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Received 14 October 2014 / Received in final form 6 November 2014
Published online 27 January 2015 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2015

Abstract. We consider interference effects within the linear description of the scattering of two-dimensional
microcavity polaritons by an obstacle. The polariton wave may exhibit phase dislocations created by
the interference of the incident and the scattered fields. We describe these structures within the general
framework of singular optics. We also discuss another type of interference effects appearing due to the
formation of (quasi)resonances in the potential of a repulsive obstacle with sharp boundaries. We discuss
the relevance of our approach for the description of recent experimental results and propose a criterion for
evaluating the importance of nonlinear effects.

1 Introduction

In a recent publication [1] Cilibrizzi et al. reported ex-
perimental and theoretical results on the scattering of a
two-dimensional (2D) flow of microcavity polaritons by
a localized potential. A specific wave pattern was identi-
fied in the wake of this obstacle: elongated regions of low
density would separate brighter zones, and the phase of
the wave function would experience rapid jumps across
the low density regions. As was indicated in reference [1],
these features are reminiscent of the nonlinear oblique soli-
tons generated by the two-dimensional supersonic flow of a
Bose-Einstein condensate past an obstacle. Such nonlinear
structures were predicted and analyzed in references [2,3]
for atomic condensates, and observed experimentally in
the flow of microcavity polariton past an obstacle [4,5].
As the structures observed in reference [1], oblique soli-
tons manifest themselves as strips of diminished density
connecting regions with markedly different phases. How-
ever, the range of density in the experiment of reference [1]
was such that nonlinear effects could safely be discarded in
its theoretical modeling. This led Cilibrizzi et al. to ques-
tion the nonlinear paradigm used in the interpretation of
references [4,5], a claim which has been itself objected in
the Comment [6].

Ignoring for a moment the controversy on the observa-
tion of oblique solitons in references [4,5], it remains that
reference [1] displays interesting results which deserve a
clear interpretation. Ideally this interpretation should sug-
gest experimental signatures making it possible (i) to dis-
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criminate the linear and the nonlinear regimes and (ii) to
observed new effects in the field of microcavity polaritons.
This is the goal of the present work: we model the 2D
polaritonic flow without account of nonlinear effects and
attribute – as Cilibrizzi et al. already did – the specific
features observed in reference [1] to phase singularities
which mimic some of the aspects of oblique solitons. We
also propose criteria allowing to attribute specific charac-
teristics to oblique solitons (not seen in the linear case)
and some others to linear interference effects. We further-
more propose to extend the range of parameters of the
linear experiment in order to demonstrate some peculiar
effects of linear 2D scattering in the new framework of
microcavity polaritons.

The paper is organized as follows: in Section 2 we
present the model we use in the paper and draw first a
qualitative then a quantitative picture of the scattering
process. In Section 3 we present the simpler 2D phase sin-
gularity: the edge dislocation and identify such structures
in the wake of a 2D obstacle. In Section 4 we discuss an
other linear wave effect connected to quasi-resonant scat-
tering. Finally we present our conclusions in Section 5.

2 The linear wave model

In the 2D geometry appropriate for the description of a
planar microcavity, the linear dynamics of the polariton
field ψ(r, t) can be simply described by the Schrödinger
equation

i�ψt = − �
2

2m
∇2ψ + U(r)ψ, (1)
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where r = (x, y) = (r, ϕ) locates the position in the plane
and m is the effective mass of polaritons. U(r) is the scat-
tering potential which we assume to be of finite extend and
localized near the origin. For simplicity, we have neglected
here all dissipation and pumping effects. We aim at study-
ing a configuration where polaritons are injected ahead
the obstacle and propagate with a single wave-vector k.
We typically consider the case where the incident beam is
a plane wave, but we also present results pertaining to the
case of a circular wave emitted by a point source (the inci-
dent plane wave corresponds to the limiting case where the
source is at infinity). In these configurations, the solution
of equation (1) is a stationary function ψ(r) exp(−iEt/�)
(with E = �

2k2/2m) which can be decomposed into inci-
dent and scattered parts.

As stated in the introduction, we suppose that the
structures observed in reference [1] can be interpreted as
manifestations of singular optics effects [7,8], namely, the
appearance of phase dislocations [9] in the wave pattern
produced by the interference of the incident and scat-
tered waves. Such structures have been observed in vari-
ous physical contexts (see, e.g., Refs. [7,8] and references
therein) and they result in elongated dips in the density
distributions and sharp changes of the phase in vicinity of
amplitude nodal points. Highly anisotropic density dips
appear for instance around nodal points in the interfer-
ence pattern issued form the diffraction of a plane wave
from a reflecting half line, see e.g., Figure 11.12 of refer-
ence [10] or Figures 1 and 2 of reference [11].

