x,t)

]
,

U (x,t) = c(0)
p

α2

[
δ θ ′(x,t) − 1

2
(3 α1 + α2) (θ ′)2(x,t)

]
, (29)

v(x,t) = 2 c(0)
p θ ′(x,t),

which follow from Eqs. (25) and (C3). It is worth noticing
that although during the derivation of the Gardner equation
[Eq. (28)] we assumed the boundary condition θ ′ → 0 as
|x| → ∞, this equation remains valid for the description of
the evolution of waves with boundary conditions θ ′ → θ1,2 as
x → ±∞ provided the values θ1,2 are small enough (|θ1,2| ∼
δ � 1). As we shall see, this additional freedom makes it
possible to obtain new types of solutions of the vector GP
equation [Eq. (1)].

IV. WEAKLY NONLINEAR WAVES IN
A TWO-COMPONENT BEC

The system (1) admits several solutions with different
properties depending on the signs and values of α1, α2, and

δ. The possible solutions can also depend on the background
distributions of the condensate densities and velocities. Our
boundary conditions ρ± → ρ0/2 when |x| → ∞ exclude
solutions such as dark-bright solitons for which the bright-
soliton component has a vanishing density at |x| → ∞. These
solutions have already been studied in the literature (see, e.g.,
Refs. [3] and [4]) and have been observed in experiments
[33–35]. Other nonlinear coherent patterns—such as dark-dark
solitons, for instance (see Ref. [36])—also exist in situations
where the background density does not vanish at infinity; we
shall now present several new structures belonging to this class
of solutions. To start illustrating our approach by a simple
example, we first present the well-known dark-dark density
solitons described in the limit of shallow solitons by the KdV
equation [Eq. (21)].

A. Density KdV solitons

The evolution of density waves is described by the KdV
equation [Eq. (21)] and its well-known soliton solution is given
in this case by the formula,

ρ ′(x,t) = −2 ρ0

√
α2

2 + δ2

2
√

α2
2 + δ2 − α2

(
1 − Vs

cd

)

× 1

cosh2[
√

2 cd (cd − Vs) (x − Vs t − x0)]
, (30)

where cd is defined by the first part of Eq. (13) and x0 denotes
the initial location of the soliton’s center at t = 0. From
Eq. (22) we can see that at x → ±∞ the polarization vector
S lies in the (Sx,Sy) plane; it rotates towards the “southern
hemisphere” of the S space when x goes from −∞ to +∞,
and its total rotation angle in the (Sx,Sy) plane is equal to

�φ = 2
√

2

√
α2

2 + δ2
(√

α2
2 + δ2 − α2

)
δ
(
2
√

α2
2 + δ2 − α2

)
√

1 − Vs

cd

. (31)

This angle goes to zero as �φ ∝ √
1 − Vs/cd in the limit

Vs → cd − 0 and as �φ ∝ (δ/α2) in the limit δ → 0. As we
see, the angle θ is the same at both sides of the soliton which
means that the left and right asymptotic ratios of the densities
of the two BEC components are equal. However, their relative
phase changes across the soliton and this phase shift should be
observable in interference experiments.

If δ = 0, the solution (30) reduces to the shallow dark-dark
soliton solution of the vector GP equation found in Ref. [27].
If in addition α1 = α2, then (30) reproduces the shallow
Manakov dark soliton [2]. It is important to note that for δ = 0
the polarization variable θ remains constant and that in this
case v ≡ 0, so that the polarization vector S does not vary
[and �φ = 0 in (31)]. We shall call the solution (30) a density
soliton even for δ 
= 0, when the polarization vector rotates
according to Eq. (31), since in the limit δ → 0 it is a pure
density mode.