Since the low density region around a node in the wake
behind the obstacle can have a very elongated form, it may
look like part of an oblique soliton’s strip. To qualitatively
illustrate this idea, let us first consider the situation of s-
scattering by an obstacle described by a constant (i.e., ϕ
independent) amplitude f . Far enough from the obstacle
the polariton field can be represented in the form [12]

ψ(r) = eikx +
f√
r
ei(kr+π/4), (2)

where the incident wave propagates along the positive
x axis. If f2 � 2π/k and if the range a of the obstacle’s
potential is small enough (a � f2), then the asymptotic
formula (2) is valid already for r � f2. As one can easily
see, in this case equation (2) yields lines of constant phase
with different topologies: (i) for r � f2 the second term
in the right hand side of (2) dominates and these lines
are closed curves (nearly circles), whereas (ii) they be-
come open lines approaching horizontal lines for r � f2.
Hence in the transient region r ∼ f2 the lines of con-
stant phase (the wave fronts) must change topology. This
can be realized through the occurrence of point-like phase
singularities whose specific properties are similar to those
observed in reference [1].

To study these effects quantitatively, we shall con-
sider an obstacle represented by a 2D circular square well
potential

U(r) =

{
U0 for r < a,

0 for r > a,
(3)

where U0 can be either positive (for an attractive poten-
tial) or negative (for a repulsive one). We shall start with
the simple situation of a weak potential for which pertur-
bation theory can be applied.

2.1 Born approximation

In the most general case, the scattering amplitude f in
equation (2) is a function of the angle ϕ between the in-
cident wave vector k (which we choose directed along the
positive x axis) and the wave vector k′ of the scattered
field. If the potential satisfies the condition

|U0| � �
2

ma2
, (4)

then we can evaluate the amplitude f(ϕ) within the Born
approximation [12]:

f(ϕ) = − m

�2
√

2πk

∫
U(r)e−iq·rd2r, (5)

where q = k′ − k, which yields in our case of elastic
scattering

q = |q| = 2k sin(ϕ/2). (6)

Applying equation (5) to the potential (3) and using the
well-known formulae

J0(z) =
1
2π

∫ 2π

0

e−iz cos θdθ,

∫ a

0

zJ0(z)dz = aJ1(a) (7)

for the Bessel functions Jn(z), we obtain

f(ϕ) = −ma
2U0

�2

√
2π
k

J1(2ak sin(ϕ/2))
2ak sin(ϕ/2)

. (8)

The oscillatory behavior of the function J1(2ak sin(ϕ/2))
leads to the appearance of “valleys” of diminished den-
sity in the interference pattern corresponding to (2), a
feature which agrees qualitatively with the wave patterns
observed in reference [1]. However, the depth of these val-
leys is small because of the condition (4) and for getting a
more realistic description of the phenomenon we have to
turn to the exact solution of the scattering problem under
consideration.

2.2 Exact solution

Exact solutions describing the scattering of sound and
electromagnetic waves on cylindrical obstacles were ob-
tained long ago by Lord Rayleigh [13,14] and we shall
apply the same method to the polariton field described by
the Schrödinger equation (1) with the potential (3). We
assume that the potential is either attractive (U0 < 0)
or repulsive but with a potential energy smaller than
the kinetic energy of incident polaritons: 0 < U0 <
�

2k2/(2m) (this limiting assumption is made for simplify-
ing the presentation, but the method equally applies for
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U0 > �
2k2/(2m), see the end of the present section and

Sect. 4). Then the wave vector in the region occupied by
the obstacle (r < a) is:

k0 =
√
k2 − 2mU0/�2. (9)

If we assume that polaritons are emitted by a point-like
source located outside of the radius of the potential at
the point with cylindrical coordinates r1 = (r1, ϕ1), we
are actually interested in calculating the Green function
G(r, r1), (where r = (r, ϕ) is the radius vector of the
observation point) of the stationary Schrödinger equation.
G is solution of the equation{(∇2

r + k2
)
G = 4iδ(r − r1) if r > a,(∇2

r + k2
0

)
G = 0 if r < a.

(10)

In this equation we added a factor 4i in the source term:
this is a simple aesthetic modification allowed by the lin-
earity of the problem. In the absence of potential the
first of equations (10) is valid in whole space and the
associated causal Green function is the Hankel function
H

(1)
0 (k|r − r1|). It is thus appropriate to look for a solu-

tion of (10) of the form

G(r, r1) = H
(1)
0 (k|r − r1|)Θ(r − a) +G1(r, r1), (11)

where Θ is the Heaviside function. G1 is solution of a
cylindrical symmetric problem which can be solved by the
method of separation of variables, yielding the following
expression:

G1(r, r1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
n=−∞

BnH
(1)
n (kr)ein(ϕ−ϕ1), r > a,

∞∑
n=−∞

AnJn(k0r)ein(ϕ−ϕ1), r < a,

(12)
where standard notations are used for special functions
from the Bessel family (see, e.g., Ref. [15]). The combi-
nation of Bessel functions used in the expression (12) is
chosen in order to satisfy the asymptotic conditions of the
problem: in the region r > a, the choice of H(1)

n (kr) en-
sures that one considers outgoing waves, and in the region
r < a, the choice of Jn(k0r) ensures that the wave function
is not singular at the origin.

Using the addition formula for Bessel functions [15]
one may write the Hankel function in (11) as (for r1 > r)

H
(1)
0 (k|r − r1|) =

∞∑
n=−∞

H(1)
n (kr1)Jn(kr)ein(ϕ−ϕ1). (13)

Then, the coefficients An and Bn can be found from the
conditions of continuity of the functionG and of its deriva-
tive at the obstacle boundary r = a. Simple manipulations
yield

Bn = B̃nH
(1)
n (kr1), An = ÃnH

(1)
n (kr1), (14)

with

B̃n =
−k0J

′
n(k0a)Jn(ka) + kJn(k0a)J ′

n(ka)

k0J ′
n(k0a)H

(1)
n (ka) − kJn(k0a)H

(1)′
n (ka)

, (15)

Ãn = i
kJ ′

n(ka)Yn(ka) − kJn(ka)Y ′
n(ka)

k0J ′
n(k0a)H

(1)
n (ka) − kJn(k0a)H

(1)′
n (ka)

, (16)

where the prime denotes the derivative functions.
If the source is located at x1 → −∞ and the incoming

wave is represented by the plane wave function eikx, then
the formulae can be simplified. The Green function takes
the form1

G(r,k) = exp(ikx)Θ(r − a) +G1(r,k), (17)

with

G1(r,k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
n=−∞

inB̃nH
(1)
n (kr)einϕ r > a,

∞∑
n=−∞

inÃnJn(k0r)einϕ r < a.

(18)

In the case of a repulsive obstacle with U0 > �
2k2/(2m),

the above treatment still holds but k0 should now be de-
fined as

k0 = i
√
−k2 + 2mU0/�2. (19)

If one considers a hard disk scatterer, i.e., an infinitely
repulsive obstacle of radius a, then k0 in (19) tends to
i∞, but the expressions (12), (14) and (18) remain valid
provided (15) and (16) are replaced by

B̃n = − Jn(ka)

H
(1)
n (ka)

, Ãn = 0. (20)

The formulae (12) to (20) give the exact solution of our
scattering problem, which, in the limit kr → ∞ and for an
incident plane wave, takes the asymptotic form (2), where
the scattering amplitude is here given by the expression

f(ϕ) = −i
√

2
πk

∞∑
n=−∞

B̃ne
inϕ. (21)

If the condition (4) is fulfilled, then after tedious manip-
ulations with the use of Graf’s addition theorem and re-
currence relations for Bessel functions one can reproduce
the result (8) of the Born approximation starting from
the expressions (21) and (15). The complexity of these
manipulations illustrates the fact that the partial wave
expansion (12) and (18) is not adapted to a perturbative
approach. It is however very well suited for a numerical
treatment of the problem: in practice, the partial wave
expansion can be limited to a range |n| ≤ O(ka) which
makes the numerical determination of the wave function
fast and easy.

1 Note that in the presence of losses the source term could
have a wave vector different from k. In this case, different types
of wave pattern can be observed, as discussed by [16].
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Fig. 1. Color plot of the density (in arbitrary units) corre-
sponding to the Green function (18) in the case of a hard
disk scatterer of radius a = 1. The incident wake vector is
k = 4.5a−1ex, corresponding to the situation studied in ref-
erence [1] (ka = 4.5). The yellow solid lines are the lines of
equiphases 0 and π and the black solid lines are the lines of
equiphase ±π/2.

Fig. 2. Same as Figure 1 for an attractive potential with
2ma2U0/�

2 = −15. The four yellow points are zeros of the
wave function. They are approximately located at positions
(1.899,±0.8928) and (6.4056,±1.674).

As an illustration of the numerical method, we display
in Figures 1 and 2 a color plot of the intensity of the
Green function (17), (18) in the case ka = 4.5. Figure 1
corresponds to a hard disk scatterer and Figure 2 to a
penetrable attractive potential with 2ma2U0/�

2 = −15.
The figures are plotted restraining the summations in (12)
and (18) to |n| ≤ 10. We checked that including higher
partial waves does not modify the figure. We also display
wavefronts in the figures: the yellow solid lines are the
lines of equiphases 0 and π (i.e., the zeros of ImG) and
the black solid lines are the lines of equiphase ±π/2 (i.e.,
the zeros of ReG).