B. Polarization KdV solitons

We now consider the polarization KdV solitons whose
dynamics is described by Eq. (24). In this case the soliton
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solution is given by

θ ′(x,t) = −2
δ

√
α2

2 + δ2

α2
2 + 2 δ2 − α2

√
α2

2 + δ2

(
1 − Vs

cp

)

× 1

cosh2[
√

2 cp (cp − Vs) (x − Vs t − x0)]
, (32)

where cp is defined by the second part of Eq. (13). Substituting
this expression into Eq. (25) yields the evolution of the
associated variables ρ ′(x,t), U (x,t), and v(x,t). In the present
case, when x goes from −∞ to +∞, the total rotation of the
azimuth φ of the polarization vector S is given by

�φ = −2
√

2
δ

√
α2

2 + δ2

α2
2 + 2 δ2 − α2

√
α2

2 + δ2

√
1 − Vs

cp

. (33)

This angle goes to zero as �φ ∝ √
1 − Vs/cp in the limit

Vs → cp − 0, but it diverges as �φ ∝ (α2/δ) when δ → 0.
This is a first indication that the polarization KdV soliton
ceases to exist in this limit, which demonstrates the drastic
difference between the density and the polarization nonlinear
modes. The study of the amplitude of the polarization soliton
(32) leads to the same conclusion: In the case where δ �
|α2|, the condition of applicability of the small amplitude
approximation (|θ ′| � 1) reads

1 − Vs

cp

� δ

|α2| . (34)

An ever stricter limitation follows from the condition that the
soliton amplitude should be much smaller than the coefficient
of the quadratic term in (26) so that we can indeed neglect the
cubic nonlinearity terms. This imposes

1 − Vs

cp

�
(

δ

α2

)2

. (35)

Thus, the domain of applicability of the KdV approximation
for describing nonlinear polarization waves is extremely small
when δ � |α2|. In this case we must take the cubic nonlinearity
into account. As shown in Sec. III C this corresponds to
describing the dynamics of the nonlinear wave by means of
the Gardner equation [Eq. (28)].

C. Polarization Gardner solitons

The solution of the Gardner equation depends on the signs
and on the values of the nonlinear interaction constants α1, α2,
and δ. In what follows we suppose that α1 > 0, 9 α1 − α2 >

0, α2 can be either positive or negative, and the condensate
components are ordered in such a way that δ > 0. It is worth
noticing that, if α2 > 0, the inequality 9α1 − α2 > 0 is stronger
than the condition (17) necessary to the modulational stability
of a uniform condensate. If instead α2 < 0, then the condition
9α1 − α2 > 0 is fulfilled automatically and we return to the
inequality (17) as the applicability condition of the present
theory.

In the case α2 > 0, the soliton solution of the Gardner
equation [Eq. (28)] is given by the formula (see, e.g., Ref. [20]),

θ ′(x,t) = θ1 θ2

θ1 − (θ1 − θ2) cosh2
[(

2 c
(0)
p V

)1/2
(x − Vs t)

] ,

(36)

where

c(0)
p =

√
ρ0 (α1 − α2)

2
, Vs = c(0)

p − ρ0 δ2

8 c
(0)
p α2

− V, (37)

and

θ1,2

2
=

3 δ ±
√

(3 δ)2 + 4 α2 (9 α1 − α2) V/c
(0)
p

9 α1 − α2
, (38)

where the subscripts “1” and “2” correspond to the upper and
lower signs, respectively; V is a free parameter defining the
velocity and other properties of the soliton solution [note that
V measures the soliton velocity in the reference frame moving
with the polarization sound velocity, which is equal to c(0)

p −
ρ0 δ2/(8 c(0)

p α2)]. Substituting Eq. (36) into Eq. (29) yields the
density and the polarization distributions of the polarization
Gardner soliton.

At variance with the case of the polarization KdV soliton
presented in Sec. IV B, the soliton amplitude θ1 remains here
finite in the limit δ → 0,

θ1

∣∣∣
δ=0

= 4

√
α2

9 α1 − α2

V

c
(0)
p

, (39)

and is small for small enough V . The angle of rotation of the
polarization vector across the soliton solution is given by the
expression,

�φ = 8

√
2 α2

9 α1 − α2
arctan

√
−θ1

θ2
, (40)

which is finite for all δ and V .
The densities of each component of the soliton solution can

be found from Eq. (3). Their behavior is represented in Fig. 1
together with the exact numerical solution of the vector GP
equation. Analogous plots for the flow velocities of the two
components are shown in Fig. 2.