The diffraction pattern of Figure 1 displays no notice-
able structure: the wake of the (impenetrable) potential
corresponds to the shadow of the obstacle and to a re-
gion of low density. On the other hand, in the case of a
penetrable (attractive) potential, one sees a region of high

density (for x > 0 and y 
 0) separating two elongated re-
gions of low density (cf. Fig. 2). These low density regions
are similar to the ones observed in reference [1] and are
located around zeros of the wave function. The zeros in
Figure 2 are indicated by four yellow points at which the
yellow and black wavefront (respectively zeros of ImG and
of ReG) cross. They are associated to phase singularities,
as we now discuss.

3 Wave singularities

While the scattering pattern of Figure 1 has no noticeable
structure, one sees zeros of the wave function in the wake
of the obstacle of Figure 2. They are easily located as
points where the lines ReG = 0 and ImG = 0 cross. In
a first part of this section we present the local behavior
of ψ around the nodal points, and in the second part we
verify that the exact solution (18) has all the characteristic
behaviors identified in Section 3.1.

3.1 Model case

Let us denote as X and Y the abscissa and ordinate in a
coordinate system whose origin is fixed at a nodal point
of the wave function. We chose the X-axis in such a way
that the wave field can be locally represented in the form

ψ ∼= (αX − iY )eikX , (22)

that is, the wave is locally represented by a plane wave
whose amplitude vanishes at the origin. The coefficient
α > 0 controls the scales along the coordinate axes and
the choice of signs is made for later convenience. As one
can easily see, the density distribution

|ψ|2 = α2X2 + Y 2 (23)

has an elliptic form, and if α� 1 the lines of constant den-
sity are strongly elongated along the X-axis. The phase
has a more interesting behavior, corresponding to an edge
dislocation in the wave field [9]. The phase θ of the wave
function is defined by the equation

θ(X,Y ) = arctan
αX sin(kX) − Y cos(kX)
αX cos(kX) + Y sin(kX)

. (24)

We show in Figure 3 wavefronts (i.e., lines of constant
phase) and streamlines which are the field lines of the
vector field ∇θ with

θX =
α(Y + αkX2) + kY 2

|ψ|2 , θY = − αX

|ψ|2 . (25)

One can see that the lines of constant phase stem from
the origin and that the streamlines form circles around it.
This means that there is a vortex located at the origin
(the nodal point) and that the velocity field ∇θ has a
singularity here. There is another remarkable point where
the backward velocity induced by the vortex just cancels

http://www.epj.org
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Fig. 3. Left plot: color plot of the density corresponding to the
wave function (22) (α = 0.5 and k = 1). The blue (red) color
corresponds to a region of lower (higher) density. The black
solid lines are wavefronts (θ = 0,±π/4,±π/2,±3π/4π, π). The
nodal point at the origin is marked by a yellow circle and the
stagnation point (26) by a yellow diamond. Right plot: cor-
responding streamlines. Note that the scale (and the color of
the singular points) has been modified in order to get a better
resolution in the region near the origin.

the plane wave flow velocity kex. This is a critical point
of the vector field (25) with vanishing velocity (θX , θY ).
Its coordinates are given by

X = 0, Y = −α/k. (26)

It is easy to find that the Hessian has here opposite eigen-
values (±α3/k2), meaning that this critical point is a sad-
dle, as clearly seen in the left plot of Figure 3. The separa-
trix going through the saddle point has a fixed phase which
can be put equal to π, or equal to π along one branch and
equal to −π ≡ π mod (2π) along another branch. There-
fore the phases of the wavefront at this point can change
values between two choices equal to each other modulus
2π and the whole change of phase depends on the charge
of the vortex located “inside” the separatrix line. In our
case (Fig. 3) the phase changes from −π at one branch of
the separatrix to π at the other branch (if one goes from
left to right), that is the charge of the vortex is equal to
unity.

As one can see, the edge phase singularity described
here leads to a very elongated region of low density if
α� 1 (cf. Eq. (23)) which can mimic the experimental sit-
uation observed in reference [1] if the distance k/α is less
than the typical distance between the “pseudo-soliton”
and the incident flow axis. If this condition is not fulfilled,
then we have to take into account the existence of a sym-
metrical edge phase singularity below the axis of the flow.
This can be done by making the approximation that the
angles between the “pseudo-solitons” and the axis of the
flow are negligibly small. In this case we can approximate
locally the solution of our scattering problem by the exact
solution of the Helmholtz equation (see Refs. [7,9,17])

ψ =
[
X − ik(Y 2 − b)

]
eikX , (27)

where b is real. If b is positive, this field has nodes at
points (0,±√

b) corresponding to vortices with opposite
circulations. The corresponding velocity field ∇θ has two

Fig. 4. Plot of the intensity of the wave function (27) (with
k = 1) for different values of the parameter b (from up-
per left to lower right: b = 2, 1, 0.2 and −0.2). The blue
(red) color corresponds to a region of lower (higher) den-
sity. In each plot the black solid lines are the wavefronts
θ = 0,±π/4,±π/2,±3π/4π, π, the yellow circles are the nodal
point and the diamonds are the saddle points.