If the parameter V satisfies the inequality
ρ0 δ2/(8 c(0)

p α2) � V , then the soliton velocity can be
approximated as Vs

∼= c(0)
p − V . If in addition we have

ρ0δ/(8c(0)
p ) � V � c(0)

p , then we can neglect the corrections
of order ∼δ in the expressions for ρ± and substitute there the
solution (36) with θ1 equal to (39). Then, in particular, the
densities at the center of each component of the soliton read

ρmin
+ = ρ0

2

[
1 − 4

√
α2

9 α1 − α2

√
1 − Vs

c
(0)
p

−12 (α1 − α2)

9 α1 − α2

(
1 − Vs

c
(0)
p

)]
, (41)
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FIG. 1. (Color online) Dependence of (a) ρ+, (b) ρ−, and of (c)
the total density ρ on ξ = x − Vs t for the polarization Gardner
soliton. The nonlinear interaction parameters are α1 = 1, α2 = 0.6,
and δ = 0.05, and the velocity parameter is V = 0.03 (in this case,
the soliton velocity is Vs � 0.416). The analytical results obtained
within the Gardner description are shown by dashed black lines and
the exact numerical results by red lines. All quantities are plotted in
dimensionless units.

and

ρmax
− = ρ0

2

[
1 + 4

√
α2

9 α1 − α2

√
1 − Vs

c
(0)
p

−12 (α1 − α2)

9 α1 − α2

(
1 − Vs

c
(0)
p

)]
. (42)

FIG. 2. (Color online) Dependence of (a) v+ = (U − v)/2 and
(b) v− = (U + v)/2 on ξ = x − Vs t for the polarization Gardner
soliton. The curves are drawn for the same choice of parameters as
in Fig. 1. Here also the analytical results obtained within the Gardner
description are shown by dashed black lines and the exact numerical
results by red lines. All quantities are plotted in dimensionless units.

FIG. 3. (Color online) Densities ρmin
+ and ρmax

− of each compo-
nent at the center of the soliton as functions of the soliton velocity Vs .
The nonlinear interaction parameters are the same as in Figs. 1 and 2:
α1 = 1, α2 = 0.6, and δ = 0.05. The analytical results (41) and (42)
obtained within the Gardner description are shown by a black line
and the exact numerical results by red dots. All quantities are plotted
in dimensionless units.

For Vs close enough to c(0)
p , these results are in good agreement

with those obtained from the exact numerical integration of the
vector GP equation [Eq. (1)] (see Fig. 3).

When α2 < 0, formula (36) for the soliton solution remains
unchanged, but now in (38) the subscripts “1” and “2”
correspond to the lower and upper signs, respectively, and α2

should be replaced by |α2| in the numerator of the expressions
under the square roots in Eqs. (38)–(42).

D. Polarization algebraic solitons

In the examples of soliton solutions presented above, we
have assumed for definiteness that both nonlinear constants
were positive, i.e., α1 > 0 and α2 > 0, but the results could
easily be extended to situations with α1 > 0 and α2 < 0,
provided the conditions of modulation stability were not
violated. We now consider another type of soliton solution
of the Gardner equation, the so-called algebraic soliton (see,
e.g., Ref. [20]) which only exists in the case where α1 > 0 and
α2 < 0. The corresponding solution of Eq. (28) is given by

θ ′(x,t) = θ2 + θ1 − θ2

1 + (c(0)
p )2 (9 α1−α2)

8 α2
(θ1 − θ2)2 (x − Vs t − x0)

,

(43)

where θ2 is a free (nonzero) background density parameter
which characterizes the solution. The other parameters are
defined by

θ1 = 12 δ

9 α1 − α2
− 3 θ2, (44)

and

Vs = c(0)
p − δ2

8 c
(0)
p α2

+ 9 c(0)
p δ

8 α2
− 3 c(0)

p (9 α1 − α2)

8 α2
θ2

2 . (45)

In this case, when the value of the background angle θ2 is of
order δ, the soliton velocity departs from the sound velocity
by a value which is also of order δ, and, hence, the amplitude
of the soliton is also of the same order of magnitude. Thus, the
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solution corresponds to a very small-amplitude and very wide
soliton.