stagnation points with coordinates (Xs, Ys)

(Xs, Ys) =

{
(0,±√

b− k−2) if b > k−2,

(±√
b− k2b2, 0) if b < k−2,

(28)

and it is easy to show that these are saddle points. Thus,
for large enough values of b the two vortices and the two
saddle points are located on the y axis and the resulting
structure can be represented as a symmetrical combina-
tion of two edge phase dislocations with a shallow low
density region of large horizontal extension (see the up-
per left plot of Fig. 4). When b decreases, an interesting
mechanism of collapse of the singularities occurs which is
depicted in Figure 4. For b = k−2 (upper right plot) the
saddle points collide at the origin and for decreasing b they
start to move symmetrically from the origin along the x
axis (lower left plot): after initially drifting apart, the two
saddles get closer anew. At last, when b = 0 all vortices
and saddle points annihilate at the origin, the dislocation
disappears and for b < 0 the flow becomes regular (lower
right plot).

This scenario of disappearance of the wave singulari-
ties was put forward by Nye et al. in reference [17]. It is
robust because it obeys the restrictions dictated by topol-
ogy, as we now explain. Two topological indices can be
ascribed to the nodal and saddle points. One of them,
known as the topological charge or vorticity IV, measures
the circulation of the velocity field around the singularity:
IV = ±1 around the nodes of the wave functions (22) and
(27) and IV = 0 around a saddle. The other one, known
as Poincaré index IP, measures the change of direction of

http://www.epj.org
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Fig. 5. Upper plot: density of the wave function for a beam
scattering onto a penetrable disk with 2ma2U0/�

2 = −15. The
horizontal (vertical) axis is the x-axis (y-axis) in units of a.
The color code is the same as in Figures 1 and 2. The in-
cident wave vector is k = 2.0

a
ex. The yellow solid lines are

the lines of equiphases 0 and π, the black solid lines are the
lines of equiphase ±π/2 and the purple solid lines are the lines
of equiphase ±π/4 and ±3π/4. Lower plot: streamlines. The
nodes and saddles in the region x � 3.7 are marked by yel-
low (red) points and diamonds in the upper (lower) plot. The
positions of the other nodes and saddles are not marked by a
special sign in the figure.

the equiphase lines around the singularity: IP = 1 for a
node and IP = −1 for a saddle. The simple annihilation of
two vortices of opposite topological charge is not possible
because it does not conserve the Poincaré index. In the
Nye et al. [17] scenario instead, the concomitant annihi-
lation of the zeros and of the saddles conserve both the
total vorticity and Poincaré index.

3.2 The wake of a penetrable disk

In our scattering problem the process just described is con-
trolled by the parameters U0 (the depth of the potential)
and k (the incident wave vector). We now show that this
process is indeed observed when changing the parameters
U0 and k starting from the situation depicted in Figure 2.
In view of a possible experimental implementation it is
more appropriate to keep U0 fixed and to change the value
of the incident wave vector k. Figure 5 depicts the density
pattern and the corresponding streamlines for k = 2.0/a
(and 2ma2U0/�

2 = −15). For this value of k the zeros of
the wave function in the wake of the obstacle are closer

Fig. 6. Same as Figure 5 for k = 1.9/a.

one to each other than in Figure 2. One is in a situation
similar to that shown in the upper left plot of Figure 4:
two nodes and two saddles are almost aligned on a verti-
cal line2 in the region x 
 3.7a. If k slightly decreases to
k = 1.9/a, one obtain the results depicted in Figure 6: the
two nodes still have symmetric positions with respect to
the horizontal axis but the saddles now lay on this axis.
This is a situation similar to the one depicted in the left
lower plot of Figure 4. Finally, for k = 1.8/a (not shown)
the flow becomes regular in the region x 
 3.7a and y = 0:
Hence the disappearance of the zeros and of the saddles in
this region exactly follows the scenario of Nye et al. [17]
presented in the previous sub-section.

The detailed analysis just presented of the symmetrical
regions of lower density in the wake of an attractive ob-
stacle (depicted in Fig. 2) confirms the original discussion
of reference [1]: these zones correspond to phase singular-
ities in vicinity of zeros of the wave function. Indeed, the
rapid change of the phase across these regions mimics the
behavior of the phase across the oblique solitons observed
in the wake of a nonlinear fluid.