E. Kink solutions

Besides the soliton solutions, which are similar in many
respects to the KdV solitons, the Gardner equation accommo-
dates other types of solutions which are absent in the KdV
description. In the present subsection we shall consider the
kink solution, sometimes called “solibore” (see, e.g., Refs. [37]
and [20]). It only exists in the case where α1 > 0 and α2 < 0
and if the background flow is modulationally stable. In this
subsection we shall assume that these conditions are met. In
terms of the solution of the Gardner equation [Eq. (28)] the
kink relates flows with different values of the angle θ at left
and right infinities:

θ ′ →
{

θ1 (x → +∞),

θ2 (x → −∞).
(46)

This replaces the boundary condition θ → π/2 presumed
earlier, but the Gardner equation is still applicable provided
the quantities θ1,2 − π/2 are small enough. In the kink solution
the asymptotic values θ1 and θ2 are related through

θ1 + θ2 = 3 c(0)
p δ

8 |α2| . (47)

For definiteness we suppose that θ1 > θ2; then the kink solution
of the Gardner equation can be written as

θ ′(x,t) = θ1 − θ1 − θ2

1 + exp
[√ 9 α1−α2

2 |α2| (θ1 − θ2) (x − Vs t − x0)
] ,

(48)

where the kink velocity is equal to

Vs = c(0)
p − ρ0 δ2

8 c
(0)
p α2

+ c(0)
p (9 α1 − α2)

16 α2

×
[(

6 δ

9 α1 − α2
+ θ1

)2

− 3 θ2
1

]
. (49)

This solution is parametrized by the value of the angle θ1

at right infinity (x → +∞); then θ2 and Vs are defined by
Eqs. (47) and (49). The explicit expression of the dynamical
variables ρ ′(x,t), U (x,t), and φ(x,t) can be found by substitu-
tion of Eq. (48) into Eq. (29). We have illustrated the behavior
of the kink solution by the plots of Fig. 4. As one can see, this
solution represents a two-fluid flow in which one component
partially replaces the other: upstream the kink (on the left side)
the density ρ+ is greater than ρ− and downstream the opposite
situation occurs. In terms of the total density, the kink solution
looks like an asymmetric dark soliton moving with velocity
Vs . It is important to notice that the velocities of the two
components are different and do not vanish at x → ±∞. This
means that there is a finite flux of one component into the
region occupied by the other and the kink soliton describes the
wave at the boundary between the two regions. In this sense,
the kink soliton can be considered as a dispersive analog of a
shock wave.

FIG. 4. (Color online) Densities (a) ρ+, (b) ρ−, (c) total density ρ,
and (d) velocities v± = (U ∓ v)/2 of the two components as functions
of ξ = x − Vs t . The nonlinear interaction parameters are α1 = 1,
α2 = −0.6, and δ = 0.05. The parameter θ1 is equal to 0.05 and
the corresponding kink velocity is Vs � 0.896. The exact numerical
solutions of the vector GP equation are not shown here because they
cannot be distinguished from the analytical results derived within the
Gardner description. All quantities are plotted in dimensionless units.

F. Breather solution

As a last example of the new wave structures supported
by the vector GP equation, we shall present in this subsection
the breather solution found in Refs. [38,39], which appears as
a consequence of the corresponding solution of the Gardner
equation. In our notations it only exists if α2 > 0 and can be
written in the form,

θ ′(x,t) = − 2

c
(0)
p

√
2 α2

9 α1 − α2

× ∂

∂x
arctan

κ cosh p cos �b − k cos q sinh �b

κ sinh p sin �b + k sin q cosh �b

,

(50)

where k and κ are “wave numbers” of an envelope and a carrier
wave, correspondingly:

k = 3 c(0)
p δ√

2 α2 (9 α1 − α2)
× sinh(2 p)

cos2 q cosh2 p + sin2 q sinh2 p
,

(51)

and

κ = 3 c(0)
p δ√

2 α2 (9 α1 − α2)
× sin(2 q)

cos2 q cosh2 p + sin2 q sinh2 p
,

(52)
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FIG. 5. (Color online) Plots of (a) ρ+, (b) ρ−, and of (c) the
total density ρ as functions of x and t for a breather solution. The
nonlinear interaction parameters are α1 = 1, α2 = 0.6, and δ = 0.4.
All quantities are plotted in dimensionless units.

p and q being free parameters. The velocities of the envelope
and the carrier wave are given by the expressions,

Vb = c(0)
p − ρ0 δ2

8 c
(0)
p α2

− 3 κ2 − k2

8 c
(0)
p

,

(53)

Vi = c(0)
p − ρ0 δ2

8 c
(0)
p α2

− κ2 − 3 k2

8 c
(0)
p

,

while the phases are defined as

�b = k (x − Vb t) + �0, �b = κ (x − Vi t) + �0. (54)

Substitution of Eq. (50) into Eqs. (29) and (3) yields the
densities of the two components of the breather solution of
the vector GP equation within the Gardner approximation.
Their behavior is illustrated in Fig. 5 and it corresponds to the
nonstationary propagation of a nonlinear wave packet with an
envelope of velocity Vb.

V. CONCLUSION AND DISCUSSION

In this paper, we have shown that there exists a region
of values of the nonlinear constants for which the vector GP
equation can be reduced to a single nonlinear evolution equa-
tion, the so-called Gardner equation. This equation describes
the evolution of nonlinear polarization excitations which, in
the linear limit, reduce to polarization sound waves which
are disturbances that do not modify the total density of the
condensate.

The Gardner equation accommodates new types of nonlin-
ear waves (such as algebraic solitons, kinks, breathers) which
have not yet been observed in two-component condensates.
Since this equation is obtained as a weakly nonlinear and

weakly dispersive approximation of the vector GP equation, it
was important in the present work to verify if the new waves we
have identified persist in the exact GP scheme. We performed
this check numerically (cf. Figs. 1–4) and, indeed, the solutions
of the Gardner equation remain stable with respect to decay to
more elementary excitations when their dynamics is governed
by the vector GP equation. In other words, although at the
moment an analytic description of the wave pattern only exists
in the small amplitude limit (i.e., in the Gardner scheme),
similar large-amplitude wave patterns can be described as
exact numerical solutions of the vector GP equation.

The Gardner equation is obtained in the limit where the
difference δ between the intraspecies nonlinear interaction
constants is small compared to the interspecies nonlinear
interaction constant α2. This limit is certainly reached in
polaritonic condensates since in these systems δ = 0. In this
field α1 is positive and one generally assumes that α2 is
negative, typically of order of −α1/10. However, the value of
α2 depends on the detuning between the photon and the exciton
modes and may be positive, as demonstrated in Refs. [40–43].
One can thus hope to observe in exciton-polariton systems
all the types of waves presented above: polarization algebraic
solitons and breathers (α2 > 0), and also kinks (α2 < 0).

In the case of ultracold atomic vapors, if one considers, for
instance, a spinor condensate of 87Rb, the parameters α1 and α2

are both positive, with δ/α2 � 2.76 × 10−2 in the case where
the spinor is formed by two hyperfine states |F,mF 〉 = |1,∓1〉
and |2,±1〉 (such as those studied in Refs. [44,45]) and
δ/α2 � 7.17 × 10−3 in the case where the spinor is formed by
the two hyperfine states |1, − 1〉 and |2, − 2〉 (such as those
studied in Ref. [35]). Here again we are in a range of parameters
where the requirement δ/α2 � 1 is met. It is also important
to fulfill the condition (17) of modulational stability. In the
above cases the ratio α2