However, there are marked differences between the lin-
ear phase singularities and the oblique solitons: (a) the
phase singularities are not seen in the wake of an impen-
etrable obstacle (see Fig. 1); (b) the phase singularities
are less robust, in the sense that they can easily disappear
upon changing the incident wave vector or the depth of the

2 The position of the nodes is easily determined from the
upper plot of Figure 5 which represents the density of the wave
function and the wavefronts. On the other hand, the position
of the saddles is more precisely determined from the plot of
the streamlines (lower part of the figure).
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potential, however, this disappearance is in itself an inter-
esting phenomenon governed by topological constraints as
just verified; (c) the phase singularities occupy only a fi-
nite region of the stationary interference pattern whereas
the length of oblique solitons increases with time in princi-
ple ad infinitum (see Ref. [18]); (d) the width of an oblique
soliton is controlled by the balance of the dispersion and
nonlinearity whereas the characteristic size of the dark
regions around the phase singularities depends on the pa-
rameters of the obstacle only (see the precise discussion
in Sect. 5); (e) at last, the threshold wave number of the
incident wave for appearance of oblique solitons is related
with the characteristic sound velocity in the polariton con-
densate [3,18] whereas there is no such threshold for the
formation of a linear interference pattern.

4 Resonant scattering

So far we have concentrated our attention on the wave
pattern outside the obstacle where phase dislocations can
be formed which are accompanied by elongated dips in the
density distributions. However, the exact solution (21),
(15) provides also valuable informations about the wave
distribution inside the region occupied by the obstacle.

4.1 Low energy scattering

A first interesting situation occurs for low energy scat-
tering on an attractive potential (U0 < 0). One works
in the low incident energy regime where ka � 1 and
�

2k2/2m � |U0|. In this case one can show that the co-
efficients B̃n of the partial wave expansion in (15) behave
as (ak)2n and only the s-wave contributes significantly to
the scattering.

It is convenient to measure the depth of the potential
well in units of a wave vector Q0 defined by:

�
2Q2

0

2m
= |U0|. (29)

In this case, defining the quantity κ by

ln
(
κaeγ

2

)
=

1
Q0a

J0(Q0a)
J ′

0(Q0a)
, (30)

where γ is the Euler-Mascheroni constant, and using the
asymptotic expansions of Hankel and Bessel functions for
small argument [15] one obtains from (15):

B̃0 
 −1
1 + 2i

π ln(k/κ)
. (31)

A similar expression is generally valid for any low energy
scattering process in two dimensions [12]. Equation (31)
also applies for a repulsive potential, but in this case the
definition (30) of κ should be replaced by (40). In the
case of a hard disk scatterer for instance, the constant
κ takes the value κ = 2e−γ/a: this can be obtained by

taking the limit U0 → +∞ in (40), or directly from the
expression (20). In the attractive case which we consider
in the present sub-section, κ has the following physical
meaning: if there is a bound s-state close the threshold3,
i.e., if one is in the case of quasi-resonant scattering, then
this state has an energy −�

2κ2/(2m).
From (31) one sees that the cross section

σ =
∫ 2π

0

|f(ϕ)|2dϕ ka→0
 4
k
|B̃0|2, (32)

diverges at low energy. Thus, in this limit, the linear scat-
tering process is markedly different from the nonlinear one
for which superfluidity prevails at low incident velocity.
Actually this is again the manifestation of the existence
of an important characteristic quantity of the polariton
condensate, namely the velocity of sound: scattering dis-
appears for a nonlinear flow whose velocity is lower than
the critical velocity which – in weakly interacting polari-
ton gas – is of the order of the sound velocity [19].

4.2 Quasi-stationary states over a repulsive potential

The scattering amplitude (15) has poles for complex val-
ues of the variable k and this means that quasistationary
states can be formed under certain conditions. It is in-
teresting to consider such a possibility here because these
states can be detected experimentally.

The poles correspond to zeroes of the denominator in
the expression (15) of the scattering amplitude, that is
they are determined by the equation

k0J
′
n(k0a)H(1)

n (ka) = kJn(k0a)H(1)′
n (ka). (33)

This equation has, generally speaking, complex roots with
comparable real and imaginary parts. However, for observ-
ing a long living quasistationary state the imaginary part
must be much smaller than the real one. Such a configura-
tion appears if the repulsive potential (3) is large enough,

U0 � �
2

ma2
, (34)

and if the kinetic energy of incident polaritons is only
slightly greater than U0:

�
2k2

2m
− U0 � U0. (35)

Then we see from equation (9) that in this case k0 � k
and the left hand side of equation (33) is small, hence
Jn(k0a) must be accordingly small. This occurs if k0a is
close to a zero of the Bessel function Jn(z). If, for instance,
k0a is close to the value jn,s of the sth zero of Jn,

k0|n,sa = jn,s + δn,s (with |δn,s| � 1), (36)

3 We recall that in two dimensions an attractive potential
always has at least one bound state. The case of resonant scat-
tering occurs when the energy of the highest bound state is
close to threshold.
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Fig. 7. Density of the wave function scattered by a repulsive
disk with 2ma2U0/�

2 = 60. The incident wave vector is ka =
8.12 in order to meet the requirement of quasi-resonance in the
s channel (cf. the discussion in the text).