1/(α2
2 + δ2) is, respectively, �1.00005

and �1.04. These values are barely larger than unity: Hence,
although the criterion (17) is fulfilled, the hypothesis of weak
dispersion is questionable. One can circumvent (or deliberately
increase) this problem by tuning the interspecies scattering
length by ±10% as demonstrated in Ref. [45] (see also
Ref. [24] where the 85Rb scattering length is modulated over
a wide range of values in a 85Rb-87Rb mixture). In the case
where the two components of the condensate consist in two
isotopes of the same element with a small mass difference
δm, then, for observing the effects of a difference δ in
the intraspecies interactions, the condition |δm/m| � |δ/α2|
should be satisfied. Since typically |δm/m| ∼ 0.01, these
effects are also observable in principle even in this type of two-
component condensates. Hence, as polaritonic condensates,
atomic condensates offer interesting prospects for observing
the new nonlinear excitations proposed in the present work.

We expect that these new excitations can be experimentally
generated by phase and density engineering methods or by
the flow of a two-component condensate past an obstacle, as
proposed in Ref. [46].
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APPENDIX A: NONLINEAR DENSITY WAVE

In the appendices we present some details of the derivation
of the approximate evolution equations in the framework of
the nonlinear perturbation theory. To simplify the presentation,
we omit the dispersive effects at this stage (they are accounted
for in the main text).

Expanding the system (8) up to second order in the variables
ρ ′ = ρ − ρ0, U, θ ′ = θ − θ0, v and omitting the x derivatives
of order higher than unity (dispersionless limit) yields

ρ ′
t + ρ0

2
Ux + ρ0

2
(θ ′ v)x + 1

2
(ρ ′ U )x = 0,

Ut + (α1 + α2) ρ ′
x + 1

2
(U Ux + v vx)

−ρ0 δ θ ′
x − δ (ρ ′ θ ′)x = 0,

θ ′
t + 1

2
vx + 1

2 ρ0
v ρ ′

x + 1

2
U θ ′

x = 0,

vt + ρ0 (α1 − α2) θ ′
x + 1

2
(U v)x

+(α1 − α2) (ρ ′ θ ′)x − δ ρ ′
x = 0. (A1)

Within the standard perturbation theory, considering nonlinear
density waves propagating in the positive-x direction, one
introduces the stretched variables (see, e.g., Ref. [47]),

ξ = ε1/2 (x − cd t), τ = ε3/2 t, (A2)

and expands the field variables ρ ′, U , θ ′, and v in powers of ε:⎛
⎜⎜⎜⎝

ρ ′

U

θ ′

v

⎞
⎟⎟⎟⎠ = ε

⎛
⎜⎜⎜⎝

ρ(1)

U (1)

θ (1)

v(1)

⎞
⎟⎟⎟⎠ + ε2

⎛
⎜⎜⎜⎝

ρ(2)

U (2)

θ (2)

v(2)

⎞
⎟⎟⎟⎠ + · · · . (A3)

The corresponding expansion of Eq. (A1) yields, at leading
order, the consistent system of equations,

− cd ρ
(1)
ξ + ρ0

2
U

(1)
ξ = 0,

−cd U
(1)
ξ + (α1 + α2) ρ

(1)
ξ − ρ0 δ θ

(1)
ξ = 0,

(A4)
−cd θ

(1)
ξ + 1

2 v
(1)
ξ = 0,

−cd v
(1)
ξ + ρ0 (α1 − α2) θ

(1)
ξ − δ ρ

(1)
ξ = 0.

The determinant of this linear system is zero, and all variables
can thus be expressed in terms of one of them, ρ(1), for instance,

U (1) = 2 cd

ρ0
ρ(1), θ (1) =

α2 −
√

α2
2 + δ2

ρ0 δ
ρ(1),

(A5)

v(1) =
2 cd

(
α2 −

√
α2

2 + δ2
)

ρ0 δ
ρ(1).

These are the relations actually realized in the case of a linear
density wave.

At next order in ε we get

−cd ρ
(2)
ξ + ρ0

2
U

(2)
ξ

= −ρ(1)
τ − ρ0

2
(θ (1) v(1))ξ − 1

2
(ρ(1) U (1))ξ ,

−cd U
(2)
ξ + (α1 + α2) ρ

(2)
ξ − ρ0 δ θ

(2)
ξ

= −U (1)
τ − 1

2

(
U (1) U

(1)
ξ + v(1) v

(1)
ξ

) + δ (ρ(1) θ (1))ξ ,

−cd θ
(2)
ξ + 1

2
v

(2)
ξ

= −θ (1)
τ − 1

2 ρ0
v(1) ρ

(1)
ξ − 1

2
U (1) θ

(1)
ξ ,

−cd v
(2)
ξ + ρ0 (α1 + α2) θ

(2)
ξ − δ ρ

(2)
ξ

= −v(1)
τ − 1

2
(U (1) v(1))ξ − (α1 − α2) (ρ(1) θ (1))ξ . (A6)

As was already observed at order O(ε) [compare with
Eq. (A4)], the left-hand side of the system (A6) has a vanishing
determinant; hence the expressions at this side are linearly
dependent. Therefore, the expressions in the right-hand side
must also be linearly dependent with the same proportionality
coefficients [which are the same as the ones already involved
at the order O(ε) and explicitly written in Eq. (A5)]. This
condition yields the evolution equation,

ρ(1)
τ +

3 cd

(
2
√

α2
2 + δ2 − α2

)
2 ρ0

√
α2

2 + δ2
ρ(1) ρ

(1)
ξ = 0. (A7)

Returning to the original variables x and t , and writing ρ ′ �
ε ρ(1) (which corresponds to the required level of accuracy)
one obtains

ρ ′
t + cdρ

′
x +

3 cd

(
2
√

α2
2 + δ2 − α2

)
2 ρ0

√
α2

2 + δ2
ρ ′ ρ ′

x = 0. (A8)

APPENDIX B: NONLINEAR POLARIZATION WAVE:
QUADRATIC NONLINEARITY

The treatment of nonlinear polarization waves taking into
account nonlinear terms at quadratic order is similar to the
one presented in Appendix A. We introduce here the stretched
variables,

ξ = ε1/2 (x − cp t), τ = ε3/2 t, (B1)

and make use of the series expansions (A3). The corresponding
expansion of Eq. (A1) yields at first order a system of equations
similar to the system (A4) with cd replaced by cp, which in
turn yields

ρ(1) = ρ0 δ

α2 +
√

α2
2 + δ2

θ (1), v(1) = 2 cp θ (1),

U (1) = 2 cp δ

α2 +
√

α2
2 + δ2

θ (1).

(B2)
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These expressions are equivalent to Eq. (A5)—with cd

replaced by cp—but it is now more convenient to express all
variables in terms of θ (1). Tedious calculations at second order,
similar to those for the density wave, lead to the equation,

θ (1)
τ +

3 cp

(
α2

2 + 2 δ2 − α2

√
α2

2 + δ2
)

2 δ

√
α2

2 + δ2
θ (1) θ

(1)
ξ = 0. (B3)

Returning to the original variables x and t , and writing θ ′ �
ε θ (1) (which corresponds to the required level of accuracy)
one obtains

θ ′
t + cpθ ′

x +
3 cp

(
α2

2 + 2 δ2 − α2

√
α2

2 + δ2
)

2 δ

√
α2

2 + δ2
θ ′ θ ′

x = 0. (B4)

APPENDIX C: NONLINEAR POLARIZATION WAVE:
CUBIC NONLINEARITY

For describing the polarization waves up to the third
nonlinear order one follows a procedure different from the
one presented in Appendixes A and B. A series expansion of
the system (8) up to third order in the small variables ρ ′, U , θ ′,
and v and up to first order in the derivatives of these quantities
(we again postpone the inclusion of the dispersive effects in
order to simplify the presentation) yields