then, an expansion of equation (33) with respect to the
small parameters δn,s and k0|n,s/k yields in the leading
approximation the following expression for δn,s:

δn,s 
 jn,s

Q0a

H
(1)
n (Q0a)

H
(1)′
n (Q0a)

, (37)

where Q0 is defined by equation (29). As one can see, the
imaginary part of k0|n,s (as well as the correction to the
real part) is of order of ∼(Q0a)−1 and is small at least for
the first quasistationary levels provided the condition (34)
is fulfilled. Thus, for observing a quasistationary level, the
wavenumber inside the obstacle should be equal to the
complex eigenvalue k0|n,s determined by equation (36).
From the relationship k2

0|n,s = k2
n,s − Q2

0 we find in the
leading approximation the resonance values of the wave
vector k of the incident wave:

kn,sa ≡ (k′n,s + ik′′n,s)a ≈ Q0a+
1
2
j2n,s

Q0a
+ i

jn,sδ
′′
n,s

Q0a
, (38)

where δn,s ≡ δ′n,s + iδ′′n,s and the contribution of the real
part δ′n,s has been neglected with respect to larger contri-
butions of order ∼(Q0a)−1.

As an illustration, we consider a repulsive poten-
tial for which the parameters U0 and a are related by
2ma2U0/�

2 = 60 = (Q0a)2 (thus verifying the con-
dition (34)). We look for instance for the first reso-
nance in the s-wave channel, i.e., we consider a configu-
ration where k0a is close to the first zero of J0: j0,1 =
2.40482555 . . . Formulas (36)–(38) yield Re(k0|0,1a) 

2.385 and Re(k0,1a) 
 8.12. The expected resonance is
indeed observed for this value of the incident wave vec-
tor, as shown in Figure 7: in this case the density of the
scatterer wave has a strong maximum at the center of
the repulsive disk. In Figure 8 we display the first res-
onance in the n = 1 channel. In this case formula (38)
yields Re(k1,1a) 
 8.69 and one observes a non-isotropic
intensity pattern inside the circle, typical for a p-state.

Fig. 8. Same as Figure 7 for an incident wave vector ka = 8.69.

Fig. 9. Cross section σ(k) for a repulsive potential with
2ma2U0/�

2 = 60. The two arrows mark the resonances corre-
sponding to the intensity patterns displayed in Figures 7 and 8:
respectively ka = Re(k0,1a) � 8.12 and ka = Re(k1,1a) � 8.69.
The dashed line is the low energy approximation described in
the text (Eqs. (32), (31) and (40)). The vertical line locates
the threshold wavenumber above which �

2k2/(2m) > U0.

The cross section

σ(k) =
1
4k

+∞∑
n=−∞

|B̃n|2 (39)

for the potential corresponding to Figures 7 and 8 (for
which 2ma2U0/�

2 = 60) is represented in Figure 9. In this
figure the dashed line is the low energy approximation (32)
of the cross section, where B̃0 is given by (31) with κ being
here defined as:

ln
(
κaeγ

2

)
=

1
Q0a

I0(Q0a)
I ′0(Q0a)

, (40)

which is the version of equation (30) appropriate for a
repulsive potential (I0 being the modified Bessel func-
tion [15]). The two resonances we have identified are
marked with arrows in the figure. One corresponds to a
minimum of the cross-section and the other one to a max-
imum, following Fano mechanism.
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5 Conclusion

In optics one usually devotes a special attention to bright
regions with high intensity of light: focuses, caustics, but
also resonances as in Figures 7 and 8. Another type of
singularities appears in faint light, i.e., close to the dark
spots where nodes of the light field are associated to phase
dislocations. In these zones, complicated phase patterns
may occur, with sharp changes (“jumps”) of phase across
certain lines. We believe that such a linear optics phe-
nomenon was observed in the experiment of Cilibrizzi
et al. [1].

We have described how the dark elongated valleys ob-
served in the wake of an attractive obstacle (Ref. [1] and
Fig. 2) can merge and disappear upon changing the inci-
dent wave-vector and/or the depth of the potential. This
phenomenon is accounted for within a fully linear the-
ory and follows a typical scenario first proposed in refer-
ence [17]. As a side result, this shows that the occurrence
of a bright region separating two dark elongated valleys in
the wake of the obstacle is not generic. In particular, con-
trarily to oblique solitons, it is not observed in the wake
of an impenetrable disk.

The applicability of the approach of the present work
is limited by nonlinear effects caused by the interac-
tion between polaritons. Considering the interest raised
by the observation of phase defects in optics [20–24], in
Bose-Einstein condensates [25–29], in polariton conden-
sates [1,30] and in other fields [31], it is appropriate to
set up simple criteria making it possible to discriminate
the linear wake from the nonlinear one and to discuss how
nonlinearity affects the structures presented in this article.

As discussed above, there are marked qualitative dif-
ferences between the linear an the non-linear case: the
low velocity behavior of the flows are quite different (su-
perfluid in the nonlinear case and, at variance, a diverging
cross section in the linear case). Also the comparison be-
tween scattering from an impenetrable and a penetrable
defect shows that, whereas the nonlinear wake is expected
in both cases to lead to the formation of oblique solitons,
in the linear regime the dark streaks only appear when the
defect is penetrable (cf. Figs. 1 and 2). Our analysis also
provide another qualitative criterion making it possible to
distinguish an oblique soliton from a dip in a linear wake:
the linear dip is associated to a phase singularity, and the
phase of the wave function varies rapidly when crossing
the low density region. This change of phase corresponds
to a minimum or a maximum in the region between the
streaks depending on which side of the singularity one
considers. This is already clear from Figure 2 and made
explicit in Figure 10: along the red dashed line drawn in
this figure, the phase is decreased between two low density
regions, whereas along the blue dashed path the phase is
higher when y ≈ 0. The situation is quite different for
an oblique soliton in the wake of a nonlinear flow, as can
be understood from the following remarks: (i) the phase
of a dark soliton increases in the direction opposite to its
direction of propagation; (ii) an oblique soliton is station-
ary because its transverse velocity, related with the phase
jump, is locally compensated by a component of the inci-

Fig. 10. Upper part: color plot of the phase θ(x, y) =
arg[ψ(x, y)] for the same potential as in Figure 2 (with also
a = 1 and k = 4.5ex). The green dots are zeros of the wave
function. Lower part: detailed plot of the evolution of the phase
of the wave function along the paths displayed in the upper plot
as red and blue dashed lines (located at x0 = 4.5 and 7.5).

dent flow velocity. As a result of properties (i) and (ii) the
phase always increases between the low density streaks
delimited by two oblique solitons, as proved theoretically
in references [2,3,18]. Since the phase is measurable in po-
lariton experiments, this criterion can be implemented in
principle in the analysis of experimental data: nonlinear
oblique solitons can be identified from the fact that the
phase always increases between the low density streaks.

Note also that, in addition to this qualitative discus-
sion, it is very instructive to perform a quantitative anal-
ysis of the change of the width of the dark strips with the
distance from the defect in the linear and in the nonlinear
cases. Studies of this type, with corresponding experimen-
tal data, are presented in the supplementary material of
references [1,4].

We now present quantitative estimates making it pos-
sible to evaluate the importance of nonlinear effects in
the structures of the wake observed behind an obstacle.
Working in the standard mean field approach, interaction
effects are most easily accounted for by replacing the ef-
fective Schrödinger equation (1) by the Gross-Pitaevskii
equation:

i�ψt = − �
2

2m
∇2ψ +

[
U(r) + g|ψ|2]ψ, (41)
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where g denotes the effective interaction constant (re-
lated to the s-wave scattering length which characterizes
the low-energy inter-particle scattering). The linear effects
dominate if the characteristic size d of the diffraction pat-
tern (say, the width of the dip around a node) is much less
than the healing length ξ,

d� ξ, (42)

where the healing length is defined as:

ξ =
�√

2mgρ0
, (43)

and ρ0 is the characteristic density of the polariton gas. To
obtain a rough estimate of the size d, we can use the result
of the Born approximation (8) which yields a scattering
amplitude of the order f ∼ (Q0a)2/

√
k and a characteris-

tic angle ϕ ∼ (ak)−1. The phase singularity appears at a
distance

x ∼ f2 ∼ (Q0a)4/k (44)

and the characteristic width of the dip is

d ∼ xϕ ∼ (Q0a)4

k2a
. (45)

Thus, if the parameters characterizing the obstacle and
if the incident wave number are such that this estimate
of d satisfies the condition (42), then the wave pattern
is formed by purely linear interference effects; otherwise
the nonlinear effects prevail in the formation of the wake
structure in the flow.

As an illustration of the experimental relevance of this
type of quantitative estimate we return to the above dis-
cussion where we stated that nonlinear oblique solitons
can in principle be identified from the fact that the phase
always increases between the low density streaks. For us-
ing this criterion in practice one has to measure the sign
of the phase jump along a long enough segment of the ex-
perimentally observed dip: precisely along a length greater
than the estimate x in equation (44) in order to make sure
that the region around a possible point of the phase sin-
gularity is not missed in the measurements.

One should also notice that for increasing incident po-
laritons density, the linear wave pattern discussed here
transforms gradually into the so-called “ship wave” struc-
ture [32,33] located outside the Mach cone. On the
contrary, the nonlinear oblique solitons discussed in refer-
ences [2–5] are located inside the Mach cone. Combin-
ing this remark with the above estimates permits one
to distinguish the most important physical effects which
are responsible for the wave pattern observed in the
experiments.
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