ρ ′
t + ρ0

2
Ux + ρ0

2
(θ ′ v)x + 1

2
(ρ ′ U )x + 1

2
(ρ ′ θ ′ v)x = 0,

Ut + (α1 + α2) ρ ′
x + 1

2
(U Ux + v vx)

+ 1

2 ρ0
ρ ′

x (θ ′
x)2 − (ρ ′

x)3

2 ρ3
0

= 0,

θ ′
t + 1

2
vx + 1

2 ρ0
v ρ ′

x + 1

2
U θ ′

x

− 1

2 ρ2
0

v ρ ′ ρ ′
x − 1

2
v θ ′ θ ′

x − 1

4
(θ ′)2 vx = 0,

vt + ρ0 (α1 − α2) θ ′
x + 1

2
(U v)x + (α1 − α2) (ρ ′ θ ′)x

+ 1

2 ρ2
0

(ρ ′
x)2 θ ′

x − ρ0

2
(α1 − α2) (θ ′)2 θ ′

x = 0.

We now introduce the stretched variables,

ξ = ε1/2
(
x − c(0)

p t
)
, τ = ε5/2 t, (C1)

with c(0)
p = {ρ0(α1 − α2)/2}1/2, and use the series expansions

(A3) up to the third order in ε.
At order O(ε) we get

ρ(1) = 0, U (1) = 0, and v(1) = 2 c(0)
p θ (1). (C2)

At next order we obtain the algebraic relations,

ρ(2) = −3
(
c(0)
p

)2

2 α2
(θ (1))2, v(2) = 2 c(0)

p θ (2),

(C3)

U (2) = −c(0)
p (3 α1 + α2)

2 α2
(θ (1))2.

Finally, at order O(ε3), it is enough to consider only the
equations verified by θ (3) and v(3):

−c(0)
p θ

(3)
ξ + 1

2
v

(3)
ξ

= −θ (1)
τ − 1

2 ρ0
ρ

(2)
ξ − 1

2
U (2) θ

(1)
ξ

+ 1

2
v(1) θ (1) θ

(1)
ξ + 1

4
(θ (1))2 v

(1)
ξ ,

−c(0)
p v

(3)
ξ + ρ0 (α1 − α2) θ

(3)
ξ

= −v(1)
τ − 1

2
(U (2) v(1))ξ − (α1 − α2) (θ (1) ρ(2))ξ

+ ρ0

2
(α1 − α2) (θ (1))2 θ

(1)
ξ .

Again, the expressions in the left-hand side are linearly
dependent and the compatibility condition for this system
yields the evolution equation which, with account of Eqs. (C2)
and (C3), can be written as

θ (1)
τ − 3 c(0)

p (9 α1 − α2)

8 α2
(θ (1))2 θ

(1)
ξ = 0. (C4)

Returning to the original variables x and t , and writing θ ′ �
ε θ (1) (which corresponds to the required level of accuracy)
one obtains

θ ′
t + c(0)

p θ ′
x − 3 c(0)

p (9 α1 − α2)

8 α2
(θ ′)2 θ ′

x = 0. (C5)
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K. Sengstock, Nat. Phys. 4, 496 (2008).

[35] C. Hamner, J. J. Chang, P. Engels, and M. A. Hoefer, Phys. Rev.
Lett. 106, 065302 (2011).

[36] M. A. Hoefer, J. J. Chang, C. Hamner, and P. Engels, Phys. Rev.
A 84, 041605(R) (2011).

[37] P. E. Holloway, E. Pelinovsky, and T. Talipova, J. Geoph. Res.:
Oceans 104, 18333 (1999).

[38] D. E. Pelinovsky and R. H. J. Grimshaw, Phys. Lett. A 229, 165
(1997).

[39] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and T. Talipova,
Physica D 159, 35 (2001).

[40] M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin,
A. Miard, A. Lemaı̂tre, J. Bloch, D. Solnyshkov, G. Malpuech,
and A. V. Kavokin, Phys. Rev. B 82, 075301 (2010).

[41] T. K. Paraı̈so, M. Wouters, Y. Léger, F. Morier-Genoud, and
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